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We study droplet formation in granular suspensions by systematically varying the volume fractions (ϕ) and 
particle diameters (d). For suspensions with water as the suspending liquid, we find three different regimes. For 
dilute suspensions (ϕ ≤ 45%), drop formation follows the predictions for inertial breakup and exhibits identical 
dynamics to that of pure water. The breakup is strongly asymmetrical in this case. Only for more concentrated 
suspensions (ϕ > 45%) does the presence of particles change the dynamics and two other regimes, a symmetrical 
inertial regime and a Bagnoldian regime, are uncovered. We construct and discuss a phase diagram that allows 
us to understand and predict the breakup behavior in granular suspensions. 

 PACS number(s):  45.70.−n, 47.57.−s, 47.20.Dr, 47.55.D− 
 

Drop formation is essential for many industrial applications 
and processes [1]. For Newtonian fluids, liquid neck breakup 
leading to drop formation is well understood: it is governed by 
a competition between capillary forces that drive the breakup 
and viscous and/or inertial forces slowing down the fluid flow 
in the neck [1]. The detailed understanding of the phenomenon 
relies on finding the similarity solutions for the shape of 
the fluid neck that connects the drop to the orifice, and that 
eventually breaks up in a finite time [1]. 

On the other hand, drop formation in non-Newtonian 
fluids, which is important in areas such as emulsification, 
inkjet printing, and agricultural spraying, is still ill understood 
in many cases [1–4] and continues to attract considerable 
attention [5–13]. For instance, theoretical analysis predicts 
that the drop breakup in shear thinning fluids proceeds faster 
than that in the Newtonian case due to the high elongational 
rates present in the fluid neck during the thinning [14,15]. 
To the contrary, experiments show that in shear thinning and 
very strongly shear thinning yield stress fluids, the breakup 
dynamics can be described completely by the equations for 
the breakup of simple fluids [6], whereas other experiments 
do report a signature of the shear thinning behavior [7,16,17]. 
A very recent paper shows that nonlocal rheology may play a 
role in these yield stress fluids [18]. 

Here we consider an important class of complex fluids: 
granular suspensions made of solid particles homogeneously 
dispersed in a simple Newtonian liquid. The viscosity of 
these suspensions can be simply increased by adding particles 
without affecting the density or the surface tension of the 
suspensions [19], making these systems excellently suited for 
a systematic study. Different questions then arise: what is the 
relation between shear and elongational rheology, does the size 
of the particles affect the breakup dynamics, and what is the 
role of the suspension concentration? To answer these ques- 
tions we use a system whose rheology in shear flow is simple: if 
the suspensions are density matched they behave as Newtonian 
liquids at low shear rates, and show shear thickening at higher 
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shear rates [20,21]. Recent studies show that during breakup 
different scenarios may occur [22]; the breakup may be visco- 
capillary but governed by either the solvent or the suspension 
viscosity [8–10]. Also new regimes are found that are dramat- 
ically different from the predictions for simple fluids [11–13]. 
In highly concentrated granular suspensions [11] the thinning 
of the neck was found to follow a power law versus time to 
breakup with an exponent of 2/3, which alone would be the 
inertial breakup; however with a counterintuitive symmetric 
breakup geometry. It was argued in [11] that the force balance 
takes place more locally here and that the capillary pressure 
exerted at the level of the individual particles protruding from 
the interface is balanced by the fluid inertia. Exponential thin- 
ning is also observed in colloidal and cornstarch suspensions: 
the thinning dynamics proceeds more slowly than that in the 
Newtonian case and the thinning neck becomes cylindrical 
[12,13]. The overall picture is still not clear and the different 
mechanisms at play deserve further systematic study. 

In this paper, by systematically varying the particle di- 
ameters (d) and volume fractions (ϕ), we establish a phase 
diagram for suspension breakup. Three regimes for the drop 
breakup occur: an inertial regime identical to that of the solvent 
(water), a second inertial regime in which the breakup is still 
inertial but becomes up-down symmetric, and a third, which 
we refer to as a Bagnoldian regime, that likely corresponds 
to a shear-thickened state (with the emergence of significant 
normal stresses) of the material. The transitions between the 
different regimes are identified and possible criteria for the 
transitions between the different regimes are suggested. 

