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DRAFT

This paper is concerned with the mathematical analysis of a coupled elliptic-parabolic system modeling the
interaction between the propagation of electric potential and subsequent deformation of the cardiac tissue.

The problem consists in a reaction-diffusion system governing the dynamics of ionic quantities, intra and
extra-cellular potentials, and the linearized elasticity equations are adopted to describe the motion of an in-
compressible material. The coupling between muscle contraction, biochemical reactions and electric activity is

introduced with a so-called active strain decomposition framework, where the material gradient of deformation

is split into an active (electrophysiology-dependent) part and an elastic (passive) one. Under the assumption
of linearized elastic behavior and a truncation of the updated nonlinear diffusivities, we prove existence of

weak solutions to the underlying coupled reaction-diffusion system and uniqueness of regular solutions. The
proof of existence is based on a combination of parabolic regularization, the Faedo-Galerkin method, and the
monotonicity-compactness method of J.L. Lions. A finite element formulation is also introduced, for which we

establish existence of discrete solutions and show convergence to a weak solution of the original problem. We
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close with a numerical example illustrating the convergence of the method and some features of the model.

Keywords: Electro–mechanical coupling; Bidomain equations; Active deformation; Weak solutions; Weak com-
pactness method; Weak-strong uniqueness; Finite element approximation; Convergence of approximations

AMS Subject Classification: 74F99, 35K57, 92C10, 65M60

1. Introduction

We are interested in the mathematical study of the interaction between the propagation of the electrical

potential through the cardiac tissue, on the one side, and the related elastic mechanical response,

on the other side. These distinctive processes in the cardiac function are intimately connected by

several complex processes taking place at different spatio-temporal scales. In terms of macroscopic

continuum-mechanics, the propagation of the electrical potential through the heart can be described

by the so-called bidomain equations (see e.g. Ref. ?). These are obtained by writing the conservation

of electrical fluxes between the extra and intracellular domains separated by a membrane acting as a

capacitor. Within these domains, the conductivities are of different magnitudes, and they also change

depending on the particular orientation of the cardiac tissue fibers. Homogenization arguments yield

a multicontinuum description of the heart where at each material point both constituents (intra- and

extra-cellular material) coexist. Still at the macroscopic level, muscle deformation can be described

by the equations of motion for a hyperelastic material, written in the reference configuration. The

medium itself is active, in the sense that it is able to contract without the need of external loads,

but rather influenced by intrinsic mechanisms taking place essentially at the microscale. In order to

incorporate these effects one can follow different approaches. For instance, it is commonly assumed

that stresses are additively decomposed into active and passive parts, leading to the so-called active

stress formulation (see applications of such a formalism in e.g. Refs. ?, ?, ?, ?, ?, ?). Alternatively, one

can adopt the active strain formulation ?,?, for which a factorization of the deformation gradient into

an active and a passive factors is assumed. Such a decomposition implies, in particular, that the fiber

contraction driven by the depolarization of the cardiomyocytes rewrites in the mechanical balance

of forces as a prescribed active deformation, rather than as an additive contribution to the stress.

Moreover, this approach directly incorporates the micro-level information on the fiber contraction and

fiber directions in the kinematics (through the active part of the deformation gradient), without the

intermediate transcription of their role in terms of stress ?. These mechanisms essentially translate into

a dependence of the strain energy function on auxiliary internal state variables, which represent the

level of mechanical tissue activation passed across scales ?. Here we follow the latter alternative, but we

refer to Refs. ?, ? for comparisons between the two approaches in terms of numerical implementation,

constitutive issues, and stability.

The mathematical analysis of macroscopic cardiac models has been mainly related with the study

of solutions to the bidomain equations coupled with phenomenological or physiologically-based ionic

models. A variational approach was first introduced in Ref. ? and later extended in different directions

including degeneration of conductivity tensors ?, the coupling with the electrical conduction in the

torso ?,?, incorporation of the specialized fast conduction system ?, analyzing the coupled system

using a semigroup approach ?, deriving global classical solutions ?, and including more involved ionic

models ?. On the other hand, existence theorems of general nonlinear elasticity can be found in

Refs. ?, ?, whereas applications of those theories to the particular case of hyperelastic materials and

cardiac mechanics and their discretizations include e.g. Refs. ?, ?, ?, ?, ?, ?. However, even if the

literature related to numerical methods and models for cardiac electromechanics is quite large (see, for
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instance, Refs. ?, ?, ?, ?, ?), rigorous studies about solvability and stability of solutions are still not

well established. To the authors’ knowledge, the only available existence results devoted specifically

to cardiac electromechanics correspond to those by Pathmanathan et al. ?,?, who analyzed a general

model where the activation depends on the local stretch rate, and derived constraints on the initial

data. In this work we also assume linearized elasticity equations, but we follow a different activation

model (our active-strain-based description depends only on ionic quantities and we do not consider

viscous effects) and employ the bidomain equations coupled with a different ionic model.

In this paper the electromechanical coupling is achieved by considering that the evolution of the

electrical potentials governed by the bidomain equations depend on the deformation gradient, which

enters into the bidomain equations after a transformation of coordinates from Eulerian to Lagrangian,

and by virtue of the Piola identity. The coupling in the opposite direction is modeled by assuming

that the active part of the deformation incorporates the influence of the calcium kinetics (or in its

absence, a calcium-like scalar field) into the balance equations for the structural mechanics, which are

here restricted to the linear regime.

We establish existence of weak solutions to a simplified version of the fully coupled cardiac elec-

tromechanical problem by means of the Faedo-Galerkin method combined with compactness argu-

ments. The fully discrete counterpart of the proposed simplified system consists in a finite element

family of piecewise quadratic elements for the approximation of deformations and piecewise linear

approximations of solid pressure, electric potentials, and activation field (local strain), whereas a first-

order backward Euler method is applied for the discretization in time. A linearized version of the

coupled system is introduced to analyze the numerical scheme, however such a linearization turns

the convergence proof more delicate than in the continuous case (see § 3 and § 5). We also prove a

uniqueness result for the continuous problem in a weak-strong comparison setting. While some classi-

cal estimates and arguments are sketched, we concentrate on the main analytical aspects of the proofs.

In the remainder of our presentation, modeling, numerical and implementation details will be reduced

as much as possible, and the interested reader is referred to Refs. ?, ?, ? for further specifications

and related models with higher complexity. We stress that our goal is to set a baseline theoretical

framework for the study of more complex coupled multiphysics cardiac problems, and we believe that

the present simplified electromechanical system can already exhibit some key resemblances with more

involved and physiologically relevant models.

We have organized the contents of this paper as follows. § 2 collects the main aspects of the cardiac

electromechanical model we analyze, presenting the equations of passive nonlinear mechanics, the

bidomain system, and the active-strain-based coupling strategy. We also list the basic assumptions of

the model and provide a definition of weak solution. In § 3 we state and prove the solvability of the

continuous problem employing Galerkin approximations and classical compactness theory. Then, in

§ 4 we develop a strong-weak uniqueness argument and briefly discuss regularity of solutions needed

to apply it. The fully discrete linearized finite element formulation, along with additional analytic

arguments developed for the proof of convergence, and two numerical tests are presented in § 5. We

close with some remarks and discussion of future directions in § 6.

2. Governing equations for the electromechanical coupling

2.1. A general nonlinear elasticity problem

Let us consider a homogeneous continuous material occupying in the initial undeformed configuration a

bounded domain Ω ⊂ Rd (d = 3) with Lipschitz continuous boundary ∂Ω. We look for the deformation
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field u : Ω → Rd that maps a material particle that originally occupied the position x to its current

position x̂(x) = u. The tensor gradient of deformation is Du, where D denotes the gradient operator

with respect to the material coordinates x. The cardiac tissue is assumed hyperelastic, and there exists

a strain stored energy function W = W(Du) from which constitutive relations between strain and

stresses are obtained. We further assume incompressibility of the material, that is, the total elastic

energy is minimized subject to the usual local constraint det(Du) = 1, which is enforced via a scalar

Lagrange multiplier p, interpreted as pressure. As a measure of stresses we use the first Piola-Kirchhoff

tensor obtained from W by direct differentiation:

P =
∂W
∂(Du)

− pCof (Du),

where Cof (·) is the cofactor matrix. The balance equations for deformations and pressure read as:

Find u, p such that

∇ · P(Du, p) + f = 0 in Ω,

det(Du) = 1 in Ω,
(2.1)

completed with the Robin boundary data

Pn = αu on ∂Ω, (2.2)

where f is a prescribed body force, n stands for the unit outward normal vector to ∂Ω, and α > 0 is

a constant parameter. Boundary data as (2.2) can be tuned to mimic the global motion of the cardiac

muscle ?, without resorting to unphysiological boundary treatment typically found in the literature,

as excessively rigid boundary conditions, or fixing the atrioventricular plane, or leaving the tissue

completely free to move. Evidently, the precise form of the first equation in (2.1) depends on the

particular constitutive relation defining W. For sake of clarity we restrict ourselves to the case of

Neo-Hookean materials, that is,W = 1
2µtr[(Du)2−I], which gives P = µDu−pCof (Du), where µ is

an elastic modulus. Even if simplified, such a description of the passive response of the muscle already

features a nonlinear strain-stress relationship arising from the incompressibility constraint and, as will

be discussed later on, anisotropy inherited from the active strain incorporation. More involved models

can be found in e.g. Refs. ?, ?, ?.

