
HAL Id: hal-01256945
https://hal.science/hal-01256945

Submitted on 15 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Audio oriented UI components for the web platform
Victor Saiz, Benjamin Matuszewski, Samuel Goldszmidt

To cite this version:
Victor Saiz, Benjamin Matuszewski, Samuel Goldszmidt. Audio oriented UI components for the web
platform. WAC, Jan 2015, Paris, France. �hal-01256945�

https://hal.science/hal-01256945
https://hal.archives-ouvertes.fr

Audio oriented UI components for the web platform

Victor Saiz, Benjamin Matuszewski, Samuel Goldszmidt
IRCAM – Centre Pompidou, STMS lab IRCAM-CNRS-UPMC

1, Place Igor Stravinsky
75004 Paris

{firstname.lastname}@ircam.fr

ABSTRACT
This paper presents a set of web-native tools for visualis-
ing and interacting with time-based objects. These visu-
alisations are rendered as part of the document using web
standard technologies, allowing for an easy integration and
interaction with the elements on the same document with-
out the help of non-native technologies such as Adobe Flash,
Microsoft’s Silverlight or Oracle’s Java.

Categories and Subject Descriptors
[Information systems]: Multimedia content creation, Web
interfaces, Browsers; [Human-centred computing]: Hu-
man computer interaction (HCI), Hypertext / hypermedia,
Graphical user interfaces, Web-based interaction, User in-
terface tool-kits, Systems and tools for interaction design,
Visualisation systems and tools; [Applied computing]:
Hypertext languages; [Software and its engineering]:
Open source

General Terms
Documentation, Performance, Design, Experimentation, Hu-
man Factors, Standardization, Languages, User experience.

Keywords
HTML5, Open Web Standards, ECMAScript, Interaction,
Visualisation, Graphical User Interface, Web Components,
Web Audio API

1. INTRODUCTION
Traditionally in the web platform there was a collection of
UI elements available through the standard HTML speci-
fication <input | select | button...>. With the arrival
of the HTML5 [24] specification, the collection has been ex-
panded considerably with new UI elements such as <color

| date | range | datalist...> and form validation, but
none of them lives up to the potential of some of their new

WAC ’15, Paris, France
Copyright © 2015 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. This volume is published
and copyrighted by its editors.

media APIs yet, from knobs to waveform visualisers, spec-
trograms, breakpoint functions, timelines etc. These new
media elements presents new interaction and editing chal-
lenges specially for media streams like audio buffers.

After widespread adoption (2008 to 2013 [14]), these new
APIs are made available in millions of browsers. That, along
the improvements in Javascript runtime engine’s brings faster
performance, new multimedia capabilities, wider access to
different types of data formats (webVTT [27], JSON [6])
and sources (FileSystem API) to the browser. This partic-
ular context makes a new range of multimedia applications
possible for the first time without the use of non-native plug-
ins today.

“At some point recently, the browser transformed
from being an amazing interactive document viewer
into being the world’s most advanced, widely-
distributed application runtime.” [7]

In this paper we present a project where we are set to ex-
plore these new capabilities in order to develop richer means
of representation and interaction for audiovisual and time
based objects.

2. GOALS AND REQUIREMENTS
Our goal is to release a collection of UI elements for audio
streams and time based objects.

For content editors we plan to release ready to use visualisers
packaged as Web Components [26]. Whereas for Javascript
developers we will be shipping the same components with
full Javascript APIs. Finally, on the lowest level, visuali-
sation developers wanting to tap into the deepest core of
the components will also have access to these small pieces
of functionalities and use, compose and combine them as
needed into more complex visualisations.

Given the open source nature of the project [12], our APIs
and internal architecture need to be easy to use and un-
derstand, aiming for modularity and emphasizing on re-
usability, compatibility and independence.

3. STATE OF THE ART
The research in this project started out as part of an ear-
lier IRCAM project named “Écoutes signées” driven by the
APM team [10]. The project aimed to explain the listen-
ing process, with an emphasis in active listening, and find
ways for non-specialist audiences to experience music the
way composers, performers, musicians or musicologists do.
[8]

Most of the components we will provide have been part of
the desktop platform’s repertoire in various forms for a long
time, audio editors, workstations etc. Among them, Max/-
Mubu [22] and Variations Audio Timeliner [19] were the
inspiration for some of our use cases.

There are also several GUI libraries based on the Web Audio
API [25] for the standard-web platform. These are signifi-
cant projects developed by members of the community such
as Prong [1], Kievii [2], WAAX/mui [5], Nexusosc [18], Inter-
face.js [21], Peak.js [20], wave surfer [15], Timeline.js [9] etc.
While some of them have similar goals to ours, most of them
just touch upon different UI problems, and the ones that do
are just not conceived nor designed to be used outside their
particular applications.

