
HAL Id: hal-01256907
https://hal.science/hal-01256907

Submitted on 15 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Co-Simulation of IP Network Models in the
Cyber-Physical Systems Context, using a DEVS-based

Platform
Julien Vaubourg, Vincent Chevrier, Laurent Ciarletta, Benjamin Camus

To cite this version:
Julien Vaubourg, Vincent Chevrier, Laurent Ciarletta, Benjamin Camus. Co-Simulation of IP Network
Models in the Cyber-Physical Systems Context, using a DEVS-based Platform. Communications and
Networking Simulation Symposium, 2016, Pasadena, United States. �hal-01256907�

https://hal.science/hal-01256907
https://hal.archives-ouvertes.fr


Co-Simulation of IP Network Models in the
Cyber-Physical Systems Context, using a DEVS-based

Platform
Julien Vaubourg

Inria, Université de Lorraine,
CNRS, LORIA, UMR 7503

Vandœuvre-lès-Nancy,
F-54506, France

julien.vaubourg@inria.fr

Vincent Chevrier
Université de Lorraine, CNRS,

Inria, LORIA, UMR 7503
Vandœuvre-lès-Nancy,

F-54506, France
vincent.chevrier@loria.fr

Laurent Ciarletta
Université de Lorraine, CNRS,

Inria, LORIA, UMR 7503
Vandœuvre-lès-Nancy,

F-54506, France
laurent.ciarletta@loria.fr

Benjamin Camus
Université de Lorraine, CNRS,

Inria, LORIA, UMR 7503
Vandœuvre-lès-Nancy,

F-54506, France
benjamin.camus@loria.fr

ABSTRACT
Cyber-Physical Systems (smart grids, cities, homes, etc)
are composed of computing resources, actuators and sen-
sors, connected through IP networks. These IP networks
involve many technologies. In order to help designing and
evaluating these systems, we are studying the modeling
and simulation of IP networks in this context. Since there
is no universal IP simulator proposing a model library cor-
responding to all the required technologies, we propose a
solution to make different major IP simulators, generally
not interoperable, interact with one another in a same co-
simulation. Moreover, they should also interact with simu-
lators corresponding to other fields of expertise involved in
the simulation, mostly related to the physical or social as-
pects of these systems (e.g. power models, traffic models,
weather models, etc). In this paper, we propose to address
these issues as a multi-modeling problem, by integrating
well-known IP network simulators into a DEVS-based co-
simulation platform. We propose some concepts, helping
to split a network topology into several models, to create
input/output ports inside them, and to integrate them to
a DEVS multi-model. We illustrate our solution thanks
to a use case, including interconnected event-based mod-
els executed both by NS-3 and OMNeT++, equation-based
models and the co-simulation platform MECSYCO.

1. INTRODUCTION
We are interested by the simulation of Cyber-Physical Sys-
tems (CPS), which have the specificity to mix models for
communication networks and others areas of expertise,
like power models, traffic models, weather models, etc.

Communication networks are almost entirely IP-based and
include several different physical media and logical proto-
cols. Many models for these technologies are provided
by several off-the-shelf IP network simulators (IP simula-
tors), but the implementation of all of the required mod-
els are not necessarily available for the same simulator, or
available with the same accuracy. As a result, thanks to
their own models library, different IP simulators can be

complementary for modeling a network. We want to reuse
existing models from different libraries, by modelling IP
networks thanks to a multi-model (each model represent-
ing a part of the network), and executing it thanks to a co-
simulation (involving different simulators, generally not
interoperable). To achieve this goal, we have to propose
solutions for some underlying issues, like splitting a net-
work topologies into several models, defining input/output
ports inside existing models, etc.

Moreover, the IP network models (IP models) have to in-
teract with the other models corresponding to other fields
of expertise involved in the CPS simulations. Therefore,
the multi-model must also be able to integrate these hetero-
geneous models, dealing with different formalisms (e.g.
event-based vs. equation-based) and the co-simulation
must be able to integrate the corresponding simulators.
This paper presents our solution, using a DEVS-based co-
simulation platform.

The section 2 presents the common usages related to co-
simulation with IP simulators and positions the goals and
challenges of this paper. Section 3 introduces the concepts
we defined for creating couplings between IP models (Spa-
tial Couplings), then Section 4 introduces those defined
for the couplings between IP models and others (Structural
Couplings). Section 5 focuses on the multi-model creation
& execution, thanks to DEVS and MECSYCO. Section 6
proposes some proofs of concept for validating our results.
Finally, Section 7 illustrates with a use case corresponding
to the simulation of a CPS, including equation-based mod-
els and an IP network modeled through several IP models
libraries.

