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This paper presents a theoretical analysis of the closure kinetics of a polymer with hydrodynamic 
interactions. This analysis, which takes into account the non-Markovian dynamics of the end-to-end 
vector and relies on the preaveraging of the mobility tensor (Zimm dynamics), is shown to reproduce 
very accurately the results of numerical simulations of the complete nonlinear dynamics. It is found 
that Markovian treatments based on a Wilemski-Fixman approximation significantly overestimate 
cyclization times (up to a factor 2), showing the importance of memory effects i n t he dynamics. 
In addition, this analysis provides scaling laws of the mean first cyclization t ime (MFCT) with the 
polymer size N and capture radius b, which are identical in both Markovian and non-Markovian 
approaches. In particular, it is found that the scaling of the MFCT for large N is given by 
T ∼ N3/2 ln(N/b2), which differs from the case of the Rouse dynamics where T  ∼  N 2. The extension 
to the case of the reaction kinetics of a monomer of a Zimm polymer with an external target in a con-
fined volume is also presented.

I. INTRODUCTION

Reactions involving polymers are ubiquitous in nature.
Among them, reactions of closure of linear chains are of
particular interest since they are involved in a number of
chemical and biological processes. Examples cover gene regu-
lation by the formation of RNA-hairpins3,4 or DNA-loops,5,6

the folding of polypeptides,7,8 as well as the appearance of
cycles in synthetic polymers.9–11 In the diffusion-controlled
regime, the kinetics of contact formation strongly depends
on the complex dynamics of the reactive monomers. As a
result of the collective dynamics of all the monomers in the
chain, the motion of a single monomer is often subdiffusive12

and presents non-Markovian features13 (i.e., memory effects),
which lead to nontrivial reaction kinetics14 even for the
simplest models of polymers.

On the theoretical level, various approaches have been
proposed to quantify the kinetics of polymer closure.1,2,15–26

An important step has been provided by Wilemski and
Fixman,15,16 who made a local equilibrium assumption,
thereby replacing the non-Markovian problem by an effective
Markovian approach. Other theories include the so-called
Szabo, Schulten, and Schulten (SSS) analytical approach,17

which neglects important aspects of the polymer dynamics
and the perturbative renormalization group theory,22 which
provides results at leading order in the parameter ϵ = 4 − d,
with d the spatial dimension. Recent works have improved
these approaches in the case of the Rouse chain (i.e., flexible
without hydrodynamic interactions) by introducing several
methods: (i) a refined way to take into account the memory
of the initial configurations,19 (ii) an exact formal iterative

resolution scheme in one dimension,20 (iii) a strong localized
perturbation analysis,25 and (iv) an approach based on the
calculation of the distribution of chain configurations at the
instant of cyclization,21,27–29 which has a strong influence on
the contact kinetics.

The Rouse model, however, provides an incorrect
description of polymer chain dynamics in dilute solutions,
where hydrodynamic interactions are long-ranged and deeply
modify the motion of the polymer12,30 as well as the
closure kinetics.2,22 Since hydrodynamic interactions are
non-linear, most of available analytical treatments involve
approximations. A standard approach consists in using a
pre-averaged form introduced by Zimm,30 which is known to
be accurate.12 In the context of closure kinetics, it was found
in Ref. 1 by simulations that the Wilemski-Fixman treatment
of the cyclization kinetics of Zimm chains systematically
overestimates the reaction times, in a way that cannot be
attributed to the simplified treatment of these interactions.
This suggests that non-Markovian effects, which have not been
described before in the presence of hydrodynamic interactions,
play an important role in the cyclization kinetics.

This paper is devoted to the theoretical description of the
cyclization kinetics of chains with hydrodynamic interactions
in the diffusion controlled regime. This problem has already
been discussed in the Wilemski-Fixman approach,1,2 and the
perturbative renormalization group theory.22 However, a non-
Markovian description of the closure kinetics has not been
considered so far. The first goal consists in describing these
effects by adapting a theory proposed recently,21,27,31 which
was so far restricted to the case of flexible and semi-flexible
free draining chains. One could expect that the treatment
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of pre-averaged interactions is not valid for the problem of
chain closure, since interactions averaged over equilibrium
configurations could differ from the actual (non-preaveraged)
interactions for closed chains, which could then play an
important role for the contact kinetics. We will show however
that this effect is relatively small: indeed, calculating the
average shape of the polymer at the instant of cyclization
for pre-averaged interactions yields a reaction time that is in
quantitative agreement with the results of Brownian dynamic
simulations performed without pre-averaging. The second
goal of the paper is to derive new scaling laws for the mean
cyclization time in the limit of small capture radius and long
chains. In particular, we prove that for long chains, the mean
cyclization time T scales as T ∼ N3/2 log(N/b2), with N the
number of monomers and b the capture radius, for both the
Wilemski-Fixman approach and the non-Markovian theory,
with however a different prefactor. In addition, we predict
scaling laws for intermolecular reactions, by extending the
formalism to the case of the search of an external target of size
b in a confined volume V . We show that in this case, the mean
reaction time scales as T ∼ V log(b/√N) for long chains.

The outline of the paper is as follows. In Section II, we
recall briefly some important results of the Zimm model. In
Section III, we show how to adapt the recent non-Markovian
theory21,27,31 of cyclization kinetics to the Zimm model. We
compare the numerical solution of the model to both Brownian
dynamics simulations and to the results of a Wilemski-Fixman
approach. Section IV is devoted to the derivation of scaling
laws for the mean cyclization time with the chain length and the
capture radius, for both the Markovian and the non-Markovian
theories. Finally, we present in Section V the direct application
of our calculations to the case of the reaction of one mono-
mer with an external target in confinement and derive explicit
asymptotic formulas for the reaction time for this problem.

