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ON THE RADICALS OF A GROUP THAT DOES NOT HAVE THE

INDEPENDENCE PROPERTY

CÉDRIC MILLIET

Abstract. We give an example of a pure group that does not have the independence
property, whose Fitting subgroup is neither nilpotent nor definable and whose soluble radical
is neither soluble nor definable. This answers a question asked by E. Jaligot in May 2013.

The Fitting subgroup of a stable group is nilpotent and definable (F. Wagner [Wag95]).

More generally, the Fitting subgroup of a group that satisfies the descending chain condition

on centralisers is nilpotent (J. Derakhshan, F. Wagner [DW97]) and definable (F. Wagner

[Wag99, Corollary 2.5], see also [OH13] and [AB14]). The soluble radical of a superstable

group is soluble and definable (A. Baudish [Bau90]). Whether this also holds for a stable

group is still an open question.

Inspired by [MT12], we provide an example of a pure group that does not have the indepen-

dence property, whose Fitting subgroup is neither nilpotent nor definable and whose soluble

radical is neither soluble nor definable. The proofs require some algebra because we have

decided to provide a precise computation of the Fitting subgroup and soluble radical of the

group considered.

Definition 1 (independence property). Let M be a structure. A formula ϕ(x, y) has the

independence property in M if for all n ∈ ω, there are tuples a1, . . . , an and (bJ)J⊂{1,...,n} of

M such that
(

M |= ϕ(ai, bJ)
)

⇐⇒ i ∈ J . M does not have the independence property (or

is NIP for short) if no formula has the independence property in M .

Let L be a first order language, M an L-structure. A set X is interpretable in M if there

is a definable subset Y ⊂ Mn in M and a definable equivalence relation E on X such that

X = Y/E. A family {Yi/Ei : i ∈ I} of interpretable sets in M is uniformly interpretable in

M if the corresponding families {Yi : i ∈ I} and {Ei : i ∈ I} are uniformly definable in M .

Let L be yet another first order language. An L-structure N is interpretable in M if its

domain, functions, relations and constants are interpretable sets in M . A family of L-

structures {Ni : i ∈ I} is uniformly interpretable in M if the family of domains is uniformly

interpretable in M , as well as, for each symbol s of the language L, the family {si : i ∈ I} of

interpretations of s in Ni.

Lemma 2 (D. Macpherson, K. Tent [MT12]). Let M be an L-structure that does not have

the independence property and let {Ni : i ∈ I} be a family of L-structures that is uniformly

interpretable in M . For every ultrafilter U on I, the L-structure
∏

i∈I Ni/U does not have the

independence property.

Key words and phrases. Model theory; independence property; Fitting subgroup and soluble radical;
ultraproducts.

Many thanks to T. Altinel and A. Fehm for stimulating conversations, as well as to S. Kulhmann.
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Corollary 3. Let m and n be natural numbers and p a prime number. Let us consider the

general linear group GLm(Z/pnZ) over the finite ring Z/pnZ. Let U be an ultrafilter on N

and let G be the ultraproduct

G =
∏

n∈N

GLm(Z/pnZ)
/

U .

The pure group G does not have the independence property.

Proof. Consider the group GLm(Zp) over the ring Zp of p-adic integers, and the normal

subgroups 1 + pnMm(Zp) for every n > 1. One has the group isomorphism

GLm(Z/pnZ) ≃ GLm(Zp)
/

1 + pnMm(Zp).

Therefore, the family of groups {GLm(Z/pnZ) : n ∈ N} is uniformly interpretable in the ring

Mm(Qp), which is interpretable in the field Qp of p-adic numbers, hence NIP by [Mat93]. By

Lemma 2, the group G does not have the independence property. �

1. Preliminaries on the normal structure of GLm(Z/pnZ)

Given a field k, the normal subgroups of the general linear group GLm(k) are precisely the

subgroups of the centre and the subgroups containing the special linear group SLm(k) (J.

Dieudonné [Die55]). In particular, the maximal normal soluble subgroup of GLm(k) is the

centre, except for the two soluble groups GL2(F2) and GL2(F3). The situtation is different

for the general linear group GLm(Z/pnZ) over the ring Z/pnZ, whose normal subgroups are

classified by J. Brenner [Bre38]. We follow also W. Klingenberg [Kli60] who deals with the

normal subgroups of the general linear group over a local ring R, which applies in particular

to Z/pnZ.

The centre of GLm(Z/pnZ) is the subgroup of homotheties (Z/pnZ)× · 1. The general con-

gruence subgroup of GLm(Z/pnZ) of order ℓ is

GCm(ℓ) = (Z/pnZ)× · 1 + pℓMm(Z/pnZ).

