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Abstract

Giry and Lawvere’s categorical treatment of probabilities, based on the probabilistic monad G, offer an
elegant and hitherto unexploited treatment of higher-order probabilities. The goal of this paper is to follow
this formulation to reconstruct a family of higher-order probabilities known as the Dirichlet process. This
family is widely used in non-parametric Bayesian learning.
Given a Polish space X, we build a family of higher-order probabilities in G(G(X)) indexed by M∗(X)
the set of non-zero finite measures over X. The construction relies on two ingredients. First, we develop
a method to map a zero-dimensional Polish space X to a projective system of finite approximations, the
limit of which is a zero-dimensional compactification of X. Second, we use a functorial version of Bochner’s
probability extension theorem adapted to Polish spaces, where consistent systems of probabilities over a
projective system give rise to an actual probability on the limit. These ingredients are combined with known
combinatorial properties of Dirichlet processes on finite spaces to obtain the Dirichlet family DX on X. We
prove that the family DX is a natural transformation from the monad M∗ to G◦G over Polish spaces, which
in particular is continuous in its parameters. This is an improvement on extant constructions of DX [17,26].

Keywords: probability, topology, category theory, monads

1 Introduction

It has been argued that exact bisimulations between Markovian systems are better

conceptualized using the more general notion of bisimulation metrics [29]. This is

because there are frequent situations where one can only estimate the transition

probabilities of a Markov chain (MC). 3 Such uncertainties lead one naturally to

using a metric-based notion of approximate equivalence as a more robust way of

comparing processes than exact bisimulations. Here, we wish to take a new look at

1 vincent.danos@ens.fr
2 igarnier@inf.ed.ac.uk
3 Even though the existence of symmetries in physical systems can sometimes lead to exact bisimulations
which depend only on structure and not on the actual values of transition probabilities [28]. There are at-
tempts, parallel to bisimulation metrics, at defining robustly the satisfaction of a temporal logic formula [14]
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this issue of uncertainty in the model and suggest a novel and richer framework to

deal with it. We keep the idea of using a robust means of comparison (typically the

Kantorovich or Prohorov metrics lifted to MCs), but we add a second idea: namely

to introduce a way of quantifying the uncertainty in the chains being compared.

To quantify uncertainty in the Markov chains, we propose to explore in the

longer term concepts of “uncertain Markov chains” as elements of type X → G2(X),

where X is an object of Pol, the category of Polish spaces (separable and completely

metrisable spaces) and G is the Giry probability functor. This is to say that the

chain takes values in “random probabilities” (ie probabilities of probabilities). 4

This natural treatment of behavioural uncertainty in probabilistic models will al-

low one to formulate a notion of (Bayesian) learning and therefore to obtain notions

of 1) models which can learn under observations and 2) of behavioural comparisons

which can incorporate data and reduce uncertainty. Bisimulation metrics between

processes become random variables and learning should decrease their variability.

One needs to set up a sufficiently general framework for learning under ob-

servation within the coalgebraic approach. Learning a probability in a Bayesian

framework is naturally described as a (stochastic) process of type G2(X)→ G2(X)

(so G2(X)→ G3(X) really!) driven by observations. For finite Xs this setup poses

no difficulty, but for more general spaces, one needs to construct a computational

handle on G2(X) - the space of uncertain or higher-order probabilities. This is what

we do in this paper.

To this effect, we build a theory of Dirichlet-like processes in Pol. Dirichlet

processes [1,16] form a family of elements in G2(X) indexed by finite measures over

X [1, p.17] 5 and which is closed under Bayesian learning.

Integral to our construction is a method of “decomposition/recomposition”

which allows us to build higher-probabilities via finite approximations of the under-

lying space (the limit of which lead to a compactification of the original space). In

order to lift finite higher-probabilities we use a bespoke extension theorem of the

Kolmogorov-Bochner type in Pol (Sec. 2.3). Kolmogorov consistent assignments of

probabilities on finite partitions of measurable spaces (or finite joint distributions

of stochastic processes) can be seen systematically as points in the image under G

of projective (countable co-directed) diagrams in Pol.

Using the above we show that Dirichlet-like processes in Pol can be seen as

natural transformations from M ∗ (the monad of non-zero finite measures on Pol)

to G2 built up from finite discrete spaces. The finite version of naturality goes under

the name of “aggregation laws” in the statistical literature and can be traced back

to the “infinite divisibility” of the one building block, namely the Γ distribution.

(This opens up the possibility of an axiomatic version of the construction presented

here, see conclusion.)

4 Another possibility is to consider uncertain chains as elements of G(X → G(X)), but, unless X is compact,
this takes us outside of Pol.
5 Eg as for Poisson point processes.
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2 Notations & basic facts

We provide a primer of general topology as used in the paper in Appendix A. A

useful reference on the matter is [11]. Weak convergence of probability measures is

treated in [7,27].

2.1 Finite measures on Polish spaces and the Giry monad

Weak topology

A measure P on a topological space X is a positive countably additive set

function defined on the Borel σ-algebra B(X) verifying P (∅) = 0. We will only

consider finite measures on Polish spaces, i.e. P (X) <∞. When P (X) = 1, P is a

probability measure. We write G(X) for the space of all probability measures over

X with the weak topology [7,27], the initial topology for the family of evaluation

maps EVf = P 7→
∫
X fdP where f ranges in Cb(X) and where (Cb(X), ‖·‖∞) is

the Banach space of real-valued continuous bounded functions over X with the sup

norm. A neighbourhood base for a measure P ∈ G(X) is given by the sets

NP (f1, . . . , fn, ε1, . . . , εn) =

{
Q

∣∣∣∣ ∣∣∣∣∫ fidP −
∫
fidQ

∣∣∣∣ < εi, 1 ≤ i ≤ n
}

where fi ∈ Cb(X), εi > 0. One can restrict w.l.o.g. to the subset of real-valued

bounded uniformly continuous functions, noted Ub(X). Importantly, if X is Polish

the weak topology on G(X) is also Polish (see e.g. Parthasarathy, [27] Chap. 2.6)

and metrisable by the Wasserstein-Monge-Kantorovich distance [31]. We denote

the convergence of a sequence (Pn ∈ G(X))n∈N to P ∈ G(X) in the weak sense

by Pn ⇀ P . The “Portmanteau” theorem ([7], Theorem 2.1) asserts that Pn ⇀ P

is equivalent to Pn(B) → P (B) for all P -continuity sets B, i.e. Borel sets s.t.

P (∂B) = 0. P -continuity sets form a Boolean algebra ([27], Lemma 6.4). The support

of a probability P ∈ G(X) is noted supp(P ) and is defined as the smallest closed

set such that P (supp(P )) = 1. For X,Y Polish and P ∈ G(X), Q ∈ G(Y ), we

write P ⊗ Q ∈ G(X × Y ) the product probability, so that (P ⊗ Q)(BX × BY ) =

P (BX)Q(BY ).

Giry monad

The operation G can be extended to a functor G : Pol→ Pol compatible with

the Giry monad structure (G, δ, µ) [19]. For any continuous map f : X → Y we

set G(f)(P ) = B ∈ B(Y ) 7→ P (f−1(B)), i.e. G(f)(P ) is the pushforward measure.

For a given X, δX : X → G(X) is the Dirac delta at x while µX : G2(X)→ G(X)

is defined as averaging: µX(P ) = B ∈ B(X) 7→
∫
G(X)EVBdP where EVB = Q ∈

G(X) 7→ Q(B) evaluates a probability on the Borel set B. We have the “change

of variables” formula: for all P ∈ G(X), f : X → Y and g : Y → R bounded

measurable,
∫
Y gdG(f)(P ) =

∫
X g◦fdP . Finally, G preserves surjectivity, injectivity

and openness:

Lemma 2.1 (i) f : X → Y is injective if and only if G(f) is injective;

(ii) f is surjective if and only if G(f) is surjective.
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(iii) If f is an embedding, so is G(f).

Proof. We recall that elements of G(X) for X Polish verify the Radon property : for

all Borel set B ∈ B(X) and all P ∈ G(X), P (B) = sup {P (K) | K ⊆ B,K compact}
(see [9], Chap. 7). (i) Let f be an injective continuous map. Let P,Q ∈ G(X) be

such that P (B) 6= Q(B) for some Borel set B. Then, there must exist a compact

K ⊆ B such that P (B) 6= Q(B). The set f(K) is compact, hence Borel; by in-

jectivity G(f)(P )(f(K)) = P (K) and similarly for Q, therefore G(f)(P )(f(K)) 6=
G(f)(Q)(f(K)). Conversely, if G(f) is injective then it is in particular injective

on the set {δx | x ∈ X} ⊆ G(X), therefore f is injective. (ii) Let f be surjective

continuous. Let Q ∈ G(Y ) be some probability. By the measurable selection theo-

rem [32], there exists a measurable function g : Y → X such that g(y) ∈ f−1(y),

which implies f ◦ g = idY . Let P be the pushforward measure of Q through g,

i.e. P (B) , Q ◦ g−1. By surjectivity of f , P (X) = 1, therefore P ∈ G(X). The

identity f ◦ g = idY entails G(f)(P ) = Q. Conversely, assume G(f) is surjective.

Since {δy | y ∈ Y } ⊆ G(Y ), there must exist for each y a Py ∈ G(X) such that

δy(y) = (P ◦ f−1)(y) > 0, therefore f is surjective. (iii) Assume f is an embedding.

