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Abstract

Control charts are among the main tools in statistical process control (SPC)

and have been extensively used for monitoring industrial processes. Cur-

rently, besides the single control charts, there is an interest in the concurrent

ones. These graphics are characterized by the simultaneous presence of two

or more single control charts. As a consequence, the individual patterns may

be mixed, hindering the identification of a non-random pattern acting in the

process; this phenomenon is refered as concurrent charts. In view of this

problem, our first goal is to investigate the importance of an efficient separa-

tion step for pattern recognition. Then, we compare the efficiency of different

Blind Source Separation (BSS) methods in the task of unmixing concurrent

control charts. Furthermore, these BSS methods are combined with shape

and statistical features in order to verify the performance of each one in pat-

tern classification. In additional, the robustness of the better approach is

tested in scenarios where there are different non-randomness levels and in

cases with imbalanced dataset provided to the classifier. After simulating

different patterns and applying several separation methods, the results have
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shown that the recognition rate is widely influenced by the separation and

feature extraction steps and that the selection of efficient separation methods

is fundamental to achieve high classification rates.

Keywords: concurrent control charts, independent component analysis,

feature extraction, pattern classification, support vector machine, blind

source separation

1. Introduction

Given the competitiveness between companies in order to produce with

minimal defects, quality control is a fundamental issue in the industrial envi-

ronment. In this context, a set of tools, known as Statistical Process Control

(SPC), is useful for monitoring the stability and capability of the process

under analysis, detecting potential failures and minimizing the number of

defects [1, 2]. The most widespread tool of SPC is the control chart, pro-

posed by Shewhart in 1924 [1]. Based on a set of process parameters, this tool

verifies if the variability observed in a process stems from natural or specific

causes. The latter case is characterized by points that are outside the con-

trol limits (Figure 1, dashed horizontal lines) or by unnatural (or abnormal)

patterns, indicating that the process is statistically out of control [1, 2].

Unnatural patterns are associated with assignable causes which perturb

the expected behavior of the process [3]. Western Electric Company [3] shows

a set of assignable causes for several patterns, which includes stratification,

systematic, cyclic, trend and shift. In Figure 2, we show examples of abnor-

mal patterns as well as an example of a normal one observed in the case of

natural causes of variability. Traditionally, the identification of these pat-

2



2 4 6 8 10 12 14 16 18 20
4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Q
ua

lit
y 

P
ar

am
et

er

Lower control limit

Upper control limit

Center
line

Figure 1: Example of a control chart.

terns are based on appropriate rules (e. g. running rules) [3, 4]. However,

this procedure requires trained experts and may lead to false alarms. In

view of this problem, there is a need to develop intelligent systems methods

to recognize unnatural control chart patterns and, then, to detect assignable

causes prematurely.

Several approaches have been developed to automatically identify un-

natural patterns [5, 6, 7, 8, 9, 10, 11]. A crucial step of these methods is

feature extraction, which provides the discriminant parameters used to clas-

sify the different patterns. Existing approaches consider the wavelet analy-

sis [5, 6] and statistical features (autocorrelation coefficient, regression [7],

mean, standard deviation, skewness and kurtosis [8]) as inputs of the classi-

fier. Besides these features, a great number of methods are based on shape

features [7, 9, 10, 11], and its results have shown that the use of shape fea-

tures as inputs of the classifier discriminates well the patterns, leading to
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Figure 2: Examples of observed patterns in control charts.

higher classification rates. Ranaee, Ebrahimzadeh and Ghaderi [8], Zhang

and Cheng [12] and Wu, Liu and Zhu15 [13] developed a method composed

of statistical and shape features as inputs of a support vector machine (SVM)

classifier. In [12], genetic algorithm was applied as an optimization tool to

improve the performance of the multiclass SVM classifier. The model pre-

sented in [13] uses shape and statistical features as inputs of a binary-class

SVM which identifies if the pattern is normal or not and, if the latter case is

true, a binary-tree SVM is employed to recognize the pattern involved. Xan-

thopoulos and Razzaghi [14] also utilized the SVM classifier, but a weighted

apporach. The results have shown the benefits when the data are highly
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imbalanced.

These latter works consider the recognition based on single control charts.

However, the data observed may be a mixture of two or more control charts

acting simultaneously in the process. This graphics, called concurrent con-

trol charts, are commonly present in machining process. For example, the

tool may wear in turning process (resulting in a trend pattern) and this can

coexist with periodic reposition of unstable material [15, 16] or voltage fluc-

tuation [17] (resulting in a cycle pattern). As a consequence, the individual

patterns may be mixed and their characteristics lost, making the detection

of an abnormality difficult. Figure 3 shows two control charts with different

patterns (normal and systematic) that were mixed. One can visually note

the difficulty in identifying the two patterns clearly.

