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ABSTRACT
In this work, we present a fast and parametric method to

achieve tonal stabilization in videos containing color fluctua-
tions. Our main contribution is to compensate tonal instabil-
ities with a color transformation guided by dominant motion
estimated between temporally distant frames. Furthermore,
we propose a temporal weighting scheme, where the intensity
of tonal stabilization is directly guided by the motion speed.
Experiments show that the proposed method compares favor-
ably with the state-of-the-art in terms of accuracy and com-
putational complexity.

Index Terms— tonal stabilization; white balance; expo-
sure control; video editing;

1. INTRODUCTION

Automatic white balance and automatic exposure are com-
mon features of consumer digital cameras. However, these
features are not stable in time, and tend to create tonal and
brightness instabilities when shooting videos. While these
automatic corrections can be turned off in some cases, most
cameras offer no control over setup parameters. In this case,
the only alternative to avoid unpleasant fluctuations is to fur-
ther process the video. This preprocessing can also be cru-
cial for computer vision applications relying on brightness or
tonal constancy assumptions.

According to [1], the output image u of a camera is related
to the irradiance vector e measured by the sensor (RAW1 in-
tensities) by the relation

u = f ◦ h(TsTwe) (1)

where Ts is a 3 × 3 matrix transformation that accounts for
color space conversion, Tw is a diagonal 3×3 matrix account-
ing for white balance, h : R3 −→ R3 is a nonlinear gamut
mapping operator and f : R3 −→ R3 is the nonlinear tone
mapping of the camera. Automatic white balance modifies
the matrix Tw, while automatic exposure can be modeled by
a multiplicative factor on the vector e, which means that these
fluctuations can be considered as global transformations on
each frame.

1Following [2], we consider RAW as the sensor responses after demo-
saicing step.

If the nonlinear mapping f ◦ h was known, it would be
possible to invert this function and to correct the new se-
quence {(f ◦ h)−1(ut)}t with linear transformations. Un-
fortunately, recovering the camera response function f and
the gamut mapping h requires registered images under multi-
ple exposures [3] and a training set of RAW-sRGB pairs [1],
which are generally not available for consumer video cam-
eras. Since automatic white balance in cameras is the cause
of tonal instabilities, recovering the scene illuminant in each
frame of the sequence is also prone to fail in practice. As
we will see, this is true even if the available computing power
makes it possible to use more involved white balance methods
than those used directly in the camera (see [4] for an exten-
sive survey on computational color constancy). The direction
we choose in this paper is blind stabilization: the frames of
the sequence are corrected together, without any assumption
about the scene illuminant and no estimation of the camera
response model.

While very few works have attempted to correct color
fluctuations in videos, several approaches have been proposed
to remove high frequency brightness fluctuations, also known
as flicker. These corrections work either globally [5, 6] or lo-
cally [7, 8]. Extending flicker correction to color sequences
is far from obvious. A possibility is to draw on color trans-
fer, which aims at modifying the colors of an input image
according to the colors of an example image. Popularized by
[9], global transfer between color distributions has recently
evolved in more involved approaches [10, 11]. Local color
transfer methods rely on spatial correspondences to derive a
color transformation between two images [12]. In the same
way, the tonal stabilization presented in this paper draws on
a first raw motion estimation between frames to compute a
global color correction.

To the best of our knowledge, only two previous works [13,
14] have proposed approaches specifically designed to correct
color fluctuations in videos. The first one, due to Farbman
et al [13], aligns tonally each frame of the video with one or
several pre-selected reference frames (for instance the first
frame of the movie). Correspondences between successive
frames are computed without explicit motion compensation,
the authors claiming that many pixels in the same grid posi-
tion in two successive frames are likely to correspond to the
same surface in the scene. If this method provides a reason-



Fig. 1. Overview of proposed method for tonal stabilization of videos.

able solution to stabilize tonal fluctuations in static videos, it
is at the cost of high space and time complexity. Besides, the
lack of real motion estimation makes the approach unstable
in longer, noisy or fast motion sequences.

The second one, recently proposed by Wang et al. [14],
first estimates global motion between successive frames by
relying on local features correspondences. A parametric color
transformation is then computed for each pair of neighboring
frames. These transformations are accumulated to obtain a
color state for each frame of the video, and smoothed along
the time direction. While the results provided by the authors
are very good, the method remains complex to implement and
is based on the choice of several parameters.

Our method, presented in Section 2, relies on a simplified
model of color instabilities between the frames of a video,
robust to motion and occlusion, and easy to implement with
potential to real time processing. In Figure 1, we present a
general overview of the proposed method for tonal stabiliza-
tion. In order to achieve robustness against motion and oc-
clusion, we estimate the dominant motion between a refer-
ence keyframe uk and the frame to be corrected ut. Then,
we register these two frames in order to compute color cor-
respondences. Note that by means of cumulative motion, we
are able to register ut and uk, even if they differ by several
frames in time.