Let NP (g1, . . . , gn, ε1, . . . , εn) be some basic neighbourhood of some P ∈ G(X),

and let P ′ ∈ NP be in the neighbourhood of P , i.e.
∣∣∫
X gidP −

∫
X gidP

′∣∣ < εi for

1 ≤ i ≤ n. Note that since f is an embedding, for each gi ∈ Cb(X) there exists a

g′i ∈ Cb(f(X)) verifying g′i(f(x)) = gi(x). Therefore:∣∣∣∣∫
Y
g′idG(f)(P )−

∫
Y
g′idG(f)(P ′)

∣∣∣∣ =

∣∣∣∣∫
X
g′i ◦ fdP −

∫
X
g′i ◦ fdP ′

∣∣∣∣
=

∣∣∣∣∫
X
gidP −

∫
X
gidP

′
∣∣∣∣ < εi

2

Finite measures

The set of all finite non-negative Borel measures on a Polish space, noted

M(X), is a Polish space when endowed with the weak topology ([9] Theorem

8.9.4). M : Pol → Pol is a functor extending G, mapping continuous functions

to the corresponding pushforward morphism. The monad multiplication µX can

be conservatively extended to a morphism from M2(X) to M(X) by defining

µX(P ) = B ∈ B(X) 7→
∫
M(X)EVBdP . The everywhere zero measure, noted 0,

is an element of M(X) that we might want to exclude: M(X) being Hausdorff im-

plies that the set of nonzero measures M ∗(X) , M(X) \ {0} is open, hence Gδ,

hence Polish as a subspace of M(X). A measure Q ∈ M(X) is strictly positive if

for all nonempty open sets U ⊆ X, Q(U) > 0. Equivalently, Q is strictly positive if

and only if supp(Q) = X.

Lemma 2.2 Strictly positive finite measures on a Polish space X form (when they

exist) a Polish subspace of M(X). We denote this subspace by M+(X).

Proof. It is sufficient to show that M+(X) is a Gδ set in M(X). Let {On}n∈N
be a countable base of X. Strict positivity of a measure Q is equivalent to having

Q(On) > 0 for all nonempty On, therefore M+(X) =
⋂
n {Q ∈M(X) | Q(On) > 0}.
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Clearly {Q | Q(On) = 0} is closed in the weak topology, therefore M+(X) is a Gδ,

and forms a Polish subspace of M(X). 2

Summing up, we have for X Polish the following inclusions of Polish spaces of

finite measures:

M+(X) ⊆M ∗(X) ⊆M(X)

Note also that M and M ∗ are endofunctors on Pol but M+ is not, unless one

restricts to the subcategory of epimorphisms.

Normalisation of measures

We note νX : M ∗(X) → G(X) the continuous map taking any measure Q ∈
M ∗(X) to its normalisation νX(Q) , B ∈ B(X) 7→ Q(B)/ |Q|, where |Q| , Q(X)

is the total mass of the measure. νX verifies an useful property:

Lemma 2.3 ν : M ∗ ⇒ G is natural.

Proof. Let f : X → Y be a continuous map. We have:

(G(f) ◦ νX)(Q) = νX(Q) ◦ f−1 =
Q ◦ f−1

Q(X)
=

Q ◦ f−1

Q(f−1(Y ))
= νY ◦M ∗(f)(Q)

2

Densities and convolution

The Radon-Nikodym theorem asserts that measures in G(R) absolutely contin-

uous with respect to the Lebesgue measure admit integral representations such that

P (A) =
∫
A fdx. In this case P is said to have density f with respect to the Lebesgue

measure. f is sometimes noted dP
dλ , where λ denotes Lebesgue. For P,Q ∈ G(R) with

respective densities w.r.t. Lebesgue fP , fQ, the convolution product of P and Q is

defined to be the measure P ∗Q having density fP∗Q(x) =
∫
R fP (x)fQ(x− t)dt (see

Kallenberg [22], Lemma 1.28).

Finitely supported measures

When X is a finite, discrete space such that X = {x1, . . . , xn}, G(X) is in bijec-

tion with the simplex ∆n ⊆ Rn, where ∆n = {(p1, . . . , pn) ⊆ Rn | pi ≥ 0,
∑
pi = 1}.

Notice that ∆n is an n − 1 dimensional space. M(X) corresponds to the positive

orthant, noted Rn≥0. Since for X finite G(X) is (topologically) a subspace of a fi-

nite dimensional vector space, it is homeomorphic to ∆n ∩ Rn while the topology

of M(X) corresponds to that of Rn≥0 ∩ Rn. If we note n the n-element set, we in

particular have the trivial identities M(n) = Rn≥0 and M(m)×M(n) = M(m+n).

2.2 Projective limits of topological spaces

Many of our theorems will deal with spaces obtained as projective limits (also known

as inverse limits or cofiltered limits) of topological spaces. These topological pro-

jective limits are defined as adequate topologisations of projective limits in Set, the

usual category of sets and functions.
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Let (I,≤) be a directed partially ordered set seen as a category and let D :

Iop → Set be a cofiltered Set diagram. The projective limit of D is a terminal cone

(limD,πi) over D where limD is the set

limD , {x | D(i ≤ j)(πj(x)) = πi(x)} ⊆
∏
i

D(i)

and the πi :
∏
j D(j) → D(i) are the canonical projections. Notice that D is con-

travariant from I to Set. As emphasised in the definition, limD is the subset of

the cartesian product
∏
iD(i) containing all sequences of elements that respect the

constraints imposed by the diagram D. The elements of limD are called threads and

the maps D(i ≤ j) : D(j) → D(i) are the bonding maps. Of course, limD can be

empty (see [34] for a short example). A sufficient condition to ensure non-emptiness

of the limit is to consider functors D where I is countable and the bonding maps are

surjective [6]. As a convenience, we will note those bonding maps as πij , D(i ≤ j),
and we write countable cofiltered surjective diagrams ccd for short.

Writing U : Top→ Set for the underlying set functor, cofiltered limits in Top

for diagrams D : Iop → Top are obtained by endowing the Set limit of U ◦ D
with the initial topology for the canonical projections {πi}i∈I . The following useful

additional fact follows by considering limD as the intersection of the (closed) subsets

of
∏
iD(i) satisfying D(i ≤ j)(πj(x)) = πi(x) for all pairs (i, j) s.t. i ≤ j.

Lemma 2.4 ([11], Ch. 1, §8.2, Corollaire 2) limD is a closed subset of
∏
iD(i).

2.3 The Bochner extension theorem

The construction of a stochastic process given a system of consistent finite-

dimensional marginals is an important tool in probability theory, a classical example

being the construction of the Brownian motion using the Kolmogorov extension the-

orem [25]. Besides Kolmogorov’s there are many other variants, collectively called

Bochner extension theorem [24]. They differ in the amount of structure of the space

over which probabilities are considered (measurable, topological or vector spaces)

– and we will make crucial use of the Bochner extension theorem for Polish spaces,

which admits a particularly elegant presentation.

Theorem 2.5 For all D a ccd in Pol, G(limD) ∼= limG ◦D. We denote by bcn :

limG ◦D → G(limD) this homeomorphism.

In words, the Bochner extension theorem states that any projective family of

probabilities that satisfy the diagram constraints (elements of limG ◦ D) can be

uniquely lifted to a probability over the limit space (elements of G(limD)) – and

what’s more, this extension is a homeomorphism! This presentation of the Bochner

extension seems not to be well-known: a similar statement is given in Metivier

([24], Theorem 5.5) in the case of locally compact spaces, which intersects but

does not include Polish spaces; Fedorchuk proves the continuity of G on the class

of compact Hausdorff spaces in [15] while more recently Banakh [4] provides an

extension theorem in the more general setting of Tychonoff spaces, using properties

of the Stone-Čech compactification.
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3 Zero-dimensional Polish spaces and their properties

It is natural in applications to consider finitary approximations of stochastic pro-

cesses. Accordingly, the correctness of such approximations should correspond to

some kind of limiting argument, stating that increasingly finer approximations yield

in some suitable sense the original object. In view of the Bochner extension theo-

rem, it suffices to consider as input a projective family of probabilities supported by

the finitary approximants of the underlying space. However, the very same theorem

tells us that we can only obtain by this means probabilities on a projective limit of

finite spaces (also called profinite spaces), a rather restrictive class:

Proposition 3.1 A space is a countable projective limit of finite discrete spaces if

and only if it is a compact, zero-dimensional Polish space.

The proof can be found under a slightly different terminology in Borceux &

Janelidze [10], where it is shown that these spaces correspond to Stone spaces –

indeed, profinite spaces are exactly the spaces homeomorphic to the Stone dual

of their Boolean algebra of clopen sets! As the proof of this proposition is quite

enlightening for the developments to come, we provide it here.

Proof. Let D : Iop → Polfin be a ccd of finite spaces. Polishness of limD comes

from the closure of Pol under countable limits. Finite spaces are compact and by

Tychonoff’s theorem so is
∏
iD(i). Lemma 2.4 asserts that limD is closed in this

compact product, hence limD is itself compact. Recall that limD has the initial

topology for the canonical projections maps πi : limD → D(i), therefore a base of

limD is constituted of finite intersections of prebase opens π−1
i (Xi), for Xi ⊆ D(i).

Since the D(i) are discrete, any of their subsets is clopen and so are the prebase

opens; we conclude by noticing that a finite intersection of clopen sets is again

clopen.

Conversely, let Z be a compact zero-dimensional Polish space. As Z is zero-

dimensional Polish, its topology is generated by a countable base of clopen sets.

Since Z is compact, each clopen can be written as a finite union of base clopens.

Therefore its Boolean algebra of clopens Clo(Z) is also generated by the same

countable base, and is itself countable. Note that Clo(Z) does not depend on the

choice of the base! Let us consider the set I(Z) of all finite clopen partitions of

Z. For any i ∈ I(Z), there exist by assumption a continuous surjective quotient

map fi : Z → i. Since i is discrete, the fibres of fi are clopen. Note that I(Z)

is also countable. I(Z) is partially ordered by partition refinement: for all i, j ∈
I(Z), we write i ≤ j if there exists a surjective “bonding” map fji : j → i such

that fji ◦ fj = fi (any such map, if it exists, is unique). I(Z) is also directed by

considering pairwise intersections of the cells of any two partitions. The system of

finite discrete quotients of Z together with the bonding maps fji clearly defines a

ccd that we write D : I(Z)op → Polfin, mapping each element of I(Z) to itself

and the partial order of refinement to the bonding maps. Therefore, there exists a

limit cone (limD,πi). By universality of this cone, there exists a unique continuous

map η : Z → limD s.t. fi = πi ◦ η. Let us show that η is an homeomorphism. As

limD and Z are both compact, it is enough to show that η is a bijection. Recall

that Clo(Z) separates points (it contains a base for a Hausdorff topology) therefore

7



for any x 6= y ∈ Z we can exhibit two clopen cells separating them, implying that

η is injective. Surjectivity of η is a consequence of that of the quotient and bonding

maps. 2

We denote by Polcz the full subcategory of Pol where objects are compact

and zero-dimensional – by the previous proposition, these spaces are exactly the

profinite Polish spaces. From the data of a projective system of finitely supported

probabilities, Prop. 3.1 together with Bochner’s extension theorem (Thm. 2.5) only

allow us to obtain probabilities supported by such profinite spaces. Our extension

of Dirichlet as a natural transformation from the setting of finite spaces to that of

arbitrary Polish spaces must therefore imperatively bridge the gap from profinite

spaces to arbitrary Polish spaces.