In order to deal with the issue of concurrent patterns, a class of methods

addresses the problem by directly processing the mixed charts. For instance,

Guh and Tannock [15] developed a classifier based on a backpropagation net-

work and considered two situations: a first one comprising only non-random

patterns and a second one where it arises progressively. The results have

shown that the approach suits well the first case while being limited to deal

with the latter one. Yang and Yang [18] used a statistical correlation coeffi-

cient in order to recognize unnatural patterns in both single and concurrent

control charts.

Another strategies aim at separating the individual characteristics at first.

This can be done, for instance, by considering the wavelet transform to de-

compose the concurrent pattern into two basic patterns in onder to be easily

recognized by a neural network model [17] or a multiclass support vector
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Figure 3: Example of patterns that was mixed.

machines [19]. Yang et al. [16] proposed a hybric method that integrates

extreme-point symetric mode decomposition with extreme learning machine.

Such an approach allows one to identify concurrent charts but also to estimate

which pattern provides the major contribution into the observed mixture. Gu

et al. [20] and Xie et al. [21] applied singular spectrum analysis to decompose

the concurrent patterns utilized learn vector quantization [20] and support

vector machine [21] to recover the individual patterns.

Some other approaches have applied the independent component analysis

(ICA), a methodology that was developed to solve the problem of blind

source separation (BSS) [22, 23], to extract the independent components
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(ICs) from the concurrent control charts. Wang, Dong and Kuo [24] proposed

a hybrid approach integrating ICA and decision tree. Considering shape and

statistical features as inputs of the classifier, results have indicated that such

approach suits well the problem in most cases involving concurrent control

chart patterns. Lu, Shao and Li [25] adopted a SVM-based classifier and

considered the cases of raw data, shape and statistical features (without ICA)

and independent components. The results have also shown the robustness of

the ICA-SVM approach in detecting unnatural patterns in concurrent control

charts.

As can be seen in the literature, the shape and statistical features are

widely used in the single control charts patterns recognition and ICA is an

efficient method to separate the original data providing satisfactory classifi-

cation rates of the concurrent case. In this context, this paper proposes four

main analyses. Initially, we verify how the feature extraction step, including

the separation, is important in the classification. In addition, the efficiency

of several BSS methods, that are not necessarily based on ICA, are compared

in the separation of concurrent control charts. Then, we perform the classi-

fication based on the data provided by the BSS methods and on the shape

and statistical parameters extracted from these data. Finally, after select-

ing the configuration that provides the better classification rates, we assess

its performance for different non-randomness levels and imbalanced dataset

used in the training step of the classifier.

The rest of this paper is organized as follows. Section 2 describes the

methodological aspects related to our analyses. Section 3 presents the exper-

iments and the results obtained are discussed. In Section 4 we provide our
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conclusions on this study.

2. Methodology

As described in Figure 4, a general approach for automatic classification

of concurrent control charts comprises three steps. The first one is related to

BSS and can be seen as a data pre-processing step whose goal is to separate

the individual control charts, i. e. to provide an estimated dataset (BSS-

data) from the observed mixtures (raw data). Then, in the second step, a

feature extraction step aims at extracting relevant information from the BSS-

data by taking into account either statistical or shape features. Finally, the

data provided by feature extraction (processed data) feed a pattern recogni-

tion method, which estimates the original categories of the individual control

charts.

An illustrative example, as mentioned previously, is shown as follows. If

we consider the tool wear in a turning process (unknown trend pattern) and a

voltage fluctuation (unknown cycle pattern), the observed data corresponds

to mixtures of the single patterns involved. Applying a BSS-method, we are

able to recover the control charts containing the trend and cyclic patterns.

In possession of the single data, we extract the shape and statistical features

which are used as input of the classifier. Based on the training structure,

the classifier provides the recognition of the control charts pattern involved

in the process, in this case, trend and cyclic patterns.

In this section, we present the theoretical aspects that compose the struc-

ture shown in Figure 4. First of all, we provide a brief introduction to the

BSS methods considered in this work. Then, we discuss the main shape fea-
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Figure 4: Classification structure.

tures that are usually adopted in the context of control charts. Finally, the

pattern recognition step is described.