II. POLYMER DYNAMICS WITH HYDRODYNAMIC
INTERACTIONS

We consider the dynamics in a three-dimensional (3d)
space of a polymer represented by N beads at positions
(x1, . . . ,xN) (in this paper, quantities in bold represent vectors
or tensors in the 3d space). The beads are linked by springs
of stiffness k, so that the force F j exerted on a bead j by the
neighboring beads is

F j = −k(2 x j − x j+1 − x j−1) = −
N
k=1

Mjkxk, (1)

where we used the convention x0 = x1 and xN+1 = xN and
M is proportional to the (Laplacian) tridiagonal connectivity
matrix. This force F j is balanced by the force due to the
fluid solvent, and from Newton’s third law, a force F j is
exerted on the fluid at the position of bead j. This force
generates a velocity field in the fluid that influences the motion
of all other beads. We introduce a non-isotropic mobility
tensor Di j to describe these hydrodynamic interactions, such
that the average velocity of the fluid at the position of
the bead i is Di jF j. The dynamics in the presence of
hydrodynamic interactions then follows the Langevin equation

in the overdamped limit

ẋi =

N
j=1

Di j · F j + ζi(t), (2)

where ζi(t) is a stochastic Gaussian white noise term whose
amplitude follows from the fluctuation-dissipation relation,
⟨ζi(t) ⊗ ζ j(t ′)⟩ = 2kBTDi jδ(t − t ′), with kBT the thermal
energy. We also introduce l0 =

√
kBT/k the typical bond length

and τ0 = 6πηa/k the single bond characteristic relaxation
time, where η is the fluid viscosity and a the monomer radius.

Different choices of mobility matrix Di j exist. The
simplest one is the Oseen tensor, describing the fluid velocity
induced by a punctual force in the fluid, and therefore valid for
quasi-punctual monomers. However, for very small distances
between beads, the Oseen tensor may not be positive definite,
making dynamics (2) unphysical due to the appearance of
negative relaxation times.32 Instead, for numerical purposes,
we use the so-called Rotne-Prager tensor, which does not have
this problem. We denote by ri j = x j − xi the vector from the
particle i to the particle j and ri j = |ri j |. The elements of the
Rotne-Prager tensor are then given as follows:33 when i , j,
and when the beads i, j do not overlap (ri j > 2a),

Di j =
1

8πηri j



*
,
1 +

2a2

3r2
i j

+
-

I +
ri j ⊗ ri j

r2
i j

*
,
1 − 2a2

r2
i j

+
-



, (3)

while for i , j and ri j < 2a,

Di j =
1

6πη a

(
1 − 9

32
ri j
a

)
I +

3
32

ri j ⊗ ri j
ri j a


, (4)

and finally, when i = j,

Dii =
1

6πη a
I, (5)

where I is the 3 × 3 identity tensor. Eqs. (1)–(5) define
the polymer dynamics that will be analyzed in this paper.
For numerical purposes, we will make use of the choice
a = 0.25 l0.34,35

The non-linear dependence of the mobility matrix Di j

on the positions x j makes the Langevin equation (2) very
difficult to solve. In particular it does not admit Gaussian
solutions. In his pioneering work,30 Zimm overcame this
difficulty by replacing the mobility matrix Di j by its average
value over the equilibrium distribution, thereby making the
equation linear. It has been shown that this approximation
catches the main physics of hydrodynamic interactions.12,30 In
the model introduced above, it would be therefore relevant to
use a pre-averaged version of the Rotne-Prager tensor rather
than the Oseen tensor. However, it is shown in Appendix A
that these tensors differ at most by a few percents for the
parameters that we use. Hence, it is sufficient to use for
analytical calculations the pre-averaged form of the Oseen
tensor, given by12,30

D̄i j ≃
1

6πη



δi j

a
+
(1 − δi j)

l0


2

π |i − j |


I. (6)

Note that the pre-averaged Oseen tensor is isotropic.
The effects of hydrodynamic interactions on polymer

dynamics have already been studied in details. In particular,
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it is well-known that any monomer of a long polymer
chain performs a subdiffusive motion at intermediate time
scales, which results from the collective dynamics of all the
monomers. More precisely, for N ≫ 1, we have three different
regimes for the mean-square displacement of a monomer,36


[ri(t) − ri(0)]2� ∼



DGt for t ≪ τ0

At2/3 for τ0 ≪ t ≪ τ0N3/2

DGt/
√

N for τ0N3/2 ≪ t
, (7)

where DG = kBT/ηl0, A = (kBT/η)2/3 (see Eq. (24)) and
all the numerical constants have been omitted. We can
already note that in the subdiffusion regime, the dimension
of the random walk of a monomer (defined such that
⟨[r(t) − r(0)]2⟩ ∼ t2/dw) is given by dw = 3. The process in
3d is therefore marginally recurrent, whereas it is transient
for both short and long time scales (see Ref. 37). This will
play a key role in the determination of the scaling laws that
we present below.

The goal of this paper is to characterize the Mean
First Cyclization Time (MFCT, denoted T), defined as the
average first time for which the distance |xN − x1| between
the two chain ends becomes smaller than a capture radius
b. Initially the polymer is in an equilibrium configuration,
with the constraint that |xN − x1| > b. The effect of the
complex monomer dynamics resulting from the hydrodynamic
interactions will be analyzed with both numerical simulation
methods (which we describe in Appendix D) and analytical
means (see Section III).

III. THEORIES OF CYCLIZATION KINETICS

We present here a theoretical approach that enables the
determination of the mean cyclization time T , which can
be seen as the mean first passage time of a non-Markovian
problem. The approach consists in adapting a recent theory,
developed so far for free-draining chains,27,28,31 in which the
MFCT is expressed in terms of the conformational distribution
of chains at the very instant of cyclization, whose moments
are computed by solving a set of self-consistent equations.