It is a normal subgroup of GLm(Z/pnZ). For every element g of GLm(Z/pnZ), there is a

maximal ℓ 6 n such that g belongs to GCm(ℓ). We call ℓ the congruence order of g.

The special linear subgroup of GLm(Z/pnZ) of matrices having determinant 1 is written

SLm(Z/pnZ). An elementary transvection is an element of SLm(Z/pnZ) of the form 1 + reij

for r ∈ Z/pnZ and i 6= j. A transvection is a conjugate of an elementary transvection.

Proposition 4 (J. Brenner [Bre38, Theorem 1.5]). Let τ a transvection of congruence order ℓ.

The normal subgroup of GLm(Z/pnZ) generated by τ is
〈

τGLm(Z/pn
Z)
〉

= SLm(Z/pnZ) ∩
(

1 + pℓMm(Z/pnZ)
)

.

Theorem 5 (J. Brenner [Bre38]). Let mp > 6 and g an element of GLm(Z/pnZ) of congru-

ence order ℓ. The normal subgroup
〈

gGLm(Z/pn
Z)
〉

of GLm(Z/pnZ) generated by g satisfies

SLm(Z/pnZ) ∩
(

1 + pℓMm(Z/pnZ)
)

⊂
〈

gGLm(Z/pn
Z)
〉

⊂ (Z/pnZ)× · 1 + pℓMm(Z/pnZ).

For any real number x, we write ⌊x⌋ for the floor of x, that is ⌊x⌋ is the greatest integer k

such that k 6 x.
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Lemma 6. For any m > 2, ℓ > 1 and n > 1, the group 1 + pℓMm(Z/pnZ) is a normal

nilpotent subgroup of GLm(Z/pnZ) of nilpotency class

⌊

n − 1

ℓ

⌋

.

Proof. For every x in Mm(Z/pnZ), one has

(1 + px)p = 1 +
p
∑

k=1

(px)kCk
p = 1 + p2y.

It follows that 1 + pMm(Z/pnZ) is a nilpotent p-group. Its iterated centres are

Z(Hn) = (1 + pZ/pnZ) · 1 + pn−1Mm(Z/pnZ)

Z2(Hn) = (1 + pZ/pnZ) · 1 + pn−2Mm(Z/pnZ)

...

Zn−2(Hn) = (1 + pZ/pnZ) · 1 + p2Mm(Z/pnZ)

Zn−1(Hn) = 1 + pMm(Z/pnZ),

so the nilpotency class of 1 + pMm(Z/pnZ) is n − 1 when n > 1. For every natural number

q satisfying n − qℓ > ℓ, one has

Zq

(

1 + pℓMm(Z/pnZ)
)

=
(

1 + pℓZ/pnZ
)

· 1 + pn−qℓMm(Z/pnZ),

so the greatest q such that the above qth centre is a proper subgroup is the greatest q

satisfying n − qℓ > ℓ. As one has

n − qℓ > ℓ ⇐⇒ n − 1 − qℓ > ℓ ⇐⇒ q 6
n − 1

ℓ
− 1,

this greatest q is precisely
⌊

n − 1

ℓ

⌋

− 1. �

For any real number x, we write ⌈x⌉ for the ceiling of x, that is ⌈x⌉ is the least integer k

such that k > x.

Lemma 7. For any 1 6 ℓ 6 n and m > 3, the group 1 + pℓMm(Z/pnZ) is soluble of derived

length

⌈

log2

n

ℓ

⌉

.

Proof. Let us write PCm(ℓ) = 1 + pℓMm(Z/pnZ) and show that
(

SLm(Z/pnZ) ∩ PCm(ℓ)
)′

= PCm(ℓ)′ = SLm(Z/pnZ) ∩ PCm(2ℓ).

Let α = 1 − pℓγ and β = 1 − pℓδ be two elements of 1 + pℓMm(Z/pnZ). Then

αβα−1β−1 =
(

1 − pℓγ
) (

1 − pℓδ
) (

1 + pℓγ + · · · + pnℓγn
) (

1 + pℓδ + · · · + pnℓδn
)

= 1 + p2ℓ(γδ − δγ) + p3ℓ(· · · ) + · · · ,

so PCm(ℓ)′ is included in SLm(Z/pnZ) ∩ PCm(2ℓ). Conversely, consider the two elementary

transvections σ = 1 + pℓe12 and τ = 1 + pℓe21. One has

στσ−1τ−1 = (1 + pℓe12)(1 + pℓe21)(1 − pℓe12)(1 − pℓe21)

= 1 + p2ℓe11 − p2ℓe22 − p3ℓe12 + p3ℓe21.
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It follows that
(

SLm(Z/pnZ)∩PCm(ℓ)
)′

contains an element that lies in PCm(2ℓ)\PCm(2ℓ + 1).