2.1. Blind Source Separation problem

In summary, the BSS problem consists in recovering a set of signal sources

from a set of mixed data of these sources, without the knowledge of both

the original signals and the mixing process [23]. In this paper, we consider
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the most common formulation of the BSS problem, in which the number

of sources (single control charts) to be recovered is equal to the number of

mixed observed data (concurrent control charts). Thus, assuming that the

mixing process is linear and instantaneous, for each sample t (t = 1, . . . , T ),

the sources can be represented by the vector s(t) = [s1(t) s2(t) · · · sn(t)]T

and the mixed signals by the vector

x(t) = As(t) , t = 1, . . . , T (1)

where A corresponds to a square matrix n× n representing the mixing pro-

cess.

Assuming that the sources si(t), i = 1, . . . , n, are statistically mutually

independent, it is easy to show that observations xj(t), j = 1, . . . , n as mix-

tures of the sources, are no longer independent. The central idea of many

source separation methods is to estimate a separating system, modeled by a

matrix B, so that

y(t) = Bx(t) (2)

has the independence property [26]. In fact, following Darmois’s results [27]

and Comon’s paper [28], one can prove that the above problem has no so-

lution if the sources (i.e. the temporal patterns, in our application) have

samples which are temporally independent and identically distributed (i.i.d.)

and Gaussian. Consequently, there are two ways for solving the problem.

Assuming that sources are i.i.d. and non-Gaussian leads to ICA which re-

quires higher (than two) order statistics (HOS). Assuming that sources are

non i.i.d. and (possibly) Gaussian, source separation can be achieved using

only second order statistics (SOS), i.e. through simpler and faster algorithms.
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Practically, having non i.i.d. source means that either the source is tempo-

rally colored (i.e. successive samples are not independent) or the source is

non-stationary (i.e. successive samples are not identically distributed).

In the context of control chart, the successive samples related to any pat-

tern are colored, with correlation functions which vary according to the pat-

terns. Consequently, despite the fact that previous works that apply BSS to

concurrent control charts only consider HOS-based source separation meth-

ods, SOS-based source separation methods should be suited to our problem

as well.

2.1.1. Higher-Order Statistics methods

In concurrent control chart pattern recognition, previous works have mainly

focused on the ICA framework [24, 25], which can be seen as a HOS method.

In this study, we consider two distinct HOS-based approaches to estimate

the separation matrix: maximization of non-Gaussianity and maximum like-

lihood [22, 23].

In methods based on the maximization of non-Gaussianity, such as Fas-

tICA [22], the separating matrix B is adjusted to maximize a measure of non-

Gaussianity. In this approach, it is necessary to perform a process known as

whitening, which aims at decorrelating the mixtures [22, 23]. After whiten-

ing, with the whitening matrix W , one obtains:

z(t) = WAs(t) (3)

where E{z(t)zT (t)} = I. Moreover, it is easy to show that the matrix WA is

orthogonal [22]. Thus, the cancellation of the mixing matrix WA is obtained

by the estimation of an orthogonal separating matrix. Consequently, after

11



whitening, the parametric model of separating matrix is simpler.

Two measures are usually adopted to quantify non-Gaussianity: kurtosis

and negentropy [22, 23]. The kurtosis of a random variable y, defined by

kurt(y) = E{y4} − 3(E{y2})2 , (4)

corresponds to the fourth-order moment of y. High values of kurtosis (in

modulus) indicates a dataset that is far from Gaussian [22, 23].

The other strategy used to measure non-Gaussianity, the negentropy, is

based on the concept of entropy from information theory. Since the Gaussian

distribution has the highest entropy measure among all continuous random

variables with the same variance [22], this information can be used to formu-

late a criterion of non-gaussianity. Therefore, the negentropy can be defined

by the following expression:

J(y) = H(ygauss)−H(y) , (5)

where ygauss is a Gaussian random vector whose correlation matrix is the

same that of y and H(y), defined by

H(y) = −
∫
py(η) log py(η) dη , (6)

is the entropy of the random vector y, whose probability density is py(η).

The second approach of HOS-based source separation is to use maxi-

mum likelihood for estimating B from the distribution of the observed data

x(t) [29, 30]. Given the independence assumption of the sources s(t) and the

observation model x(t) = As(t), the likelihood of observation x(t), given B,

can be written as:

px(x|B) = |det B| ps(s) = |det B|
∏
i

psi(si) , (7)
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where B = A−1 and psi(si) is the probability density function of each inde-

pendent component. Given the set of observations, the maximum likelihood

approach in this case aims to determine the matrix B that maximizes (7).

The Infomax approach to BSS was proposed by Bell and Sejnowski [31]

and, as demonstrated by Cardoso [19], it is close-related to the maximum

likelihood approach, thus leading to similar practical algorithms.