The main steps of this approach can be summarized as
follows. We introduce the joint probability density f ({x}, t)
that the contact is made for the first time at time t and that, at
this first passage event, the macromolecule has a configuration
described by the set of positions {x} = (x1,x2 . . .). We
partition the trajectories that lead to a configuration {x} (in
which the contact condition is satisfied) into two steps, the first
step consisting in reaching the target for the first time at t ′, and
the second step consisting in reaching the final configuration
{x} in a time t − t ′. The mathematical formulation of this
decomposition of events is

P({x}, t |ini,0)
=

 t

0
dt ′


d{x′} f ({x′}, t ′)P({x}, t − t ′|{x′}), (8)

where d{x} ≡ dx1dx2 . . . dxN , P({x}, t |{x′}) is the proba-
bility of {x} at t starting from {x′} at t = 0 while P({x}, t |ini,0)
is the probability of {x} at t starting from the initial conditions

at t = 0 (in which the chain is at equilibrium, with the condition
that the reactive monomers are not necessarily in contact).
Next, taking the Laplace transform of (8) and expanding for
small values of the Laplace variable, we obtain27

T Pstat({x})
=

 ∞

0
dt


dΩ P({x}, t |πΩ) − P({x}, t |ini,0)


. (9)

In this equation, Ω represents the angular directions
parametrized by θ and ϕ in spherical coordinates, with the
normalization


dΩ = 1; πΩ({x}) represents the probability

distribution of configurations at the very instant of cyclization,
given that the angular direction of the end-to-end vector at
first contact is Ω, and P({x}, t |πΩ) is the probability of {x} at
t starting from the distribution πΩ at initial time. Equation (9)
is exact and does not depend on the particular hypotheses of
chain dynamics. It is derived in details in Ref. 27. However,
this equation cannot be solved explicitly to the best of our
knowledge and approximations have to be introduced.

The first simplifying step is to approximate the dynamics
by a Gaussian dynamics in order to be able to evaluate
the propagators appearing in (9); hence, we consider only
the Zimm dynamics with the pre-averaged mobility tensor.
Next, the simplest approach is to make a Markovian
approximation, which consists in neglecting any memory
effect by assuming that the distribution πΩ is the equilibrium
distribution conditional to xN − x1 = bûr(Ω) (with ûr(Ω) the
unit vector pointing in the direction Ω). This corresponds to
the so-called Wilemski-Fixman (WF) approximation.15,18,27

Introducing this approximation into Eq. (8), integrating over
all configurations, and taking the long time limit lead to the
estimate TWF of the MFCT,27

TWF =

 ∞

0

dt
[1 − φ(t)2]3/2


e−b

2φ(t)2/[2ψ(t)] − Z(b,ψ(t))
Z(b,L2)


,

(10)

where φ(t),L2,ψ(t) characterize the dynamics of the end-to-
end vector ree = xN − x1, which is assumed to be Gaussian,
and Z(b, x) =  ∞

b dR0e−R
2
0/2x. The function φ is the normalized

temporal auto-correlation function of any coordinate of the
end-to-end vector ree,

φ(τ) = ⟨xee(t + τ)xee(t)⟩
⟨xee(t)xee(t)⟩ , (11)

where the spatial coordinates of ree are (xee, yee, zee), L2 is the
equilibrium mean-square length

L2 = ⟨xee(t)2⟩ = (N − 1)l2
0, (12)

and ψ(t) is the mean-square-displacement of any coordinate
of ree when the initial value of ree is fixed and is easily shown
to be related to φ by

ψ(t) = Var(xee(t)|xee(0) = x0
ee) = L2[1 − φ(t)2], (13)

where we denote Var(y |B) the variance of the variable y
given the event B is realized. Note that the original formula of
Wilemski and Fixman is expressed in terms of the sink
correlation function C(t) = 

drdr0S(r)S(r0)P(r, t; r0,0),
where the sink function S(r) is proportional to the absorption
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probability per unit time for chains with end to end vector r.
Eq. (10) can be recovered by setting the first sink function to
S(r) = δ(r) and the second one to S(r0) = δ(b − r0), and by
additionally taking into account the finite probability to start
inside the target. It therefore corresponds to an imbalanced
delta sink approximation (see Refs. 18, 27, and 29).

Going beyond the Wilemski-Fixman approximation
requires a more precise description of the distribution πΩ.
Here, our key hypothesis is to assume that πΩ is a multivariate
Gaussian distribution. For symmetry reasons, the average
of xi over πΩ is along ûr(Ω). We denote this quantity
EπΩ(xi) = mπ

i ûr(Ω). We make the additional assumption that
the covariance matrix of πΩ is the same covariance matrix
that characterizes the equilibrium distribution of chains with
the constraint ree = bûr(Ω). Such an approximation is not
necessary but largely simplifies the calculations. Previous
studies on free-draining chains21,28 have revealed that releasing
this “stationary covariance approximation” only slightly
improves the estimate of the cyclization time at an important
calculation cost. A set of self-consistent equations that defines
the mπ

i ’s is found by multiplying (9) by xi δ(xN − x1 − r∗)
(for a fixed r∗ satisfying |r∗| < b) and integrating over
all configurations. Adapting existing calculations for free-
draining chains,27 the resulting equation is (see the complete
derivation in Appendix C) ∞

0

dt
ψ3/2


e−

R2
π

2ψ


Rπ
3ψ

(
µπi −

βi
ψ

Rπ

)
+
βi
ψ
− αi

L2



+

(
βi
ψ
− αi

L2

)
b3e−b

2/2ψ

3Z(b,L2)

= 0. (14)

Here, we have denoted by µπi (t) the average of xi at time t after
the instant of cyclization in the direction û(Ω), Rπ = µπN − µ

π
1 ,

βi(t) is the covariance between xi(t) and xee(t) when xee(0)
is fixed, while αi is the covariance between xi and xee
at equilibrium. In other words, αi and βi characterize the
dynamics and the equilibrium of the motion starting from a
constrained equilibrium state,

βi(t) = Cov(xi(t), xee(t)|xee(0) = x0
ee), (15)

αi = Covstat(xi, xee) (16)

(note that βi does not depend on x0
ee), and µπi ,Rπ characterize

the motion of the chain in the future of the first contact,

µπi (t) =

xi(t + t∗) · ree(t∗)

|ree(t∗)|

, (17)

Rπ(t) =

ree(t + t∗) · ree(t∗)

|ree(t∗)|

= µπN(t) − µπ1(t), (18)

where t∗ is the first cyclization time. The time evolution of µπi
follows from the Langevin equation (2),