The granular suspensions used in the experiments are 
prepared using poly(methyl methacrylate) (PMMA) parti- 
cles (d = 1.3,6,10,15 μm) with a density ρ  ≈ 1.19 g/cm3 
or polystyrene (PS) particles (d = 20, 40, 80, 140, 250, 
500 μm) with  ρ  ≈ 1.05 g/cm3.  To  avoid  sedimentation 
or creaming,  we  prepare  density-matched  suspensions  by 
dispersing particles in pure water, in which the salt NaI 
(purchased from Sigma Aldrich) is previously dissolved to 
adjust the density to that of the particles. The viscosity (η) of 
the suspensions is increased by simply increasing the volume 
fraction ϕ. Colloidal suspensions are prepared by dispersing 
1.3 μm PMMA particles in density-matched mixed solvents, 
cyclohexyl bromide (CHB) and decalin, which has a similar 
viscosity to that of water (η ≈ 1 mPa s). 
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FIG. 2. (Color online) Rescaled data for 40 μm suspen- 
sions with ϕ ); 50%. The red  line  is  the  equation  Rmin ∼ 
(Aγ d/ρR0)1/3(t0  − t )2/3. 

 
the prefactor, we fit the thinning curves close to the breakup 
time t0. For a fitting range 0 < (t0 − t ) < 2 ms, the data are 
linear when plotted as 2R3/2  vs (t0 — t ), allowing evaluation 

 
 
 

FIG. 1. (Color online) (a) Thinning dynamics 2Rmin vs (t0 − t ) 
for water and 40 μm suspensions with ϕ varying from 45% to 59%. 
Continuous lines: power law fit with 2Rmin = α(t0 − t )2/3. Inset: two 
images showing the asymmetric and symmetric breakup, respectively. 
The scale bar is 1 mm. (b) Left: prefactor α from fitting the thinning 
curves in (a). Right: asymmetry coefficient. Inset: Reynolds number 
Re vs ϕ. 

 
To study the dynamics of drop detachment for the granular 

suspensions in air, we use a high-speed video camera (Phantom 
V7 at 10000 frames/s). The controlled release of the drops is 
achieved by using a syringe pump to set a low drop emission 
rate. To prevent possible jamming in the syringe tip, two 
kinds of syringes are used, with radii R0 ≈ 1 mm for d �  
40 μm particles and 2.25 mm for d ); 80 μm particles. The 
rheological measurements are carried out using a cone-plate 
geometry with a 50 mm diameter cone and a 4◦ angle on a 
Physica MCR 300 rheometer for the smallest particles. For the 
larger particles we use a 5 mm gap Couette cell or a plate-plate 
geometry with variable gap, and ensure that the results do not 
depend on the gap size. 

We first discuss the results for the 40 μm PS beads 
[20,23]. Figure 1(a) shows the temporal variation of the 
minimum neck diameter 2Rmin for different volume fractions 
ϕ. For comparison, we also plot the thinning curve for water 
which follows the inertial-capillary prediction [1,24]: 2Rmin = 
0.7(γ /ρ)1/3(t0 − t )2/3, where γ is the surface tension, ρ is 

of the slope. We also fit directly using 2Rmin = α(t0 − t )2/3 

[Fig. 1(a)]; α  is indistinguishable between the two methods 
of fitting and is shown in Fig. 1(b). Note that for  low 
volume fractions this prefactor is similar to that for water 
(0.27 mm/ms2/3) but drops to a smaller value for ϕ ); 50%. 
Further, there is a major, visual change in the shape of the 
interface at breakup at different volume fractions ϕ: for small 
ϕ the breakup is strongly asymmetric, whereas for large ϕ 
it becomes symmetric [Fig. 1(a) inset] and this happens at a 
larger scale instead of a single-particle level. The asymmetry 
coefficient defined in [6,26] shows a clear and sharp transition 
from asymmetric to symmetric breakup around ϕ ≈ 45% 
[Fig. 1(b)]. Here the observation of the 2/3 law thinning 
dynamics together with the symmetric breakup is in agreement 
with the observations in [11]. 