2.1.2. Second-Order Statistics methods

Methods based on SOS have been applied in different areas [32, 33]. Dif-

ferently from BSS methods based on HOS, as we explained above, SOS tech-

niques exploit the temporal correlation of the observed data to find the sep-

aration matrix, thus allowing the separation of sources that have a temporal

structure. In other words, in SOS methods, the sources are not modeled as

i.i.d. (independent and identically distributed) processes [23]. An interesting

feature of SOS methods is the capability to separate non i.i.d. Gaussian sig-

nals, which are common in control charts and cannot be separated by HOS

methods - it is worth noticing that previous contributions on control charts

classification did not exploit SOS methods.

A first way to implement SOS methods is to search for a separating matrix

so that two or more covariance matrices of the retrieved signals for different

delays τ , denoted by Ry(τ) = E[y(t)yT (t− τ)], be diagonal matrices. A first

line of methods considers the exact joint diagonalization of two correlation

matrices, which led to an algorithm known as AMUSE [34].

More generally, the techniques based on approximate joint diagonalization

of more than two matrices, like SOBI [35] and WASOBI [36], are currently

more used due the higher accuracy in separation. The goal is to find a
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unique matrix U which leads to a set of diagonal covariance matrices Ry(l)

with different delays l, l = 0, 1, . . . , L. This procedure is accomplished by

solving for U the set of equations Rz(l) = UDlU
T , l = 0, 1, . . . , L, where Dl

are diagonal matrices and Ry(l) corresponds to the covariance matrix of the

whitened data [23].

In mathematical terms, diagonalization can be formulated by zeroing the

off-diagonal entries. A simple criterion for that is:

off [Ry(l)] =
∑

1≤i 6=j≤n

|Ryij
(l)|2. (8)

The unitary diagonalization of Rz = [Rz(1), . . . ,Rz(L)] is obtained when

off(VTRzV) is set to zero by adjusting a unitary matrix V. If Rz = UDUT ,

where U is unitary and D is diagonal, V is essentially equal to U. The

criterion therefore is to minimize

C(Rz,V) =
∑

l=1,...,L

off [VTRz(l)V], (9)

After solving (9), one obtains the unitary matrix U. Furthermore, from the

relation A = W−1U, where W is the whitening matrix, we estimate the

mixing matrix A [35].

2.2. Shape and statistical features selection

In order to assess the influence of the feature extraction step, including

separation and shape/statistical parameters, we consider two different inputs

in this study. The first is simply to use all the samples in the vector y as

the input of the classifier, i.e., the BSS-data extracted from the BSS method.

The second approach takes as input some shape features and also statistical
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features extracted from y (processed data). Based on the literature [7, 8, 9,

10, 11, 12, 13], the shape features considered in this study are:

• Number of crossovers of the pattern i with its mean line (CPMLi):

CPMLi =
T−1∑
t=1

ct, i = 1, 2, . . . , n, (10)

where ct = 1 if (yi(t)− yi)(yi(t+ 1)− yi) < 0 or ct = 0 otherwise, yi(t)

is the sample t in the control chart i for each time point t = 1, 2, . . . , T

and yi is the mean value. This feature can discriminate systematic

patterns from the others, once its value is higher. For normal pattern,

the CPMLi value is intermediate.

• Average value of the segment slopes (SSi):

SSi =

∑K
k=1 qi,k
K

, i = 1, 2, . . . , n, (11)

where qi,k is the slope value of the segment k, k = 1, 2, . . . , K and K is

the number of segments (in this study, L = 4). By dividing the pattern

into equal segments and calculate the slopes of the least squares lines

for each one, we can discriminate trend patterns from the others, whose

values are higher. Normal and systematic patterns have values close to

zero.

• Average value of the difference between the slopes of the pattern least

square line and of the segments (DSSPi):

DSSPi =

∑K
k=1 qi,k − pi

K
, i = 1, 2, . . . , n, (12)
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where qk is the slope value of the segment k, k = 1, 2, . . . , K, K is the

number of segments and pi is the slope of the pattern. These values

for upward and downward shifts are high, so this feature is important

to discriminate the latter patterns from the others ones. Normal and

systematic patterns have also values close to zero.

• Maximum value of the autocovariance (MACi):

MACi = max(E[(yi(t))(yi(t+m))T ]), m = T/3, . . . , 2T/3, i = 1, 2, . . . , n,

(13)

where E[(yi(t))(yi(t+m)T ] is the autocovariance considering m delays

and T is the number of samples in the control chart i. With the delays

varying from m = T/3 to m = 2T/3 (m = 33 to m = 67, considering,

in our case, T = 100), we can discriminate well systematic and cyclical

patterns, once its autocovariance for these delays is higher comparing

to the others.