Section 3 illustrates the efficiency of the proposed method
on different sequences and shows that it compares favorably
to the results of [13] and is qualitatively equivalent to [14]
at a much reduced computational cost. We recommend the
reader to see our supplementary video results at the project
website2.

2. PROPOSED METHOD

This section presents our method to tonally stabilize a video
sequence. First, we present our transformation model for se-
quences without motion. Then, we generalize our method and

2http://oriel.github.io/tonal stabilization

employ motion estimation to guarantee tonal stabilization.

2.1. Tonal Transformation Model

Let {ut}t=1,...,D be a registered sequence of color frames
ut : Ω→ R3, where Ω ⊆ R2 denotes the spatial domain. The
color channels of ut are written (uRt , u

G
t , u

B
t ). Let uk be a

reference keyframe in the sequence. In order to tonally stabi-
lize the sequence, for every following frame ut, t > k we look
for a parametric color transformation Tt : R3 → R3 such that
Tt(ut) ' uk. We use a deliberately simplified model for Tt
and assume a separable transfer function on color channels:

Tt = (TRt , T
G
t , T

B
t ), where T ct (s) := αcs

γc , c ∈ {R,G,B}.
(2)

In practice, this model is accurate for perceptually correcting
tonal instabilities in videos. This model was tested on several
image pairs of the same scene, with varying white balance
and exposure value. In all cases, this color correction model
was accurately capable of correcting tonal variations.

In order to estimate αc, γc, we solve for every color chan-
nel of the frame ut the linear least squares fitting problem

arg min
αc,γc

∑
x∈Ω

(
loguck(x)− γc loguct(x) + logαc

)2
, (3)

whose solution is given by

γc =
Cov

(
loguct , loguck

)
Var
(
loguct

) , αc = exp(loguck − γcloguct) ,

(4)

where z = 1
|Ω|
∑

x∈Ω z(x) is the average value of z(x), x ∈
Ω.

2.2. Image Registration

For all pairs of consecutive frames ul and ul−1 in the se-
quence, we make use of the robust algorithm of Odobez and



Bouthemy [15] to estimate the affine motion transformation
Al,l−1 between the frames. This planar affine transformation,
defined by 6 parameters, only accounts for the dominant mo-
tion of the camera without considering pixel-wise accuracy.
Dominant motion has the advantage of being computation-
ally simple to estimate, and is sufficient for the task of tonal
stabilization.

Now, let uk be a reference frame and ut (t > k) a subse-
quent frame in the video. Before applying the transformation
model in Eq. (7), ut is warped towards uk with the accumu-
lated transformation

At,k = At,t−1 ◦At−1,t−2 ◦ ... ◦Ak+1,k. (5)

We define the set of spatial correspondences Ωt,k between
uk and ut as

Ωt,k =

{(
x, At,k(x)

)
∈ Ω× Ω

∣∣∣∣
1

3

∑
c

(
(uck(x) − uck)− (uct

(
At,k(x)

)
)− uct)

)2

< σ2

}
,

(6)

where σ2 is the empirical noise variance (for instance, esti-
mated with the method in [16]). Note that the constraint in
Eq. (6) rules out possible motion outliers as well as occluded
points (points visible in only one of the frames).

2.3. Algorithm

In practice, the first keyframe of the sequence is the first frame
u1. Then, the next sequence of frames ut, t > 1 are tonally
stabilized w.r.t. to u1 provided the number of spatial cor-
respondences #Ωt,1 is larger than ω × #Ω where #Ω is
the number of pixels per frame, and ω is a parameter to be
tuned. Otherwise, since there is not enough overlap between
Ω1 and Ωt to robustly estimate the tonal transformation, a new
keyframe is defined. This process is repeated till the end of
the sequence.

In order to ensure that the sequence {Tt(ut)}t=1,...,D does
not deviate largely from the original sequence {ut}t=1,...,D

we consider the temporally weighted transformation

T ′t = λTt + (1− λ)Id, (7)

where λ = λ0 exp(− ||Vt,k||
p ) regulates the amount of trans-

formation of frame ut depending on the motion speed in ref-
erence to the keyframe, ||Vt,k|| denotes the norm of the dom-
inant motion vector Vt,k and p is the maximum spatial dis-
placement (number of rows + number of columns of the im-
age) and λ0 is the initial weight (in practice we set λ0 := 0.9).
In the sequel we consider this transformation model since it
allows to stabilize the sequence, but avoiding overexposure
when huge changes in camera exposure occur in the original
sequence.

Algorithm 1 sketches the proposed method. Note that the
computation of Ωt,k involves the computation of At,k and the
warping of ut towards uk based on At,k.