2. GOALS AND CHALLENGES RELATED TO CO-
SIMULATIONS WITH IP SIMULATORS

We found two types of coupling with an IP model, in the
literature: coupling with another IP model, and coupling
with a model from a different field of expertise (non-IP
model).



2.1 Couplings Between IP Models
Couplings between IP models are mainly used to distribute
the execution of an IP model. Distributing an execution
implies splitting an existing model designed for a specific
simulator, into several models, for executing them over
several instances of the same simulator. This is mainly
done for performance reasons (speed of scalability). One
of the main contribution [12] about this approach is the
integration of the Message Passing Interface (MPI) stan-
dard for the IP simulator NS-3. MPI allows a modeler to
create a complex model of the IP network and to define
where the software environment is allowed to divide the
execution into several parts, using separated simulator in-
stances. Another work was done before with The Georgia
Tech Simulator (GTNetS) [16], but it was an homemade
IP simulator. This work was started after observing that
attempting to backstitch scalability into an existing simu-
lator is difficult, taking the case of PDNS [15] (distribution
of NS-2 models) as an example.

With these works, the co-simulation is composed of sev-
eral instances of the same simulator. In this paper, we are
interesting in the coupling of different IP simulators to-
gether, for mixing different IP models libraries. Indeed,
choosing an IP simulator for writing an IP model means
to be restricted to the submodels (see Def. 1) available in
its own models library. Usually, the IP simulators are not
interoperable together. Consequently, the modeler cannot
use submodels from different models libraries. Our goal is
to split the network topology into several parts, and imple-
ment each part thanks to a different IP simulator, for being
able to use several IP models libraries. We named this type
of coupling a Spatial Coupling, as defined in Def. 2.

DEFINITION 1. A submodel is a model provided by an
IP simulator, thanks to its models library. Submodels can
be connected together, enabling to model a complete net-
work. They can be models for nodes, links, applications,
etc.

DEFINITION 2. A Spatial Coupling corresponds to a
coupling between two IP models, each one representing a
part of a same network topology. A Spatial Coupling is
linked to each model thanks to a input/output ports. It is
in charge to ensure the IP packets exchanges between the
two ports.

The closest work is [17], with the coupling of GTNetS
and PDNS thanks to an homemade co-simulation platform.
It introduces two methods for doing couplings: cross-
protocol and split-protocol stack methods. The first one
corresponds to a topology split at the level of an equip-
ment (e.g. a node or a link), whereas the second one cor-
responds to a topology split at a TCP/IP layer level (e.g.
data link, transport, etc). In our case, we restrict the Spa-
tial Couplings to what they named the cross-protocol stack
method (considering the split-protocol stack method as a
future research topic). However, as in this work, we focus
on packet-level simulators that assume the packet is the
atomic unit of data that is simulated.

In our case, we want to integrate already existing IP simu-
lators, and they do not provide a generic solution for inte-
grating them to a co-simulation, because the authors are

also the ones creating the coupled simulators. Further-
more, their solution does not support couplings with non-
IP models, required for CPS simulations and introduced in
the next section.

2.2 Couplings Between IP Models and Non-IP Models
Couplings between IP models and models from other fields
of expertise enable to represent a device inside a network
and to use an external model for representing its applica-
tion layer. With this type of coupling, for example, when
an electric power meter is coupled with an IP network, the
meter is modeled both in the power networks domain (e.g.
with an ordinary equation-based model) and in the IP net-
works domain. The data received by the IP simulator from
a coupled simulator has to be embedded in a message, to
send from a source to a destination in the modeled network
topology.

[8] offers a good synthesis of the different platforms com-
bining power simulators with IP simulators. These papers
choose to restrict their solutions to only one IP simulator.
In our case, we want to find a solution not restricted to only
one IP simulator, and couple IP simulators to any other
models using different formalisms. We named this type of
coupling a Structural Coupling, as defined in Def. 3.

DEFINITION 3. A Structural Coupling corresponds to
a coupling between an IP model, and a model α from a dif-
ferent field of expertise. With this type of coupling, α rep-
resents the application layer of a device, and is in charge
to produce output data from input data. The device rep-
resented in α is represented in the IP model as a network
device. The IP model has to be able to receive data from
α and send it to another network device in the network.
When data are received by the network device correspond-
ing to α, it has to transmit them to the connected model.