2.2. The bidomain equations

The description of the electrophysiology in the cardiac tissue is incorporated in the model in the form

of the so-called bidomain equations ?. The quantities of interest are the intra and extracellular electric

potentials (vi = vi(x, t), ve = ve(x, t) respectively), the transmembrane potential v = v(x, t) := vi−ve,
and the so-called gating or recovery variable w = w(x, t) at (x, t) ∈ ΩT := Ω× (0, T ), where T is the

final time instant. The electrical conductivity of the tissue is represented by the orthotropic tensors

Kk(x) = σlkdl ⊗ dl + σtkdt ⊗ dt + σnkdn ⊗ dn, k ∈ {e, i},

where σsk = σsk(x) ∈ C1(R3), k ∈ {e, i}, s ∈ {l, t, n}, are the intra- and extracellular conductivities

along, transversal, and normal to the direction of the fibers, respectively. The fibers direction being

a local quantity, we have ds = ds(x), s ∈ {l, t, n}. The stimulation current externally applied to the

intra- and extracellular spaces is represented by the functions Iiapp, I
e
app. The system corresponds to

χcm∂tv −∇ ·
(
Ki∇vi

)
+ χIion(v, w) = Iiapp,

χcm∂tv +∇ ·
(
Ke∇ve

)
+ χIion(v, w) = Ieapp,

∂tw −H(v, w) = 0, (x, t) ∈ ΩT ,

(2.3)
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where we recall that v = vi−ve. Here cm and χ are model parameters. Problem (2.3) is provided with

homogeneous Neumann boundary conditions for all fields. The choice of the membrane model to be

used is reflected in the functions H(v, w) and Iion(v, w). For a phenomenological description of the

action potential, it suffices to consider the FitzHugh-Nagumo model ?,?, given as in assumption (E.6)

below.

2.3. The active strain model for the coupling of elasticity and bidomain equations

In the so-called active strain model for cardiac modeling ?, the deformation gradient Du is factorized

into a passive part acting at a macroscale (tissue level), and an active factor operating at the microscale

(cellular level), Du = FpFa. This implies that an intermediate configuration exists between the

reference and the current frames. In that configuration, we re-write the strain energy in such a way

that the stress tensor is given by

P = µDuC−1
a − pCof (Du),

where C−1
a := det(Fa)F−1

a F−Ta (see also Refs. ?, ?). In order to cover the electrical-to-mechanical

coupling, the active deformation is assumed to depend directly on the electrophysiology through the

relation

Fa = I + γldl ⊗ dl + γtdt ⊗ dt + γndn ⊗ dn,

where for s = l, t, n, γs are quantities whose evolution depends, non-locally in time, on the electro-

physiology equations. Notice that the onset of mechanical activation is mainly influenced by intra-

cellular calcium release ?,?,?, and in particular, the dynamics of local strain follow closely those of

calcium release rather than those from the transmembrane potential, as reported in Ref. ?. In the

absence of calcium concentration in the FitzHugh-Nagumo model, the aforementioned fact suggests

that it is w (the slow wave) that better approximates the spatio-temporal structure of calcium. More

physiologically-involved activation models require a dependence of γs not only on calcium, but also on

local stretch, local stretch rate, sliding velocity of crossbridges, and on other force-length experimental

relations ?,?,?, but for sake of simplicity we restrict ourselves to a phenomenological description of local

activation in terms of the gating variable w.

The scalar fields γl, γt and γn can be written as functions of a parameter γ:

γl,t,n = γl,t,n(γ), (2.4)

where γl,t,n : R 7→ [−Γl,t,n, 0] are Lipschitz continuous monotone functions. The values Γl,t,n should be

small enough, so that to ensure that det Fa stays uniformly far from zero, for γ ∈ R. The scalar field

γ is the solution of the following ODE associated to the solution (vi, ve, w) of the bidomain system

(2.3):

∂tγ −G(γ,w) = 0, (x, t) ∈ ΩT ,

where G(γ,w) = β(η1w−η2γ), for positive parameters β, η1, η2 (see Ref. ?). It remains to fix the form

of the functions γl,t,n, which we assume to be

γl,t,n = −Γl,t,n
2

π
arctan(γ+/γR), where γR is a reference value.

The form of the active strain and (2.4) yields the following expression for the total stress (where a

“purely passive” and an “active” part of the stress can be readily identified)

P = µDu− pCof (Du)− µ
∑

s∈{l,t,n}

γs(γs + 2)

(1 + γs)2
ds ⊗ ds.
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After assuming transverse isotropy (which translates into γt = γn) and incompressibility at the fiber

level (i.e. det Fa = 1), the previous expression reduces to

P = µDu− pCof (Du) + µγDu− µγl
(
1 +

γl + 2

(1 + γl)2

)
dl ⊗ dl.

Details can be found in e.g. Refs. ?, ?.

The mechanical-to-electrical coupling is achieved by pulling back the bidomain equations to the

reference configuration, which, by virtue of the Piola identity, leads to a conduction term depending

on the deformation gradient Du.

Summarizing, the active strain formulation for the electromechanical activity in the heart is written

as follows ?:

−∇ ·
(
a(x, γ,Du, p)

)
= f in Ω,

χcm∂tv −∇ ·
(
Me(Du)∇ve

)
+ χIion = Ieapp in ΩT ,

χcm∂tv +∇ ·
(
Mi(Du)∇vi

)
+ χIion = Iiapp in ΩT ,

vi − ve = v in ΩT ,

∂tw −H(v, w) = 0 in ΩT ,

∂tγ −G(γ,w) = 0 in ΩT .

(2.5)

Here, according to the above discussion, we should take

a(x, γ,Du, p) := µDuC−1
a (x, γ)− pCof (Du), (2.6)

and

Mk(Du) := (Du)−1Kk(Du)−T , k ∈ {i, e} (2.7)

Moreover, we have the incompressibility constraint under the form

det(Du) = 1 in Ω, for a.e. t ∈ (0, T ). (2.8)

The system of equations (2.5) has to be completed with suitable initial data for v, w, γ and with

boundary data on vi,e and on the elastic flux a(·, ·, ·, ·).

2.4. Linearizing the elasticity equations

In the remaining part of this paper, for the sake of simplicity of both numerical and mathematical

analysis of the problem we introduce two modifications into (2.5),(2.7),(2.8). Firstly, noting that

∂Du det(Du) = det Du∇· u, we can incorporate a linearized incompressibility constraint by imposing

∇ · u = 0 in Ω, for a.e. t ∈ (0, T ); (2.9)

we also linearize the flux in (2.6) with respect to Du by replacing it with

a(x, γ,Du, p) := µDuC−1
a (x, γ)− pI. (2.10)

Introducing the notation σ(x, γ) for µC−1
a (x, γ), we rewrite the first equation of (2.5) as

−∇ · (σ(x, γ)Du) +∇p = f .

The linearization results, however, in the fact that the matrices Mk, k = i, e in (2.7) may become

ill-defined, since the linearized incompressibility constraint does not guarantee invertibility of Du. We
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proceed to a linearization and to a truncation, so that to ensure the boundedness and coercivity (see

(E.3) below) of Mi,Me:

Mk(Du) := Kk − Tδ(∆k(Du) + ∆k(Du)T ), where ∆k(Du) := (Du− I)Kk, k ∈ {i, e}, (2.11)

and Tδ is a suitable truncation function that coincides with the identity map in a neighborhood of the

origin. For the sake of being definite, we set

Tδ(M) :=

{
M , ‖M‖ ≤ δ
M δ
‖M‖ , ‖M‖ ≥ δ

with some δ < 1.

Remark 2.1. The amplitude of contractions in the heart tissue is rather large, which makes the

validity of the linearized model questionable, so we cannot claim that in its present form it is able to

represent physiological regimes. However, we consider the subsequent analysis as a baseline for future

developments including more accurate and more general models. In any case, we will briefly address

the influence of the linearization and of the truncation on the solutions of (2.5) from a numerical

viewpoint, in § 5.

2.5. The problem to be solved and its weak formulation

Let us consider the following class of problems:

−∇ ·
(
σ(x, γ)Du

)
+∇p = f , ∇ · u = 0 in Ω, for a.e. t ∈ (0, T ), (2.12)

cmχ∂tv −∇ ·
(
Mi(x,Du)∇vi

)
+ χIion(v, w) = Iiapp(t,x) in ΩT , (2.13)

cmχ∂tv +∇ ·
(
Me(x,Du)∇ve

)
+ χIion(v, w) = Ieapp(t,x) in ΩT , (2.14)

v = vi − ve in ΩT , (2.15)

∂tw −H(v, w) = 0 in ΩT , (2.16)

∂tγ −G(γ,w) = 0 in ΩT . (2.17)

Equations (2.12),(2.13),(2.14) are complemented with the boundary data (including the linearization

of (2.2)):

σ(x, γ)Dun− pn = αu on ∂Ω, for a.e. t ∈ (0, T ) (2.18)

for some α > 0 and

(Mk(x,Du)∇vk) · n = 0 on (0, T )× ∂Ω, k = i, e (2.19)

(different boundary conditions can be imposed on vi,e; the choice of Neumann conditions (2.19) results

in the compatibility constraint (2.23) below). The initial data are:

v(0, ·) = v0, w(0, ·) = w0, γ(0, ·) = γ0 in Ω. (2.20)

The following properties of the model (2.12)–(2.17) and (2.18)–(2.20) are instrumental for the

subsequent analysis:

(E.1)
(
σ(x, γ)

)
x∈Ω,γ∈R

is a family of symmetric tensors, uniformly bounded and positive definite:

∃c > 0 : for a.e. x ∈ Ω, ∀γ ∈ R ∀M ∈M3×3
1

c
|M|2 ≤ (σ(x, γ)M) : M ≤ c|M|2;
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(E.2) the map γ 7→ σ(·, γ) is uniformly Lipschitz continuous;

(E.3)
(
Mi,e(x,M)

)
x∈Ω,M∈M3×3

is a family of symmetric matrices, uniformly bounded and positive

definite:

∃c > 0 : for a.e. x ∈ Ω, ∀M ∈M3×3 ∀ξ ∈ R3 1

c
|ξ|2 ≤ (Mi,e(x,M)ξ) · ξ ≤ c|ξ|2;

(E.4) the maps M 7→Mi,e(·,M) are uniformly Lipschitz continuous;

(E.5) the function G is given by G(γ,w) = η1(βw − η2γ) with β, η1, η2 > 0;

(E.6) the functions H and Iion are given by the FitzHugh-Nagumo kinetics

H(v, w) = Av −Bw, Iion(v, w) = j(v) + Cw,

where j ∈ C1(R) and A,B,C are positive parameters. Moreover, we assume that there exist

constants A1, A2, A3 > 0 such that

j(0) = 0,
j(v1)− j(v2)

v1 − v2
> −A1, ∀v1 6= v2,

0 < A2 ≤ lim inf
|v|→∞

j(v)

v3
≤ lim sup
|v|→∞

j(v)

v3
≤ A3.