Lastly, the excellent work in the browser for non web-standard
solutions such as Java applets, Flash applications (e.g. the
work of Michelle and Ebert for the Flash platform [17] [16]
has been especially important for the audio community in
the web) dealt with the same issues we face today in terms
of interaction design.

4. THE ARCHITECTURE
At its core the library sits on top of the visualization library
D3. [4]

Among the reasons why to use D3 as the base for our visu-
alisation tools is the fact that it already is one of the most
widespread visualisation libraries, backed by a big and ac-
tive community of developers. The library also includes an
extensive set of commonly needed utilities for visualisation
tasks such as scales, axes, data mining and data manip-
ulation functions. At its core it is tightly coupled to the
DOM, which not only aligns perfectly with our commitment
to being W3C standard compliant, but also it allows for a
seamless interaction between our component’s SVG nodes
and the rest of the elements on the document. Last but not
least, an important factor for this choice is it’s modular ap-
proach that gives us the possibility to export subsets of the
aforementioned strictly based on every particular need.

Since our potential users – the Javascript developers – are
most likely familiar with already existing UI libraries and
because we are making extensive use of D3, one important
decision regarding the general architecture and our APIs is
to adhere to D3’s community guidelines and frequent pat-
terns [3] and its functional coding style. By doing so, we
deliver fully compatible tools that can integrate with other
tools developed by D3’s community.

Figure 1: Architecture overview

timeline
zoom
select
scales
…

.add(segment) offset / scale / click / drag …

.add(waveform) offset / scale / click / drag …

.add(breakpoints) offset / scale / click / drag …

4.1 The Timeline
When visualising timed objects it is very important to en-
sure that the time axes of each and every visualisation are
kept consistently, even more so when we are to zoom in and
edit the visualized data. For that reason, all the architec-
ture evolves around the Timeline class, which not only is
responsible for time axis consistency, but also formalises the
means by which every visualiser is edited, positioned and
zoomed in. In order to work with components, the Time-

line provides a plugin-like API that allows the user to add
and remove component instances extending the class Layer

(see figure 2 lines 8 and 9) at any time. Layers inside the
Timeline are then called upon their different life cycle events
(initialisation, data-binding, update and draw) by the
Timeline. Similarly, the Timeline has basic layout capabil-
ities that permits the vertical positioning of its layers (via
the layer’s top parameter as seen in figure 4 line 6), while
locking their horizontal position, size and scale and hence
keeping the time data in sync.

Figure 2: Instantiating a timeline and adding layers
to it

1 // Timeline instance
2 var graph = timeline ()
3 .width (800)
4 .height (150)
5 .xDomain ([0, 100]);
6 // add our layers to the timeline
7 graph
8 .add(segmentLayer)
9 .add(waveformLayer);

10 // d3 call to draw our timeline
11 d3.select(' .timeline ')
12 .call(graph.draw);
13
14 ...

With all of this in place, this architecture allows for com-
ponent composability, shared functionality and time consis-
tency.

Figure 3: Different layer and timeline possibilities

b) Waveform with segments and cursor.

a) Multi-media document. c) Multi-track environment.

The tool-set is the visual part of a bigger project that explores the browser's
capabilities for audio processing and interaction with newly implemented standards
the Web Audio API, Canvas, web components, HTMLMediaElements and other already
existing such as SVG etc.

This paper presents a set of web-native tools for visualising and
interacting with audio and time-based data. The resulting are
rendered as part of the document using web standard
technologies for easy integration and interaction the rest of
elements on the page without the help of any non-native plug-
ins such as Adobe Flash, Microsoft's Silverlight or Oracle's Java.

As shown in figure 3.a, separate Timeline objects can be
instantiated across a document containing one or many lay-
ers, empowering the user to build richer layouts where the
visualisations can coexist around other multimedia content.
Similarly in figure 3.b we can see how with layers we can cre-
ate complex timelines, by combining and overlapping them
with other layers while keeping the time axis’s aligned. Fi-
nally as seen in figure 3.c, when not used to make complex
elements, layers can be easily laid down vertically, creating
multi-track-like environments etc.