Algorithm 1 Motion driven tonal stabilization
Input: Sequence of frames {ut}t=1,...,D

Output: Tonal stabilized sequence {T ′t (ut)}t=1,...,D

1: k ⇐ 1, t⇐ k + 1
2: T ′1(u1) = u1

3: while t ≤ D do
4: Compute Ωt,k
5: if #Ωt,k ≥ ω ×#Ω then
6: for c⇐ {R,G,B} do
7: αc, γc⇐arg min

α,γ

∑
(x,y)∈Ωt,k

(uck(x)−αuct(y)
γ
)2

8: T ′t (u
c
t)⇐ λαc(u

c
t)
γc + (1− λ)uct

9: end for
10: t⇐ t+ 1
11: else # If there are not enough correspondences
12: k ⇐ t− 1
13: uk ⇐ T ′t−1(ut−1)
14: end if
15: end while

For the sake of complexity, the original frames are
rescaled (120 pixels wide) before estimating T ′. Then, the
estimated T ′ is coded into a Look-Up-Table (LUT) that is
applied to the high resolved original frames. This implemen-
tation changes guarantee an algorithm with low complexity
but it does not produce noticeable loss in tonal stabilization
accuracy.

3. EXPERIMENTAL RESULTS

3.1. Qualitative results

Results on a variety of sequences are accessible at the project
website3. The tonal stabilization method was tested on 18
sequences, originating either from related work [13, 14], or
acquired with hand-held smart-phones from different manu-
facturers. All sequences were processed with the same set of
parameters, i.e., ω = 0.25 and λ0 = 0.9.

Visual inspection was performed for all sequences and the
method has proven to be accurate and robust. Fig. 2 and Fig. 3
show examples of obtained results.

3.2. Quantitative results

Here, the performance of the stabilization is assessed and
compared objectively to two existing methods [13, 14]. We
implemented to the best of our ability the method of [13],
while the authors of [14] provided us with the results. For

3http://oriel.github.io/tonal stabilization



Fig. 2. Illustration of tonal stabilization of sequence “sofa”.
Top row, frames extracted from original sequence. Second
row, same frames, after tonal stabilization with our method. It
is visible that objects have the same color appearance through
the sequence.

objective assessment, we compute the tonal variation (euclid-
ian distance in CIELAB color space) of a homogeneous patch
in comparison to the reference (first frame). Results obtained
on the sequence building are shown in Fig. 4. We observe
that the tonal variation is reduced after correction with our
method and with the method of [14] when compared to the
original variation. However, the result of [13] presents some
flickering. The fidelity to original colors, measured by the
tonal variation between the corrected frame and the original
frame, can indicate if a method produces noticeable artifacts
(large deviation from original).
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Fig. 3. Visual comparison of tonal stabilization for sequence
“building”. It can be observed that the proposed method is
able to correctly stabilize tonal variations, while minimizing
undesired artifact generation, while the results of [13] and
[14] contains some visible clipping in the building.

We note that the proposed tonal stabilization method is
much faster in comparison to the state-of-the-art. Our proto-
type implementation in Python processes a 1920 · 1080 reso-

lution video in a rate of 11 frames per second4, while a C++
implementation of [14] processes approximately 1 frame per
second and a Python implementation of [13] processes 0.6
frames per second. We believe that an optimized implemen-
tation of our method could approach real time processing.

Tonal Variation Fidelity to Original

Fig. 4. Objective assessment on the sequence building, re-
lating to Fig. 3. On the left, the tonal variation over time,
computed as the color distance of a tracked patch to the ref-
erence (first frame) is shown. On the right, the color distance
is computed at each instant, between the corrected frame and
the original frame, which indicates the degree of fidelity be-
tween the original and the corrected sequence. In particu-
lar, for method [14], the whitish appearance of the corrected
sequence is assessed by a large color distance. Overall, our
method compares favorably with the methods of [13] and
[14], both in terms of reduction of tonal variation as in terms
of fidelity to original colors.

4. CONCLUSION

In this work, we have proposed an efficient tonal stabilization
method, aided by global motion estimation and a paramet-
ric tonal transformation. We have shown that a simple six-
parameters color transformation model is enough to provide
tonal stabilization caused by automatic camera parameters,
without the need to rely on any a priori knowledge about the
camera model.

The proposed algorithm is robust for sequences contain-
ing motion, it reduces tonal error accumulation by means
of long-term tonal propagation, and it does not require high
space and time computational complexity to be executed.

In addition, one of the main advantages of the proposed
method is that it could be applied in practice as an online al-
gorithm, that has potential for real time video processing.

Acknowledgements: We thank the authors of [14] for
providing their results in our sequences and [13] for helping
with implementation details of their method.

4Processing time given by Intel(R) Core(TM) i5-3340M CPU @
2.70GHz, 8GB RAM
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