(2.21)

In particular,

B : v 7→ j(v)/v +A1, (2.22)

is a non-negative function that satisfies, for |v| large enough, 1
2A2|v|2 ≤ B(v) ≤ 2A3|v|2; and

the function v 7→ vB(v) = j(v) +A1v is monotone increasing;

(E.7) the following condition holds∫
Ω

Iiapp =

∫
Ω

Ieapp and

∫
Ω

ve(x, t) dx = 0 for a.e. t ∈ (0, T ); (2.23)

(E.8) the data v0, w0, γ0 lie in L2(Ω) whereas f ∈ L2(ΩT )3 and Ii,eapp ∈ L2(ΩT ).

Note that, in practice, one starts with an undeformed configuration, i.e., with γ ≡ 0.

Observe also that the above system (2.5), (2.9) with a(·, ·, ·, ·) and Mi,e(·, ·) given by (2.10), (2.11)

falls within the framework described by (2.12)–(2.20) and (E.1)–(E.8). Indeed, it is enough to check

that assumptions (E.1)–(E.4) are satisfied (assumptions (E.5)–(E.8) are already enforced). Let us

stress that due to the assumption (2.4), the properties (E.1),(E.2) hold. Similarly, the definition

(2.11) along with the truncation Tδ, with δ small enough with respect to the eigenvalues of matrices

Kk, guarantees (E.3),(E.4).

Due to the properties (E.1)–(E.8), the following weak formulation makes sense.

Definition 2.1. A weak solution of problem (2.12)–(2.20) is U =
(
u, p, vi, ve, v, w, γ

)
such that:

(i) u ∈ L2(0, T ;H1(Ω)3), p ∈ L2(ΩT ), vi,e ∈ L2(0, T ;H1(Ω));

v ∈ E := L2(0, T ;H1(Ω)) ∩ L4(ΩT ) with ∂tv ∈ E′ := L2(0, T ; (H1(Ω))′) + L4/3(ΩT );

and γ,w ∈ C1(0, T ;L2(Ω));

(ii) For a.e. t ∈ (0, T ) for all v ∈ H1(Ω)3 there holds∫
Ω

(
σ(x, γ)Du : Dv +Dp · v

)
=

∫
Ω

f · v +

∫
∂Ω

αu · v (2.24)
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(in the last integral, u,v are short-cuts for the traces of u,v on ∂Ω)

and moreover ∇ · u = 0 a.e. in ΩT , which can be expressed as

∀q ∈ H1
0 (Ω)

∫
Ω

u · ∇q = 0. (2.25)

(iii) The distributional derivative ∂tv can be identified with an element b ∈ E′ such that for all

ξ ∈ E with ξt ∈ L∞(ΩT ) and ξ(0, ·) = 0, there holds∫ T

0

cmχ〈b, ξ〉+

∫ T

0

∫
Ω

(
Mi(x,Du)∇vi · ∇ξ + χIion(v, w)ξ

)
=

∫ T

0

∫
Ω

Iiappξ, (2.26)∫ T

0

cmχ〈b, ξ〉 −
∫ T

0

∫
Ω

(
Me(x,Du)∇ve · ∇ξ + χIion(v, w)ξ

)
=

∫ T

0

∫
Ω

Ieappξ, (2.27)

with ∫ T

0

〈b, ξ〉 = −
∫ T

0

∫
Ω

v∂tξ −
∫

Ω

v0ξ(0, ·); (2.28)

in addition, v = vi − ve a.e. on ΩT ;

(iv) For a.e. t ∈ (0, T ) the equations (2.16),(2.17) are fulfilled in L2(Ω), and w(0, ·) = w0, γ(0, ·) = γ0

a.e. in Ω.

Here and below, following the formalism of Ref. ?, the duality product between ξ ∈ E and b ∈ E′ is

written as
∫ T

0
〈b(t), ξ(t)〉 dt where for ξ0 ∈ H1(Ω)∩L4(Ω) and b0 = b1 + b2, b1 ∈ H1(Ω)′, b2 ∈ L4/3(Ω),

〈b0, ξ0〉 :=
(
b1, ξ0

)
(H1)′,H1

+

∫
Ω

b2ξ.

Remark 2.2. Although the variational formulation (2.26)–(2.28) is standard in the context of de-

generate parabolic problems, here we face a delicate point. Because vi,e do not necessarily belong to

L4(ΩT ), it is not allowed to take vi as test function in (2.26) nor ve, for the test function in (2.26).

Yet, thanks to the regularization approach presented in Ref. ? [Lemma 2.3], it is possible to sum up

the weak formulation (2.26) with ξ = vi and the weak formulation (2.26) with ξ = ve. Indeed, our

assumptions include v ∈ L4(ΩT ) and Iion(v, w) ∈ L4/3(ΩT ), thus the term

Iion(v, w)v = Iion(v, w)(vi − ve) = Iion(v, w)vi − Iion(v, w)ve,

belongs to L1(ΩT ) even if the two terms Iion(v, w)vi,e can be non-integrable.

3. Existence proof by convergence of Galerkin approximations for a regularized

problem

In this section, we prove the main existence result of this paper and prepare the ground for proving

convergence of numerical approximations of the system.

Theorem 3.1. Assume that conditions (E.1)–(E.8) hold. If v0, w0, γ0 ∈ L2(Ω) and f ∈ L2(ΩT )3,

Ii,eapp ∈ L2(ΩT ), then there exists a weak solution U =
(
u, p, vi, ve, v, w, γ

)
to (2.12)–(2.17) with the

boundary and initial data specified as in (2.18)–(2.20).

Although the fixed-point techniques are also well suited for the proof of existence, here we prefer

to treat it with the Galerkin method in space. A parabolic approximation similar to the one proposed
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in Ref. ? is used to ensure existence of approximate solutions. The proof of convergence of the finite

element approximation of § 5 will follow the same guidelines, but the parabolic regularization will be

replaced by the linearized time-implicit discretization. In particular, except for the L4 bound, all the

estimates that we establish in this section on the sequence of approximate solutions will also be valid

for the numerical approximate solutions constructed in § 5.

3.1. Construction of approximate solutions

We start by fixing some increasing, as h ↓ 0, families of linear finite-dimensional subspaces (Vh)h and

(V h)h of H1(Ω)3, H1(Ω), respectively, such that ∪h>0Vh is dense in H1(Ω)3 and ∪h>0V
h is dense

both in L2(Ω) and in H1(Ω). In view of the structure of the FitzHugh-Nagumo nonlinearity Iion (see

assumption (E.6) ), it is convenient to ask for the inclusion V h ⊂ L4(Ω). As usual, we require the

Ladyzhenskaya-Babuška-Brezzi (or inf-sup) condition

∃β > 0 : ∀h > 0, min
q∈V h,q 6=0

max
v∈Vh,v 6=0

∫
Ω
q∇ · v

‖q‖L2‖v‖H1

≥ β > 0. (3.1)

Such sequences of finite-dimensional subspaces do exist, see in particular § 5.

Then we look for a discrete solution Uh =
(
uh, ph, vhi , v

h
e , v

h, wh, γh
)

with uh ∈ L2(0, T ;Vh) and

for ph ∈ L2(0, T ;V h) and vhi , v
h
e , v

h, wh, γh ∈ C1(0, T ;V h) that satisfy the Galerkin formulation of

(2.12)–(2.20). This means that each of the equations of the system is recast into a weak formulation

on ΩT where time derivatives and initial conditions (projected on V h by means of the L2− hilbertian

projection PV h) are included in a strong sense. E.g., the discrete analogue of (2.26),(2.28) writes

vh(0) = PV h(v0) and, ∀ξ ∈ V h, cmχ
d

dt

∫
Ω

vh(t)ξ

+

∫
Ω

(
Mi(x,Du

h(t))∇vhi (t) · ∇ξ + χIion(vh(t), wh(t))ξ
)

=

∫
Ω

Iiapp(t)ξ. (3.2)

If necessary, Ii,eapp can be regularized in time. Further, the discrete analogue of (2.24),(2.25) reads,

pointwise in t,

∀v ∈ Vh

∫
Ω

σ(x, γh(t))Duh(t) : Dv +Dph(t) · v =

∫
Ω

f(t) · v +

∫
∂Ω

αuh(t) · v, (3.3)

∀q ∈ V h
∫

Ω

uh(t) · ∇q = 0.

Notice that after discretization, we have a system of ODEs coupled to a system of algebraic

equations to be solved at every time t. While the ODE part of the system obeys the conditions of

the Cauchy-Lipschitz theorem, because of the coupling with the algebraic part existence of a discrete

solution is not obvious. To prove existence of Uh, we regularize the Galerkin discretization in the

spirit of Ref. ?. Namely, in the left-hand side of the ODE in (3.2) we add the term ε ddt
∫

Ω
vhi (t)ξ

(the term −ε ddt
∫

Ω
vhe (t)ξ is added into the analogous equation written for vhe ) and we add the term

ε ddt
∫

Ω
uh(t)v into the left-hand side of (3.3). As for Ii,eapp, the source term f can be regularized in t.

The initial data can be fixed to uh,ε(0) = 0, vε,hi = PV h(v0)/2, vε,he = −PV h(v0)/2. Then the system

on the new unknown Uh,ε becomes a well-posed ODE problem; solutions are defined globally on [0, T ]

because estimates preclude finite-time explosion. Further, the estimates we establish in § 3.2 below

are actually valid also for ε > 0 and moreover, they are independent of the parabolic regularization

parameter ε. Since our functions take values into a finite-dimensional space, from these bounds it is

easy to deduce strong compactness of the family (vh,ε, wh,ε, γh,ε)ε in C0([0, T ];V h)3 and the weak
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compactness of the family (vh,εi , vh,εe , ph,ε)ε in L2(0, T ;V h)3 as well as the weak compactness of (uh,ε)ε
in L2(0, T ;Vh). The strong compactness of (Duh,ε)ε needed to conclude the passage to the limit in the

parabolic regularization of (3.2), as ε→ 0, is obtained using the Minty-Browder argument, as in § 3.3

below. Thus, passing to the limit ε→ 0 we prove existence of Uh solving the Galerkin discretization

of problem (2.12)–(2.20).