The next section deals with the time synchronization is-
sues.

2.3 Time Synchronization
Lots of papers focus on the method to use for the simu-
lators coordination. Furthermore, in the CPS context, the
coordination method has to take into account the execu-
tion policies of the different simulators, using different for-
malisms.

This issue was solved in EPOCHS thanks to regular syn-
chronization points, checking the state of the continuous
components (power models) and checking if new events
happened for the discret-event ones (IP models). De-
pending on the step size used for the continuous models,
the simulation results will be more or less accurate. In
2007, [11] proposes to use the DEVS formalism, with the
ADEVS platform [10] and a homemade synchronization
algorithm, in order to improve the simulation results ac-
curacy for the discret-events models. With this solution,
each event is processed at the exact time it happens. In
2011, [9] proposes an intermediate solution, with the flex-
ibility of EPOCHS but approaching the DEVS accuracy.
With that solution, all simulators are in the same timeline
and events are checked continuously, providing accurate



simulation results, with a reduced algorithm, but with very
long execution times.

Many works focus on the use of HLA [4][6][7], and chose
to conform their federates (simulators) to the HLA rules,
using a RTI (simulation middleware) as a glue. HLA
gives specifications describing how an RTI should work-
ing but not for how it should be implemented. The result
is that available RTI implementations are often not com-
pliant with the full HLA standard. The simulators hav-
ing an HLA connector available are usually interoperable
with a specific implementation of the standard. Finally, be-
cause there are many ways, with the shared objects, to do
couplings between models with HLA, it is very difficult
to couple models not designed to communicate together.
More generally, HLA does not give answers for integrat-
ing models for different formalisms [18].

The details of our solution for the time synchronization
are out of the scope of the paper. We solved this problem
thanks to the co-simulation platform we chose to use and
we contributed to. Some pointers are given in Section 5.

The next sections presents the concepts we defined, for
creating Spatial and Structural Couplings.

3. SPATIAL COUPLINGS

3.1 Splitting a Network Topology
Splitting a network topology in order to represent different
parts of it in different models requires to choose a place
where to cut. We describe these places in this section, and
propose a concept for representing input/output ports in-
side the models.

An example of basic IP model, composed of submodels, is
proposed in Fig. 1. Two categories of submodels are pre-
sented here: nodes and links. Each of these submodels are
composed of other submodels. In this paper, we chose to
ignore the underlying submodels, except for the network
devices composing a link, and the applications compos-
ing a node. We defined two places where we can split a
network topology: End-Nodes (see Def. 4) and Transit-
Nodes (see Def. 5). A node can be both an End-Node and
a Transit-Node, e.g. a router acting as a proxy.

Figure 1. An IP model is composed of different submodels (in this exam-
ple, 1 color = 1 submodel), with End-Nodes, Transit-Nodes and Links.

DEFINITION 4. An End-Node is a node with applica-
tions. Incoming IP packets are intended for it, and out-
coming packets are produced by it. It corresponds to the
computer of an end user, or a server.

DEFINITION 5. A Transit-Node is a node without ap-
plication. It is connected to several links, and its function
is to forward IP packets from a link to another one. It

has no packets directly intented for it. It corresponds to a
router.

As described in Fig. 2, splitting a simple network topology
involves 3 places where to cut, leading to 7 combinations.

Figure 2. Splitting a network topology with a basic example and 7 pos-
sibilies (a, ab, ac, abc, b, bc or c).

Connecting the models together enables us to create a
multi-model, representing the whole network topology.
We consider that the data unit transferred between the
models is the IP packet (corresponding to the layer 3 de-
scribed in RFC1122). Thus, models have to exchange
modeled IP packets (IP packets) together.

Connecting the models together requires to create bridges
between them. When an IP packet reaches a splitting
boundary inside a model, it has to cross the bridge for be-
ing transferred to the corresponding splitting boundary of
the connected model. According to Def. 6, these bound-
aries are what we named Spatial Port Devices. According
to Def. 2, bridges between two IP models are Spatial Cou-
plings.