The solution we propose is mediated by zero-dimensional Polish spaces in a

decisive way. More precisely, our construction can be framed as the iterative reduc-

tion of the extension problem to increasingly smaller subcategories of Pol (depicted

below): the (full) subcategory of zero-dimensional spaces Polz, that of compact

zero-dimensional spaces Polcz and finally the subcategory Polfin of finite Polish

spaces. The categorical setting is informally sketched in the following figure:

Polfin

⊆
88Polcz

⊆
99Polz

⊆

;;

ω
yy

Pol

z
yy

The two essential operations, highlighted in the figure above, are:

• the zero-dimensionalisation Z, which yields a zero-dimensional refinement of a

Polish space for which a countable base of the topology has been chosen, and

• the zero-dimensional Wallman compactification ω, which yields a compact zero-

dimensional Polish space from a zero-dimensional one along, again, a choice of a

base of clopens sets.

We attract the attention of the reader on the fact that these operations are a priori

not functorial. However, as we shall see in the rest of this section, these operations

exhibit powerful properties which are sufficient to proceed to the extension.

3.1 Zero-dimensionalisation

Zero-dimensionalisation takes as input a Polish space X along a choice of some

countable base F for X. It produces a Polish zero-dimensional topology on the

same underlying set as X, that we denote by zF (X).

Proposition 3.2 Let (X, TX) be Polish and let F be a countable base for X. Let

Boole(F) be the Boolean algebra generated by F . Let zF (X) be the space which

admits Boole(F) as a base of its topology. zF (X) verifies the following properties:

(i) zF (X) is Polish;

(ii) zF (X) is zero-dimensional;

(iii) the Borel sets are preserved: B(X) = B(zF (X));

8



(iv) the identity function idF : zF (X)→ X is continuous.

In order to prove Prop. 3.2 we need some classical facts from descriptive set

theory, taken verbatim from Kechris [23], Sec. 13:

Lemma 3.3 For any Polish space (X, TX) and any closed set A, there exists a

Polish topology TXA so that TX ⊆ TXA, A is clopen in TXA and B(TX) = B(TXA).

Moreover, TX ∪ {O ∩A | O ∈ TX} is a base of TXA.

Lemma 3.4 Let (X, TX) be Polish and let {TXn}n∈N be a family of Polish topologies

on X, then the topology TX∞ generated by ∪nTXn is Polish. Moreover if ∀n, TXn ⊆
B(TX), then B(TX∞) = B(TX).

Proof. (Proposition 3.2) For each On ∈ F , let us denote An = X \On. Consider

the family of Polish topologies
{
TXAn

}
n∈N, as obtained using Lemma 3.3. Lemma 3.4

entails that the topology generated by ∪nTXAn is Polish. Recall that each TXAn has

base TX ∪{O ∩An | O ∈ TX}. Closing ∪nTXAn under finite intersections yields that

the topology generated by ∪nTXAn has base TX ∪{O ∩ C | O ∈ TX , C ∈ Boole(F)}.
Since F is a base of TX and F ⊆ Boole(F), an equivalent base of the topology

generated by ∪nTXAn is Boole(F). By definition, we deduce that the topology of

zF (X) is generated by ∪nTXAn .

(i) Lemma 3.4 entails that the resulting space is indeed Polish. An equivalent base

to TX ∪TX |Fcδ is F ∪F|Fcδ and the elements of this base are clopen, hence the

resulting space is also zero-dimensional.

(ii) Zero-dimensionality is a trivial consequence of taking a Boolean algebra as a

base.

(iii) Preservation of Borel sets is a further consequence of Lemma 3.4.

(iv) Continuity of the identity is a trivial consequence of the fact that zF (X) is

finer than X.

2

To the best of our knowledge, we can’t do away with the dependency on F : one

can exhibit a Polish space X with two distinct bases F ,G such that zF (X) 6= zG(X).

Despite this apparent lack of canonicity, any Polish topology is entirely determined

by its collection of zero-dimensional refinements 6 :

Theorem 3.5 Any Polish space X has the final topology for the family

{idF : zF (X)→ X}F of all the (continuous) identity maps from its zero-

dimensionalisations, where F ranges over all the countable bases of X.

The proof of this theorem relies on the following lemma.

Lemma 3.6 Let X be a Polish space and (xn)n∈N → x a convergent sequence in X.

Let F be a countable base for X. (xn)n∈N converges to x in zF (X) if x 6∈ ∪O∈F∂O.

Proof. Recall that a countable base of zF (X) is F ∪ F|Fcδ . Assume x is not in

the boundary of any element O ∈ F . Let U be a basic open neighbourhood of x in

zF (X). If U ∈ F then it is trivial to exhibit the convergence property by referring

6 We mention this fact en passant but do not use it in the following developments.
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to the topology of X only. If not, we have that U = O ∩D, where D = ∩ni=1X \Oi,
Oi ∈ F ; in other terms x ∈ (X \ ∪ni=1Oi) ∩ O. Observe that since the Oi are open,

Oi = Oi∪∂Oi – therefore, using the initial assumption, we have x ∈ (X\∪ni=1Oi)∩O,

which is an open set in X. The result follows. 2

Proof. (Theorem 3.5) It suffices to prove that for all topological space Y , a

function f : X → Y is continuous if and only if f ◦ idF : zF (X)→ Y is continuous

for all countable base F . The forward implication is trivial. Assume that for all

countable base F , f◦idB : zF (X)→ Y is continuous. Consider a converging sequence

(xn)n∈N → x in X. It is sufficient to exhibit one space zF (X) where this sequence

also converges. Lemma 3.6 gives as a sufficient criterion that x does not belong

to ∂O for any O ∈ F . Let us build such a base. Consider a dense set D of X.

Let d : X2 → [0, 1] be some metric that completely metrises X. Without loss of

generality, assume x ∈ D. Write rn , d(x, dn) for dn ∈ D \ {x}. For all n, take the

family of open balls centred on each dn with rational radii strictly below rn, e.g.

rn/3. Since diam(B(dn, rn/3)) = diam(B(dn, rn/3)), x 6∈ ∂B(dn, r) for r < rn/3.

This family still constitutes a neighbourhood base. The countable union of countable

sets is countable, therefore it constitutes a countable base of X. 2

Notice that the topologies of G(X) and G(zF (X)) might be different, and there is

in general no continuous map from G(X) to G(zF (X)). It should also be emphasised

that the “zero-dimensionalisation” of a Polish space is not an innocent operation:

for instance if X is compact and non-zero-dimensional then zF (X) will never be

compact! However, we have the following powerful analogue to Thm. 3.5:

Theorem 3.7 For X Polish, G(X) has the final topology for the family of identity

maps {G(idF ) : G(zF (X))→ G(X)}F where F ranges over countable bases of X.

Proof. As before, it is sufficient to prove that a map f : G(X)→ Y is continuous

if and only if all precompositions f ◦ G(idF ) are continuous. If f is continuous

then the composites clearly also are. Let us consider the reverse implication and

suppose that all composites are continuous. Let (Pn)n∈N ⇀G(X) P be a sequence

of probabilities converging weakly to P in G(X). It is sufficient to exhibit one F
s.t. Pn ⇀ P in G(zF (X)). Let us recall the following theorem ([7], Theorem 2.2):

For any Y Polish, let U be a subset of B(Y ) such that (i) U is closed under finite

intersections (ii) each open set in X is a finite or countable union of elements in

U . If Pn(A) → P (A) for all A in U , then Pn ⇀Y P . Recall that Boole(F) is a

base of zF (X). This base trivially verifies condition (i) of the previous theorem. It

is therefore sufficient to build a base F of X such that condition (ii) is verified, i.e.

Pn(A)→ P (A) for all A ∈ Boole(F). Observe that the P -continuity sets in X form

a Boolean algebra ([27], Lemma 6.4). It then suffices to form a base of X included

in the Boolean algebra of continuity sets of X, which is always possible: for any

point x ∈ X, there can at most be countably many radii ε s.t. the open ball B(x, ε)

has a boundary with strictly positive mass. 2

3.2 Zero-dimensional Wallman compactifications

Compactifications are topological operations embedding topological spaces into

compact spaces. Common examples are the Alexandrov one-point compactifica-
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tion (for locally compact spaces) of the Stone-Čech compactification for Tychonoff

spaces. In most settings, this embedding is also required to be dense. By choos-

ing the compactification carefuly, one can preserve some relevant properties of the

starting space – in our case, Polishness and zero-dimensionality.

A well-behaved class of compactifications (that includes Alexandrov and Stone-

Čech as special cases) is that of Wallman compactifications. The general method

by which one obtains such a compactification from a given topological space X can

be decomposed in two steps:

(i) one first selects a suitable sublattice of the lattice of open sets of X (a Wallman

base);

(ii) then, one topologises (in a standard way) the space of maximal ideals of that

particular sublattice.

These compactifications are surveyed in Johnstone [21] and (less abstractly) in Beck-

enstein et al. [5]. Van Mill [30] provides some facts on Wallman compactifications

of separable metric spaces. An extensive topos-theoretic perspective is also given by

Caramello [12]. In the remainder of this section, we present this compactification

method and apply it to the case of Polish zero-dimensional space, yielding a zero-

dimensional compactification that we denote by ω. We then highlight its connection

with Prop. 3.1 and study those of its properties that are relevant to our goal.

