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Abstract This paper presents a framework combining BPMN and BR as a tool
for Knowledge Management (KM). An attempt at providing a common model
supported with Artificial Intelligence (AI) techniques and tools is put forward.
Through an extended example it is shown how to combine BPMN and BR and
how to pass to semantic level enabling building executable specifications and
knowledge analysis. Some of the problems concerning these two approaches can
be to certain degree overcome thanks to their complementary nature. We only
deal with a restricted view of Knowledge Management, where knowledge can be
modeled explicitly in a formal representation, and it does not take into account
the knowledge residing in people’s heads.

1 INTRODUCTION

Design, development and analysis of progressively more and more complex business
processes require advanced methods and tools. Apart from variety of classical Artifi-
cial Intelligence (AI) stuff, two generic modern approaches to modeling such processes
have recently gained wider popularity; these are: Business Process Model and Notation
(BPMN) [1] and Business Rules (BR) [2,3]. Although aimed at a common target, both
of these approaches are rather mutually complementary and offer distinctive features
enabling process modeling.

BPMN constitutes a set of graphical symbols, such as links modeling workflow,
various splits and joins, events and boxes representing data processing activities. It is a
transparent visual tool for modeling complex processes promoted by OMG [1]. What
is worth underlying is the expressive power of current BPMN. In fact it allows for
modeling conditional operations, loops, event-triggered actions, splits and joins of data
flow paths and communication among processes. Moreover, modeling can take into
account several levels of abstraction enabling a hierarchical approach.

BPMN can be considered as procedural knowledge representation; a BPMN dia-
gram represents in fact a set of interconnected procedures. Although BPMN provides
transparent, visual representation of the process, due to lack of formal model semantics
it makes attempts at more rigorous analysis problematic. Further, even relatively sim-
ple inference requires a lot of space for representation; there is no easy way to specify
declarative knowledge, e.g. in the form of rules.



Business Rules, also promoted by OMG [4,5], offer an approach to specification of
knowledge in a declarative manner. The way the rules are applied is left over to the user
when it comes to rule execution. Hence, rules can be considered as declarative knowl-
edge specification; inference control, however, is not covered by basic rules. Hence, the
same set of rules can be used in numerous ways, and it may become problematic to find
a solution even having at hand all the necessary rules.

Note that these two approaches are to certain degree complementary: BR provide
declarative specification of domain knowledge, which can be encoded into a BPMN
model. On the other hand, BPMN diagram can be used as procedural specification of the
workflow, including inference control [6]. However, BPMN lacks of a formal declar-
ative model defining the semantics and logic behind the diagram. Hence, defining and
analyzing correctness of BPMN diagrams is a hard task. There are papers undertak-
ing the issues of analysis and verification of BPMN diagrams [7,8,9,10]. However, the
analysis is performed mostly at the structural level and does not take into account the
semantics of dataflow and control knowledge.

In this position paper, we follow the ideas initially presented in [11]. An attempt at
defining foundations for a more formal, logical, declarative model of the most crucial
elements of BPMN diagrams combined with BR is undertaken. We pass from logical
analysis of BPMN component to their logical models, properties and representation in
PROLOG [12]. The model is aimed at enabling definition and further analysis of se-
lected formal properties of a class of restricted BPMN diagrams. The analysis should
take into account properties constituting reasonable criteria of correctness. The focus
is on development of a formal, declarative model of BPMN components and its overall
structure. In fact, a combination of the recent approaches to development and verifica-
tion of rule-based systems [13,14,15] seems to have potential influence on the BPMN
analysis.

2 MOTIVATION

Knowledge has become a valuable resource and a decisive factor for successful oper-
ation of organizations, companies and societies. As vast amounts of knowledge are in
use, tools supporting Knowledge Management (KM) are inevitable support for Decision
Makers. Such tools can be roughly classified into the following categories:

– Conceptual Models — various symbolic and visual ways of Knowledge Represen-
tation (KR), analysis, and supporting design of knowledge-intensive systems and
applications; as an example one can mention various schemes, graphs, networks
and diagrams, with UML [16] and BPMN [17] being some perfect examples,

– Logical Models — more formal KR and knowledge processing (reasoning, infer-
ence) tools, supporting both representation and application of knowledge [18,19].
It is important that such models typically support also semantic issues; as an exam-
ple one can mention various types of logics and logic-derived formalisms including
rules and Business Rules (BR) as some perfect examples.

– Functional and Procedural Models — these include all algorithmic-type recipes
for performing operations; some typical examples may vary from linguistically



represented procedures, e.g. ISO, to programs encoded with any programming lan-
guages.