2.3. Pattern recognition

In this step, the information obtained from the separation methods and/or

the shape/statistical features extraction are used by the classifier to de-

termine which patterns are involved in the process. This study considers

offline classification and our analysis is based on Support Vector Machine

(SVM) classifiers [37]. This classifier has been widely applied to process con-

trol [8, 12, 13, 14, 25]. Briefly, the SVM is a classifier that adjust an optimal

hyperplane that provides the separation of the classes with the largest mar-

gin. As a supervised method, the SVM has two steps to follow: training and

testing. In the first step we need to ”teach” the algorithm that a particular
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set of data belongs to a specific class. In the second step, the data obtained

from the BSS method and the shape/statistical feature extraction are used

as the input of the SVM and the results are obtained. It is worth noting

that, since we compare the results using BSS-data after the BSS method and

processed data, the set of data used in training are depending of the classifier

input.

3. Experiments and results

In order to better exploit the application of BSS techniques to concur-

rent control charts, the experiments are divided in four parts. The control

charts considered in each experiment were obtained from an automatic pat-

tern generator based on the literature [7, 9, 10, 11, 13, 17, 18, 21, 24, 25] and

described in Table 1,1 containing T = 100 samples each one. The experi-

ments are presented in the next sections. In all of them, the SVM classifier

was adopted. The parameters considered in Infomax and FastICA (e.g. func-

tions for FastICA) were adjusted by numerical experiments.

3.1. The influence of the separation step in the classification

This first experiment aims at verifying the importance of separation step

in the classification. In this context, we consider a problem of separating two

1In this table, the following notation is adopted: si(t) is the value of the control chart

i sampled at t (t = 1, 2, . . . , T is the time point), µ is the mean value of the control

chart (we consider µ = 0 in this study), ri(t) is a random number drawn from a standard

normal distribution at the time point t, σ and σ′ are control chart standard deviations (we

consider σ = 1 in this study), d is the systematic deviation, a is the amplitude, T is the

period (we consider T = 16 in this study), g is the gradient and s is the shift magnitude.
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Table 1: Automatic pattern generating.

Patterns Generator equation Parameters

Normal si(t) = µ+ ri(t)σ σ = 1

Stratification si(t) = µ+ ri(t)σ
′ σ′ = 0.3σ

Systematic si(t) = µ+ ri(t)σ + d(−1)t d = 2σ

Cyclic si(t) = µ+ ri(t)σ + a sin(2π/T ) a = 2σ

Increasing/decreasing

trend
si(t) = µ+ ri(t)σ ± tgσ g = 0.075σ

Upward/downward

shift
si(t) = µ+ ri(t)σ ± sk

If t > T/2,

k = 0. Else,

k = 1. s = 2σ

sources s, that is, two single control charts. We parametrize the retrieved

control charts, y(t), as follows

y(t) = Gs(t), (14)

where G ∈ R2×2 is thus a global matrix associating the original sources

(original single control charts) with the retrieved ones. In order to quantify

the influence of the separation method in the classification, we estimate the

correct classification rate for different values of G. When G is close to a di-

agonal matrix, the separation is considered perfect (no mixture). Otherwise,

the signals y(t) are still mixed versions of s(t), which means that concurrent

charts are observed.

In our analysis the matrix G is parametrized by an angle θ to simulate
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different cases of mixture. This parametrization is given by

G =

 cos(θ) sin(θ)

−sin(θ) cos(θ)

 ,
where θ takes the values in the interval [−π/2, π/2]. For each value of θ, the

values of y(t) are obtained and, then, they are submitted to the classifier. In

order to have a better estimation, we conducted 1000 simulations for each

value of θ and calculate its average.

The results obtained considering a mixture of normal and systematic

patterns are shown in Figure 5. For a mixture of normal and cyclic patterns,

the results are presents in Figure 6. In both analyses, we considered BSS-

data and processed data (shape and statistical features) as the input of the

classifier.
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(b) Processed data

Figure 5: Classification’s performance in the separation of normal/systematic mixture

using different inputs, varying the global matrix.