Spaces of maximal ideals

All the material here is standard from the litterature on Stone duality for dis-

tributive lattices. See e.g. Johnstone [21] for more details.

Proposition 3.8 Let X be a set and L be a (distributive) sublattice of the lattice

of subsets of X. The space max(L) has the set of maximal ideals of L as points and

admits subsets of the form B(O) = {I ∈ max(L) | O 6∈ I} as a base. Moreover:

(i) max(L) is T1 and compact;

(ii) if L is furthermore normal as a lattice, i.e. if for all O1, O2 ∈ L such that

O1 ∪ O2 = X, there exists disjoint O′1, O
′
2 such that O′1 ⊆ O1, O′2 ⊆ O2 then

max(L) is Hausdorff.

Proof. It suffices to check that the family B(O) where O ranges in L is indeed a

base (i.e. closed under finite intersections). Maximal ideals are by definition proper.

Since L is distributive, maximal ideals on L are moreover prime: for all I ∈ max(L),

B,B′ ∈ L, if B ∩B′ ∈ I then either B ∈ I or B′ ∈ I ([21], I 2.4). Let B,B′ ∈ L be

given. We show B(O) ∩ B(O′) = B(O ∩ O′). Consider I ∈ B(O) ∩ B(O′): we have

O 6∈ I and O′ 6∈ I, therefore (by primality) O∩O′ 6∈ I, which implies I ∈ B(O∩O′).
Conversely, if I ∈ B(O ∩O′) then O ∩O′ 6∈ I. Since ideals are downward closed, we

must have O 6∈ I and O′ 6∈ I. For the proof of (i) and (ii), see [21], II resp. 3.5 and

3.6. 2

Wallman bases and compactifications

Wallman compactifications are defined as spaces of maximal ideals over Wallman

bases, which are particular lattices that are also bases in the topological sense. Here,

11



we will follow the definition given in [21]:

Definition 3.9 ([21], IV 2.4) Let X be a topological space and let TX be its

lattice of open sets. A Wallman base is a sublattice of TX that is a base for X and

which verifies:

For all U ∈ TX and x ∈ U , there exists a V ∈ TX such that X = U ∪ V and x 6∈ V .

The following lemma is key in considering a space of maximal ideals over a

Wallman base as a compactification (see ([21], IV 2.4) for a proof):

Lemma 3.10 Let X be a topological space and let L be a Wallman base for X.

ηL(x) = {O ∈ L | x 6∈ O} is a maximal ideal of L. Moreover, if X is T0 then ηL is

an embedding into max(L).

We are now in position to define Wallman compactifications:

Definition 3.11 Let X be a T0 space and L a Wallman base. We denote ωL(X) =

max(L) the Wallman compactification of X for L.

Zero-dimensional compactifications

We will now show that taking the inverse limit of the finite partitions of a Polish

zero-dimensional space (as in the proof of Prop. 3.1) corresponds – when applied

to a non-compact Polish zero-dimensional space – to a Wallman compactification

of that space, which exhibits very good properties.

Consider a zero-dimensional Polish space Z. In opposition to the compact case,

the Boolean algebra Clo(Z) of clopens of Z is not necessarily countably generated:

we therefore consider partitions of Z taken in some countable Boolean sub-algebra

C ⊆ Clo(X) such that C is a (topological) base for Z. Observe that such a base is

always trivially a normal Wallman base. In the following, we call such countable

Boolean sub-algebras that generate the topology “Boolean bases”. We define:

C(X) , {C | C is a countable Boolean base ofX}

We write IC(Z) for the directed partial order of clopen partitions of Z taken in

C ∈ C(X). Since C is countable, so is IC(Z). We recall that the construction of

IC(Z) is described in the proof of Prop. 3.1.

Proposition 3.12 For C ∈ C(Z), let DC : IopC (Z)→ Polfin be the diagram of finite

clopen partitions of Z seen as discrete spaces, then limDC is a zero-dimensional

compactification of Z homeomorphic to ωC(Z).

Proof. Existence and non-emptiness of limDC stems from surjectivity of the bond-

ing maps and countability of C. Note that limDC is Polish. Zero-dimensionality is an

hereditary property, so it only remains to exhibit an homeomorphism with ωC(Z).

First, observe that since C is a Boolean algebra, maximal C-ideals are in one-to-one

correspondence with maximal C-ultrafilters via the complement map: elements of

limDC correspond to C-filters, they are upward closed and codirected by intersec-

tion. They are moreover maximal: for any U ∈ limDC and all C ∈ C, either C ∈ U
or Cc ∈ U . A basic clopen in limDC is of the form π−1

i (C) where C ∈ i ∈ IC , which
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correspond to the ultrafilter {U ∈ limDC | C ∈ U}. This in turns, through the nega-

tion map, correspond to a basic clopen of ωC(Z) (see Prop. 3.8). Every basic clopen

of ωC(Z) similarly correspond to a basic clopen in limDC . Therefore, the spaces are

homeomorphic, from which we conclude that limDC is a Polish zero-dimensional

compactification. 2

As ωC(Z) is always a profinite space, Prop. 3.1 ensures there always exists a

cofiltered diagram D in Polfin such that limD ∼= ωC(Z). We will switch from one

point of view to the other freely. We should insist on the fact that our compactifica-

tion is not the Stone-Čech compactification, as these are in general not metrisable

(except when compactifying an already metrisable compact space, obviously). Take

for instance the discrete (hence zero-dimensional) Polish space N: βN has cardinality

22ℵ0 ([33], Theorem 3.2) while Polish spaces have cardinality at most 2ℵ0 . We would

obtain Stone-Čech if we were to take the Wallman compactification over the full

lattice of open sets, however. ωC(Z) enjoys a property reminiscent of Stone-Čech:

Proposition 3.13 Let Z be a Polish zero-dimensional space. For each continuous

map f : Z → K to a compact zero-dimensional space K, there exists a Boolean

base C and a continuous map ωC(f) : ωC(Z) → K such that ωC(f) ◦ ηC = f , where

ηC : Z → ωC(Z) is the embedding of Z into its compactification.

Proof. Prop. 3.1 entails that there exists a ccd DK : Iop → Polfin s.t. K ∼= limDK ,

with limit cone (limDK , {πi : limDk → Dk(i)}i∈I). Note that by continuity of πi◦f ,

each finite clopen partition of K induces a finite clopen partition of X. By choosing

a Boolean base of clopens C of Z that contains f−1(Clo(K)), we can exhibit a

compactification ωC(Z) with an associated cone (ωC(Z), {λi : ωC(Z)→ DK(i)}) and

therefore an unique map ωC(f) : ωC(Z)→ K such that ωC(f) ◦ ηC = f . 2

Corollary 3.14 For any continuous f : Z → Z ′ between zero-dimensional spaces,

there exists Boolean bases C, C′ of respectively Z and Z ′ such that there exists a map

ωCC′(f) : ωC(Z)→ ωC′(Z
′) verifying ωCC′(f) ◦ ηC = ηC′ ◦ f .

Zero-dimensional Polish Wallman compactifications were considered in [2], which

however does not state Prop. 3.13.

3.3 Projective limit measures on zero-dimensional compactification

For Z Polish zero-dimensional, the developments of Sec. 3.2 allow us to map any

measure in G(Z) to G(ωC(Z)) (for any choice of a Boolean base C) through G(ηC).

Crucially, thanks to Lemma 2.1 this is a faithful operation.

Therefore any measure on Z can be obtained, up to isomorphism, as a pro-

jective limit of finitely supported measures. However, as pointed out before, the

converse operation is the difficult one. Let D be a diagram such that ωC(Z) ∼= limD

and {Pi}i ∈ limG ◦D a projective family of finitely supported probabilities. There

is in general no way to assert that the corresponding projective limit probability

P ∈ G(ωC(Z)) obtained through the Bochner extension theorem restricts to G(Z).

We delineate the conditions under which a probability can be restricted to a sub-

space and propose a simplification of previous arguments (see [26]), based on the
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properties of the Giry monad. Note that the results to follow are not specific to

zero-dimensional spaces.

Polish subspaces of Polish spaces are always Gδ sets (and conversely, see [23],

3.11), hence Borel sets. This allows for a simple restriction criterion.

Proposition 3.15 Let P ∈M(Y ) be a finite measure on a Polish space Y and let

X ⊆ Y be a Polish subspace (hence a Gδ in Y ). The restriction of P to X, defined

as the set function P |X , (B ∈ B(Y ) ∩ X) 7→ P (B), verifies P |X ∈ G(X) if and

only if P (X) = 1.

Proof. P |X is trivially a finite measure on the trace σ-algebra. We observe that

B(X) = B(Y ) ∩X: this is a consequence of Theorem 15.1 in [23] (essentially, this

follows from the Borel isomorphism theorem for Polish spaces), therefore P |X ∈
M(X). Since P (X) = 1 and X ∈ B(Y ), P |X(X) = 1 and P |X ∈ G(X). The

converse is easy. 2

This criterion lifts to “higher-order” probabilities, that is probabilities over

spaces of probabilities, thanks to the multiplication of the Giry monad. The fol-

lowing theorem states that such a higher order probability measure restricts to a

subspace if and only if it restricts in the mean. This is essentially Theorem 1.1 in

[26].

Theorem 3.16 For all X ⊆ Y Polish spaces and all P ∈ G2(Y ) we have P |G(X) ∈
G2(X) if and only if (µY (P ))|X ∈ G(X).

Proof. The forward implication is trivial. By Lemma 2.1, G2(X) is a subspace of

G2(Y ). By Prop. 3.15, it is sufficient to prove that P (G(X)) = 1. By assumption

that µ(P )|X ∈ G(X) and Prop. 3.15, we have that µ(P )(X) = 1, which unfolds as∫
G(Y )EVXdP = 1. So it suffices to prove that

∫
G(Y )EVXdP = 1 ⇒ P (G(X)) = 1.