∂tµ
π
i (t) = −

N
j,k=1

Di jMjkµ
π
k(t), µπi (0) = mπ

i . (19)

Here, the unknowns mπ
i are contained in the µπi as initial

conditions of dynamical system (19), while αi, βi, φ,ψ
characterize the dynamics of the chain and are analytically
calculated in Appendix B. We stress that Equation (14) is fully
general for a 3d isotropic Gaussian non-Markovian process

and does not depend on the particular structure of the mobility
matrix D or the connectivity matrix M . Then, the expression
of the mean reaction time is obtained by multiplying (9) by
δ(xN − x1) and integrating over all configurations, leading to

T
L3 =

 ∞

0

dt
ψ3/2


e−R

2
π/2ψ − Z(b,ψ)

Z(b,L2)

. (20)

To conclude, Eq. (19) provides a system of N equations for
the unknowns µπi (t). Note that this system is of rank N − 2,
because the polymer center of mass can be set arbitrarily, and
the constraint mπ

N − mπ
1 = b must hold. Solving this system

allows us to compute the function Rπ(t), and then to calculate
the mean first-passage time T from (20).

We have solved numerically these equations for different
values of the number of monomers N and capture radius b.
The results are shown in Fig. 1. We clearly see that the non-
Markovian theory accurately predicts the mean-cyclization
time, whereas the Wilemski-Fixman approach quickly fails
when the capture radius is large enough. More precisely,
the theory is in quantitative agreement with the simulations
performed with preaveraging. Remarkably, the theory is also
in quantitative agreement with the simulations performed with
the exact (non-pre-averaged) interactions, in which the full
non-linear stochastic dynamics is taken into account when the
capture radius is not small.

The average positions mπ
i of the monomers at the

instant of cyclization are shown in Fig. 2, which shows
that the Zimm chain is significantly more elongated in the
direction of the end-to-end vector at the reaction than in an
equilibrium looped configuration. This allows the chain to
perform cyclization more rapidly than if it had to equilibrate.
The monomers neighboring the reactive ones are on average
outside the reactive region. Note that the small shift between
the theoretical prediction and the simulation indicates that
the theory is not exact. The shape of the curve of the mπ

i

is however significantly closer to the simulations for the

FIG. 1. Mean cyclization time of flexible chains with hydrodynamic interac-
tions MFCT as a function of the number of monomers N for different capture
radii (b = l0 in black, b = 4 l0 in blue and b = 10 l0 in red). Plain lines stand
for the non-Markovian approach, dashed lines for the Markovian approach.
Dots stand for simulations with the pre-averaged Rotne-Prager tensor, and
triangles for simulations without any pre-averaging. The asymptotic scaling
T ∼ N 3/2 obtained analytically (green thick line) is well reproduced.
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FIG. 2. Average position of the monomers mπ
i at the instant of cyclization

in the direction of the end-to-end vector at this instant. We represent mπ
i

= ⟨ri(t∗) ·u(t∗)⟩, with t∗ the first cyclization time and u= ree/|ree| for Zimm
chains in the WF approximation (red line), the non-Markovian theory (green
line), simulations with pre-averaging (blue diamonds) and without (diamonds
in cyan). The result of the non-Markovian theory for Rouse chains is also
shown for comparison (black line). Parameters N = 80, b = 4 l0.

non-Markovian theory than in the case of the Wilemski-
Fixman approximation.

For small capture radius, the cyclization times obtained
numerically without pre-averaging are slightly larger than
those obtained numerically with pre-averaging, as well as
those predicted by the non-Markovian theory. This can be
understood from the fact that, for very small capture radius,
the monomer motion at short time scales plays a key role. For
small t, the mean square displacement (MSD) of the end-to-
end distance reads ψ(t) ≃ 4(D11 + D1N) t, and the motion is
diffusive. With the pre-averaging, D1N ∼ 1/

√
N is negligible

compared to D11. However, for chains that are close to
form a loop, the actual mobility tensor reads D1N ∼ D11
since the distance between the end-beads is small. Hence,
the effective diffusion constant at small time scales is not
correctly estimated with the pre-averaging procedure, and we
can expect discrepancies for the cyclization times due to the
pre-averaging for small capture radius, as observed in Fig. 1.

IV. ASYMPTOTIC BEHAVIOR OF THE CYCLIZATION
TIME

A. Scalings of the MFCT in the Wilemski-Fixman
theory

Let us now derive the different scaling behaviors of the
MFCT with N and the capture radius b, first in the Wilemski-
Fixman approximation. The MFCT are then computed with
Eq. (10). We first consider the limit of small capture radius,
b → 0 at fixed chain length N . If b = 0, integral (10) is
divergent due to the linear behavior of the MSD function ψ
at short times. Introducing the effective short time diffusion
coefficient Ds (such that ψ ≃t→0 2Dst), and considering that
integral (10) is governed by the short time regime, we get

T ≃ L3
 ∞

0
dt

e−b
2/4Dst

(2Dst)3/2 =
√
π l3

0 (N − 1)3/2
√

2 Ds b
. (21)

As discussed above, the actual value of Ds could be
quantitatively underestimated by the pre-averaging procedure,
which computes it for equilibrium rather than looped
configurations. Nevertheless, Ds remains of the order of
kBT/(6πηl0). Scaling (21) is similar to that appearing for
free-draining flexible (Rouse) chains.18,21,25,27 It is known that
such scaling does not depend on the structure of the chain since
it is the same for semi-flexible chains31 and for hyperbranched
structures;40 here it is clear that it also appears in the presence
of hydrodynamic interactions. Eq. (21) means that in the small
capture radius regime, the MFCT is (up to a prefactor) the
time needed for a diffusive particle to find a target of size b
in a confining volume L3 37,38 and does not result from the
collective dynamics of the monomers.