3.2. A priori estimates

Assuming that there exists a solution to the above problems, we derive estimates that are uniform

in h > 0 (addition of a parabolic penalization with ε > 0 in the equations for uh, vhi , v
h
e leads to the

same estimates, provided uh(0), vhi (0), vhe (0) remain bounded).

First, according to the definition of Galerkin approximations we are authorized to take uh and

ph for the test functions in the weak formulations of the first and the second equations of (2.12),

respectively. Summing up the resulting identities, we deduce that∫ T

0

∫
Ω

(σ(x, γh)Duh) : Duh =

∫ T

0

∫
Ω

f · uh +

∫ T

0

∫
∂Ω

αuh · uh.

By Cauchy-Schwarz and Poincaré inequalities, we deduce the uniform bound

‖uh‖L2(0,T ;H1(Ω)3) ≤ C;

here and until the end of the proof, C is a generic constant that may possibly depend on the L2 norms

of the initial data and source terms of the system and on the constants appearing in assumptions

(E.1)–(E.6), but not on h. Then, from the Galerkin formulation and the inf-sup condition (3.1) we

derive the uniform L2 estimate on ph:

‖ph‖L2(ΩT ) ≤ C.

Next, we impose the relation (2.15): vh = vhe−vhi , and we look at the part (2.14),(2.13),(2.16) of the

system. Due to the assumption V h ⊂ L4(Ω) we are allowed to take vhe for the test function in (2.14) and

vhi for the test function in (2.13) and make the difference; to this, we add (2.16) with the test function

χC/Awh. Notice that due to the time-regularity of vhi,e and wh, we do have (∂tv
h)vh = ∂t(v

h)2/2,

(∂tw
h)wh = ∂t(w

h)2/2. In time, we integrate the equations on (0, s) for every s < T , which yields the

equality∫ s

0

∫
Ω

(
χ(j(vh)vh +

BC

A
(wh)2) + (Me(x,Du

h)∇vhe ) · ∇vhe + (Mi(x,Du
h)∇vhi ) · ∇vhi

)
+

∫
Ω

(cmχ
2

(vh)2(s, ·)+χC

2A
(wh)2(s, ·)

)
=

∫
Ω

(cmχ
2

(vh0 )2+
χC

2A
(wh0 )2

)
+

∫ s

0

∫
Ω

Iiappv
h
i − Ieappv

h
e . (3.4)

Observe that the properties (2.21) of j lead to the lower bound

vj(v) ≥ A′2v4 −A′1v2

for some positive constants A′1, A
′
2. Hence the Gronwall lemma and Poincare inequality (see, e.g.,

Ref. ?) applied on (3.4) yields the following uniform in h estimates:

‖vhi,e‖L2(0,T ;H1(Ω)) + ‖vh‖L4(ΩT ) + ‖wh‖L2(ΩT ) ≤ C.

Finally, from the L2 estimate on vh and from the Galerkin approximation of equation (2.17)

satisfied by γh we deduce a uniform L2(ΩT ) estimate on γh, by taking γh as a test function and by

using the Hölder and the Gronwall inequalities.
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Further, we introduce the time translates (T τvh)(t, ·) := vh(t + τ, ·) − vh(t, ·), (T τwh)(t, ·) :=

wh(t+ τ, ·)−wh(t, ·) and (T τγh)(t, ·) := γh(t+ τ, ·)− γh(t, ·); observe that for all t ∈ [0, T − τ ] these

functions take values in V h, therefore they can be used as test functions in the Galerkin formulations.

The previously proved uniform in h bounds on wh, γh,∇vh in L2(ΩT ) and on vh in L4(ΩT ) readily yield

analogous bounds for the translates T τwh, T τγh, ∇T τvh and T τvh, respectively, in the corresponding

L2 or L4 spaces on (0, T − τ)× Ω. Following the time compactness technique of Ref. ?, we integrate

the Galerkin approximations of (2.14), (2.16), (2.17), respectively, with respect to the time parameter

s ∈ [t, t + τ ] (with 0 < τ < T ) and in the resulting equations, we take for the test functions the

corresponding translates T τvh, T τwh and T τγh, respectively. Keeping in mind the growth bound

|j(v)| ≤ C(1 + |v|4) for the FitzHugh-Nagumo nonlinearity and the uniform upper bound assumed

in (E.3), we apply the Hölder inequality (with p = 4, p′ = 4/3 in the ionic current term and with

p = p′ = 2 in the other ones). Finally we use the Fubini theorem to interchange the integrals in t and

in s and upper bound the resulting terms using the above mentioned L2 and L4 bounds and keeping

in mind that
∫ t+τ
t

ds = τ =
∫ s
s−τ dt. In this way, we get the uniform in h bound∫ T−τ

0

∫
Ω

(
|vh(t+ τ, ·)− vh(t, ·)|2 + |wh(t+ τ, ·)− wh(t, ·)|2 + |γh(t+ τ, ·)− γh(t, ·)|2

)
≤ C τ.

In addition, we get a uniform estimate of space translates of wh and of γh from the uniform L2

estimate of ∇vh. Indeed, notice that the equations (2.16),(2.17) are linear and x is merely a parameter

of the ODEs with respect to t. The Galerkin approximations of (2.16),(2.17) take the following form:

given vh : t→ V h, vh(t, x) =
∑Nh

i=1 a
h
i (t)φi(x) find wh =

∑Nh

i=1 b
h
i (t)φi(x), γh =

∑Nh

i=1 c
h
i (t)φi(x) such

that

∂t

∫
Ω

whzh −
∫

Ω

H(vh, wh) zh = 0, ∂t

∫
Ω

γhzh −
∫

Ω

G(γh, wh) zh = 0 for all zh ∈ Vh.

It is readily seen that the linear ODE system

∂tb
h(t) = H(ah(t), bh(t)), ∂tc

h(t) = G(ch(t), bh(t)) for all t ∈ [0, T ]

with the appropriate initial data provides the solutions to the above Galerkin formulation. It follows

that the equations

∂tw
h −H(vh, wh) = 0, ∂tγ

h −G(γh, wh) = 0 (3.5)

are satisfied pointwise in [0, T ] × Ω. Therefore, we inherit ODEs analogous to (3.5), also satisfied

pointwise in [0, T ]×Ω, on the space translates (Jrwh)(·,x) = wh(·,x+r)−wh(·,x) and (Jrγh)(·,x) =

γh(·,x+ r)− γh(·,x) (the term vh should be replaced by (Jrvh)(·,x) = vh(·,x+ r)− vh(·,x)):

∂t(J
rwh)−H(Jrvh, Jrwh) = 0, ∂t(J

rγh)−G(Jrγh, Jrwh) = 0. (3.6)

This system is satisfied pointwise; therefore we can multiply the equations by Jrwh and Jrγh, re-

spectively, and integrate in x ∈ Ω and in t ∈ [0, T ]. Observe that the L2(0, T ;H1(Ω)) estimate of vh

we readily get the bound
∫ T

0

∫
Ωr
|Jrvh|2 ≤ C|r|2 (here r ∈ R3 and Ωr := {x ∈ Ω |x− r ∈ Ω}). Hence

the application of the Young inequality leads to the estimate

sup
0<|r|≤δ

∫ T

0

∫
Ωr

(
|Jrwh|2 + |Jrγh|2

)
≤ C |r|2 + T sup

0<|r|≤δ

∫
Ωr

(
|Jrwh0 |2 + |Jrγh0 |2

)
, (3.7)

whose right-hand side vanishes as |r| → 0, uniformly in h.
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3.3. Compactness properties and passage to the limit

The above estimates imply strong compactness of (vh, wh, γh)h in L2((0, T ) × Ω) for all τ > 0 and

the weak compactness of (vh, vhi , v
h
e ,u

h) in L2(0, T ;H1(Ω)). Moreover, the L4 estimate of vh and the

growth assumption on j contained in (2.21) imply weak compactness of (j(vh))h in the space L4/3(ΩT )

dual to L4(ΩT ). We proceed by extracting countably many subsequences, assuming that all the above

sequences converge to some limits, in the respective strong or weak sense.

Passage to the limit in the Galerkin formulation for Uh is a mere assemblage of classical argu-

ments used separately on the elliptic elasticity equation and then on the bidomain model. Indeed,

the electromechanical transmission is ensured via variables γh, wh which behavior is governed by a

linear system ODEs, with straightforward passage to the limit. Moreover, due to the convergence (up

to extraction of a subsequence) of (γh)h in the strong L2 topology, in a first step we can isolate the

passage to the limit in the mechanical part of the system from the behavior of its electrical part.

While it is easy to pass to the limit in the linear with respect to u elasticity equations, let us stress

that we also recover from this argument the strong L2 convergence of the gradients (Duh)h. Then in

a second step, the latter convergence permits to address the passage to the limit in the electrical part

of the system, following closely the analysis of Refs. ?, ?; the only delicate issue here is to identify the

weak limit of the nonlinear ionic current term. Observe that the latter issue is addressed in detail in

§ 5.2 below, in the much more delicate context of semi-implicit in time full discretization of the ionic

current term.

Let us give a step-by-step sequence of arguments used for the proof, highlighting the role of the

assumptions made in § 2.5.

• The passage to the (weak) limit in the ODEs governing the evolution of γh, wh is straightfor-

ward, since they are linear, see assumptions (E.5),(E.6).

• The strong L2 convergence on (0, T−τ)×Ω (up to extraction of a subsequence) of γh implies the

strong a.e. convergence of the uniformly bounded family of tensors σ(x, γh), due to assumptions

(E.1),(E.2).

• With this information, using Lebesgue dominated convergence theorem to deal with the con-

tribution of σ(x, γh) we readily pass to the (weak) limit in the Galerkin formulation of (2.24).

• In addition, because the limit u solves the limit equation (2.12), using the Minty-Browder trick

(see, e.g. ?, ?)a we are able to assert that Duh actually converges to Du strongly in L2(ΩT ).

• Due to assumptions (E.1),(E.2), the strong convergence of Duh implies strong a.e. convergence

of Mi,e(x,Du
h) to the limit Mi,e(x,Du); hence we can use again the dominated convergence

argument for the diffusivity tensors involved in the bidomain equations.