As can be observed in Figures 5a and 5b, the classification rate of the

normal/systematic mixture is higher in the cases where the separation is
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(b) Processed data

Figure 6: Classification’s performance in the separation of normal/cyclic mixture using

different inputs, varying the global matrix.

perfect (values of θ equals to −π/2, 0 and π/2) and it is low when θ assumes

the values of −π/4 or π/4, cases where there is the maximum degree of

mixture. If we consider the processed data as the input of the classifier

(Figure 5b), the curve becomes narrow, highlighting that the use of shape and

statistical features provides better classification rates. This is more evident

when we analyze the normal/cyclic mixture. Since both patterns have similar

spectrum, when BSS-data is used (Figure 6a), the classifier does not work

well, with rates below 50%. Besides the use of shape and statistical features

(Figure 6b) leads to 30% rates (θ around ±π/4), the parameters can be

discriminated by the classifier, also resulting in 100% rates.

The results highlight the relevance of conducting a BSS step before clas-

sification. Moreover, one can note that the feature extraction is also funda-

mental. Indeed, besides rendering classification more robust with respect to

mixing, the feature extraction step allows one to achieve a good classification

in the context of a normal/cyclic mixture — note that in this case the solely
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application of BSS does not solve the problem.

3.2. Comparison between BSS methods in the separation step

Let us now compare the performance of different BSS methods in the

separation step of control charts. In this experiment, at first, we study the

separation of two control charts: a normal pattern and a given abnormal

pattern. The mixture was generated by a linear process, as follows

xi(t) = Asi(t) + ri(t), t = 1, . . . , T, (15)

where si(t), i = 1, . . . , n are the generated charts (original charts), A is the

linear mixing process, xi, i = 1, . . . , n are the mixture charts and ri represents

additive white Gaussian noise (AWGN). It is important to emphasize here

that the range of Signal-to-Noise Ratio (SNR)2 considered was SNR = (0, 50]

dB and the elements of A were

A =

 0.6 0.4

0.4 0.6

 .
The separation performance were computed base on the average value of

the resulting signal-to-interference ratios (SIR):

SIRi = 10 log

(
E{si(t)2}

E{(si(t)− yi(t))2}

)
, (16)

where si(t) and yi(t) denote, respectively, the original source (single contro

chart) and the separated signal (estimated control chart). For each method

and each value of SNR , 1250 simulations was realized and the SIR value,

averaged over the 1000 runs, was calculated.

2The SNR is given by SNR = 10 log σ2
signal/σ

2
noise, where σ2

signal is the signal power

and σ2
noise is the noise power.
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Figure 7: Error in the separation matrix when the mixtures are corrupted by AWG noise.

The results (Figure 7) show that the SOS methods (SOBI, WASOBI

and AMUSE) perform better than HOS methods, especially for values of

SNR > 10 dB.

We also compared the separation methods with respect to the computing

time. The results can be seen in Table 2.3 Again, SOS methods achieved

better performance, especially the SOBI and AMUSE, due to the lower com-

putational effort than the other methods.

3Computing device: Intel Core i7, 2.20 GHz, 8.00 GB RAM, software MATLAB 2009.
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Table 2: Separation time.

Time (seconds)

SOBI WASOBI AMUSE Infomax FastICA

0.0006 0.0033 0.0004 0.0924 0.3175

3.3. Comparison between BSS methods in the classification

The third experiment consists in comparing different BSS methods in the

context of pattern classification, considering BSS-data and processed data

as the inputs of the classifier. We compare the performances in both binary

and multiclass classification.

In binary classification, at first, a set of 100 control charts of normal

and 100 control charts of abnormal patterns was generated and trained by

the classifier. After that, another set of control charts containing the same

patterns used in training was generated and mixed by the linear process

xi(t) = Asi(t), (17)

as described in Section 3.3, without Gaussian noise. Then, for each mixture,

a BSS method was applied in order to recover the original charts and, then,

they were submitted to the SVM (BSS-data and processed data). The results

obtained are shown in Tables 3 and 4.

Considering the results of Table 3, classification using SOS methods

(SOBI, AMUSE and WASOBI) provides better results compared with HOS

methods (Infomax and FastICA) when there is a trend pattern involved.

This is due to the temporal structure observed in this pattern. The worst

classification for all the BSS methods arose in the mixture of normal/cyclic,
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Table 3: Binary pattern classification, using BSS-data as the input.

Mixed patterns % of correct classification

SOBI WASOBI AMUSE Infomax FastICA

Normal/Systematic 80.4% 72.3% 63.9% 75.1% 58.7%

Normal/Cyclic 45.9% 45.4% 43.6% 46.0% 49.5%

Normal/Trend 100% 100% 100% 95.2% 94.3%

Normal/Shift 50.1% 51.3% 51.8% 53.5% 51.0%

Total average 69.10% 67.25% 64.82% 67.45% 63.38%

Table 4: Binary pattern classification, using processed data as the input.