We now consider the scaling of the MFCT in the limit of
long chains. In this limit, we use the commonly used dominant
diagonal approximation,2,12 in which the orthogonal matrix
Q that diagonalizes the Laplacian matrix M is assumed to
diagonalize also the product DM . One can check in Fig. 3
that the MSD function ψ calculated with this approximation
is very close to its exact value even for moderately large N . In
this approximation, the correlation function in the continuous
limit can be shown2,12 to be

φ(t) ≃

p odd

8
p2π2 e−p

3/2t/τ1, (22)

where τ1 is the slowest relaxation time scale of the chain,

τ1 =
3ηl3

0√
πkBT

N3/2. (23)

In the limit t/τ1 ≪ 1, sum (22) can be replaced by a
continuous integral, leading to the identification of the short
time subdiffusive behavior,

ψ(t) = ⟨[xee(t) − xee(0)]2⟩ ≃ 8Γ(1/3)
32/3π5/3

(
kBT t
η

)2/3

, (24)

which shows no dependence on the bond size l0 or the
chain length N . Here Γ(·) represents the Gamma function.
Defining τ = t/τ1, and introducing the rescaled functions
φ(t) = Φ(t/τ1) = Φ(τ) and ψ(t) = l2

0NΨ(τ), with Ψ and Φ

FIG. 3. Validity of the dominant diagonal approximation. The red and blue
curves show the function ψ(t) with and without the dominant diagonal
approximation for N = 100, respectively. Inset: same figure in double loga-
rithmic scales.
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independent on N in the continuous limit, a simple change of
variable in Eq. (10) leads to

T = τ1

 ∞

0
dτ



e−b̃
2Φ(τ)2/2Ψ(τ)

Ψ(τ)3/2 − 1

≡ τ1 f (b̃), (25)

with b̃ = b/(l0
√

N) and f a dimensionless function. Equa-
tion (25) finally gives the behavior of the mean cyclization
time for continuous Zimm chains.

We focus now on the asymptotics of f for small rescaled
capture radius b̃, which is highly dependent of the short time
behavior of Ψ ≃ κτ2/3, where κ is deduced from Eqs. (23) and
(24) and reads

κ = 8Γ(1/3)/π2. (26)

Because of this subdiffusive behavior, replacing b̃ by zero in
(25) leads to a divergent integral, meaning that f diverges with
b̃ for small capture radii. The reason for this divergence is that,
when τ ∼ b3, the term b̃2/Ψ becomes of order 1 and cannot
be replaced by 0. This suggests to introduce an intermediate
“time” scale ε such that b̃3 ≪ ε ≪ 1, and to split the integral
(25) into two contributions, leading to

f (b̃) ≃
 ϵ

b̃3

0
du

e−
1

2κu2/3

κ3/2u
+

 ∞

ϵ

dτ
(

1
[1 − Φ2]3/2 − 1

)
(27)

in which we have used the short time expression (24) for
τ < ε, and simply set b̃ = 0 in the contribution coming from
the large times. In the joint limit ε → 0 and ε/b̃3 → ∞, the
integral (27) can be recast under the form

f (b̃) ≃ − ln(b̃3)
κ3/2 +

 ∞

0
du



e−
1

2κu2/3

κ3/2u
− θ(u − 1)

κ3/2u



+

 ∞

0
dτ

(
1

[1 − Φ(τ)2]3/2 − 1 − θ(1 − τ)
κ3/2τ

)
(28)

with θ(·) the Heaviside step function. All integrals appearing
in this equation are convergent, and their numerical evaluation
leads to the scaling form

f (b̃) ≃ 3
κ3/2 (− ln b̃ + 0.721 . . .). (29)

In other words, we have identified the asymptotic scaling for
the mean cyclization time of long Zimm chains,

T ≃ 9π5/2

[8Γ(1/3)]3/2
η l3

0 N3/2

kBT
ln *
,

2.06 l0
√

N
b

+
-
. (30)

We note that the weak logarithmic dependence on the
size of the target is due to the fact that the motion of a
monomer is a marginally compact process in this regime
(the dimension of the walk satisfies dw = d = 3).37,38 The
scaling T ∼ N3/2 log N is in particular consistent with the
renormalization group approach of Ref. 22. It refines the
earlier analysis of Ref. 2, based on a similar Wilemski-Fixman
approach, which however did not predict the logarithmic
correction. The effect of hydrodynamic interactions is clearly
visible, since this scaling of T with N is very different from
the case of flexible chains without hydrodynamic interactions,
where T for long chains scales as N2 and is independent of
the capture radius. Finally, let us note that a non-Markovian

analysis reproduces the scaling of the MFCT of Eq. (30), with
however a different numerical prefactor.

V. CASE OF AN EXTERNAL TARGET

The formalism presented above can be adapted to the
case of an external target, which models an inter-molecular
reaction between one monomer at the end of the chain and
a fixed target of radius b in a confined volume V . This case
has already been studied for a Rouse chain,28 and we here
briefly describe how the case of a Zimm chain can be treated.
Assuming that the target is at the origin, the quantity of interest
is R = R1 if we assume that the reactive monomer is the first
one. We present below the scaling of the mean reaction-time
T with the target, for a chain confined in a large volume V in
Wilemski-Fixman approximation. Eq. (9) remains valid, and
by integrating it over all configurations such that x1 = 0, one
gets

T Pstat(x1 = 0)
=

 ∞

0
dt [P(x1 = 0|π,0) − P(x1 = 0|ini,0)] . (31)

The propagators appearing above are a priori the propagators
in a confined volume. In the limit of large volume, we
argue that Pstat(x1 = 0) is simply equal to 1/V . The other
propagators are well defined in infinite volume. The Wilemski-
Fixman approximation then consists in assuming that the
reactive conformations given by π are simply the equilibrium
configurations such that |x1| = b. Hence, one has

T
V
=

 ∞

0
dt



e−b
2/[2ψ(t)]

[2πψ(t)]3/2 −
e−R

2
0/[2ψ(t)]

[2πψ(t)]3/2

, (32)

where R0 is the initial position of the reactive monomer and
ψ(t) = ⟨[x1(t) − x1(0)]2⟩ the MSD of the reactive monomer,
whose asymptotic behavior is