When speaking about Conceptual Models one usually assumes more or less informal,
abstract, illustrative presentation of concepts, relations, activities, etc. In case of Logical
Models, clear syntax and semantic rules are in background; this assures possibility of
identification and verification of properties, such as (i) consistency, (ii) completeness,
(also: coverage), (iii) unique interpretation (lack of ambiguity), (iv) efficiency (mini-
mal representation, lack of redundancy, efficient operation), (v) processability. Some
further requirements may refer to: readability and transparency, easy modifications and
extensionability, support for knowledge acquisition and encoding, etc.

The above-mentioned models are used to represent, analyze, process and optimize
knowledge. Note that there are at least the following types of knowledge aimed at sep-
arate goals and requiring different way of processing:

– typological or taxonometric knowledge (e.g. a taxonomy in typed logics and lan-
guages or TBox in Description Logics),

– factographic knowledge representing facts and relations about object (e.g. a set of
the FOPC atomic formulae or ABox in DL),

– inferential or transformation knowledge — specification of legal knowledge rewrit-
ing rules or production rules,

– integrity and constraints knowledge on what is impossible, not allowed, etc.
– meta-knowledge — all about how to use the basic knowledge (e.g. inference control

rules).

Now, most typical KM activities require solving such issues as:

1. Knowledge Representation,
2. Inference — knowledge processing rules,
3. Inference Control — principles on how to apply inference rules in a correct and

efficient manner,
4. Knowledge Acquisition and Updating,
5. Knowledge Analysis and Verification,
6. Friendly User Interface,
7. Generalization and Learning.

A tool, or a set of tools, for efficient Knowledge Management should support as
many KM activities in a smooth way and deserve handling as many types of knowledge
within a single framework.

2.1 BPMN as a tool for Knowledge Management

BPMN [1] appears to be an effective choice for Knowledge Management tasks. It of-
fers a wide spectrum of graphical elements for visualizing of events, activities, work-
flow splits and merges, etc. It can be classified as Conceptual Modeling tool of high
expressive power, practically useful and still readable to public.

Let us briefly analyze the strengths and weaknesses of BPMN as a KM tool. It
is mostly a way of procedural knowledge specification, so it supports p. 3 above, but



neither p. 1 nor 2. Certainly, refering to p. 6 its user interface is nice. An important issue
about BPMN is that it covers three important aspects of knowledge processing; these
are:

– inference control or workflow control, including diagrammatic specification of the
process with partial ordering, switching and merging of flow,

– data processing or data flow specification, including input, output and internal data
processing,

– structural representation of the process as a whole, allowing for visual representa-
tion at several levels of hierarchy.

Some more serious weakness issues concerning characteristics and activities pre-
sented in Section 2 are as follows:

– BPMN — being a Conceptual Modeling tool — does not provide formal semantics,
– it is inadequate for knowledge analysis and verification (p. 5),
– it neither support declarative representation of taxonometric, factographic, nor in-

tegrity knowledge.

However, some of these weaknesses can be overcome by combination of BPMN with
Business Rules.

2.2 Business Rules as a tool for Knowledge Management

Business Rules (BR) can be classified as Logical Model for Knowledge Representation
(KR). They constitute a declarative specification of knowledge. There can be different
types of BR serving different purposes; in fact all the types of knowledge (taxonometric,
factographic, transformation, integrity, and meta) can be encoded with BR.

A closer look at foundations of Rule-Based Systems [20] shows that rules can:

– have high expressive power depending on the logic in use,
– provide elements of procedural control,
– undergo formal analysis.

Some modern classification cover the following types of rules:

– facts – rules defining true statement (with no conditional part),
– definition rules – for defining terms and notions in use,
– integrity rules – rules defining integrity constraints,
– production rules – for derivation of new facts,
– reaction rules – rules triggered by events, reactive rules or ECA rules,
– transformation rules – rules defining possible transformations, term-rewriting rules;

they may include numerical recipe rules,
– data processing rules – rules defining how particular data are to be transformed;

these include numerical processing rules,
– control rules – in fact meta rules used for inference process control,
– meta rules – other rules defining how to use basic rules.



Rules, especially when grouped into decision modules (such as decision tables) [21],
are easier to analyze. However, the possibility of analysis depends on the accepted
knowledge representation language, and in fact – the logic in use. Formal models of
rule-based systems and analysis issues are discussed in detail in [20].

The main weakness of BR consists in lack of procedural (inference control) speci-
fication and transparent knowledge visualization. However, these issues can be solved
at the BPMN level.

2.3 BPMN and BR: Towards an Integration Framework

In order to integrate BPMN and BR, a framework combining and representing intrinsic
mechanisms of these two approaches is under development. It should be composed of
the following elements:

– Workflow Structure/Sequence Graph (WSG) — an AND-OR graph representing
a workflow structure at abstract level,

– Logical Specification of Control (LSC) — logical labels for WSG,
– Dataflow Sequence Graph (DSG) — a DFD-type graph showing the flow of data,
– Logical Specification of Data (LSD) — constraints imposed on data being input,

output or processed at some nodes.
– Temporal Constraint Specification (TCS) — not discussed in this paper.