DEFINITION 6. A Spatial Port Device corresponds to
a modeled device (e.g. a network device), used for catch-
ing incoming IP packets and for injecting IP packets in
the modeled network. They define the place in the network
topology where the IP packets have to leave the current
model, in order to be injected in another Spatial Port De-
vice, defined in a connected model. These are also the
place where the external IP packets sent by a connected
model have to be injected in the network. During a simu-
lation, a Spatial Port Device always exchange IP packets,
in the two ways, with the same remote Spatial Port Device.

3.2 Splitting on a Transit-Node
Splitting on a Transit-Node leads to a typical method for
cutting the model.

We use the basic network topology presented in Fig. 2 as
an example, considering that we want to split the topology
into two parts. The cut occurs at the b line, on the Transit-
Node. In this case, we have to represent the T node into
two models X and Y . As described in Fig. 3, we turn the
network device submodels of the two links on both sides
of T , into Spatial Port Devices. The T node is represented
in the two models, but with only one link attached to it.

Figure 3. Splitting on a Transit-Node



In this case, E1 knows that all packets for E2 have to be
send via T , thanks to its routing table. When E1 sends
an IP packet to E2, this one is caught by the Spatial Port
Device attached to T in X . Then, it is transferred to the
Spatial Port Device attached to T in Y . Finally, it is in-
jected in the network thanks to the routing table of T , for
reaching E2.

We supposed that we used static routing for this example.
Once we split the network into several models, no model
has a global knowledge of the whole topology. Conse-
quently, it is impossible to let the IP simulators automat-
ically fill the routing tables. This can be laborious when
we want to model big and complex networks. Solutions
for this problem are out of the scope of this paper, but [17]
provides some strategies usable with our Spatial Couplings
(e.g. using Ghost Nodes, static routes, well-known routing
protocols like BGP, etc).

3.3 Splitting on a End-Node
Splitting on an End-Node leads to another typical method
for cutting the model. With this type of splitting, we will
see that some additional concepts are required.

We use again the basic network topology presented in
Fig. 2 as an example, considering that we want to split
the topology into two parts. The cut now occurs at the a
line, on the End-Node E1. We would like to have E1 rep-
resented in a model X , and the other parts in a model Y .

In this case, the network topology represented in Y will be
inconsistent, because of the link attached to T on a side,
but to nothing on the other side. In fact, the part II of the
topology cannot be represented without a node replacing
E1. For this purpose, we have to add a Fake Node to the
model Y . We defined this concept in Def.7.

DEFINITION 7. A Fake Node is a node added to a
model for replacing a missing End-Node on a link, ow-
ing to a Spatial Coupling. It is just used for attaching the
link and hosting a Spatial Port Device. It should not have
any application and act as an empty shell. This node must
have no influence on the simulation results.

Based on our experience, creating a Spatial Port Device
directly on an End-Node is difficult. Indeed, there is often
a way to catch incoming IP packets but rarely to catch out-
coming ones. Moreover, network device submodels are of-
ten dependent on a link submodel and cannot be separated
from it. For this purpose, we need to add a link attached
to E1 for catching the IP packets sent by E1. In order to
be sure to not change the simulation results, this link has
to be a Perfect Link, as we define it in Def.8. Because we
need to have a node on each side of the link, we have also
to attach a Fake Node on the Perfect Link.

DEFINITION 8. A Perfect Link is a link attached to an
End-Node on one side and to a Spatial Port Device on the
other side, for catching the IP packets produced by the
End-Node. It is useful when the IP simulator does not
offer possibility to catch them directly on the node. This
link must have no influence on the simulation results. This
is why it should be represented thanks to a link submodel
configured to have the maximum throughput allowed by

the simulator and a null delay . Using a P2P link for that
purpose avoids useless link layer messages, like ARP or
NDP ones.

The final multi-model is presented in Fig. 4. Thanks to
the Perfect Link and the Fake Nodes, the simulation times
associated to the IP packets are the same when E1 sends
them, and when the Fake Node in Y resends them.

Figure 4. Splitting on a End-Node (Perfect Link represented with two
parallel bars)

4. STRUCTURAL COUPLINGS
As explained in Def. 2, in the case of Structural Couplings,
the data sent from the coupled model to the IP model cor-
responds to application layer data. Consequently, we have
to define submodel corresponding to an application, and
being able to act as a proxy between the network device
and the coupled model. This is a new type of port that we
call Structural Port Device and we define in Def. 9. An
example of Structural Coupling is given in Fig. 5.