ψ(t) ≃



α′ t for t ≪ τ0

4Γ(1/3)
π5/3

(
kBTt
3η

)2/3

for τ0 ≪ t ≪ τ1

2Dcm t for τ1 ≪ t

, (33)

where Dcm is the large time center-of-mass diffusion
coefficient. For large N , the following expressions are found:36

α′ =
4

3
√
π

kBT
πηl0

, (34)

Dcm =
4
√

2
9π3/2

kBT

ηl0
√

N
. (35)

The expression of the mean reaction time T in the Wilemski-
Fixman approximation can then be deduced from Eq. (32)
and yields in the limit of chains starting far from the target
(R0 → ∞),

T ∼




V/(4πDcmb) for
√

Nl0 ≪ b

ν
Vη
kBT

log *
,

√
Nl0

b
+
-

for l0 ≪ b ≪
√

Nl0

V/(2πα′b) for b ≪ l0

, (36)
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where ν is a numerical coefficient that reads

ν =
9π

83/2Γ(1/3)3/2 . (37)

As in the case of cyclization dynamics, the scaling of
the mean reaction time with N is different from the case of
a Rouse chain. In particular, for intermediate capture radii
b, the very weak (logarithmic) dependence on N leads to
reaction times that can be significantly shorter than for a
Rouse polymer, for which28 T ∝ V

√
N . The non-Markovian

analysis of the reaction time with an external target closely
follows the steps developed above for the determination of
the MFCT and is not described here. As in the case of the
cyclization dynamics, the scaling laws with b and N would be
the same as predicted by the Wilemski-Fixman treatment (up
to numerical prefactors), given in Eq. (36).

VI. CONCLUSION

In conclusion, we have presented in this paper a
theoretical analysis of the closure kinetics of a polymer
with hydrodynamic interactions. We have provided both
a Markovian (Wilemski-Fixman) and a non-Markovian
analytical approach, based on a recent method introduced
in Refs. 21 and 27–29 Although our theory relies on the
preaveraging of the mobility tensor (Zimm dynamics), it is
shown to reproduce very accurately the results of numerical
simulations of the complete nonlinear dynamics. It is found
that the Markovian treatment significantly overestimates
cyclization times (up to a factor 2), showing the importance of
memory effects in the dynamics. Such non-Markovian effects
can be understood by analyzing the distribution of the polymer
conformations at the instant of reaction, which is found to
significantly depart from the equilibrium distribution.

In addition, we derived asymptotic expressions of the
mean cyclization time with the polymer size N and capture
radius b, which are identical in both Markovian and non-
Markovian approaches, but with different prefactors. We
computed the precise values of the prefactors in the case
of the Wilemski-Fixman approach. In particular, it is found
that the scaling of the MFCT for large N is given by
T ∼ N3/2 ln(N/b2), whereas for the Rouse chain, one has
T ∼ N2 (see Ref. 29 for review). Hydrodynamic interactions
therefore change both the dependence on N and b. This
difference comes from the fact that subdiffusive exponent that
characterizes the monomer dynamics at intermediate length
scales is different in both models.

The present work demonstrates that the physics of
cyclization kinetics in realistic models of polymers can be
described by taking into account non-Markovian effects,
which turn out to be much more important than the errors due
to the approximate treatment of hydrodynamic interactions.
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APPENDIX A: PRE-AVERAGED ROTNE-PRAGER
TENSOR

We give in this section some details about the pre-
averaging of the Rotne-Prager tensor, in order to quantify
the differences obtained with the pre-averaged Oseen tensor.
Let us first remind that the hydrodynamic interactions do not
modify the equilibrium state of the polymer, which is that of
a flexible Gaussian chain, hence the equilibrium probability
density of the vector ri j is

Peq(ri j) = (2πσi j)−3/2e−r2
i j
/(2σi j), (A1)

where σi j = l2
0|i − j | is the variance of each spatial coordinate

of ri j at equilibrium. The pre-averaged Rotne-Prager tensor is
defined as

D̄i j =


dri j Peq(ri j)Di j(ri j). (A2)

We note that the average over all orientations of the non-
isotropic tensor appearing in the expression of Di j is

ri j ⊗ ri j
r2
i j


=

1
3

I. (A3)

Using this relation, the integral over rotational degrees of
freedom can be performed in Eq. (A2); using Eqs. (3) and (4),
we obtain an integral over radial components only,

D̄i j = I
 ∞

0
dρ

4πρ2e
− ρ2

2σi j

(2πσi j)3/2


H(ρ − 2a)
6πηρ

+
H(2a − ρ)

6πηa

(
1 − ρ

4a

) 
, (A4)

with H the Heaviside step function. The result of this integral
in the limit of small a is

D̄i j ≃
1

6πη


2

πσi j

(
1 − a2

3σi j

)
I. (A5)

Note that for a = 0, one recovers pre-averaged Oseen tensor
(6). The corrections are of order a2/(3l2

0|i − j |); with our
choice of parameter a = l0/4 these corrections are always
less than ≃2%, which justifies to chose to take the averaged
Oseen tensor instead of the averaged Rotne-Prager tensor in
the analysis.