• At this point, it is a standard matter to pass to the limit in the variational formulation

(2.26),(2.27) of the bidomain equations following the general approach of Ref. ? (the anal-

ogy between the setting of Ref. ? and the bidomain system was highlighted in Ref. ? , see also

Ref. ?). Here, the chain rule in time (cf. Ref. ?) is used in the context of identities (2.26),(2.27)

to deal with the contribution of ∂tv; the L4/3–L4 duality is essential to deal with the contri-

bution of the product j(vh)vh, moreover, the FitzHugh-Nagumo assumption (2.21) in (E.6) is

exploited, implying that the nonlinearity j is monotone up to a linear term.

awe can also use the technique of Young measures, see Ref. ? and § 5.
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4. Weak-strong comparison and uniqueness of regular solutions

The strategy for proving uniqueness relies on straightforward estimates on the difference U − Û ,

in particular, the Lipschitz continuity properties (E.2),(E.4) are instrumental. However, in order to

obtain exploitable estimates on U − Û , higher regularity solutions should be considered.

4.1. Strong-weak uniqueness argument

Let us first introduce a suitable notion of strong solution, in relation with the uniqueness argument

developed in Theorem 4.1.

Definition 4.1. We will say that U =
(
u, p, vi, ve, v, w, γ

)
is a bounded-gradient weak solutionb of

problem (2.12)–(2.20) if it is a weak solution in the sense of Definition 2.1 and moreover, one has the

following regularity:

Du ∈ L∞(ΩT )3×3, ∇vi,e ∈ L∞(ΩT )3.

Such regularity of weak solutions is not possible without additional assumptions on the data;

clearly, the minimal assumptions include regularity in x of the families of tensors involved in assump-

tions (E.1),(E.3), regularity of source terms in t and in x, and H1 regularity of initial data. We refer

to Ref. ? for a result on regularity of bidomain systems; however, the use of its strategy requires

at least L1(ΩT ) estimates of ∂tDu. The latter can be obtained via elliptic regularity and parameter

dependence techniques, provided suitable time and space regularity is proved for γ; in turn, the regu-

larity of γ requires that of v. We see that simple decoupling strategies cannot be used for justification

of L∞ bounds on Du, ∇vi,e. Yet we think that the following weak-strong uniqueness and continuous

dependence result contributes to assess good analytical properties of the model considered herein.

Theorem 4.1. Assume that U =
(
u, p, vi, ve, v, w, γ

)
is a bounded-gradient weak solution of problem

(2.12)–(2.20) in the sense of the above definition, and Û =
(
û, p̂, v̂i, v̂e, v̂, ŵ, γ̂

)
is a weak solution in

the sense of Definition 2.1 corresponding to the data f̂ , Îiapp, Î
e
app, v̂0, ŵ0, γ̂0. Then there exists K =

K(‖Du‖∞, ‖∇vi,e‖∞) (depending also on T and on the different constants involved in assumptions

(E.1)–(E.6) and on the initial and source data for both U and Û) such that

‖(v, w, γ)− (v̂, ŵ, γ̂)‖L∞(0,T ;L2(Ω))3

+ ‖u− û‖L2(0,T ;H1(Ω)3) + ‖p− p̂‖L2(ΩT ) + ‖(vi, ve)− (v̂i, v̂e)‖L2(0,T ;H1(Ω))2

≤ K(‖Du‖∞, ‖∇vi,e‖∞)
(
‖f − f̂‖L2(ΩT )3 + ‖(Iiapp, I

e
app)− (Îiapp, Î

e
app)‖L2(ΩT )2

+ ‖(v0, w0, γ0)− (v̂0, ŵ0, γ̂0)‖L2(Ω)3

)
.

In particular, if a bounded-gradient weak solution exists for data f , Iiapp, I
e
app, v0, w0, γ0, then it is a

unique weak solution to the problem.

Proof. Consider equations (2.24) written for u and û; using u− û as test function, we obtain(
σ(x, γ)Du− σ(x, γ̂)Dû

)
: (Du−Dû)

bA related concept of bounded-gradient solutions can be found in e.g. Ref. ?.
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=
(
σ(x, γ̂)(Du−Dû)

)
: (Du−Dû) +

(
(σ(x, γ)− σ(x, γ̂))Du

)
: (Du−Dû). (4.1)

Then, thanks to Young inequality, the coercivity assumption (E.1), and the Lipschitz continuity (E.2),

we obtain for all t ∈ (0, T )∫
∂Ω

α

2
|u− û|2(t) +

∫
Ω

1

2c
|Du−Dû|2(t) ≤ C

(∫
Ω

|f − f̂ |2(t) + ‖Du‖L∞(ΩT )

∫
Ω

|γ − γ̂|2(t)
)
. (4.2)

Here and in the sequel, C is a generic constant depending on the data of both systems (for U and Û)

and on the constants in (E.1)–(E.6). Similarly, we use the ODEs (2.17) for both γ and γ̂ with test

function γ − γ̂ and deduce∫
Ω

|γ − γ̂|2(t) ≤ C
(∫

Ω

|γ0 − γ̂0|2 +

∫ t

0

∫
Ω

|w − ŵ|2(s) ds
)
. (4.3)

Finally, we combine equations (2.13)–(2.16) written for U and Û in the same way as for the proof of

(3.4); we use Lemma 2.3 in Ref. ? in order to justify the possibility to take test functions vi,e − v̂i,e in

(2.13),(2.14), respectively. Rearranging the terms as in (4.1), using in addition the fact that

(vB(v)− v̂B(v̂))(v − v̂) ≥ 0,

where B is defined as in (2.22), we find for a.e. t ∈ (0, T ) the following bound:∫
Ω

(cmχ
2
|v − v̂|2(t) +

BC

A
|w − ŵ|2(t)

)
+

1

2c

∫ t

0

∫
Ω

(
|∇vi −∇v̂i|2(s) + |∇ve −∇v̂e|2(s) ds

)
≤ C

(∫
Ω

(
‖v0 − v̂0|2 + |w0 − ŵ0|2

)
+

∫ t

0

∫
Ω

|(Iiapp, I
e
app)− (Îiapp, Î

e
app)|2(s) ds

+ ‖(∇vi,∇ve)‖L∞(ΩT )2×3

∫ t

0

∫
Ω

|Du−Dû|2(s) ds+

∫ t

0

∫
Ω

(
|v − v̂|2(s) + |w − ŵ|2(s)

)
ds
)
.

(4.4)

Then it is straightforward to combine (4.2)–(4.4) and obtain a Gronwall-type inequality that bounds

U − Û in the way stated in the theorem. Indeed, we can set

E(t) := ‖Du−Dû‖2L2(Ω)3×3(t), Γ(t) := ‖γ − γ̂‖2L2(Ω)(t),

W (t) :=
cmχ

2
‖v − v̂‖2L2(Ω)(t) +

BC

A
‖w − ŵ‖2L2(Ω)(t),

D(t) := ‖f − f̂‖2L2(Ω)3(t) + ‖(Iiapp, I
e
app)− (Îiapp, Î

e
app)‖2L2(Ω)2(t),

D0 := ‖(v0, w0, γ0)− (v̂0, ŵ0, γ̂0)‖2L2(Ω)3 .

Dropping nonnegative terms, from (4.2), (4.3) and (4.4) we infer

E(t) ≤ K (D(t) + Γ(t) )

Γ(t) ≤ K (D0 +

∫ t

0

W (s) ds )

W (t) ≤ K
(
D0 +

∫ t

0

D(s) ds +

∫ t

0

E(s) ds +

∫ t

0

W (s) ds
)

with a generic constant K depending on the different constants, data and solutions as indicated in the

statement of the theorem. Hence, substituting the second inequality in the first one, then substituting

the resulting inequality into the third one and applying the Fubini theorem in the double integral∫ t
0

∫ s
0
W (τ) dτds that appears from this calculation, we find

W (t) ≤ K
(
D0 +

∫ t

0

D(s) ds+

∫ t

0

(1 + (t− s))W (s) ds
)
, W (0) ≤ CD0.
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Then we can apply the Gronwall lemma (see, e.g., Ref. ?); this permits to bound ‖(v, w) −
(v̂, ŵ)‖L2(Ω)2(t) as claimed in Theorem 4.1. Then, with the help of (4.3) we also bound ‖γ− γ̂‖L2(Ω)(t).

Next, with (4.2) we bound ‖Du −Dû‖L2(Ω)3×3(t) and ‖u − û‖L2(∂Ω)3(t), which implies the H1(Ω)3

bound on (u− û)(t), thanks to Poincaré inequality. Now, the bound on ‖p− p̂‖L2(Ω)(t) follows from

(2.12) written for u(t) and û(t), using a test function v ∈ H1(Ω) such that ∇ · v = p(t)− p̂(t). Such

a function can be constructed for each t by taking v = ∇θ using the auxiliary Dirichlet problem

−∆θ = (p − p̂) in Ω̃, θ = 0 on ∂Ω̃, where Ω̃ is a regular domain containing Ω; we have θ ∈ H2(Ω̃)

by the classical elliptic regularity results. Finally, with (4.4) we also achieve the desired bounds on

‖∇vi,e −∇v̂i,e‖L2(Ω)(t).

5. Numerical approximation

Here, we present the finite element method for approximation of the problem studied in the previous

section, the associated numerical results and a critical analysis of validity of the approximations made

in § 2.4. Other discretization techniques can be certainly employed, following e.g. Refs. ?, ?, ?, ?.

5.1. A finite element method

Let Th be a regular partition of Ω into tetrahedra K with boundary ∂K and diameter hK . We define the

mesh parameter h = maxK∈Th{hK} and the associated finite element spaces V h (respectively, Vh), for

the approximation of pressure, electrical potentials and ionic variables (respectively, of displacements).

In order to satisfy the discrete Ladyzhenskaya-Babuška-Brezzi stability condition (3.1), piecewise

quadratic finite elements are used to approximate the displacements field, while for pressure, electrical

potentials and ionic variables, we use piecewise linear elements. That is, the involved spaces are defined

as

V h = {s ∈ C0(Ω̄) : v|K ∈ P1(K) for all K ∈ Th},

Vh = {v ∈ C0(Ω̄) : v|K ∈ P2(K)3 for all K ∈ Th}.