DEFINITION 9. A Structural Port Device corresponds
to a modeled application installed on an End-Node, used
for receiving incoming application layer data from the net-
work and transmitting them as input of a connected model.
Structural Port Devices are also in charge to receive the
output data of the connected model, then to send them to
another network device. In the network, a Structural Port
Device is connected to another network device, thanks to
an UDP or TCP socket.

Figure 5. Structural Coupling.

The following section explains how we connect the models
together, and we execute the multi-model.

5. CREATING AND EXECUTING A MULTI-MODEL

5.1 Co-Simulation With a Multi-Model
Thanks to the concepts defined above, we are now able to
create connectors for IP models. We described different
types of connectors (Port Devices), for different types of
interaction (Spatial or Structural Couplings). These con-
nectors enable us to provide input data to the models, and
asking them for output data, during the simulation. The
next step is to connect IP models and other ones together,
for creating a multi-model. This multi-model will be exe-
cuted in a co-simulation.

The following sections deal with the interconnection of the
models, taking into account the heterogeneity issues, and
the time synchronization.



5.2 DEVS Co-Simulation Platform
In order to connect the models together, and ensure the
communications between the pairs of Spatial Port Devices
and Structural Port Devices, we chose to use the DEVS
Simulation Protocol [20].

Using a DEVS platform enables us to integrate differ-
ent models with different formalisms, because DEVS is
supposed to be able to integrate any other formalisms
[18]. For executing our examples, we chose to use
the DEVS-based MECSYCO co-simulation platform [2].
MECSYCO uses the Agents & Artifacts [14] paradigm for
executing a multi-model, and the DEVS wrapper principle
[13] to integrate models. Thanks to the Chandy-Misra-
Bryant algorithm [3] and the multi-agent paradigm, the ex-
ecution is fully decentralized.

In order to describe a multi-model, MECSYCO uses the
following concepts. M-agents (Fig. 6a) are autonomous
agents controlling the MECSYCO co-simulation, by han-
dling the time advancement of a single individual simu-
lator associated to a model. They also have the respon-
sibility to retrieve the external events from their associ-
ated model and inject external events intended to it. An
m-agent communicates with a model thanks to a model-
artifact (Fig. 6b). This one corresponds to a DEVS wrap-
per attached to a model (Fig. 6c) and their associated sim-
ulator, and allows the attached m-agent to control the sim-
ulation. Finally, the coupling-artifact (Fig. 6d) ensures the
exchange of events between the m-agents, putting them
in a buffer, as a mailbox. Transformation operations may
be used at the coupling-artifact level, for solving some
multi-formalism or heterogeneity issues (e.g. changing
time scales, adapting data units, etc).

Figure 6. MECSYCO symbols.

Thanks to the DEVS concepts implemented in
MECSYCO, we are able to create DEVS wrappers
for our models and integrate them in the same co-
simulation. MECSYCO helps use to solve heterogeneity
problems, as demonstrated in [19]. Thanks to the possibil-
ity to add operations between the models, we can solve the
time and data representation issues (e.g. we can convert
the representation of the IP packets exchanged in a Spatial
Coupling).

However, MECSYCO is a non-specialist platform and
does not provide solutions for integrating IP models and
simulators. For achieving that, we need to create DEVS
wrappers. The next section deals with the prerequisites for
a DEVS wrapper, and our concepts.

5.3 Interactions With the DEVS Wrapper
Our Port Devices can be seen as DEVS ports, with input
and output events. Creating a DEVS wrapper requires that
we are able to support four main functions:

• Processing an external event: An IP packet received
as an external event has to be injected in the network by
a Spatial Port Device. In the same way, an application
layer data received as an external event has to be send
on the network by a Structural Port Device.

• Processing an internal event: The next event recorded
in the events stack has to be processed by the IP simula-
tor.

• Getting and output event: The IP packet or the data
received from the IP model, since the last internal event
processing, has to be transmitted from the Port Device
to the Wrapper.

• Getting next internal event time: The time associated
to the next event recorded in the events stack, has to be
transmitted from the IP simulator to the Wrapper.

Because some of these functions require to read and con-
trol the events stack, this implies to modify the events
scheduler of the simulator.