As
(

SLm(Z/pnZ)∩PCm(ℓ)
)′

is a characteristic subgroup of SLm(Z/pnZ)∩PCm(ℓ), it is normal

in GLm(Z/pnZ). By Theorem 5,
(

SLm(Z/pnZ) ∩ PCm(ℓ)
)′

contains SLm(Z/pnZ) ∩ PCm(2ℓ).

We have thus shown that for every natural number k, the kth derived subgroup of PCm(ℓ) is

PCm(ℓ)(k) = SLm(Z/pnZ) ∩ PCm(2kℓ).

The derived length of PCm(ℓ) is the least k such that 2kℓ > n. �

Lemma 8. For natural numbers k and n > k2 + k, let ℓn(k) = 1 +
⌊

n

k + 1

⌋

. Then ℓn(k) is

the smallest natural number satisfying the equality

⌊

n

ℓn(k)

⌋

= k.

Proof. Let n = q(k+1)+r be the Euclidian division of n by k+1, with q > k and 0 6 r < k+1.

Then one has

0 <
k + 1 − r

1 + q
6 1 hence

⌊

n

ℓn(k)

⌋

=

⌊

(k + 1)q + r

1 + q

⌋

=

⌊

k + 1 −
k + 1 − r

1 + q

⌋

= k,

so ℓn(k) satisfies the equality. It is the smallest such, as one has
⌊

n

ℓn(k) − 1

⌋

=









n
⌊

n
k+1

⌋







 =

⌊

n

q

⌋

=

⌊

k + 1 +
r

q

⌋

> k + 1. �

Lemma 9. For natural numbers k > 1 and n > 2k, let dn(k) =
⌈

n

2k

⌉

. Then dn(k) is the

smallest natural number satisfying the equality

⌈

log2

n

dn(k)

⌉

= k.

Proof. One has
n

2k
6

⌈

n

2k

⌉

<
n

2k
+ 1

hence

k − 1 6 k − log2

(

1 +
2k

n

)

< log2

(

n

⌈ n
2k ⌉

)

6 k,

so that dn(k) satisfies the equality. It is the smallest such, as








log2





n
⌈

n
2k

⌉

− 1













=









log2





2k

2k

n

⌈

n
2k

⌉

− 2k

n













=

⌈

k − log2

(

2k

n

⌈

n

2k

⌉

−
2k

n

)⌉

> k + 1. �

2. Radicals of G

We now condiser

G =
∏

n∈N

GLm(Z/pnZ)
/

U .

We call Fitting subgroup of G and write F (G) the subgroup generated by all its normal

nilpotent subgroups. By Zorn’s Lemma, any nilpotent subgroup of G of nilpotency class k

is contained in a maximal such, which might not be unique.
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Lemma 10. There is a first order formula ϕk in the language of groups such that, for any

group N , N is nilpotent of class k if and only if N |= ϕk.

Proof. Consider the formula

∀x1 · · · ∀xk[x1, [x2, [· · · , [xk−1, xk] · · · ]]] = 1 ∧ ∃y1 · · · ∃yk−1[y1, [y2, [· · · , [yk−2, yk−1] · · · ]]] 6= 1.

�

Theorem 11 (Łos). Let (Mi)i∈N be a collection of L-structure, U an ultrafilter on N and

M the ultraproduct
∏

i Mi

/

U . One has M |= ϕ if and only if {i ∈ N : Mi |= ϕ} is in U .

Theorem 12 (Fitting subgroup of G). If the ultrafilter U is non-principal, for every natural

number k, G has a unique maximal normal nilpotent subgroup Nk of nilpotency class k

Nk =
∏

n∈N

(

(Z/pnZ)× · 1 + p1+⌊n−1

k+1 ⌋Mm(Z/pnZ)
)/

U ,

hence the Fitting subgroup of G is

F (G) =
∞
⋃

k=1

Nk.

F (G) is neither nilpotent, nor definable.