In order to lighten the notation, in this section we put χ = cm = 1 (the general case is completely

analogous). The semidiscrete Galerkin finite element formulation used in § 3.1 then reads: For t > 0,

find uh ∈ Vh, vhi (t), vhe (t), vh(t), wh(t), γh(t), ph(t) ∈ V h such that (with the standard finite element

notation for L2 scalar products) one has(
σ(x, γh(t))Duh(t),Dψh

)
Ω
− (ph(t),∇ · ψh)Ω = (fh,ψh)Ω + (αuh(t),ψh)∂Ω

(uh(t),∇φh)Ω = 0

d

dt
(vh(t), φh)Ω +

(
Mi(x,Du

h(t))∇vhi (t),∇φh
)

Ω
=
(
Iiapp − Iion(vh(t), wh(t)) , φh

)
Ω

d

dt
(vh(t), φh)Ω −

(
Me(x,Du

h(t))∇vhe (t),∇φh
)

Ω
=
(
Ieapp − Iion(vh(t), wh(t)) , φh

)
Ω

d

dt
(wh(t), φh)Ω = (H(vh(t), wh(t)), φh)Ω,

d

dt
(γh(t), φh)Ω = (G(γh(t), wh(t)), φh)Ω,

(5.1)

for all ψh ∈ Vh and all φh ∈ V h; one also sets vh(0) = PV h(v0) (analogous initialization is used for

wh and γh). A classical backward Euler integration method is employed for the time discretization of

(5.1) with time step δt = T/N , moreover, we linearize and decouple the resulting time-implicit scheme
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by employing γh,n−1 (respectively, Duh,n−1 ) in the equation on uh,n (respectively, in the equations

on vh,ni,e ) and by linearizing Iion with the help of the new function

I lin
ion : (v, ṽ, w) 7→ vB(ṽ)−A1v + Cw where B : z 7→ j(z)

z
+A1 ≥ 0.

This results in the following fully discrete method: find vhi (t), vhe (t), vh(t), wh(t), γh(t), ph(t) ∈ V h and

uh ∈ Vh such that

uh(t,x) =

N∑
n=1

uh,n(x)11((n−1)δt,nδt](t),

(
vhi , v

h
e , v

h, wh, γh, ph
)

(t,x) =

N∑
n=1

(
vh,ni , vh,ne , vh,n, wh,n, γh,n, ph,n

)
(x)11((n−1)δt,nδt](t),

satisfy the algebraic system of equations(
σ(x, γh,n−1)Duh,n,Dψh

)
Ω

+ (ph,n,∇ · ψh)Ω = (fh,n,ψh)Ω + (αuh,n,ψh)∂Ω

(uh,n,∇φh)Ω = 0

(
vh,n−vh,n−1

δt
, φh)Ω +

(
Mi(x,Du

h,n−1)∇vh,ni ,∇φh
)

Ω
=
(
Iiapp− I lin

ion(vh,n, vh,n−1, wh,n) , φh
)

Ω

(
vh,n−vh,n−1

δt
, φh)Ω −

(
Me(x,Du

h,n−1)∇vh,ne ,∇φh
)

Ω
=
(
Ieapp− I lin

ion(vh,n, vh,n−1, wh,n) , φh
)

Ω

(
wh,n−wh,n−1

δt
, φh)Ω = (H(vh,n, wh,n), φh)Ω,

(
γh,n−γh,n−1

δt
, φh)Ω = (G(γh,n, wh,n), φh)Ω,

for all ψh ∈ Vh, φh ∈ V h and for all n ∈ {1, . . . , N}; the initial condition takes the form

(vh,0, wh,0, γh,0) = (PV h(v0),PV h(w0),PV h(γ0)).

Here Ii,happ(·), Ie,happ(·) are time averages over [(n− 1)δt, nδt] of Iiapp, Ieapp, respectively.

5.2. A glimpse into the convergence proof

Consider solutions to the fully discrete system, and let us indicate some milestones of its conver-

gence analysis. The proof of stability estimates closely follows the one presented in § 3.2 above for

semi-discrete Galerkin approximations. Namely, we use the same kind of test functions in the same

combination of equations; instead of the chain rule for time derivatives used in the continuous setting,

the convexity inequality

(an − an−1)an ≥ (an)2

2
− (an−1)2

2
,

is used to deal with the finite differences in time. In this way, we obtain uniform in h and δt estimates

on the discrete solutions:

‖uh‖L2(0,T ;H1(Ω)3) + ‖ph‖L2(ΩT ) + ‖vhi,e‖L2(0,T ;H1(Ω)) + ‖(vh, wh, γh)‖L2(ΩT ) ≤ C (5.2)

and also the following uniform in h estimate related to linearization of the nonlinearity Iion

N∑
n=1

δt

∫
Ω

|vh,n|2B(vh,n−1) ≤ C. (5.3)
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The latter estimate replaces, in a weaker sense, the L4(ΩT ) estimate of vh obtained in the semi-discrete

Galerkin context. The details of these estimates, including the latter one, are also very close to those

given in Ref. ? where a linearized implicit finite volume scheme of bidomain equation is analyzed.

Estimate (5.2) implies in particular the invertibility of the matrix of the discrete system that is solved

on each time step.

Now, similarly to § 3.2 we get space and time translation estimates on (wh)h and on (γh)h. For

the time estimates, we introduce, e.g., w̄h the piecewise affine in t function in W 1,∞([0, T ];V h) inter-

polating the states (wh,n)n=0..N ⊂ V h at the points (nδt)n=0..N . Then we have w̄ht = H(vh, wh), and

due to the linearity of H, with the notation introduced in § 3.2 we also have

(T τ w̄h)t = H(T τvh, T τwh).

We can use test function (T τwh)(t, ·) in this equation to obtain time translation estimates on (w̄h)h
using Fubini theorem and the bounds (5.2). Further, the estimates of space translates (Jrwh)h are

obtained in the same way as (3.7), hence analogous estimate on (Jrw̄h)h follows because for t ∈
((n− 1)δt, nδt], w̄h(t, ·) is a convex combination of wh,n−1(·) and wh,n(·). By the Fréchet-Kolmogorov

theorem we deduce strong L2(ΩT ) compactness of (w̄h)h. Further, it is easily seen from the definition

of w̄h, from the equation

wh,n − wh,n−1

δt
= H(vh,n, wh,n)

and estimates (5.2) that

‖w̄h − wh‖2L2(ΩT ) ≤
N∑
n=1

δt‖wh,n−1 − wh,n‖2L2(Ω) ≤ C δt→ 0 as δt→ 0.

Finally, we conclude that (wh)h is strongly compact in L2(ΩT ). The same argument applies to (γh)h.

Unfortunately, the lack of L4(ΩT ) estimate on (vh)h precludes us from getting the analogous time

translation estimate and compactness property on (vh)h, but we circumvent this difficulty using the

Young measures’ representation of weakly convergent sequences, in the spirit of Ref. ?.

Indeed, extracting convergent subsequences corresponding to the above arguments, firstly we pass

to the limit in the linear ODEs and in the elliptic equation on uh; as in § 3.3, we get strong convergence

of Duh to Du from the Minty-Browder argument. Now, we pass to the limit in the equations on vhi,e;

the delicate point is the passage to the limit in the nonlinearity I lin
ion(vh, ṽh, wh), where ṽh(t,x) =

vh(t− δt,x) with the convention that vh(t,x) = vh,0(x) for t ≤ 0. More precisely, we have to pass to

the limit in the term vhB(ṽh). Here we exploit estimate (5.3) to get an equi-integrability estimate on

this term. As in Ref. ?, using the Sobolev embedding of L2(0, T ;H1(Ω)) into L2(0, T ;L6(Ω)) and the

space interpolation with L∞(0, T ;L2(Ω)), we find a uniform L10/3(ΩT ) bound on vh. Such a bound

yields equi-integrability of |ṽh|2 on ΩT , thus from the weighted Young inequality

|vB(ṽ)| ≤ δ|v|2B(ṽ) +
1

δ
B(ṽ),

using the growth assumption on j(·) that implies that B(ṽ) ≤ C(1 + |ṽ|2), we derive a uniform

L1(ΩT ) bound and, moreover, the equi-integrability on ΩT for the family (vhB(ṽh))h. Therefore up

to extraction of a further subsequence, vhB(ṽh) converges weakly in L1(ΩT ) to a limit that we denote

by Ψ. Further, multiplying the discrete equation for vh,n by 1
2 (vh,n + vh,n−1) and summing in n from

the previously obtained estimates one deduces the uniform in h estimate∣∣∣ N∑
n=1

δt

∫
Ω

vh,nvh,n−1B(vh,n−1)
∣∣∣ ≤ C. (5.4)
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Finally, multiplying the same equation for vh,n by (vh,n−vh,n−1) and summing in n, using in particular

(5.4), we get

N∑
n=1

δt

∫
Ω

|vh,n − vh,n−1|2 → 0 as δt→ 0.

Therefore, ṽh − vh converges to zero strongly in L2(ΩT ), in particular, the weak L2(ΩT ) limit v of vh

is also the weak L2(ΩT ) limit of ṽh. Now, in order to prove strong convergence of (vh)h and to pass to

the limit in the nonlinear ionic current term vhB(ṽh) (we have to prove in particular that Ψ = vB(v)),

we introduce the Young measure (ν(t,x))(t,x)∈ΩT
which is the limit of the selected subsequence of (vh)h

(not relabeled):

v(t,x) =

∫
R
λ dν(t,x)(λ) with

∫
R
dν(t,x)(λ) = 1 for a.e. (t,x) ∈ ΩT , moreover,

for all F ∈ C0(R;R) such that (F (vh))h is weakly convergent in L1(ΩT ),

F (vh) ⇀

∫
R
F (λ) dν(·,·)(λ) in L1(ΩT ).

(5.5)

Then the convergence proof relies on the following observations.