4.2 The components
Components are in charge of their own rendering and editing
capabilities. Every component extends the Layer class. This
class abstracts the common methods (params, data, etc.)
and life-cycle hooks (load, setScales, delegateEvents,

etc.) for every component, leaving to the component the
implementation or extension of it’s specific ones (update,
draw, xZoom, handleDrag, etc.). As mentioned earlier,
by extending the Layer class it becomes rather simple to
implement our own visualisations and incorporate them into
a Timeline which will render them in place and keeps us
away from inconsistencies. Each Layer is configured via it’s
params method, or it’s singular equivalent param (see fig-
ure 4 lines 4 to 13). The parameters passed via this method
are used to configure layer properties, where as specific data
accessors have their own separate methods on every compo-
nent (see figure 4 line 16). By default, the components are
not editable, nor available for selection, but interactions can
be defined through the params method using the interac-

tions key (see figure 4 lines 7 to 10).

The components also provide an operation interface that al-

lows to modify their elements state programmatically. With
such commands one can edit the position and size of ele-
ments without any mouse interaction, reducing the library
intelligence and leaving those decisions to the application de-
veloper. In turn the Timeline event system consumes such
APIs to manipulate its components.

Figure 4: Segment initialization and configuration

1 // Segment component
2 var segmentLayer = segment ()
3 // several params object
4 .params ({
5 height: 200,
6 top: 10,
7 interactions: [
8 ' editable ' ,
9 ' selectable '

10]
11 })
12 // one param
13 .param(' color ' , ' red ')
14 .data(model) // external data
15 // pass in the data accessor
16 .y((d,v=null) => {
17 if(v!== null) d.volume = v;
18 return d.volume;
19 });

4.2.1 Delivered components
The following components are already available in the li-
brary:

• Waveform component

• Segments component

• Breakpoint component (automation curves etc.)

• Label component

• Marker component

The majority of the components are rendered as SVG groups.
Their interactions are registered with the Timeline (see 4.4).
The requirements for a component are the following: They
must allow for easy addition, modification and deletion of
their items inside the Timeline. They should also be zoomable
on the x-axis.

The waveform component on the other hand, which visual-
izes data sampled at constant rates such as audio files, is a
special case in the collection, since the handling of the audio
data comes with an added complexity given the size of such
data. To deal with this, in the current implementation, the
chosen strategy is to generate a sub-sampled snapshot of the
audio data. Behind the scene, the layer defines the number
of samples per pixels for the rendering, and according to that
value it uses the sub-sampled snapshot or the raw data to
generate the final data to display. However, rendering this
amount of data via an <svg:path> can sometimes become
very heavy for the DOM, in those cases, a more performant
canvas rendering (via <svg:foreignobject>) alternative is
also available. Figure 5 illustrates a basic instantiation and
configuration of a waveform component.

Figure 5: Waveform instantiation and configuration

1 var arrayBuffer = audioBuffer
2 .getChannelData (0)
3 .buffer;
4
5 var waveformLayer = waveform ()
6 // mandatory configuration
7 .data(arrayBuffer)
8 .duration(audioBuffer.duration)
9 .sampleRate(audioBuffer.sampleRate)

10 // optionnal configuration
11 .params ({ renderingStrategy: ' canvas ' })
12 .color(' #C0CFCF ')

4.3 The data
Data uniformity is a wider problem than the scope of this li-
brary. While some of the visualisation libraries focus on data
parsing and filtering (e.g. Miso.dataset [11]) our use cases go
beyond fetching, formatting and filtering since we edit and
share our data with external elements (in our particular case
the audio components of the Waves library [13]). For that
reason we want to be working directly with the original data
structure. This is obviously limiting since the data needs to

come in with a given structure, in our case the data is ex-
pected to be provided as an array of objects. To mitigate
the limitations, every component has specific data accessors
that provide read and write access to the data points as
shown in (see figure 4 lines 16 to 19).

4.4 The Event system
We make use of the browser’s event system so changes on
the layer level are notified to components via the Time-

line using Event delegation [23]. Attaching event listen-
ers on every element in each layer is not efficient, instead
the Timeline discriminates the origin of the interaction via
browser’s event-listeners to then dispatch series of unified
custom events available to any element of the application
via the widely used observer pattern.

5. CONCLUSION AND FUTURE WORK
From where we stand today, a lot of the requirements that
seemed rather complex to achieve in a web browser have
proven to be increasingly possible thanks to efforts of browser
vendors and the Javascript community. As a result we have
managed to deliver a library [13] that includes a fair amount
of usable components and increase the range of possibilities
available to web developers.

However, because in some cases we encountered the need
for a more granular way of composing our different layers
together, we already started outlining some improvements
in the architecture. For instance, in a future architecture
we could decouple the rendering responsibilities from our
components, and separate our timeline in smaller objects.
These refactorings could allow us to nest several timelines
recursively and create “multi-component” layers. Regard-
ing the performance of the library, many things can still be
improved. One of them could be the implementation of a
throttling mechanism [12] to ensure a more consistent and
fine-grained event rate across browsers.