Assume P (G(X)) < 1, then there must exist a Borel set A ⊆ G(Y ) \ G(X) with

P (A) > 0. Any probability p ∈ A assigns positive measure to some Borel set B ⊆
Y \X, therefore

∫
AEVXdP < 1. 2

4 The Dirichlet process

The Dirichlet process stands out among other Bayesian methods in that the prior

and posterior distributions are second order probabilities, that is elements of G2(X).

Learning becomes an operation of type X → G2(X) → G2(X), mapping some ev-

idence in X and a prior in G2(X) to a posterior in G2(X), and it can be proved

that the second-order stochastic process induced by sampling from identically and

independently distributed random variable will converge (in Kullback-Leibler diver-

gence, hence in the weak topology [18]) to a singular distribution over the law of

the target.

4.1 The Dirichlet distribution

For a fixed finite discrete spaceX, Dirichlet is a function DX : M+(X)→ G2(X), the

parameter in M+(X) representing the initial prior as well as the degree of certainty

about this prior (encoded in its total mass). As we highlight below, DX is continuous
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and verifies other properties, among which naturality and normalisation. Some of

the material on the finitary Dirichlet distribution contained in this section can be

found (presented differently) in e.g. [17]. In the following we take X = {x1, . . . , xn}
to be a finite discrete space of cardinality n.

Definition of DX

For Q ≡ (q1, . . . , qn) ∈ M+(X), DX(Q) admits a (continuous) density dX(Q)

w.r.t. the n− 1 dimensional Lebesgue measure given by

dX(Q)(p1, . . . , pn−1) ,
Γ(
∑

i qi)∏
i Γ(qi)

∏
1≤i<n

pqi−1
i

1−
∑

1≤i<n
pi

qn−1

(1)

for all (pi)i<n ∈ ∆n ∩ (0, 1)n−1, with dX(Q) = 0 elsewhere. In Equation 1, Γ(q)

is the continuous gamma function, verifying Γ(n) = (n − 1)! for n integer and

defined as Γ(t) =
∫∞

0 xt−1e−xdx. It is clear that for any bounded continuous function

f ∈ Cb(∆n), DX(Q)(f) =
∫

∆n
fdXdx

n varies continuously with Q, therefore DX is

continuous in the weak topology.

Γ representation

A useful alternative representation of DX(Q) relies on sampling from Γ distribu-

tions. For parameters q, r ∈ (0,∞), Γ(q, r) (not to be mistaken with the Γ function!)

is an element of G(0,∞) with continuous density fq,r(x) = xq−1e−x/r

rqΓ(q) . Using the

identity (0,∞)n = M+(X) allows to write that for any Q ≡ (q1, . . . , qn) ∈ M+(X)

and R ≡ (r1, . . . , rn) ∈ M+(X), the product probability ⊗0≤i≤nΓ(qi, ri) belongs in

G(M+(X)). Recall that νX is the normalisation map (Sec. 2.1).

Proposition 4.1 (Γ representation)

For all (qi)1≤i≤n ∈M+(X), dX(q1, . . . , qn) = d
dλ(G(νX)(⊗iΓ(qi, 1))),

where dP
dλ denotes the density of P with respect to Lebesgue.

Proof. We write xn , 1−
∑

i<n xi. For any Q ≡ (q1, . . . , qn) ∈M+(X), the function

νX maps the half-line {tQ | t ∈ R>0} to its unique point of intersection with ∆n.

This yields a change of variables T (t, q1/ |Q| , . . . , qn−1/ |Q|) = Q with determinant

tn−1. Expressing the density of ⊗iΓ(qi, 1) in these new coordinates and integrating

over t to obtain the density at the point of intersection, one obtains:

d

dλ
(G(νX)(⊗iΓ(qi, 1)))(x1, . . . , xn−1) =

∫ ∞
0

dt
∏
i≤n

(txi)
qi−1e−txi

Γ(qi)
tn−1

=

∏
i≤n

xqi−1
i

Γ(qi)

∫ ∞
0

t
∑
i qi−1e−tdt

The integral identity
∫∞

0 xb−1e−ax = a−bΓ(b) (obtained by integration by parts, or

see [20] 3.381.4) yields the desired result. 2
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A more detailed proof can be found in [1], Sec. 2.3 or [3], Chap. 27. For an

extensive survey of other representations of Dirichlet, see [17].

Extension of D to non-zero measures

Both the definition in Eq. 1 and the Γ representation have the drawback of

being confined to strictly positive measures M+(X) (since Γ is not defined at 0).

M+ is not a functor unless one restricts to the category of Polish spaces and maps

with dense ranges. This is a serious drawback, as strict positivity of a measure is a

topological property: in particular, it is not preserved by zero-dimensionalisation of

the underlying space! We therefore continuously extend DX to the better-behaved

nonzero measures, so that it verifies for Q ∈M+(X \ {xi}):

DX(M ∗(ei)(Q)) , G2(ei)(DX\{xi}(Q)) (2)

where ei : X \ {xi} → X is the inclusion (observe that M ∗(ei)(Q)(xi) = 0). The

following proposition asserts that this extension is well-defined as a continuous map.

Proposition 4.2 Let Q ∈M+(X \{xi}) be given. Let δxi be the singular probability

measure at xi. Then DX(M ∗(ei)(Q)+ εδxi) weakly converges to G2(ei)(DX\{xi}(Q))

as ε→ 0.

Proof. We consider w.l.o.g. the case |X| = 3, X = {x1, x2, x3}, xi = x3. Let

f ∈ Ub(G(X)) be given. Still w.l.o.g., take ‖f‖ = 1 and non-negative. In the interest

of conciseness, we write Γ⊗(q1, q2, q3) , Γ(q1, 1) ⊗ Γ(q2, 1) ⊗ Γ(q3, 1). Using the Γ

representation, we have to prove:

I(R3∗
≥0, ε) ≡

∫
R3∗≥0

(f◦νX)dΓ⊗(q1, q2, ε) −−→
ε→0

∫
R2∗≥0

(f◦G(e3)◦νx1,x2)dΓ⊗(q1, q2) ≡ J(R2∗
≥0)

Note that (f ◦ νX)(p1, p2, p3) = f(p1/
∑

i pi, p2/
∑

i pi, p3/
∑

i pi) while (f ◦G(e3) ◦
νx1,x2)(p1, p2) = f(p1/(p1+p2), p2/(p1+p2), 0). νX is uniformly continuous. Uniform

continuity of f ◦ νX implies that for all ε1 > 0, there exists an η > 0 such that for

all (a, b) ∈ R2∗
≥0, for all c ∈ [0, η], |(f ◦ νX)(a, b, c)− (f ◦G(e3) ◦ νx1,x2)(a, b)| < ε1.

Therefore,

I(R2∗
≥0 × [0, η], ε)

≤ ε1 +

∫
R2∗≥0×[0,η]

f(p1/
∑

i pi, p2/
∑

i pi, 0)d[Γ⊗(q1, q2, ε)](p1, p2, p3)

≤ ε1 +

∫
R2∗≥0

f(p1/
∑

i pi, p2/
∑

i pi, 0)
(∫

[0,η] dΓ(ε, 1)(p3)
)
d[Γ⊗(q1, q2)](p1, p2)

≤ ε1 + J(R2∗
≥0)

One gets the symmetric inequality J(R2∗
≥0) − ε1 ≤ I(R2∗

≥0 × [0, η], ε) by the exact
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same process. As for the other half of the integral,

I(R2∗
≥0 × (η, l], ε)

≤
∫

R2∗≥0

∫
(η,l]

f(p1/
∑

i pi, p2/
∑

i pi, p3/
∑

i pi)
p1−ε3 e−p3

Γ(ε) dΓ⊗(q1, q2)

≤ ε

∫
R2∗≥0

∫
(η,l]

f(p1/
∑

i pi, p2/
∑

i pi, p3/
∑

i pi)
p1−ε3 e−p3

Γ(1+ε) dp3 dΓ⊗(q1, q2)

≤ εK(η, ε)

where we used the identity Γ(1+ε) = εΓ(ε) on the third line and K(η, ε) is a bounded

quantity. Therefore, I(R3∗
≥0, ε) converges to J(R2∗

≥0) as ε → 0. This concludes the

proof. 2

Naturality of D

As we are going to show, D is a natural transformation from M ∗ to G2. This

property, usually called aggregation in the literature, is an indirect consequence of

the closure under convolution of the Γ distribution, a property that we assume

without proof:

Γ(q1, r) ∗ Γ(q2, r) = Γ(q1 + q2, r) (3)

A corollary of Eq. 3 is that the pushforward of a product of Γ distributions is a

product of Γ distributions.

Corollary 4.3 Consider f : X → Y surjective for X,Y finite and discrete, then:

G(M+(f))(⊗x∈XΓ(qx, r)) = ⊗y∈Y Γ(
∑

x∈f−1(y) qx, r)

Proof. It suffices to consider the case of |X| = 2, |Y | = 1, in which case

M+(f) : M+(X) → M+(Y ) is simply the addition and G(M+(f)) is by defini-

tion the convolution! Eq. 3 then yields the claim. An induction on |f−1(y)| for each

y ∈ f(X) allows to conclude in the general case. 2

Proposition 4.4 D , X 7→ DX is a natural transformation D : M ∗ ⇒ G2 when

M ∗ and G2 are restricted to Polfin.