Proof. Let k be a fixed natural number. By Lemma 6 and Lemma 8, the normal subgroup

(Z/pnZ)× · 1 + p1+⌊ n−1

k+1 ⌋Mm(Z/pnZ)

of GLm(Z/pnZ) has nilpotency class k for all but finitely many n. As U contains the Fréchet

filter and as being of nilpotency class k is expressible by a first order formula in the pure

language of groups according to Lemma 10, by Łos Theorem, the ultraproduct
∏

n∈N

(

(Z/pnZ)× · 1 + p1+⌊ n−1

k+1 ⌋Mm(Z/pnZ)
)/

U

is a normal nilpotent subgroup of class k of G. Reciprocally, if g belongs to a normal nilpotent

subgroup of class k, then gG generates a normal nilpotent subgroup of class at most k. By

Łos Theorem, there is a set I ∈ U such that for all n ∈ I, the conjugacy class gGn

n generates a

nilpotent normal subgroup
〈

gGn

n

〉

of Gn of class at most k. Let n ∈ I be fixed. By Theorem 5,

there is a unique natural number 1 6 ℓ 6 n such that

SLm(Z/pnZ) ∩
(

1 + pℓMm(Z/pnZ)
)

⊂
〈

gGn

n

〉

⊂ (Z/pnZ)× · 1 + pℓMm(Z/pnZ).

As 1 + pℓMm(Z/pnZ) is nilpotent of class
⌊

n−1
ℓ

⌋

, one must have k >
⌊

n−1
ℓ

⌋

. From Lemma 8,

it follows that ℓ > ℓn−1(k) for all but finitely many n in I, so that g belongs to the desired

ultraproduct.

To show that the Fitting subgroup of G is not definable, let gn,ℓ be the elementary transvection

1 + pℓeij of Hn for every 1 6 ℓ < n. By Proposition 4, one has
〈

gGn

n,ℓ

〉

= SLm(Z/pnZ) ∩
(

1 + pℓMm(Z/pnZ)
)

,

hence

Zq

(〈

gGn

n,ℓ

〉)

= SLm(Z/pnZ) ∩ Zq

(

1 + pℓMm(Z/pnZ)
)

,
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so gGn

n,ℓ generates a nilpotent subgroup of nilpotency class
⌊

n

ℓ

⌋

. For every ℓ > 1, let n =

knℓ + rn where kn and rn denote the quotient and rest of the Euclidian division of n by ℓ and

let gℓ denote the class modulo U of
(

1GLm(Z/Z), 1GLm(Z/pZ), . . . , 1GLm(Z/pℓZ), gℓ+1,1, gℓ+2,1, . . . , g2ℓ,2, g2ℓ+1,2, . . . , gn,kn
, . . .

)

.

As
⌊

n

kn

⌋

= ℓ holds for every n > ℓ2, the normal closure 〈gℓ〉
G is nilpotent of nilpotency class ℓ

for every ℓ > 1. Note that G is ℵ1-saturated by [Kei10, Theorem 5.6]. By [OH13, Theorem

1.3], the Fitting subgroup of G is not definable. �

Lemma 13. There is a first order formula ϕℓ in the language of groups such that, for any

group S, S is soluble of derived length ℓ if and only if S |= ϕℓ.

Proof. Consider the term tℓ(x1, . . . , x2ℓ) defined inductively by setting t1(x1, x2) to [x1, x2]

and tℓ+1(x1, . . . , x2ℓ+1) to [tℓ(x1, . . . , x2ℓ), tℓ(x2ℓ+1, . . . , x2ℓ+1)]. Then consider the formula

∀x1 · · · ∀x2ℓtℓ(x1, . . . , x2ℓ) = 1 ∧ ∃y1 · · · ∃y2ℓ−1tℓ−1(y1, . . . , y2ℓ−1) 6= 1.

�

We call soluble radical of G and write R(G) the subgroup generated by all its normal soluble

subgroups.

Theorem 14 (soluble radical of G). If the ultrafilter U is non-principal, for every natural

number ℓ, G has a unique maximal normal soluble subgroup Sℓ of derived length ℓ

Sℓ =
∏

n∈N

(

(Z/pnZ)× · 1 + p⌈ n

2ℓ ⌉Mm(Z/pnZ)
)/

U ,

hence the soluble radical of G is

R(G) =
∞
⋃

ℓ=1

Sℓ = F (G).

R(G) is neither soluble, nor definable.

Proof. By Lemma 7, Lemma 9, Lemma 13 and Łos Theorem, Sℓ is a normal soluble subgroup

of G of derived length ℓ. By Theorem 5 and Lemma 9, Sℓ is maximal such. Note that

1 +
⌊

n
2ℓ+1

⌋

6
⌈

n
2ℓ

⌉

holds for every n and ℓ, so that one has Sℓ ⊂ N2ℓ hence R(G) and F (G)

coincide. �
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