Mixed patterns % of correct classification

SOBI WASOBI AMUSE Infomax FastICA

Normal/Systematic 100% 100% 100% 100% 99.8%

Normal/Cyclic 100% 100% 100% 95.9% 95.1%

Normal/Trend 100% 99.9% 100% 97.8% 96.7%

Normal/Shift 99.6% 98.9% 99.1% 87.9% 90.2%

Total average 99.90% 99.70% 99.78% 95.40% 95.45%

once these patterns have almost the same spectrum and, then, it is not pos-

sible for the classifier to discriminate them. However, when using shape and

statistical features as the input of the SVM (Table 4), the classifier can dis-

criminate efficiently the normal/cyclic mixture, since the MAC value (see

Equation (13)) for the cyclic pattern is higher than the normal one. As a

consequence, the classification rates of this mixture is increased by using

features instead of BSS-data.

In multiclass classification, i.e. when we aimed to distinguish 1 class

among 5 possible ones, the training set was composed of 10 structures, one for
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each possible mixture pair (considering all the combinations between normal,

cyclic, systematic, trend and shift patterns, i.e. C5,2 structures4). Similar to

the binary case, the training structure case composed of 100 control charts

of each pattern. Once we had the training structures, the mixed patterns

were generated and submitted to the classifier. The results using BSS-data

and processed data are presented in Table 5 and 6.

Table 5: Multiclass pattern classification, using BSS-data as the input.

Mixed patterns % of correct classification

SOBI WASOBI AMUSE Infomax FastICA

Normal/Systematic 12.8% 10.0% 10.8% 25.9% 28.8%

Normal/Cyclic 48.0% 41.8% 50.3% 37.8% 46.1%

Normal/Trend 50.6% 50.4% 47.9% 47.6% 38.9%

Normal/Shift 52.6% 56.2% 48.0% 42.4% 39.8%

Total average 41.00% 39.60% 39.25% 38.42% 38.40%

These results show that the BSS-data do not lead to a satisfying classifi-

cation rate in the multiclass classification problem. However, when the shape

and statistical features are used, the efficiency of the SVM classification is

highly improved, resulting in higher classification rates. Comparing the BSS

methods, it can be noted that SOS methods provided better results with

respect to HOS methods, always yielding a very low computational cost.

4C5,2 = 5!
2!(5−2)! = 10 represents the combination of 5 different charts taken 2 at a time

without repetition.
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Table 6: Multiclass pattern classification, using processed data as the input.

Mixed patterns % of correct classification

SOBI WASOBI AMUSE Infomax FastICA

Normal/Systematic 99.9% 99.7% 99.7% 99.4% 90.5%

Normal/Cyclic 99.5% 88.6% 85.6% 80.6% 59.0%

Normal/Trend 94.1% 94.0% 72.7% 71.5% 55.3%

Normal/Shift 97.4% 90.2% 97.3% 74.8% 84.7%

Total average 97.72% 93.12% 88.82% 81.58% 72.38%

3.4. Robustness in different non-randomness levels

Considering that SOBI method combined with shape and statistical fea-

tures provided the better results in concurrent control chart pattern recog-

nition, in this experiment, we verify the efficiency of this approach in situa-

tions of different non-randomness levels. For this, the parameters considered

in pattern generation (Table 1) are modified in the testing dataset in order

to consider different degrees of non-randomness levels in the charts. In re-

spect of the training dataset, the parameters for the different situations were

always the same as described in Table 1. Binary and multiclass pattern clas-

sification were applied as in the last experiment and the results are shown in

Tables 7 and 8, respectively.

The results in binary classification confirms the robustness of the ap-

proach even in a smooth presence of a non-randomness. The worst classifi-

cation rate (79.9%) was obtained considering normal/shift mixture, which is

a high value for such degree of non-randomness.

In multiclass classification, a low level of non-randomness confuses the

classifier, leading to lower correct recognition rates. However, when this
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Table 7: Binary pattern classification for different non-randomness levels, using processed

data as the input.