Proof. It suffices to show that for any f : X → Y a (continuous) function between

finite discrete spaces, one has G2(f) ◦ DX = DY ◦M ∗(f). First of all, Prop. 4.2

allows us to restrict our attention to f surjective and Q = xi 7→ qi ∈ M+(X)

strictly positive. Then:

(DY ◦M+(f))(Q) = G(νY )(⊗y∈Y Γ(
∑

xi∈f−1(y) qi, 1)) (Prop. 4.1)

= G(νY )((G ◦M+)(f)(⊗xi∈XΓ(qi, 1))) (Cor. 4.3)

= G(νY ◦M+(f))(⊗xi∈XΓ(qi, 1))

= G(G(f) ◦ νX)(⊗xi∈XΓ(qi, 1)) (Lemma 2.3)

= (G2(f) ◦DX)(Q) (Prop. 4.1)

2
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Example 4.5 Let us verify naturality on a simple case: take X = {1, 2, 3},
Y = {1, 2}, f(1) = 1, f(2) = f(3) = 2 and Q = i 7→ qi. By definition,

G(f)(p1, p2, p3) = (p1, p2+p3). G(f)−1(p1, p2) corresponds to the closed line segment

{(p1, α, p2 − α) | α ∈ [0, p2]}, from which we deduce that

G2(DX(Q))(B) =

∫
G(f)−1(B)

dX(Q)(p1, p2)dp1dp2

=

∫
B
dp1

∫ 1−p1

0
dX(Q)(p1, p2)dp2

=

∫
B
dp1

Γ(q1 + q2 + q3)

Γ(q1)Γ(q2)Γ(q3)
pq1−1

1

∫ 1−p1

0
pq2−1

2 (1− p1 − p2)q3−1dp2

The last integral can be carried out using the generalised binomial theorem on

the rightmost term: the integral identity
∫ w

0 xa(w − x)bdx = wa+b+1 Γ(a+1)Γ(b+1)
Γ(a+b+2)

holds ([20], 3.191.1). On the other hand, we have:

(DY ◦M ∗(f))(Q)(B) =

∫
B

Γ(q1 + q2 + q3)

Γ(q1)Γ(q2 + q3)
pq1−1

1 (1− p1)q2+q3−1dp1

So naturality holds.

Normalisation

The Dirichlet distribution DX : M+(X)→ G2(X) obeys a consistency relation-

ship called normalisation:

µX ◦DX = νX (4)

Let us verify this identity for a parameter Q = (q1, . . . , qn) ∈ Rn>0 ⊆ M+(X).

Observe that Eq. 4 holds when |X| = 2, as DX(q1, q2) degenerates to a BetaX(q1, q2)

distribution which is known to have mean ( q1
q1+q2

,
q2

q1+q2
) (see eg [3], Sec. 16.5 for a

definition of the Beta distribution and the proof of this property).

In the case of X an arbitrary finite discrete space, let fi : X → {xi, •} be the

lumping function verifying fi(xi) = xi, fi(xj 6=i) = •. By naturality of µ and D :

(µX ◦DX)(Q)(xi) = (µ{xi,•} ◦G
2(fi) ◦DX)(Q)(xi)

= (µ{xi,•} ◦D{xi,•} ◦M
+(fi))(Q)(xi)

= (µ{xi,•} ◦Beta{xi,•})(qi,
∑

j 6=i qj)(xi) =
qi∑
j qj

4.2 Extension to zero-dimensional Polish spaces

The finite support case is instructive but lacks generality. We proceed to the ex-

tension of finitely supported Dirichlet distributions to Dirichlet processes supported

by arbitrary zero-dimensional Polish spaces. Our construction preserves both nat-

urality and continuity – in fact, it can be framed as the extension of the natural

transformation D from Polfin to Polz, the full subcategory of zero-dimensional

Polish spaces and continuous maps. In what follows, we denote by F |C : C → Pol

the restriction of the domain of some endofunctor F : Pol→ Pol to a subcategory

C of Pol. When unambiguous, we drop this notation.
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M∗(D(j))
DD(j)// G2(D(j))

M∗(ωC(Z)) ∼= M∗(limD)

M∗(πj)

66

M∗(πi) ((

u // lim(G2 ◦D)

ρj

ee

ρi
yy

G(bcn)◦bcn// G2(limD) ∼= G2(ωC(Z))

G2(πj)
oo

G2(πi)ooM∗(D(i))

M∗(πij)

OO

DD(i)// G2(D(i))

G2(πij)

OO

Fig. 1. Construction of D̂ on ωC(Z)
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G(D(i))
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M∗(D(j))

νD(j)

DD

DD(j) // G2(D(j))

µD(i)

ZZ

M∗(Z)
M∗(ηC)

//M∗(limD)

M∗(πj)
66

M∗(πi) ((

νlimD
++

D̂limD // G2(limD)

µlimD

[[

G2(πj)
hh

G2(πi)vv
M∗(D(i))

M∗(πij)
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νD(i)

DD

DD(i) // G2(D(i))

µD(j)

ZZ

G2(πij)

OO

Fig. 2. Commutation of normalisation and Dirichlet averaging

Theorem 4.6 There exists a unique (up to isomorphism) natural transformation

D̂ : M |Polz ⇒ G2|Polz such that D̂ coincides with D on Polfin.

Proof. We prove existence, naturality and uniqueness.

Existence. For any given choice of a Boolean base C, let ηC : Z → ωC(Z)

be the embedding of a Polish zero-dimensional space Z into its compactifica-

tion ωC(Z) (Lemma 3.10). ωC(Z) is compact zero-dimensional so by Prop. 3.1

there exists a ccd of finite spaces D such that ωC(Z) ∼= limD. Let us con-

struct D̂limD, the extension of Dirichlet to limD (see Fig. 1). Applying the func-

tor M ∗ yields a cone C = (M ∗(limD), {M ∗(πi) : M ∗(limD)→ (M ∗ ◦D)(i)}i).
Applying the finitary Dirichlet D on the base of this cone yields a ccd in

G2 ◦ D, of which we take the limit, obtaining a terminal cone T = (limG2 ◦
D,
{
ρi : limG2 ◦D → G2(D(i))

}
i
). By naturality of D , the cone C extends to a

cone C ′ = (M ∗(limD),
{
DD(i) ◦M ∗(πi) : M ∗(limD)→ (G2 ◦D)(i)

}
i
). By univer-

sality of T , there exists a unique morphism u : M ∗(limD) → G2(limD) map-

ping C ′ to T . The Bochner extension theorem (Thm 2.5) yields an isomorphism

G(bcn) ◦ bcn : limG2 ◦D → G2(limD) (the fact that G(bcn) is an isomorphism is
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a consequence of Lemma. 2.1). This yields a morphism

D̂limD : M ∗(limD)→ G2(limD)

D̂limD = u ◦G(bcn) ◦ bcn

that trivially coincides with D when limD happens to be finite. In order to conclude

the existence part of the extension, we need to show that D̂limD◦M ∗(ηC) : M ∗(Z)→
G2(limD) actually ranges in G2(ηC(Z)) ⊆ G2(limD), after which we can set D̂Z ,
D̂limD ◦M ∗(ηC). By Theorem 3.16, it suffices to check that for any Q ∈M ∗(Z),

(µlimD ◦ D̂limD ◦M ∗(ηC))(Q)
∣∣∣
ηC(Z)

∈ G(ηC(Z))

which by Prop. 3.15 amounts to checking that this measure attributes full measure

to ηC(Z. We take advantage of the normalisation property (Eq. 4) of D . Thanks

to this property and to the naturality of µ, the diagram in Fig. 2 commutes. The

Bochner extension theorem entails the universality of the cone (G(limD), {G(πi)}i)
at the top of the diagram, therefore commutation of the diagram in Fig. 2 entails

the existence of a unique morphism from the cone (M ∗(limD),
{
νD(i)◦M∗(πi)

}
i
) to

(G(limD), {G(πi)}i) (morphism represented as a dashed line in Fig. 2). This mor-

phism is no other than the normalisation νlimD : M ∗(limD)→ G(limD). Therefore,

(µlimD ◦ D̂limD ◦M ∗(ηC))(Q) = (νlimD ◦M ∗(ηC))(Q)

Trivially, M ∗(ηC)(Q)(Z \ ηC(Z)) = 0, therefore (νlimD ◦M ∗(ηC))(Q) is concentrated

on ηC(Z). Hence, up to isomorphism, D̂Z restricts to a morphism D̂Z : M ∗(Z) →
G2(Z). This concludes the proof of existence.

Naturality. For any map f : Z → Z ′ between zero-dimensional Polish spaces,

we must prove D̂Z′ ◦M ∗(f) = G2(f) ◦ D̂Z . By Corollary 3.14, we can reduce the

task to the case of a morphism ωCC′(f) : ωC(Z) → ωC′(Z
′) between compact zero-

dimensional spaces (see Fig. 3a). It remains to prove D̂ωC′ (Z
′) ◦ M ∗(ωCC′(f)) =

G2(ωCC′(f)) ◦ D̂ωC(Z). By Prop. 3.1, ωC(Z) ∼= limDZ and ωC′(Z
′) ∼= limDZ′

where DZ and DZ′ are their respective finite discrete quotient ccds. Let us write

(ωC′(Z
′), {πi : ωC′(Z

′)→ DZ′(i)}i) the terminal cone corresponding to DZ′ . The

universal property of this limit cone allows to reduce the problem to the commuta-

tion of the diagram in Fig. 3b:

D̂Z′ ◦M ∗(f) = G2(f) ◦ D̂Z ⇔ ∀i, G2(πi) ◦ D̂Z′ ◦M ∗(f) = G2(πi) ◦G2(f) ◦ D̂Z

⇔ ∀i,DDZ′ (i)
◦M ∗(πi) ◦M ∗(f) = G2(πi) ◦G2(f) ◦ D̂Z

As already argued in the proof of Prop. 3.13, any finite discrete clopen partition

of ωC′(Z
′) induces a finite discrete clopen partition of ωC(Z) since the two spaces

are related by the continuous function ωCC′(), therefore the diagram in Fig. 3b

commutes.

Uniqueness. Assume there exists two distinct natural transformations D̂ , D̂ ′ :

M ∗(Z)→ G2(Z) that coincide with D on finite spaces. It is clear that it is enough
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M ∗(Z)
M∗(f) //

M∗(ηC(Z))

��

M ∗(Z ′)

M∗(ηC′ (Z
′))

��
M ∗(ωC(Z))

M∗(ωCC′ (f))//

D̂ωC(Z)

��

M ∗(ωC′(Z
′))

D̂ωC′ (Z
′)

��
G2(ωC(Z))

G2(ωCC′ (f))
//G2(ωC′(Z

′))

(a) Reducing naturality to the case of com-
pact zero-dim. Polish spaces.