We are in the position to state nonetheless that the web plat-
form today delivers a solid foundation to build complex and
rich user interfaces on top of the the W3C standards specifi-
cation. With new technologies such as Web Components [26]
integration and distribution becomes easy and seamless.

6. REFERENCES
[1] L. Barlow. Prong.

https://github.com/lukebarlow/prong.

[2] C. Belloni. Kievii.
https://github.com/janesconference/KievII/,
2010.

[3] M. Bostock. Towards reusable charts.
http://bost.ocks.org/mike/chart/.

[4] M. Bostock, V. Ogievetsky, and J. Heer. D³
Data-Driven Documents. IEEE Transactions on
Visualization and Computer Graphics, 17:2301–2309,
2011.

[5] H. Choi. Waax/mui. https://github.com/hoch/waax.

[6] D. Crockford. JSON: The fat - free alternative to
XML. In Intelligent Search on XML Data, 2006.

[7] T. Dale. Progressive enhancement is dead.
http://tomdale.net/2013/09/

https://github.com/lukebarlow/prong
https://github.com/janesconference/KievII/
http://bost.ocks.org/mike/chart/
https://github.com/hoch/waax
http://tomdale.net/2013/09/progressive-enhancement-is-dead/

progressive-enhancement-is-dead/.

[8] N. Donin. Towards organised listening: some aspects
of the ‘Signed Listening’ project, Ircam. Organised
Sound, 9, 2004.

[9] S. Goldszmidt. JavaScript library for audio/video
timeline representation. In WWW2012, Lyon, France,
Mar. 2012. notes : / copyright : None 2012 / fiche :
None.

[10] S. Goldszmidt, N. Donin, and J. Theureau. Navigation
génétique dans une œuvre musicale. In Interaction
Homme-Machine, pages 159–166, 2007.

[11] T. Guardian. Miso project.
http://misoproject.com/dataset/, 2012.

[12] Ircam. Ircam on github.
https://github.com/ircam-rnd.

[13] Ircam. Waves library on github.
https://github.com/Ircam-RnD/waves.

[14] P. IRISH and D. MANIAN. Html5 adoption.
http://html5readiness.com/.

[15] Katspaugh. wavesurfer.js.
https://github.com/katspaugh/wavesurfer.js.

[16] A. Michelle. André michelle.

[17] J. Michelle, André amd Ebert. Pop forge.
https://code.google.com/p/popforge/, 2007.

[18] E. music & digital media of Louisiana state university.
nexusosc. https://github.com/lsu-emdm/nexusUI.

[19] T. of Indiana University and I. U. R. . T. Corporation.
Variations audio timeliner audio annotation and
analysis tool.
http://variations.sourceforge.net/vat/, 2002.

[20] B. R&D. Peak.js.
https://github.com/bbcrd/peaks.js.

[21] C. Roberts. Interface.js. http:
//www.charlie-roberts.com/interface/index.html.

[22] N. Schnell, A. Röbel, D. Schwarz, G. Peeters, and
R. Borghesi. Mubu & friends - assembling tools for
content based real-time interactive audio processing in
max/msp. In Proceedings of the International
Computer Music Conference, Montreal, Canada,
August 2009.

[23] W3C. Event delegation.
http://www.w3.org/TR/DOM-Level-2-Events/

events.html#Events-flow-bubbling.

[24] W3C. http://www.w3.org/tr/html5/.
http://www.w3.org/TR/html5/.

[25] W3C. Web audio api.
https://webaudio.github.io/web-audio-api/.

[26] W3C. Web components.
https://w3c.github.io/webcomponents/.

[27] W3C. Webvtt. http://dev.w3.org/html5/webvtt/.

http://tomdale.net/2013/09/progressive-enhancement-is-dead/
http://misoproject.com/dataset/
https://github.com/ircam-rnd
https://github.com/Ircam-RnD/waves
http://html5readiness.com/
https://github.com/katspaugh/wavesurfer.js
https://code.google.com/p/popforge/
https://github.com/lsu-emdm/nexusUI
http://variations.sourceforge.net/vat/
https://github.com/bbcrd/peaks.js
http://www.charlie-roberts.com/interface/index.html
http://www.charlie-roberts.com/interface/index.html
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-flow-bubbling
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-flow-bubbling
http://www.w3.org/TR/html5/
https://webaudio.github.io/web-audio-api/
https://w3c.github.io/webcomponents/
http://dev.w3.org/html5/webvtt/

	Introduction
	Goals and requirements
	State of the art
	The Architecture
	The Timeline
	The components
	Delivered components

	The data
	The Event system

	CONCLUSION AND FUTURE WORK
	References