Lemma 5.1. The Young measure (ν(t,x))(t,x)∈ΩT
has the following properties:

(i) v(t,x) =

∫
R
λ dν(t,x)(λ) and Ψ(t,x) =

∫
R
λB(λ) dν(t,x)(λ);

(ii)

∫ ∫
ΩT

∫
R
λ2B(λ) dν(t,x)(λ) dx dt <∞ and v ∈ L4(ΩT ), Ψ ∈ L4/3(ΩT );

(iii) for a.e. (t,x) ∈ ΩT ,

∫
R

∫
R
(λ− µ)(λB(λ)− µB(µ)) dν(t,x)(λ) dν(t,x)(µ) ≤ 0;

(iv) for a.e. (t,x) ∈ ΩT , ν(t,x)(λ) = δ(λ− v(t,x)) ;

in particular, vh → v and ṽh → v a.e. on ΩT , and we have Ψ = vB(v) a.e. on ΩT .

Proof. For (i) and (ii) we use the estimates established above, while for (iii), we use the equations

satisfied by vh and by v in a way similar to the Minty trick. The last point follows by classical

properties of Young measures.

(i) The first claim of (i) is a part of the definition of the Young measure. To prove the second point,

we first observe that ∆h
1 := vhB(ṽh)− vhB(vh) tends to zero in L1(ΩT ) as h→ 0. Indeed, recall that

vh, ṽh are bounded in L10/3(ΩT ) due to interpolation and embedding results; therefore ∆h
1 is bounded

in L10/9(ΩT ), and thus it is equi-integrable. Moreover, extracting a further subsequence we can assume

that vh − ṽh → 0 a.e. on ΩT , so that ∆h
1 → 0 a.e. on ΩT . Then ∆h

1 vanishes in L1(ΩT ) due to the

Vitali theorem. Now, we have vhB(ṽh) ⇀ Ψ in L1(ΩT ). Consequently, we have as well vhB(vh) ⇀ Ψ

in L1(ΩT ) as h→ 0, and we can apply the representation formula of (5.5) to Ψ.

(ii) Consider a family of bounded continuous functions (Bn)n on R that increase towards the limit

B pointwise on R, as n → ∞. Then Fn : λ 7→ λ2Bn(λ) can be used in (5.5) because we know that

(vh)h is an equi-integrable sequence on ΩT and bn is bounded for every fixed n. In addition, as in

the point (i) we readily see that ∆h
2 := (vh)2Bn(vh) − (vh)2Bn(ṽh) vanishes in L1(ΩT ) as h → 0, up

to a subsequence. Therefore we find, with the limits taken in the weak L1(ΩT ) sense, the chain of

equalities ∫
R
Fn(λ) dν(·,·)(λ) = lim

h→0
Fn(vh) = lim

h→0
(vh)2Bn(ṽh).
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In particular,∫ ∫
ΩT

∫
R
Fn(λ) dν(t,x)(λ) dt dx ≤ lim

h→0

∫ ∫
ΩT

(vh)2Bn(ṽh) ≤
∫ ∫

ΩT

(vh)2B(ṽh) ≤ C

due to estimate (5.3). Notice that C does not depend on n, therefore using the monotonicity of (Bn)n
we deduce the first claim of (ii) from the monotone convergence theorem. Then, the lower growth

bound on B yields
∫
R λ

4dν(·,·)(λ) ∈ L1(ΩT ), whence by the Jensen inequality for the convex function

λ 7→ λ4 and the probability measures ν(t,x) we deduce that v =
∫
R λdν(·,·)(λ) ∈ L4(ΩT ). Using the

upper growth bound on B we find that Ψ ∈ L3/4(ΩT ).

(iii) Firstly, we prove the inequality

lim sup
h→0

∫ ∫
ΩT

(T − t)(vh)2B(ṽh) ≤
∫ ∫

ΩT

(T − t)vΨ, (5.6)

for sufficiently small T (then, after having proved (iv), we can bootstrap the argument and achieve

arbitrarily large time horizon T ).

On the one hand, we proceed in a way analogous to the one followed to obtain (3.4) (recall that

now we have χ = cm = 1). Namely, we combine the equations on vh,ni,e (with test function uh,ni,e ) and on

wn,h (with test function (C/A)wh,n), use the convexity inequality in the place of chain rule in time,

and we end up with∫ s

0

∫
Ω

(
(vh)2B(ṽh)−A1(vh)2 +

BC

A
(wh)2 + (Me(x,Du

h)∇vhe ) · ∇vhe + (Mi(x,Du
h)∇vhi ) · ∇vhi

)
+

∫
Ω

1

2
(vh)2(s, ·) ≤

∫
Ω

1

2
(vh0 )2 +

∫ s

0

∫
Ω

Ii,happv
h
i − Ie,happv

h
e ,

for every s < T . The we integrate in s ∈ [0, T ] and we assume 2A1T ≤ 1; we use the Fubini theorem to

simplify the double time integral, which brings the factor (T − t) under the integrals. Using the strong

convergence of vh,0, wh and Duh in L2(Ω), L2(ΩT ) and L2(ΩT )3, respectively, using the weak L2(ΩT )

convergence of vh, of
√
T − t vh, of

√
T − t (Mi,e(x,Du

h))1/2∇vhi,e and the lower semi-continuity of

the L2 norm with respect to weak convergence, at the limit h→ 0 (for the selected subsequence) we

find

lim sup
h→0

∫ T

0

∫
Ω

(T − t)((vh)2B(ṽh) +

∫ T

0

∫
Ω

(
(
1

2
− (T − t)A1)v2 +

BC

A
w2
)

+ (T − t)
(
Me(x,Du)∇ve) · ∇ve + (Mi(x,Du)∇vi) · ∇vi

)
≤
∫

Ω

T

2
(v0)2 +

∫ T

0

∫
Ω

(T − t)(Iiappvi − Ieappve). (5.7)

On the other hand, the following limit equations, as h→ 0, are easily obtained as h→ 0:

∂tv −∇ ·
(
Mi(x,Du)∇vi

)
+ Ψ−A1v + Cw = Iiapp in ΩT , (5.8)

∂tv +∇ ·
(
Me(x,Du)∇ve

)
+ Ψ−A1v + Cw = Ieapp in ΩT , (5.9)

v = vi − ve in ΩT , (5.10)

∂tw −H(v, w) = 0 in ΩT . (5.11)

In order to combine these equations in the same way as what we have done at the discrete level,

we recall that v ∈ L4(ΩT ) and Ψ ∈ (L4(ΩT ))′, so that Lemma 2.3 of Ref. ? (cf. Remark 2.2 after

Definition 2.1) can be used in order to give sense to multiplication of (5.8),(5.9) by vi, ve, respectively.

We obtain, integrating in t ∈ [0, s] then in s ∈ [0, T ] the following relation:
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∫ T

0

∫
Ω

(T − t)vΨ +

∫ T

0

∫
Ω

(
(
1

2
− (T − t)A1)v2 +

BC

A
w2)
)

+ (T − t)
(
Me(x,Du)∇ve) · ∇ve + (Mi(x,Du)∇vi) · ∇vi

)
=

∫
Ω

T

2
(v0)2 +

∫ T

0

∫
Ω

(T − t)(Iiappvi − Ieappve). (5.12)

By comparison of (5.12) and (5.7), we deduce the claim (5.6).

Now, using as in the proof of (ii) an increasing family of functions (Bn)n approximating B, we find

for all n,∫ ∫
ΩT

(T − t)
∫
R
λ2Bn(λ) dν(t,x)(λ) dt dx = lim

h→0

∫ ∫
ΩT

(T − t)(vh)2Bn(ṽh)

≤ lim sup
h→0

∫ ∫
ΩT

(T − t)(vh)2B(ṽh) ≤
∫ ∫

ΩT

(T − t)vΨ.

Then with the monotone convergence theorem and representation of Ψ and v proved in (i), we find∫ ∫
ΩT

(T − t)
∫
R
λ2Bn(λ) dν(t,x)(λ) dt dx

≤
∫ ∫

ΩT

(T − t)
(∫

R
λ dν(t,x)(λ)

)(∫
R
λB(λ) dν(t,x)(λ)

)
dt dx.

Then, rearranging the terms as in Ref. ?, one finds∫ T

0

∫
Ω

(T − t)
∫
R

∫
R

(λ− µ)(λB(λ)− µB(µ)) dν(t,x)(λ)dν(t,x)(µ) dt dx ≤ 0.

Now the claim of (iii) follows by monotonicity of the map λ 7→ λB(λ).

(iv) Starting from the “div-curl” relation proved in (iii), one deduces the claim (iv) from the general

properties of Young measures (see Ref. ?).

Property (iv) of the previous lemma, along with equations (5.8),(5.9) concludes the passage to

the limit in the scheme. It remains to observe that, if the data of the problem allow for existence of

a bounded-gradient solutions defined in § 4, the extraction of a subsequence is bypassed using the

classical argument (the unique solution is the unique accumulation point), and in this case the finite

element method converges to the unique solution of the system. A priori error estimates can also be

obtained in this case, with arguments similar to those of § 4, but we restrict ourselves to assess the

experimental convergence of the scheme in § 5.3.

5.3. Numerical tests

We now illustrate the performance of the coupled finite element method. The linear systems arising

after Newton linearization of the coupling and reaction terms and full discretization of the problem

are solved with the GMRES method with a tolerance of ε̂tol = 10−7. We set a tolerance of ε̃tol = 10−8

for the L2−norm of the residual of Newton iterates. All the simulations in this section have been

performed on four cluster nodes with two Intel Xeon processors (quad core, 8MB cache, 2.66Ghz

CPU) each.
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Fig. 1. Approximate solutions of the convergence test displayed on the deformed configuration (deformation components,

pressure, transmembrane potential, intra- and extra-cellular potential).

Table 1. Adimensional model parameters and data employed in the convergence study and in the numerical simulation

of linearized cardiac electromechanics.