M ∗(ωC(Z))
M∗(πi◦ωCC′ (f))//

D̂ωC(Z)

��

M ∗(DZ′(i))

DDZ′ (i)
��

G2(ωC(Z))
G2(πi◦ωCC′ (f))

//G2(DZ′(i))

(b) Finitary case.

to exhibit a contradiction in the case of Z compact zero-dimensional Polish. We

refer to Fig. 1 for the notations. Let D be a ccd of finite spaces such that Z ∼=
limD, with canonical projections πi : limD → D(i). By assumption, there must

exist a measure Q ∈ M ∗(Z) such that D̂(Q) 6= D̂ ′(Q). But both D̂ and D̂ ′ verify

(by assumption of naturality and consistency with the finitary case) the equalities

G2(πi) ◦ D̂ ′Z = DD(i) ◦M ∗(πi) = G2(πi) ◦ D̂Z for all i. Therefore, Q induces through

D̂ and D̂ ′ the same projective family of finite-dimensional Dirichlet distributions{
DD(i) ◦M ∗(πi)(Q)

}
i
, which yields (by unicity of extensions, see Theorem 2.5) a

contradiction. 2

4.3 Extension to arbitrary Polish spaces

Let X be an arbitrary Polish space. As shown in Theorem 3.7, G(X) has the final

topology for the family of identity maps {G(idF ) : G(zF (X))→ G(X)}F where F
ranges over countable bases of X. In order to harness this theorem, we need the

following fact:

Lemma 4.7 Let X be Polish and zF (X), zG(X) be two zero-dimensional refine-

ments as constructed in Prop. 3.2. Then DzF (X) and DzG(X) are equal in Set.

Proof. The set of countable bases of X is directed by union. Let us writeH ≡ F∪G.

The (continuous) identity functions idFH : zH(X) → zF (X) and idGH : zH(X) →
zG(X) lift to identity functions G2(idFH), G2(idGH), and similarly for the functor

M ∗. Therefore, the commutation relation G2(idFH) ◦DzH(X) = DzF (X) ◦M ∗(idFH)

boils down in Set to the equality of DzF (X) and DzG(X) (and similarly for G). 2

Finally, we have:

Theorem 4.8 There exists a unique (up to isomorphism) natural transformation

D̂ : M ∗ ⇒ G2 such that D̂ coincides with D on Pol.

Proof. Let X be a Polish space. Consider the family {zF (X)}F of its zero-

dimensional refinements, as constructed in Prop. 3.2. For each zF (X), Theorem

4.6 asserts the existence of a continuous Dirichlet map D̂zF (X) : M ∗(zF (X)) →
G2(zF (X)), which extends by continuity of the identity and functoriality to a con-

tinuous map

G2(idF ) ◦ D̂zF (X) : M ∗(zF (X))→ G2(X) (5)
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By Lemma 4.7, all these maps coincide in Set. Theorem 3.7 allows to conclude. 2

5 Conclusion

Our construction of the Dirichlet process in categorical style subsumes existing

ones [17,26] while establishing continuity and naturality. However, further work,

which we intend to pursue right away, is required to consolidate our understanding

of the finitary approximation framework we have built for higher-order probabil-

ities. The Giry monad can be generalised from Pol to the category of Tychonoff

spaces, however our construction relies heavily on the properties of Polish spaces: for

instance we use the fact that zero-dimensional Polish spaces are Borel sets of their

compactifications (Prop. 3.15); the measurable selection theorem used in Lemma 2.1

also requires the spaces considered to be Polish. The process by which we rebuild

Dirichlet relies on some simple properties of Γ distributions. Naturality is a conse-

quence of closure of Γ under convolution (a particular case of infinite divisibility also

exhibited by e.g. normal distributions), and the fact that Dirichlet restricts to X,

which is only a subset of its compactification wX, follows from the normalisation

property (see §4.1). By axiomatising these properties, we can generalise our main

result. However, it remains to be seen whether other interesting distributions on

R>0 fit the conditions and generate Dirichlet-like processes.

Beyond the immediate questions above, we can return to the less immediate goals

expounded on in the introduction, namely higher-order learning using uncertain

chains of Dirichlet type. Any uncertain Markov chain τ , meaning a morphism X →
G2(X) in Pol, can be post-composed with the multiplication of G to obtain the

“mean” Markov chain of type X → G(X). We will investigate the case where τ

takes values in Dirichlet processes -focusing on the tractable “uncertain chains of

Dirichlet type”. Such chains can be decomposed as α : X → G(X) followed by the

Dirichlet natural transformation DX : M ∗(X) → G2(X). The first component α is

τ ’s parameterising chain. As µ ◦ DX ◦ α is the normalised version of α, α is again

up to normalisation the mean chain of the uncertain τ . Our construction ensures

that τ is continuous by construction. At this stage, it is already possible given

τ : X → G2(X) to quantify the uncertainty at each point by considering moments

of the “Kantorovich” random variable Kx , (P ∈ G(X)) 7→ dK((µ ◦ τ)(x), P ),

where KX is defined over the probability triple (G(X), τ(x)) and dK is metrises

G(X). The next step is to adapt the Bayesian learning scheme which in the discrete

case maps the prior DX(Q) to the posterior DX(Q + s), for Q in M ∗(X) the

current parameter, given s a multiset of observed values in X (seen as a counting

measure). Via the projective limit construction, learning can be led at the level of

behavioural approximants [13] and a subsidiary goal is to understand how the two

levels relate. The second goal consists of in extending the probabilistic Kantorovich

metric to uncertain chains (of this specific type) and understand its evolution under

learning. Until now we assumed that the state of the system is fully observable,

but the above questions should be developed as well in a broader context where the

state is only partially and noisily so. In this setting, naturality of D might allow

to compare uncertain chains defined on distinct state spaces by embedding them in

some universal Polish space – giving a quantitative account of both the differences
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in their respective state spaces and their dynamics.
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A Topological and measurable spaces

We recall some basic facts about topological and measurable spaces.

A.1 Topological spaces

Basic definitions

A topological space (X, TX) is given by a set X and a set TX of open subsets of

X such that X ∈ TX , ∅ ∈ TX and TX is closed under arbitrary unions and finite

intersections. A set is closed if its complement is open. It is clopen if it is both

closed and open. A set of subsets S ⊆ TX is a base of TX whenever it is closed under

finite intersections and its closure under arbitrary unions yields TX . A set of subsets

S ⊆ TX is a pre-base of TX when its closure under finite intersections is a base of TX .

The closure of a subset A ⊆ X is noted A, it is the smallest closed set containing A.

Conversely, the interior of A ⊆ X is noted int (A), it is the largest open set contained

in A. The boundary of A is noted ∂A and is defined as ∂A , A \ int (A). A space

(X, TX) is separable if there exists a countable subset D ⊆ X that is dense in X, i.e.

D = X. Except where it might lead to ambiguities, we will omit TX and write the

space simply X. A map f : X → Y between two topological spaces is continuous

if and only if for all OY ∈ TY , we have f−1(OY ) ∈ TX . An homeomorphism is a

bicontinuous bijection. Y ⊆ X is a subspace of X if its opens are of the form O∩Y ,

for O ∈ TX . Topological spaces with continuous maps form a category, noted Top.

Initial and final topologies

Let I = {fi : X → (Xi, TXi)}i be a family of functions fi from a set X into topo-

logical spaces (Xi, TXi). The initial topology induced by I is the coarsest topology

on X making the fi continuous. If is defined as the topology TI generated by the sets⋃
i

{
f−1
i (O) | O ∈ TXi

}
. The final topology is defined dually, as the finest topology

on X making a family of functions F = {fi : (Xi, TXi)→ X}i continuous. A subset

O ⊆ X is open if and only if f−1
i (O) ∈ TXi for all i. It is straightforward to check

that this defines a topology.

Limits and colimits in Top are defined by endowing them with resp. the initial

and final topologies on the Set limits and colimits. In particular, the topological

product is defined as the initial topology on the Set product w.r.t. the canonical

projections.

Metric and metrisable spaces

A distance function on a set X is a function d : X × X → [0,∞] that obeys

the following axioms, ∀x, y, z ∈ X: (i) symmetry: d(x, y) = d(y, x), (ii) d(x, y) ≥ 0,

d(x, y) = 0 iff x = y, (iii) d(x, y) ≤ d(x, z)+d(z, y). Any distance d on X induces the

topology of a metric space, with base the open balls B(x, ε) = {y | d(x, y) < ε}, for

all x ∈ X, ε > 0. A metric space is noted (X, d). A sequence of points (xn ∈ X)n∈N
converges to a point x ∈ X if for all ε > 0, there exists a N ∈ N such that for

all n ≥ N , d(xn, x) < ε. A sequence is Cauchy if for all ε > 0, there exists an

N ∈ N such that for all m,n ≥ N , d(xm, xn) < ε. A metric space is complete if

all Cauchy sequences converge. A space is metrisable if its topology is generated
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by some distance. A space is completely metrisable if its topology is generated by

some distance that makes it complete. A Polish space is a separable, completely

metrisable space. Polish spaces form a full subcategory of Top, noted Pol. Pol has

all countable limits and all countable disjoint unions [11]. It includes the category of

finite, discrete topological spaces Polfin as a full subcategory (a space X is discrete

if TX = ℘(X)).

Separation conditions

A topological space X is Hausdorff if for any two points x, y ∈ X there exists

disjoint open sets Ox, Oy such that x ∈ Ox, y ∈ Oy. In a Hausdorff space, all

singletons are closed. X is completely regular if for any closed set F ⊆ X and any

point x ∈ X \ F , there exists a continuous function f : X → R such that f(x) = 0

and f(y) = 1 for all y ∈ F . A space is Tychonoff if it is completely regular and

Hausdorff. All metrisable spaces are Tychonoff.