Mixed patterns Parameter values % of correct classification

d = 1σ 99.3%

d = 1.5σ 100%

Normal/Systematic d = 2σ 100%

d = 2.5σ 100%

d = 3σ 100%

a = 1σ 86.5%

a = 1.5σ 99.1%

Normal/Cyclic a = 2σ 100%

a = 2.5σ 100%

a = 3σ 100%

g = 0.025σ 91.0%

g = 0.050σ 99.1%

Normal/Trend g = 0.075σ 100%

g = 0.1σ 100%

g = 0.125σ 100%

s = 1σ 79.9%

s = 1.5σ 95.6%

Normal/Shift s = 2σ 99.6%

s = 2.5σ 99.9%

s = 3σ 100%

level increases, the correct classification rates also increase, specially for

normal/systematic and normal/trend mixtures. We also can note, for nor-

mal/cyclic and normal/shift mixtures, that a deviation from the parameter

used in training step leads to incorrect classification.
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Table 8: Multiclass pattern classification for different non-randomness levels, using pro-

cessed data as the input.

Mixed patterns Parameter values % of correct classification

d = 1σ 49.4%

d = 1.5σ 98.9%

Normal/Systematic d = 2σ 99.9%

d = 2.5σ 99.5%

d = 3σ 99.9%

a = 1σ 7.5%

a = 1.5σ 63.9%

Normal/Cyclic a = 2σ 99.5%

a = 2.5σ 80.8%

a = 3σ 59.9%

g = 0.025σ 1.0%

g = 0.050σ 38.9%

Normal/Trend g = 0.075σ 94.1%

g = 0.1σ 99.7%

g = 0.125σ 99.9%

s = 1σ 64.6%

s = 1.5σ 95.4%

Normal/Shift s = 2σ 97.4%

s = 2.5σ 66.0%

s = 3σ 80.9%

3.5. Robustness to imbalanced dataset

Also considering SOBI method combined with shape and statistical fea-

tures, in this experiment, we verify its performance when the dataset used

in training step is imbalanced. Differently from the Section 3.3 where we

used an equal proportion of normal and unnatural pattern (100/100), here
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this ratio is increased, considering the more normal dataset than unnatural,

which is expected in a practical situation. The results for binary pattern

classification is shown in Table 9.

Table 9: Binary pattern classification for imbalanced data, using shape and statistical

features as the input.

Ratio dataset % of correct classification

(normal/unnatural Normal/ Normal/ Normal/ Normal/

patterns) Systematic Cyclic Trend Shift

100/100 100% 100% 100% 99.4%

120/80 100% 100% 100% 99.3%

140/60 100% 99.9% 100% 98.8%

160/40 100% 100% 100% 99.3%

180/20 100% 99.9% 100% 97.9%

190/10 100% 99.9% 100% 95.1%

192/8 100% 100% 100% 92.5%

194/6 100% 99.5% 100% 96.3%

196/4 100% 100% 100% 98.7%

198/2 100% 99.6% 100% 87.6%

The results show the robustness of the approach even with a high ratio

normal/unnatural dataset. It is due to the classifier to consider only two

patterns in the traning step and, then, there is no confusion with other pos-

sible patterns. The worst classification rate (87.6%) was obtained considering

normal/shift mixture, which is a high value for such ratio normal/unnatural

dataset.
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4. Conclusions

Given the importance of detecting failures in the production process, it is

necessary to use tools that can efficiently recognize abnormalities involved in.

This work deals with concurrent control charts pattern classification, which

the detection is hindered due to the mixture of the individual characteristics.

In this context, a better comprehension and comparison between existing

methods is crucial to verify which one provides better results in separation

and classification steps. In that respect, a first experiment performed in this

work showed the high influence that the separation and feature extraction

step has in the classification, justifying our purpose to compare different

BSS methods and a selection of shape and statistical feature in order to

verify which one provides higher classification rates.

In a second experiment, we showed that SOS-based BSS methods perform

better than HOS-based methods (ICA) and with a very low computational

cost (with a gain of about 2 orders of magnitude). It is worth noting that most

of current works that deal with BSS in control charts consider HOS-based

methods. Furthermore, the results have shown the higher accuracy when the

input of the classifier is based on a set of shape and statistical features, as

these parameters offer a better discrimination of patterns involved in control

charts.

Based on these results, we can conclude that the approach composed by

a SOS method (especially SOBI and WASOBI) and shape and statistical

features provides better results in concurrent control chart pattern recogni-

tion. SOS-based methods insure an efficient separation of the mixed control

charts and the shape/statistical features extracted by the estimated sources
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provides parameters that are useful in the classification step even when the

solely application of separation is not enough to assure a good classification.

Fourth and fifth experiments also shown the robustness of this approach

even with different non-randomness levels and imbalanced data, specially for

normal/systematic mixture.

In future researches, we aim to verify the performance of the SOS methods

combined with shape and statistical in real industrial environments. Further-

more, we aim to apply the proposed approach in online classification, where

non-randomness arises progressively.
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