χ cm σl
i,e σt

i,e = σn
i,e A B C Γl Γt = Γn γR µ α δ β η1 η2

Convergence study in a slab

1 1 0.1 0.02 1 1 1 0.3 0.5 1 10 10 1000 1 1 1

Linearized electromechanical coupling in the human heart

1000 0.001 0.01 0.002 0.16875 1 100 0.35 0.45 20 400 5 10000 0.8 2.35 1.99

First, we assess the convergence rate of the finite element approximation of deformation, pressure,

and electric potentials proposed in § 5.1. We focus on the spatial convergence of the numerical scheme,

and so we analyze the experimental convergence of the following steady state counterpart of (5.1)(
σ(x, γh)Duh,Dψh

)
Ω
− (ph,∇ · ψh)Ω = (fh,ψh)Ω + (αuh,ψh)∂Ω,

−(∇ · uh, qh)Ω = 0,(
Mi(x,Du

h)∇vhi ,∇φhi
)

Ω
+
(
Iion(vh, wh) , φhi

)
Ω

= Iiapp,

−
(
Me(x,Du

h)∇vhe ,∇φhe
)

Ω
+
(
Iion(vh, wh) , φhe

)
Ω

= Ieapp,

for all ψh ∈ Vh, qh, φih, φ
e
h ∈ Vh. Notice that in this specific case, wh, γh can be obtained by postpro-
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Table 2. Spatial convergence history for a piecewise quadratic approximation of deformations and piecewise linear

approximation of pressure and electric potentials.

D.o.f. h e(u) r(u) e(p) r(p) e(ve) r(ve) e(vi) r(vi)

52 0.707107 0.083299 0.000000 8.499944 0.000000 0.179317 0.000000 0.239911 −
97 0.471405 0.052384 1.917391 6.584771 0.629648 0.131253 0.769544 0.125516 0.985518

229 0.282843 0.012044 2.877790 3.415004 1.285332 0.079261 0.987377 0.061718 0.972206

661 0.157135 0.002968 2.382909 1.837943 1.054008 0.042664 1.053760 0.032261 0.923283

2197 0.083189 0.000742 2.179540 0.954664 1.029960 0.022185 1.028252 0.013385 0.993969
7957 0.042855 0.000191 2.049007 0.487393 1.013559 0.011345 1.011049 0.008566 0.962693

30229 0.021757 0.000049 2.009079 0.246448 1.005964 0.005744 1.004090 0.004279 0.991198

117781 0.010963 0.000012 2.000340 0.123947 1.002724 0.002891 1.001597 0.002170 0.990054

cessing from vh using the equilibrium equations H(vh, wh) = G(γh, wh) = 0. We use model parameters

as specified in Table 1, and subsequently Iion = Iion(vh) = (vh)3 +vh. Let us consider the slab of tissue

represented by the unit square Ω = (0, 1)2, where Robin data (with coefficient α = µ) are imposed on

the whole boundary and zero-flux conditions are assumed for the electric potentials. Fibers and sheet

directions are fixed as dl = (0, 1)T and dt = (1, 0)T , respectively. An exact solution of the problem is

given by the following smooth functions

u =

(
x
10 +

√
1.001y

− y
10 −

√
1.001x

)
, p =

µ

10
x2(x+

√
1.001y), v = −γR exp(−4[y − 1/2]2), vi = v + xy, ve = xy,

which satisfy both incompressibility constraints det Du = 1 and ∇ · u = 0. The forcing term f and

the applied currents Ii.eapp are manufactured according to these exact solutions. The slab is partitioned

into successively refined meshes with 2n + 1, n = 0, 1, . . . , 8 vertices on each side of the domain and

we compute errors and observed convergence rates defined as

e(u) := ‖u− uh‖H1(Ω), e(s) := ‖s− sh‖H1(Ω), r(u) :=
log(e(u)/ê(u))

log(h/ĥ)
, r(s) :=

log(e(s)/ê(s))

log(h/ĥ)
,

where s denotes an electric potential or pressure, and e and ê denote errors computed on two consec-

utive meshes of sizes h and ĥ, respectively. Table 2 reports the convergence history for the piecewise

quadratic approximation of deformations and piecewise linear approximation of all remaining scalar

fields, where we can observe optimal convergence rates in all cases. The approximate solutions are

displayed in Figure 1.

Next, we turn to the simulation of the transient linearized coupled cardiac electromechanical

problem (2.12)-(2.20). A human heart geometry and fiber directions obtained from CT scan data ?

have been smoothed, rescaled and meshed using the VMTK library (http://www.vmtk.org) (see

Figure 2). The resulting idealized biventricular mesh consists of 94590 four-node elements and 23210

vertices. The transmembrane potential is initially at rest v = −84 mV and the excitation propagation

is initiated with a stimulus of magnitude 100 mV applied on the septum and apical zone of left and

right ventricles at time t = 10. The forcing term for the elasticity equation is zero f = 0. Other model

parameters are set as specified in the bottom row of Table 1. A time step ∆t = 0.01 is employed and

an average overall CPU time spent per Newton step is 12.5 seconds, for an average iteration count

of 9 steps to achieve the desired convergence. We simulate one full heartbeat and report in Figure 4

snapshots of the spatio-temporal evolution of action potential and tissue deformation. We have applied

several model simplifications for sake of the analysis, including phenomenological FitzHugh-Nagumo

membrane kinetics, linearized mechanical response, and stretch-independent activation. Evidently,

some features of the cardiac function will be difficult to recover within this framework, such as accurate
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Fig. 2. Fibers distribution with segmented biventricular geometry (left) and exploded view of the computational mesh
partitioned into sixteen non-overlapping subdomains, each color representing a different subdomain (right).

representations of stresses at high strains. In addition, we can observe that the following residuals

‖Cof (Du)− I‖L2(Ω), ‖Du‖L∞(Ω), ‖ det(Du)− 1‖L2(Ω),

are non-negligible (see the dynamics depicted in Figure 3, where the spike in the middle and right plots

is due to the electrical stimulus applied at t = 10). In the fully nonlinear case, performing Newton or

Picard iterations (also for the mechanical problem) up to a fixed tolerance rapidly decreases the first

residual, associated with the nonlinear stress. Nevertheless, the order of magnitude of the second and

third residuals remain unchanged, suggesting that total strains and incompressibility are well resolved

even in the linear case. Moreover, from Figure 4 we readily observe some other key features such as

the desired delay of the activation γ with respect to the front of the transmembrane potential, and

the subsequent contraction of the muscle.

6. Concluding remarks

We have introduced a mathematical model for the study of cardiac electromechanical interactions

written in fully Lagrangian form, featuring a linearized description of the passive elastostatics of car-

diac tissue, a linearized incompressibility constraint, and a truncated approximation of the inverse

Cauchy Green tensor appearing in the updated conductivity term of the bidomain equations. The

existence of weak solutions to the coupled problem has been established by convergence of Galerkin

approximations and regularization. The concept of bounded-gradient weak solutions has been instru-

mental in the derivation of uniqueness of weak solutions in the natural norms, and we have presented

some ideas on the analysis of regularity. A finite element method has been introduced for the approxi-

mation of the electromechanical system, and we have provided sketches for its convergence proof. The

experimental convergence of the numerical scheme and the applicability of the simplified model in the

study of cardiac electromechanics have finally addressed via two numerical examples.

We have taken the FitzHugh-Nagumo kinetics as the simplest example, but the extension of

the present theoretical framework to other linear phenomenological ionic models such as the Aliev-

Panfilov ?, Rogers-McCulloch ?, or Mitchell-Schaeffer ? models is straightforward, provided the evolu-

tion of the activation parameter γ is also governed by a linear ODE. However, more involved (typically
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Fig. 3. Time evolution over half a heartbeat of the numerical residuals induced by the linearization of the elasticity
problem.

physiologically-based) nonlinear ionic models could not be addressed by the same mathematical tech-

niques put forward in our work. First, a priori estimates for the transmembrane potential need to

be re-derived from the modified ODE system governing the ionic activity (cf. the existence results

of Ref. ? for Luo-Rudy I kinetics, see also Ref. ? for a regularized Mitchell-Schaeffer model). As a

consequence of such estimates, a convenient duality is established between the functional spaces for

the transmembrane potential and for the ionic current. These features are natural, because they are

related to stability and to the cyclic evolution of solutions to the pure ODE model neglecting spatial

propagation effects. However, the simple space-translation argument that we employed in § 3.2 is no

longer appropriate if some ODEs governing reactions, including the activation field γ, are nonlinear

(which would be the case for e.g. the Luo-Rudy models). Alternative approaches may involve theoret-

ical tools for the investigation of stability of solutions to ODEs (cf. Ref. ?), or differentiation of the

ODEs with respect to the space variable x. While both of these techniques might be helpful for study-

ing existence (using, e.g., the uniformly parabolic “viscous” approximation of ODEs of finite volume

approximations, cf. Ref. ?), the structure of Galerkin and finite element approximations studied here

jeopardizes these strategies of proof. Indeed, except for the linear case, the equations obtained from

finite element approximation of ODEs are not satisfied pointwise with respect to the space parameter

x, but only in some averaged-in-x sense.

Although we have recently tested numerically more complex and more realistic formulations for

cardiac electromechanics ?,?,?,?, the model simplifications applied in the present study were mainly

driven by the need of addressing solvability and regularity questions often overlooked in the literature.

In addition, some extensions towards physiological relevance can be readily applied without changing

the core of the theoretical tools employed herein. For instance, the role of anisotropy is not substantial

in our present analysis. In fact, once the activation is applied to the passive mechanics via the active

strain formalism, the stress tensors (first Piola-Kirchhoff and Cauchy’s) adopt an anisotropic structure

even if their passive forms are isotropic. Moreover, since the elastostatics are linearized, further gen-

eralizations to e.g. exponential laws with several fiber families, as e.g. the Holzapfel-Ogden model ?,

could be readily incorporated in the present framework.

For the fully-nonlinear case the situation is more delicate, since coercivity of the stress (which in

the case of finite elasticity is guaranteed by polyconvexity of the strain energy function ?) will depend

on the specific material law each case would need to be analyzed separately. In this regard, the active-

strain approach represents a major advantage, since the activation via multiplicative splitting of the
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Fig. 4. Transmembrane potential (top), activation function (middle) and tissue deformation (bottom) at time instants
t = 100, 150, 300 (from left to right).

deformation gradient tensor does not modify the stability properties originally featured by the passive

mechanical law ?,?.

In conclusion, deeper theoretical insight and numerical experiments are needed to assess the quality

of more realistic cardiac electrophysiological models with nonlinear elastic behavior and nonlinear ionic

evolution.
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