The main difference between concentrated and dilute 
suspensions may be that for the former particles are more 
likely to deform the interface during the breakup, as also 
observed for shear flow due to dilatancy [27]. As discussed 
in  the  introduction,  the  local  force  balance  at  the  level 
of the individual particles leads to the scaling 2Rmin ∼ 
(Aγ d/ ρR0)1/3(t0 − t )2/3 [11], which resembles the usual 
inertial scaling but includes an extra factor (Ad/R0)1/3 with R0 
the syringe radius, and A an additional constant that accounts 
for the characteristics of the particles at the interface such as the 
contact angle and the depth of immersion. This is then likely to 
be the cause of the changed prefactor α in Fig. 1(b), allowing 
us to calculate the constant A; as an example, for ϕ  ≈ 59%, 
A ≈ 0.114, close to the reported value [11]. In fact, all the data 
with ϕ ); 50% collapse on a single master curve at A  ≈ 0.1 

the density, and t0 is the breakup time. For dilute suspensions if Rmin/(R0A1/3) is plotted vs (t0  − t )/(ρR4/γ d) 1/2 (Fig. 2), 
(ϕ �  45%), the dynamics is indistinguishable from that of pure 
water [Fig. 1(a)] with an asymmetric breakup [Fig. 1(a) inset], 
showing that the particles have no influence on the breakup 
dynamics [25]. To the contrary, the neck thinning curves for 
concentrated suspensions (ϕ ); 50%) deviate from the inertial 
prediction in that the prefactor is different, but the power of 
2/3 in time seems to be conserved [Fig. 1(a)]. To quantify 

suggesting that the breakup in all concentrated suspensions 
falls in the symmetric inertial regime. 

As stated in the introduction, neither the density nor the sur- 
face tension changes upon varying the volume fractions. The 
viscosity does change [19,20,23], but this should be irrelevant 
for the inertial breakup dynamics. Consequently, the viscous 
forces are considered to be negligible not only in the inertial 
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FIG. 3. (Color online) (a) Thinning dynamics 2Rmin vs (t0 − t ) for 6 μm suspensions with ϕ ); 55%. Red line: exponential fitting with 
2Rmin = A exp [(t0 − t )/τ ]. Inset: two images showing the cylindrical neck geometry and the upper neck recoils after the breakup, respectively. 
The scale bar is 1 mm. (b) The neck thinning velocity d(2Rmin)/dt vs (t0 − t ) with ϕ = 59%; the fitting range is chosen between the minimum 
and maximum points in the curve. (c) Rescaled data for 1.3, 6, and 10 μm suspensions. Inset: prefactor A from exponentially fitting all thinning 
curves. (d) The quadratic dependence of the thinning time τ , in the Bagnoldian regime, on the particle diameter d. 

 

but also in the symmetric inertial regimes, as viscosity is absent 
in both scalings. To examine whether the viscous forces can 
indeed be neglected, we estimate the ratio of the inertial to the 
viscous forces for the last instant before breakup: the Reynolds 
number Re = ρvt Rmin/η; here vt = d(2Rmin)/dt is the neck 
thinning velocity, and η is obtained from shear rheology. We 
take an average velocity in the final stages (the last few 
milliseconds) of the thinning curves to estimate Re. This 
Reynolds number can also be estimated as Re = (Rmin/lv )1/2 
with the viscous length scale given by lv  = η2/ργ ; viscous 
forces should dominate the dynamics when Rmin is smaller than 
lv . As shown in Fig. 1(b) inset, the estimated Re decreases with 
increasing ϕ (increasing η). Thus, for high concentrations, for 
which Re < 1 and despite the fact that for a substantial part of 
the thinning dynamics the neck radius Rmin is smaller than the 
viscous length scale lv , the thinning does not happen at constant 
speed, but rather as 2Rmin ∝ (t0 − t )2/3. For Newtonian fluids, 
if Rmin < lv , one would, expect 2Rmin ∝ (t0 − t ): the thinning 
happens at constant speed. 