APPENDIX B: EXPLICIT EXPRESSIONS
OF THE DYNAMIC QUANTITIES αi, βi, φ, ψ

We consider the Fokker-Planck equation describing the
chain dynamics with the pre-averaged mobility tensor. Since
this tensor is isotropic, we consider the dynamics of a single
spatial component, say xi, of the vector positions xi. To the
Langevin equation (2), we can associate the Fokker-Planck
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equation

∂P
∂t
=

N
i, j=1

∂

∂xi
Di j

*
,
kBT

∂P
∂x j
+

N
k=1

MjkxkP+
-
. (B1)

By replacing the mobility tensor by its pre-averaged version,
Gaussian solutions do exist. The evolution of the mean vector
µ = (µ1, . . . , µN) and the covariance matrix Γi j of xi, x j with
time can be found by multiplying (B1) by xi or xmxn, integrate
over all xk, and use the divergence theorem, resulting in
Ref. 39,

dµ
dt
= −K µ, (B2)

dΓ
dt
= 2kBT D − KΓ − Γ tK, (B3)

where K = DM is the product of the pre-averaged mobility
matrix D by the connectivity matrix M . To solve these
equations, it is convenient to introduce modes, which
diagonalize K (which ones coincide with Rouse modes
if Di j ∝ δi j). We define an invertible matrix P such
that PK P−1 = Diag(ν1, . . . , νN) is diagonal, with 0 = ν1 < ν2
< ν3 < · · · . The vanishing eigenvalue is associated to the
translational motion of the chain, while all other eigenvalues
describe the internal conformational degrees of freedom. We
consider the amplitudes of the Zimm modes, defined by

ai =

N
j=1

Pi jx j (B4)

and the associated mean vector µi = ⟨ai⟩ and covariance
matrix κi j = Cov(ai,a j) read

u = Pµ, κ = P Γ tP, B = 2kBT P D tP. (B5)

Note that P is not an orthogonal matrix. The evolution of u
and κ reads

d ui

dt
= −νi ui, (B6)

dκi j
dt
= −(νi + νj) κi j + Bi j . (B7)

The solutions are

ui(t) = ui(0) e−νit, (B8)

κi j(t) =
(
κi j(0) − Bi j

νi + νj

)
e−(νi+ν j) t +

Bi j

νi + νj
. (B9)

At large times, the covariance matrix reaches the stationary
value (for i, j ≥ 2),

κsi j =
Bi j

νi + νj
. (B10)

We introduce the set of coefficients c̃,

c̃k = (P−1)kN − (P−1)k1 = P−1h, (B11)

where we remind that h = (−1,0, . . . ,0,1)t. The vector c̃ is
such that

xee =

N
i=1

c̃iai. (B12)

Note that c̃1 = 0, meaning that the motion of the drift center is
not involved in the evolution of the internal variable xee. The

equilibrium end-to-end distance is

L2 = lim
t→∞

thΓh =
N

m,n=2

c̃m κsmn c̃n. (B13)

Similarly, we obtain for αi

αi =

N
j=2

N
k=1

(P−1)i j κsjk c̃k . (B14)

Consider the correlation matrix Ci j(t) = ⟨ai(t)a j(0)⟩, starting
from an equilibrium configuration. This matrix is a solution
of

∂tCi j = −νiCi j; Ci j(0) = κsi j . (B15)

The solution is straightforward: Ci j = κ
s
i je
−νit. Given that

⟨xee(t)xee(0)⟩ = 
i j c̃ic̃jCi j, we obtain for the function φ

[defined in Eq. (11)],

φ(t) = 1
L2

N
m,n=2

c̃n κsmn c̃me−νmt . (B16)

Next, we denote κ∗ the covariance matrix of ai,a j at
equilibrium with the constraint of fixed xee, which from
(C3) reads

κ∗i j = κ
s
i j −

N
m,n=1

κsimκ
s
jnc̃mc̃n
L2 . (B17)

Consider now

κi j(t) = Cov(ai(t),a j(t)|xee(0) = 0) (B18)

which is related to βi by

βi =

N
j,k=1

(P−1)i jκ jk c̃k . (B19)

Taking covariance matrix (B17) as an initial condition for
dynamics (B7), we obtain

κi j(t) = κsi j −


n κ
s
inb̃n


m κ

s
jmb̃m

L2 e−(νi+ν j)t . (B20)

Using (B16) and (B19), we obtain for βi

βi = αi − φ(t)

j


k

P
−1

i j κ
s
jk e−ν j t b̃k . (B21)

Finally, the function ψ = βN − β1 reads

ψ(t) = L2(1 − φ2(t)), (B22)

where we have again used (B16). Hence, the expressions of
all the dynamical quantities αi, βi, φ,ψ are given explicitly in
this section.

APPENDIX C: DERIVATION OF THE
SELF-CONSISTENT EQUATION (14)

We present here a derivation of the set of equations (14)
for the moments mπ

i , which adapts the method used for Rouse
polymers.27 First, we multiply (9) by xizδ(xN − x1 − Rf êz)
(where êz is the unit vector in the vertical direction, and
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Rf is fixed and satisfies 0 < Rf < b) and integrate over all
configurations, to get

T pstat(Rf êz)Estat(xiz |Rf )
=

 ∞

0
dt


dΩ[p(Rf êz, t |πΩ,0)E(xiz, t |Rf êz, t; πΩ,0)

− p(Rf êz, t |Pini,Ω,0)E(xiz, t |Rf êz, t; Pini,Ω,0)], (C1)

with p representing the probability distribution function
of the end-to-end vector, p(Rf êz, t |πΩ,0) is the probability
that ree = Rf êz at t with an initial distribution πΩ, and
E(xiz, t |Rf êz, t; πΩ,0) is the conditional average of the z
coordinate of xi at t given that ree = Rf êz at the same time
t and starting from πΩ initially; other notations are similar.
The mention “Pini,Ω” means the equilibrium distribution with
ree = R0ur(Ω) initially, we perform the average over initial
end-to-end distances at the end of the calculation.