The main goal is to ”break the events-loop”, in order to
be able to provide a function enabling to execute the next
internal event only when the DEVS wrapper asks it, for
synchronization purposes. Based on our own experience,
this step can be difficult, because all simulators are not
written in a same manner. Simulators like NS-3 are conve-
nient, because they use a single function with a loop inside
(e.g. in the case of NS-3, it is void Run() defined in
the headers of the SimulImpl class). Overriding it en-
ables to add a mutex, which can be locked or unlocked
from a function from another thread (corresponding to the
DEVS wrapper). Other simulators like OMNeT++ do not
provide a loop directly overridable, but core functions like
the one returning the next internal event (e.g. in the case
of OMNeT++, it is cMessage* getNextEvent() de-
fined in the headers of the cScheduler class). Thanks
to a mutex again and some efforts for avoiding deadlocks,
the scheduler can also be instrumentalized.

The DEVS wrapper also requires functions for passing ex-
ternal events to the Port Devices, and retrieving the pro-
duced ones. For this purpose, when a Port Device is instan-
tiated at the start of simulation, it has to be registered by
the DEVS wrapper thanks to an index. During the simula-
tion, the DEVS wrapper use its registry to exchange input
and output external events with all available Port Devices
(used for Structural Couplings as for Spatial ones).

The following section proposes a proof of concept, for val-
idating the concepts presented above.

6. PROOF OF CONCEPT
This proof of concept (PoC) focuses on Spatial Couplings.
Its goal is to demonstrate that we managed to exchange
IP packets between models executed by two different IP
simulators, without affecting the simulation results. The
proposed scenario for our PoC is a modeled ping between
two nodes connected together by a simple P2P link, then a
LTE infrastructure (see Fig. 7).

A ping consists in exchanging packets, with a first node
(client) sending a request (echo message) to a second one



Figure 7. Network topologies corresponding to our PoC, modeling a
ping between two nodes, via a P2P link and a LTE infrastructure.

(server). When the server receives an echo message, it
sends a response (echo reply) to the client. Each node
is enhanced with a modeled application to define its own
role, with a ping client application (sending an echo mes-
sage every second) for the client and a ping server (re-
sponding an echo reply for each received echo message)
application for the server.

We want to split the first topology described in Fig. 7 on
the server, corresponding to an End-Node. We want to
split the second topology on the gateway, corresponding to
a Transit-Node. Splittings are done exactly as described
in Section 3, using a Perfect Link and Fake Nodes for the
first topology.

We did the following ping simulations: 1) Model entirely
written with NS-3, then with OMNeT++, 2) NS-3 model
with the client and the P2P link, coupled to another NS-
3 model with the Perfect Link (or the LTE infrastructure)
and the server, 3) The same as the previous one, but with
an OMNeT++ model on the server side and 4) Again the
same configuration, but with NS-3 at the server side and
OMNeT++ at the client side.

For validating our results, we did three groups of tests, cor-
responding to: 1) All the versions using only a P2P link, 2)
All versions using an LTE network on the NS-3 side, and
3) All versions using and LTE network on the OMNeT++
side. The simulation time corresponding to the echo reply
messages must be exactly the same for all versions inside
a same group, experimentally showing that the coupling
with MECSYCO (with Port Devices, Fake Nodes and Per-
fect Links) has no effect on the simulation results.

In order to compare the simulation results, we log the sim-
ulation time corresponding to the echo replies messages.
We executed each version of our ping simulation an hun-
dred of times, finding exactly the same simulation results.
Then, we compared all versions inside a same group, and
no difference was found, including with the versions with-
out couplings (models entirely written in NS-3, then OM-
NeT++).

The next section proposes a use case corresponding to a
complete simulation of a CPS, including a complex IP
model with Structural and Spatial Couplings.

7. USE CASE

7.1 Scenario
Our scenario corresponds to the use case explained in [5].
Heatings and temperature sensors of two rooms are mod-
eled thanks to an equation-based FMU [1] model (indus-
trial standard way to model physical systems). Indoor tem-
peratures are modeled taking account both the temperature

transfered through the wall separating the two rooms, and
the influencing outside temperature. The heat transfers are
determined thanks to exchanges with an equation-based
FMU modeling the wall, and another one modeling the
outside temperature. Indoor temperatures can also be in-
fluenced by modeled heatings for each room, controlled
with a variable representing a target temperature to reach.

As described in Fig. 8, a remote controller is added to this
scenario. With this one, the user is supposed to be able
to schedule target temperature changes (heating controls),
depending on the time of the day. He is also supposed to
be able to remotely access to a temperatures graph for each
room (monitoring). For modeling this usage, a model of
controller (Java application) is added, along with a model
of IP network. The modeled IP network is described in
Fig. 9: monitoring data are sent to the controller through
the regular internet access of the house, and heating con-
trols are sent by the controller through a dedicated LTE
connection.