In addition, our experiments show that the change of 
regimes is observed to happen around Re ≈ 1. This is 
surprising since in classical theory  for  Newtonian  fluids, 
for Re ≈ 1 the drop breakup should follow viscous-inertial- 
capillary dynamics which is linear in time and asymmetric in 
breakup geometry [26]. The exact significance of this result 
is not obvious at present and may suggest that the mechanism 

behind the symmetric inertial regime works only when viscous 
forces are important even though they do not enter explicitly 
into the force balance. 

Measurements on systems with different particle diameters 
show the generality of the symmetric inertial regime; typical 
data for the thinning of the neck in 6 μm PMMA suspensions 
show that, similarly to what happens for the 40 μm particles, as 
ϕ is increased (50% < ϕ < 55%), the thinning curves deviate 
from that of water and again fall in this regime. However, 
for these small particles, yet another regime exists. If volume 
fraction is increased beyond ϕ ∼ 55%, the breakup dynamics 
shows a very different behavior. As shown in Fig. 3(a), before 
the final breakup, the thinning dynamics slows down for 
2Rmin,l ≤ 2Rmin ≤ 2Rmin,u with the critical neck diameters 
2Rmin,l and 2Rmin,u being the lower and the upper end of 
this regime, respectively. The positions of these diameters 
(inflection points) can be obtained from the time dependence 
of the thinning velocity d(2Rmin)/dt , as shown in Fig. 3(b). 
Upon increasing the volume fraction, 2Rmin,l  decreases from 
0.19 to 0.09 mm, while 2Rmin,u increases from 1 to 1.4 mm. 
The temporal dynamics in this regime can be fitted well by 
the exponential scaling 2Rmin = A exp (t0 − t )/τ , where A is 
the prefactor, τ is the exponential thinning time, and t0 is the 
breakup time. Contrary to the above two regimes, the neck 
geometry becomes cylindrical during the exponential thinning 
[Fig. 3(a) inset]. The cylindrical shape is lost near the end of the 
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breakup process where the thinning process accelerates and the 
symmetry is broken as observed before [13]. After the breakup, 
the upper neck recoils, suggesting that the neck supports 
a strong tensile stress. All of these features (exponential 
thinning and cylindrical neck geometry) are consistent with 
the observations in [12,13]. The capillary force is mainly 
countered by the elongational viscosity of the suspensions 
and the tensile stress in the neck is usually associated with an 
increase of the first normal stress difference τzz − τrr , with 
τzz  and τrr   being the normal stress components along the 
axis and radius of the neck, respectively. In agreement with 
this idea, we find that all the thinning curves (for 1.3, 6, and 
10 μm suspensions with ϕ ); 55%) collapse on a single master 
curve if 2Rmin/A is plotted vs (t0 − t )/τ in semilogarithmic 
coordinates [Fig. 3(c)]. This suggests that the exponential 
thinning model for this regime captures all the experimental 
data. The characteristic time of the exponential thinning shows 
a quadratic dependence on the particle diameter: τ ∝ d2 

[Fig. 3(d)]. 
An interesting question in this regime is that the exponential 

thinning behavior cannot continue infinitely and must cease 
at some finite time (when 2Rmin = 2Rmin,l ) before the final 
breakup. What happens close to breakup after exponential 
thinning has been studied rather extensively for polymer 
solutions [4]; here either secondary instabilities set in or 
dilution effects become important before a true asymptotic 
regime can be uncovered. 

Combining the results for all different systems (systemat- 
ically varying the particle diameters d and volume fractions 
ϕ), a phase diagram for drop formation in aqueous granular 
suspensions is constructed (Fig. 4). Three regimes are shown 
in the diagram: the inertial, the symmetrical inertial, and the 
exponential regime. Interestingly, the transitions between the 
different regimes are observed to happen as a function of both 
the volume fractions ϕ and the particle diameters d (Fig. 4). 