Compactness

An open cover of a space X is a family {Oi ∈ TX}i of open subsets such that

∪iOi = X. A topological space is compact if any open cover of the space has a finite

sub-cover. A subset of X is compact if it verifies this property. All finite subsets are

compact. The continuous image of a compact set is compact. All spaces we consider

will be Hausdorff, accordingly all compact spaces will be implicitly Hausdorff. All

compact subspaces of Hausdorff spaces are closed. Tychonoff ’s theorem asserts that

an arbitrary product of compact spaces is compact. A continuous bijection between

compact (Hausdorff!) spaces is always a homeomorphism.

Zero-dimensional spaces

A topological space is zero-dimensional if it has a base of clopen sets. The set

of clopen sets of a space X is noted C(X). It is a Boolean algebra. One easily

deduces that zero-dimensional Polish spaces have a countable base of clopen sets.

Zero-dimensionality is a hereditary property and is preserved by subspaces.

Compactifications

A compactification of a (Tychonoff) topological space X is a compact space Y

into which X embeds homeomorphically and such that the closure of X in Y is Y

itself (a non-Tychonoff spaces need not embed in its compactification).

A.2 Measurable spaces

A measurable space (X,ΣX) is a set X along a σ-algebra ΣX , that is a set of

subsets of X closed under complements and countable unions that contain X. If

X is a topological space we note B(X) the Borel σ-algebra generated from its

topology. A map f : (X,ΣX) → (Y,ΣY ) between measurable spaces is measurable

if f−1(A) ∈ ΣX for all A ∈ ΣY . If f : X → Y is a continuous map, f is also

measurable between the corresponding Borel measure spaces. Borel measure spaces

arising from Polish spaces verify the “Isomorphism theorem” [23]:
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Theorem A.1 For all X and Y Polish spaces, B(X) ∼= B(Y ) if and only if X and

Y have the same cardinality.

B Proof of Theorem 2.5

This proof is adapted from Metivier [24].

Let D : Iop → Pol be our ccd, with canonical projections πi : limD → D(i). Let

{Pi}i ∈ limG ◦ D be given. We proceed to continuously extend this family to an

element P ∈ G(limD). Consider A = ∪i∈I
{
π−1
i (B) | B ∈ B(D(i))

}
. By directed-

ness, A is an algebra of limD-Borel sets. We define the set function P0 : A → [0, 1]

by P0(π−1
i (B)) = Pi(B). Codirectedness of the family {Pi}i ensures that (i) P0 is

consistent as a function and that (ii) P0 is finitely additive, therefore P0 is a charge.

As P0 is finite, hence σ-finite, it is sufficient to exhibit that P0 is σ-additive on A
and the Carathéodory extension theorem ([35], Theorem 1.7) will yield the sought

unique projective limit Borel measure. σ-additivity is equivalent to the implication

∀n, P0(An) ≥ δ ⇒ ∩nAn 6= ∅ for all δ > 0 and all decreasing sequence of Borel sets

(An)n∈N ([8], Prop. 1.3.3).

Let (An)n be such a sequence. Each An is by construction of the form An =

π−1
i (B∗i,n) for some i ∈ I, where B∗i,n ∈ B(D(i)). We map this sequence (An)n

to a family {Bcn ∈ B(D(cn))}cn of Borel sets indexed by an increasing sequence

(cn)n∈N, cofinal in I, such that for all n, An = π−1
cn (Bcn) and Bcn+1 ⊆ π−1

cncn+1
(Bcn).

The cofinal increasing sequence (cn)n∈N is constructed by induction on any fixed

enumeration of I. By construction, there is some in ∈ I for which An = π−1
in

(Bin).

By cofinality, there exists cn ≥ in and by measurability, Bcn , π−1
incn

(Bin) is mea-

surable. By directedness, An = π−1
cn (Bcn). Now consider m ≤ n with An ⊆ Am. We

have An = An ∩ Am = π−1
cn (Bcn) ∩ π−1

cm (Bcm). By directedness, π−1
cm = π−1

cmcn ◦ π
−1
cn

therefore An = π−1
cn (Bcn ∩ π−1

cmcn(Bcm)). For n fixed, this generalises to An =

π−1
cn (Bcn) = π−1

cn (∩m≤nπ−1
cmcn(Bcm)). Therefore, Bcn+1 = ∩m≤n+1π

−1
cmcn+1

(Bcm) =

∩m≤n+1(π−1
cncn+1

◦ π−1
cmcn)(Bcm) ⊆ π−1

cncn+1
(∩m≤nπ−1

cmcn(Bcm)) = π−1
cncn+1

(Bcn).

We construct a nonempty (compact!) set K s.t. K ⊆ An for all n. By cofi-

nality of (cn)n∈N, it is sufficient to construct of a family of non-empty compact

sets {Kcn ⊆ Bcn}n∈N that is projective, i.e. verifying πcncn+1(Kcn+1) = Kcn for all

n. Such a projective family of compact sets can in turn be obtained from a se-

quence of non-empty compact sets
(
K ′cn

)
n∈N verifying K ′cn+1

⊆ π−1
cncn+1

(K ′cn). In-

deed, setting, for all m, Kcm = ∩n≥mπcmcn(K ′cn), we trivially have that Kcm is

compact. As an intersection of a decreasing sequence of non-empty compact sets

(in a metrisable space), Kcm is also non-empty (this is Cantor’s intersection the-

orem). Moreover, Kcm = ∩n≥mπcmcn(K ′cn) ⊇ ∩n≥m+1(πcmcm+1 ◦ πcm+1cn)(K ′cn) ⊇
πcmcm+1(∩n≥m+1πcm+1cn(K ′cn)) = πcmcm+1(Kcm+1). To prove the reverse inclusion,

it suffices to show that for all x ∈ Kcm , π−1
cmcm+1

(x) ∩ Kcm+1 6= ∅. We have

π−1
cmcm+1

(x)∩Kcm+1 = π−1
cmcm+1

(x)∩ (∩n≥m+1πcm+1cn(K ′cn)) = ∩n≥m+1(π−1
cmcm+1

(x)∩
πcm+1cn(K ′cn)). Notice that π−1

cmcm+1
(x) ∩ πcm+1cn(K ′cn) is compact for all n. Since

by definition π−1
cmcm+1

(x) ⊆ Kcm+1 ⊆ πcm+1cn(K ′cn) for all n, this intersection is

non-empty.

We have reduced the goal to providing a sequence of non-empty compact sets(
K ′cn ⊆ Bcn

)
n∈N verifying K ′cn+1

⊆ π−1
cncn+1

(K ′cn). Recall that P (An) ≥ δ > 0 for
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all n, which implies Pcn(Bcn) ≥ δ > 0 for all n. Finite Borel measures on Polish

spaces are Radon: for all P ∈ G(X) with X Polish, for all B ∈ B(X), P (B) =

sup {P (K) | K ⊆ B,K compact} ([7], Theorem 1.4); therefore each Pcn ∈ G(D(cn))

is Radon. We build by induction a sequence
(
K ′cn

)
n∈N such that Pcn(Bcn \K ′cn) <∑n

k=0
ε

2k+1 and K ′cn+1
⊆ π−1

cncn+1
(K ′cn). For n = 0, we obtain K ′c0 verifying Pc0(Bc0 \

K ′c0) < ε/2 by application of the Radon property. Our inductive hypothesis consists

in the existence of a sequence
(
K ′ck

)
0≤k≤n having the aforementioned properties.

By assumption, Bcn+1 ⊆ π−1
cncn+1

(Bck). We have π−1
cncn+1

(K ′cn) ∩ Bcn+1 = Bcn+1 ∩
[π−1
cncn+1

(Bcn)\π−1
cncn+1

(K ′cn)], therefore Pcn+1(Bcn+1 \π−1
cncn+1

(K ′cn)) <
∑n

k=0 ε/2
k+1.

To conclude it suffices to pick, using the Radon property, K ′cn+1
s.t. Pcn+1((Bcn+1 ∩

π−1
cncn+1

(K ′cn))\K ′cn+1
) < ε/2n+2. One then has a sequence verifying all the required

properties – in particular, its elements are non-empty (since they have positive

measure) and they verify K ′cn+1
⊆ π−1

cncn+1
(K ′cn). This concludes the existence and

unicity of the measure associated to {Pi}i ∈ limG ◦D.

We now prove that this extension is a homeomorphism. Observe that the maps

G(πi) : G(limD)→ G(D(i)) define a cone over G ◦D, therefore there exists an uni-

versal (continuous!) mediating map bcn−1 : G(limD)→ limG◦D, which associates

to P ∈ G(limD) a projective system {G(πi)(P )}i∈I of probabilities. As Borel mea-

sures are entirely specified by their values on open sets (Lemma 7.1.2, [9]), bcn−1

is injective. The uniqueness of the procedure described above ensures that P is pre-

cisely the extension corresponding to {G(πi)(P )}i∈I , therefore bcn−1 is surjective.

Let us prove continuity of bcn. Consider (tn ∈ limG ◦D)n∈N a sequence converging

to t ∈ limG ◦D, i.e. for all i ∈ I that tn(i) weakly converges (in the sense of Sec.

2.1) to t(i), which is equivalent by the “Portmanteau” theorem to strong conver-

gence on t(i)-continuity sets for all i. Let us write (Pn = bcn(tn))n , P = bcn(t) the

projective limit measures of resp. (tn)n , t. We must prove Pn ⇀ P . It can be eas-

ily verified, by commutation of the interior and closure operations with topological

products, that for all i, if B ∈ B(G(D(i))) is a t(i)-continuity set then π−1
i (B) is a

P -continuity set. Let di be a distance compatible with D(i), consider for x ∈ D(i)

the neighbourhood Ni,x(ε) = {y ∈ D(i) | di(x, y)}. For distinct εk, ∂Ni,x(εk) are dis-

joint. Therefore there cannot be more than a countable family of {εk > 0}k such

that t(i)(∂Ni,x(εk)) > 0. We deduce that each prebase open π−1
i (Ni,x(ε)) contains

a continuity set. Since continuity sets form an algebra, Corollary 1 to Theorem 2.2

of [7] applies and we conclude that Pn ⇀ P . Therefore, bcn is a homeomorphism.
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