Figure 8. Intuitive graphic of the multi-model to compose.

Figure 9. IP network topology to model.

In this experiment, we use Structural and Spatial Cou-
plings with MECSYCO and the well-known IP simulators
NS-3 and OMNeT++. We integrated these IP simulators
to MECSYCO and we created libraries, including imple-
mentations of all of the concepts we described in this pa-
per. Any submodel available for NS-3 or OMNeT++ can
be used in a co-simulation, thanks to these MECSYCO li-
braries. Thanks to this example, we demonstrate that we
are able to 1) interconnect models available in not inter-
operable IP models libraries, 2) test and compare similar
models provided by different IP simulators, 3) easily test
different types of networks with different topologies and 4)
use an IP model for transporting data produced and used
by models from another fields of expertise.

7.2 Modeling With a Single IP Network Model
As a first step, we model the whole IP network thanks to
NS-3 (running on GNU/Linux, with C++ bindings). The
NS-3 model is connected to the other models with Struc-
tural Couplings, as described in Fig. 10. The remote con-
troller model and the FMUs are executed on another com-
puters (running on Windows with Java bindings).



Figure 10. MECSYCO meta-model with only one IP model.

The IP Network modeled is described in Fig. 11. After
some tests, the performance of the NS-3 LTE model raises
questions. We would like to test another LTE model, from
a different IP models library.

Figure 11. Modeled IP Network, with structural couplings on (E)nd-
Nodes.

7.3 Adding an IP Model From a Different Library
In order to check if we could have better performance with
another LTE model, we decide to try the model proposed in
the OMNeT++ library. We add ports and spatial couplings,
as described in Fig. 12 and we integrate an OMNeT++
(running on GNU/Linux, with C++ bindings) model in our
multi-model, as shown in Fig. 13.

Figure 12. Modeled IP Network, with Structural and Spatial Couplings
on (E)nd-Nodes and (T)ransit-Nodes.

Figure 13. MECSYCO multi-model with two IP models.

In order to know if we improve the performance with OM-
NeT++ handling the LTE part, we compare the execution

times of the simulations, thanks to a scalable version of
our models with up to 20 modeled houses connected to the
Internet. Results are available in Fig. 14. These results in-
clude a version with the LTE part modeled by a second in-
stance of NS-3, for showing the current cost of the Spatial
Couplings. With OMNeT++ handling the LTE part (with
a model disabling periodic CQI feedback packets), we get
better execution times.

Figure 14. Performance comparison (using desktop computers).

As a last part of this experiment, we would like to test
different technologies for the local area network (LAN),
between the sensors and the internal controller.

7.4 Test of Different Models From the Same Library
In a first time, we split the IP model in order to isolate the
LAN part in a distinct NS-3 model (Fig.15). Thanks to
MECSYCO, we now can develop several versions of this
part with different IP technologies (e.g. Wifi, PLC, etc),
and interchange them quickly without any changes on the
other parts of the multi-model. The resulted new multi-
model is described in Fig. 16.

Figure 15. Modeled IP Network, with three IP models.

Figure 16. MECSYCO multi-model with three IP models (without
model artifacts and models for readability).

Thanks to MECSYCO, we can choose to run the co-
simulation with sensors connected to the internal con-
troller by Wifi or PLC, just by launching the m-agent soft-
ware corresponding the model implemented with Wifi or
PLC, without any other modification elsewhere.



The final simulation results of your use case are shown in
Fig. 17. These results are consistent with the ones provided
by [5], considering that the remote controller was con-
figured to send the target temperatures 293.15K (6 AM),
288.15K (8 AM), 293.15K (4 PM), 288.15K (10 PM) to
the room 1 and 288.15K (10 AM), 293.15K (11 PM) to
the room 2.

Figure 17. Simulation results of our use case (1 house and 2 simulated
days).

8. CONCLUSION
The goal of this paper was to present our solution for mod-
eling CPS, including physical models and IP models. We
identified two types of coupling with IP models: Spatial
and Structural Couplings. We then proposed some con-
cepts for splitting IP models and connect them to models
from other fields of expertise. Thanks to the DEVS for-
malism and the co-simulation platform MECSYCO, we
demonstrate that we are able to connect the models to-
gether and to execute the multi-model.