To understand the transitions, we start by noting that all 
suspensions at low volume fractions (ϕ  �  45%) follow the 

inertial regime for water. As the volume fraction ϕ is increased 
 
 

 
 

FIG. 4. (Color online) Phase diagram for drop formation in gran- 
ular suspensions. Water is used as the suspending liquid except 
for 1.3 μm suspensions, which are prepared in a mixed solvent of 
cyclohexyl bromide and decalin. For large particle (250 and 500 μm) 
suspensions, one drop of the surfactant Triton is added to stabilize 
the suspension. Dashed lines are guides to the eye. 

(thus increasing the suspension viscosity), the particles start 
to affect the breakup and we observe the symmetric inertial 
regime. As shown in Fig. 4, the transition between these 
two regimes happens at ϕ  ≈ 45% (which coincides with our 
estimate of Re ≈ 1); the fluctuations near the boundary are 
mainly due to the viscosity variations in different particle 
suspensions due to slight density mismatches that occur if 
the laboratory temperature varies. The asymmetric-symmetric 
transition is not observed for the 500 μm particles: even for 
ϕ > 45%, the breakup still falls in the inertial regime. In 
agreement with the arguments of [11], this happens because the 
pressure induced by the particles becomes small; the Laplace 
equation f'>P ∝ γ /d shows that the larger the particle, the 
smaller the pressure at the scale of the particle. For our case, 
if the ratio of the particle diameter d and syringe radius R0 

(R0 ≈ 2.25 mm syringe is used for 500 μm particles) becomes 
of order unity, and since (Aγ d/ρR0)1/3 is of the order of the 
usual inertial prefactor α (0.27 mm/ms2/3), the equations for 

the two regimes become identical; in this case, the local force 
balance at the level of individual particles can be neglected. 
The  condition  d∼R0   then  roughly  defines  the  transition 
between the two regimes as a function of the particle diameter. 

For the smallest particles at the highest concentrations, 
the breakup behavior also depends on the tensile stress in 
the thinning neck. Note that the exponential regime is also 

observed for a colloidal suspension of 1.3  μm  particles 
(Fig. 4), showing that the thermal (Brownian) fluctuations of 
the particles do not change the breakup dynamics qualitatively; 
this is nontrivial since in some cases the breakup can be altered 
by fluctuation forces [28,29]. 

To understand the breakup behavior in the exponential 
regime, we correlate our observations with the shear rheology 
through measurements of the first normal stress difference N1; 
here N1 = τ11 − τ22 with τ11 and τ22 being the normal stress 
components along and perpendicular to the shear direction, 
respectively. Figure 5(a) shows that the viscosity of 6 μm 
particle suspensions is constant before shear-thickening, in 
agreement with [23]. The corresponding N1 curves are plotted 
in Fig. 5(b). We measured a significant positive N1 in systems 
with ϕ ); 55%; for ϕ < 55% cases, we did not observe positive 
normal stresses even at shear rates as high as 3000 s−1.  A   
plot on a log-log scale shows that N1 scales with shear rate 
squared γ̇  2 [Fig. 5(b) inset]; the quadratic scaling suggests a 
Bagnoldian behavior, for which the shear and normal stresses 
are both proportional to the shear rate squared as observed 
in dry granular materials [20,30,31]; particle inertia may 
contribute to the emergence of the nonzero normal force 
[20,30]. We fit the N1 curves (positive part) with N1 = \ll1γ̇  2, 
where \ll1 is the first normal stress coefficient [Fig. 5(c)]. 
This enables us to compare the characteristic time τ for the 
exponential thinning with the relaxation time \ll1/η, measured 
in the shear rheology with η being the suspension viscosity. We 
find that for the non-Brownian (6 and 10 μm) suspensions, the 
ratio of time scales is constant, i.e., \ll1/η varies linearly with 
τ : \ll1/η ∼0.1 τ [Fig. 5(d)]. For the Brownian suspensions, 
this measurement is difficult due to the rapid evaporation 
of the more volatile of the two solvents, and the suspension 
properties significantly change over time. The relation found 
nevertheless suggests a direct link between the time scales 
in elongational and shear flows. In [13], where an exponential 
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FIG. 5. (Color online) Rheological measurements for 6 μm suspensions. (a) Viscosity η vs shear rate γ̇  . (b) First normal stress difference 
N1 vs γ̇  . Inset: log-log scale shows that N1 scales with γ̇  squared. The symbols are the same as in (a). (c) Determination of the critical shear 
rate γ̇N and power law fit N1 = \ll1γ̇  2 (red line). (d) Comparison between \ll1/η and τ (black symbols), and 1/γ̇ N and τ (red symbols). Filled 
and open symbols are for 6 and 10 μm suspensions, respectively, with ϕ varying from 55% (squares), 56% (circles), 57% (upward triangles), 
58% (downward triangles), to 59% (diamonds). 