Let us remind the following formula for the conditional
mean of a Gaussian variable X given that a second Gaussian
variable Y takes the value Y0:

E(X |Y = Y0) = E(X) − Cov(X,Y )
Cov(Y,Y ) [E(Y ) − Y0]. (C2)

A similar general formula for the conditional covariances of
Gaussian variables is

Cov(X1,X2|Y = Y0)
= Cov(X1,X2) − Cov(X1,Y )Cov(X2,Y )

Cov(Y,Y ) . (C3)

Now, we consider a fixed angular direction Ω and define θ the
angle with the vertical direction. We write

xiz = xir cos θ − xiθ sin θ, (C4)

with xir the component of xi in the direction û(Ω). We note
that conditioning the end-to-end vector to have the value Rf êz
imposes that its component in the direction û(Ω) takes the
value Rf cos θ. Then, applying (C2) and using the definitions
of Rπ, βi,ψ, we get

E(xir , t |Rf êz, t, πΩ,0) = µπi −
βi
ψ
(Rπ − Rf cos θ). (C5)

Applying the same reasoning in the direction normal to u(Ω),
we get

E(xiθ, t |Rf êz, t, πΩ,0) = − βi
ψ

Rf sin θ. (C6)

Inserting these expressions into (C4) leads to

E(xiz, t |Rf êz, t, πΩ,0) = cos θ
(
µπi −

βi
ψ

Rπ

)
+

Rf βi

ψ
. (C7)

Let us pose now

µ
stat,R0
i = E(xiz(t)|xee(0) = R0,0), (C8)

R = E(xee(t)|xee(0) = R0,0), (C9)

where initial equilibrium conditions (apart from the constraint
for xee(0)) are understood. A reasoning similar to that leading
to Eq. (C7) gives

E(xiz, t |Rf êz, t; Pini,Ω,0)
= cos θ

(
µ

stat,R0
i − βi

ψ
R
)
+

Rf βi

ψ
. (C10)

Similarly, from (C2) and (16), we obtain

Estat(xiz |Rf êz) = αi

L2 Rf . (C11)

Finally, the propagators for the end-to-end distance read

p(Rf êz, t |Pini,Ω,0) = 1
(2πψ)3/2 e−

(R f uz−Rur )2
2ψ , (C12)

p(Rf êz, t |πΩ,0) = 1
(2πψ)3/2 e−

(R f uz−Rπur )2
2ψ , (C13)

pstat(Rf êz) = 1
(2πL2)3/2 exp *

,
−

R2
f

2L2
+
-
. (C14)

All the terms appearing in (C1) have been evaluated, the
self-consistent equation becomes ∞

0
dt

 π

0
dθ

sin θ
2



1
(2πψ)3/2 e−

(R f uz−Rur )2
2ψ

×
(
cos θ µπi (t) −

βi
ψ
(cos θ Rπ − Rf )

)
− 1
(2πψ)3/2 e−

(R f uz−Rπur )2
2ψ

×
(
cos θ µstat,R0

i (t) − βi
ψ
(cos θ R − Rf )

)
= T Rf

αi

L2 pstat(Rf ). (C15)

This equation should be verified for any Rf between 0 and
b. We choose to write it in the limit Rf → 0 (more precisely,
we develop both expressions at first order in Rf ). Noting
that ûr · êz = cos θ, the integration over θ can be performed,
leading to ∞

0
dt




e−R
2
π/2ψ

(2πψ)3/2

βi
ψ
+

Rπ
3ψ

(µπi −
βi
ψ

Rπ)


− e−R
2/2ψ

(2πψ)3/2

βi
ψ
+

R
3ψ

(µstat,R0
i − βi

ψ
R)



= T
αi

L2

1
(2πL2)3/2 . (C16)

We can eliminate T by replacing its expression

T
L3 =

 ∞

0

dt
ψ3/2


e−R

2
π/2ψ − e−R

2/2ψ

. (C17)

Let us now find the dependence of R and µ
stat,R0
i with R0.

From (C8) and (C3), we deduce

µ
stat,R0
i = R0

Cov(xi(t), xee(0))
L2 . (C18)

Furthermore, applying the formula for the conditional
covariances in (15), we get

βi = Cov(xi(t)xee(t))
− Cov(xi(t)xee(0))Cov(xee(t)xee(0))

Cov(xee(0)xee(0)) . (C19)

From which we obtain

µ
stat,R0
i =

R0(αi − βi)
L2φ(t) (C20)
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and

R = µstat,R0
N − µstat,R0

1 = R0φ(t). (C21)

The last step consists in adapting the reasoning to the
case of initial end-to-end distance that is distributed pr(R0)
= R2

0e−R
2
0/2L

2
/
 ∞
b r2e−r

2/2L2
dr . This can be achieved by

keeping an average over R0 at all steps of the derivation.
Averaging (C16) with respect to R0 [by using (C20) and
(C21)] leads to the final form of self-consistent equation (14)
for the moments given in the main text.

APPENDIX D: NUMERICAL METHODS

We performed the numerical integration of stochastic
equation (2) by using either the full Rotne-Prager tensor or its
pre-averaged form. At each time step of size ∆t, the positions
of the monomers evolve according to the algorithm of Ermak
and McCammon,32

xi(t + ∆t) = xi(t) +
N
j=1

Di j(t)F j(t)∆t + ξi(∆t), (D1)

with the same notations as before. ξi(∆t) is a random
Gaussian noise with zero mean and covariance



ξi(∆t)ξ j(∆t)�

= 2kBTDi j(t)∆t. The generation of the 3N random numbers
ξi requires to find a Cholesky decomposition of the mobility
tensor, which can be done in N3 operations. In the case
of simulations using pre-averaged mobility tensor (6), this
decomposition needs to be performed only once, whereas
simulations using the full Rotne-Prager tensor require to
perform a Cholesky decomposition at each time step, resulting
in considerably longer computational times which prevented
us to explore the same range of parameters. Initial configu-
rations are generated from the equilibrium Gibbs-Boltzmann
Gaussian distribution Peq({x}) ∝ e−k

N−1
i=1 (xi+1−xi)2/2kBT and

are rejected if the condition |xN − x1| > b is not satisfied. Once
an equilibrium configuration is generated, the positions evolve
through (D1) until reaching a configuration |xN − x1| ≤ b, the
cyclization time ti for this run is recorded. The MFCT is
finally found by ensemble averaging ti over many runs. The
time step is chosen as suggested by Pastor et al.18 Noting R
the end-to-end distance,

∆t = ∆low + ∆high sin
(
π

6
(R2 − b2)

)
(D2)

if R2 < b2 + 3l0, and

∆t = ∆low + ∆high (D3)

if not.

We chose ∆high =
√

N10−5 and ∆low = 10−5, and we
controlled that convergence was reached. The results of
simulations are represented in Fig. 1.
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