We proposed some proof of concepts, experimentally val-
idating that our couplings, using our concepts, have no in-
fluence on the simulation results. Then, we proposed a
complete CPS use case, with equation-based models con-
nected and an IP network topology modeled thanks to sev-
eral IP models libraries, provided by different IP simula-
tors. This experiment was an opportunity to demonstrate
that using several IP models libraries is feasible thanks to
our approach and can even improve the performance of the
simulation.

As future works, we plan to work on the split-protocol
stack method [17] and on a model driven solution for mod-
eling complex IP networks using different IP models li-
braries.

ACKNOWLEDGMENTS
This work is partially funded by EDF R&D through the
strategic project MS4SG.

REFERENCES
1. Blochwitz, T., Otter, M., Åkesson, J., et al. Functional

mockup interface 2.0: The standard for tool
independent exchange of simulation models. Proc.
International Modelica Conference 2012.

2. Camus, B., Bourjot, C., and Chevrier, V. Combining
DEVS with multi-agent concepts to design and
simulate multi-models of complex systems (WIP).
Proc. TMS/DEVS’15.

3. Chandy, K., and Misra, J. Distributed simulation: A
case study in design and verification of distributed
programs. Proc. TSE’79.

4. Colby, S., and Beethan, D. Long range artillery
simulation using component based development
techniques and the high level architecture. Proc.
WSC’00.

5. Gilpin, L., Ciarletta, L., Presse, Y., et al.
Co-simulation solutions using aa4mm-fmi applied to
smart space heating models. Proc. SimuTools’14.

6. Gottlieb, E., McDonald, M., Oppel, F., et al. The
umbra simulation framework as applied to building
hla federates. Proc. WSC’02.

7. Hibino, H., Yura, Y., Fukuda, Y., et al. Manufacturing
modeling architectures: Manufacturing adapter of
distributed simulation systems using hla. Proc.
WSC’02.

8. Lin, H. Communication infrastructure for the smart
grid: A co-simulation based study on techniques to
improve the power transmission system functions
with efficient data networks. Thesis, 2012.

9. Lin, H., Sambamoorthy, S., Shukla, S., et al. Power
system and communication network co-simulation
for smart grid applications. Proc. ISGT’11.

10. Nutaro, J. adevs: A discrete EVent system simulator.

11. Nutaro, J., Kuruganti, P., Miller, L., et al. Integrated
hybrid-simulation of electric power and
communications systems. Proc. PES-GM’07.

12. Pelkey, J., and Riley, G. Distributed simulation with
MPI in ns-3. Proc. SimuTools’11.

13. Quesnel, G., Duboz, R., and Ramat, É. The virtual
laboratory environment – an operational framework
for multi-modelling, simulation and analysis of
complex dynamical systems. Simulation Modelling
Practice and Theory. 2009.

14. Ricci, A., Viroli, M., and Omicini, A. Give agents
their artifacts: The A&A approach for engineering
working environments in MAS. Proc. IFAAMAS’07.

15. Riley, G. PDNS - Parallel/Distributed NS, 2014.

16. Riley, G. F. The georgia tech network simulator. Proc.
MoMeTools’03.

17. Riley, G. F., Ammar, M. H., Fujimoto, Richard, M.,
et al. A federated approach to distributed network
simulation. ACM Trans. Model. Comput. Simul. 2004.

18. Vangheluwe, H. DEVS as a common denominator for
multi-formalism hybrid systems modelling. Proc.
CACSD’00.

19. Vaubourg, J., Presse, Y., Camus, B., et al. Multi-agent
multi-model simulation of smart grids in the MS4SG
project. Proc. PAAMS’15.

20. Zeigler, B. P., Kim, T. G., and Praehofer, H. Theory of
Modeling and Simulation. Academic Press, Inc.,
2000.


	Introduction
	Goals and Challenges Related to Co-simulations with IP Simulators
	Couplings Between IP Models
	Couplings Between IP Models and Non-IP Models
	Time Synchronization

	Spatial Couplings
	Splitting a Network Topology
	Splitting on a Transit-Node
	Splitting on a End-Node

	Structural Couplings
	Creating and Executing a Multi-Model
	Co-Simulation With a Multi-Model
	DEVS Co-Simulation Platform
	Interactions With the DEVS Wrapper

	Proof of Concept
	Use Case
	Scenario
	Modeling With a Single IP Network Model
	Adding an IP Model From a Different Library
	Test of Different Models From the Same Library

	Conclusion