 
 

thinning behavior was also observed in cornstarch suspensions, 
a critical shear rate γ̇N is defined as the point where N1 starts 
to deviate from zero. In our experiments, if γ̇N is defined 
in a similar way: the minimum point where N1 starts to 
increase on increasing the shear rate [Fig. 5(c)], we also find 
a one-to-one correlation between the thinning time τ and γ̇N : 
τ ∼ 3/γ̇N [Fig. 5(d)] in agreement with the results in [13] 
albeit for a different suspension. All these observations point 
to a direct link between the elongational and shear rheology of 
suspensions with similar microscopic mechanisms regarding 
the emergence of the positive normal stresses. Therefore, we 
interpret the exponential regime regarding the drop breakup 
behavior as a granular Bagnoldian regime. The interesting 
negative part of the N1 curves in Fig. 5(b) may be due to the 
solvent being sucked into the granular packing that is dilating 
due to the shear [32]; however, its study is beyond the scope 
of this work and will be pursued elsewhere. 

For predicting the onset of shear thickening a critical 
Stokes number St = ρd2γ̇  /η0 is sometimes used, with η0 
the solvent viscosity [33]. In our elongational experiments 
(drop formation), we can estimate this from the elongation 
rate ε̇ = (−2/Rmin)(dRmin/dt ) = 2/τ and the viscous time 
τv = ρd2/η0 [using τ ∝ d2 as shown in Fig. 3(d)]; the latter 
determines the time scale for the interstitial fluid passing 
through the space between  particles.  The  Stokes  number 
for the emergence of the Bagnoldian regime then turns out 

 
becomes somewhat smaller (∼1 × 10−3) when the volume 
fraction increases up to ϕ = 59%, so that the Stokes number 
varies over a factor of 2. The phase diagram (Fig. 4) then 
indicates that St ∼ (1−2) × 10−3 gives the transition between 
the Bagnoldian regime and the symmetric inertial regime. 

Compared with the Stokes number for the onset of shear 
thickening in the rheology, the onset shear rate for shear 
thickening gives Stokes numbers that are much smaller and 
vary over an order of magnitude when the volume fractions are 
changed: 0.3 × 10−4 < St < 5.4 × 10−4. Such small Stokes 
numbers  for  the  onset  of  thickening  are  also  found  in 
other shear thickening systems; this is surprising since if 
the thickening were due to a viscous-to-inertial transition, 
one would expect the Stokes number to be of order unity. 
One interpretation of these small Stokes numbers is that they 
result from short-range interactions between particles that give 
the onset of thickening [20,34–37]. 

In conclusion, we studied drop formation in aqueous 
granular suspensions. Systematically changing the volume 
fractions (ϕ) and the particle diameters (d), we established 
a phase diagram that allows us to understand and predict the 
breakup behavior. It turns out that the behavior is very different 
from that of Newtonian fluids; which is important since many 
suspension flows can have an important elongational part, and 
it is this part that is characterized by our experiments. In 
addition, the results here allow the finite-time singularity that 

to be St = τv ε̇ ≈ 2 × 10−3  for   ϕ = 55%, but gradually occurs at the breakup to be tailored in a controlled fashion. 
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One pertinent example is that the asymmetric inertial breakup 
invariably leads to the formation of satellite droplets. These 
are in fact suppressed in the symmetric inertial regime, which 
could find applications, e.g., in spraying and inkjet printing, 
where such satellites are unwanted. 
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