3 WORKFLOW STRUCTURAL GRAPH for BPMN

Workflow Structure/Sequence Graph (WSG) is in fact a simplified structural model of
BPMN diagrams. It constitutes a restricted abstraction of crucial intrinsic workflow
components. As for events, only start and termination events are taken into account.
Main knowledge processing units are activities (or tasks). Workflow control is modeled
by two subtypes of gateways: split and join operations. Finally, workflow sequence is
modeled by directed links. No time or temporal aspect is considered.

The following elements will be taken into consideration [11]:

– S — a non-empty set of start events (possibly composed of a single element),
– E — a non-empty set of end events (possibly composed of a single element),
– T — a set of activities (or tasks); a task T ∈ T is a finite process with single input

and single output, to be executed within a finite interval of time,
– G — a set of split gateways or splits, where branching of the workflow takes place;

three disjoint subtypes of splits are considered:
• GX — a set of exclusive splits where one and only one alternative path can be

followed (a split of the EX −OR type),
• GP — a set of parallel splits where all the paths of the workflow are to be

followed (a split of the AND type or a fork), and
• GO — a set of inclusive splits where one or more paths should be followed (a

split of the OR type).
– M — a set of merge gateways or joins, where two or more paths meet; three disjoint

subtypes of merge (join) nodes are considered:



• MX — a set of exclusive merge nodes where one and only one input path is
taken into account (a merge of the EX −OR type),

• MP — a set of parallel merge nodes where all the paths are combined together
(a merge of the AND type), and

• MO — a set of inclusive merge nodes where one or more paths influence the
subsequent item (a merge of the OR type).

– F — a set of workflow links, F ⊆ O × O, where O = S ∪ E ∪ T ∪ G ∪M is the
join set of objects. All the component sets are pairwise disjoint.

The splits and joins depend on logical conditions assigned to particular branches. It is
assumed that there is defined a partial function Cond:F→ C assigning logical formulae
to links. In particular, the function is defined for links belonging to G × O ∪ O ×M,
i.e. outgoing links of split nodes and incoming links of merge nodes. The conditions are
responsible for workflow control. For intuition, an exemplary simple BPMN diagram is
presented in Fig. 1.

In order to assure structural correctness of BPMN diagrams a set of restrictions
on the overall diagram structure is typically defined; they determine the so-called well-
formed diagram [9]. Classical AI graph search methods can be applied for analysis.
Note however, that a well-formed diagram does not assure that for any input knowledge
the process can be executed leading to a (unique) solution. This further depends on the
particular input data, its transformation during processing, correct work of particular
objects, and correct control defined by the branching/merging conditions assigned to
links.

The further issues, i.e. Logical Specification of Control (LSC), Dataflow Sequence
Graph (DSG), and Logical Specification of Data (LSD) will be analyzed on the base of
an example presented below.

4 BPMN AND BR EXAMPLE:
THE THERMOSTAT CASE

In order to provide intuitions, the theoretical considerations will be illustrated with a
simple exemplary process. The process goal is to establish the so-called set-point tem-
perature for a thermostat system [22]. The selection of the particular value depends on
the season, whether it is a working day or not, and the time of the day.

Consider the following set of declarative rules specifying the process. There are
eighteen inference rules (production rules):

Rule 1: aDD ∈ {monday, tuesday,wednesday, thursday, friday} −→ aTD = wd.
Rule 2: aDD ∈ {saturday, sunday} −→ aTD = wk.
Rule 3: aTD = wd ∧ aTM ∈ (9, 17) −→ aOP = dbh.
Rule 4: aTD = wd ∧ aTM ∈ (0, 8) −→ aOP = ndbh.
Rule 5: aTD = wd ∧ aTM ∈ (18, 24) −→ aOP = ndbh.
Rule 6: aTD = wk −→ aOP = ndbh.
Rule 7: aMO ∈ {january, february, december} −→ aSE = sum.
Rule 8: aMO ∈ {march, april,may} −→ aSE = aut.
Rule 9: aMO ∈ {june, july, august} −→ aSE = win.
Rule 10: aMO ∈ {september, october, november} −→ aSE = spr.
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Figure 1. An example BPMN diagram — top-level specification of the thermostat system

Rule 11: aSE = spr ∧ aOP = dbh −→ aTHS = 20.
Rule 12: aSE = spr ∧ aOP = ndbh −→ aTHS = 15.
Rule 13: aSE = sum ∧ aOP = dbh −→ aTHS = 24.
Rule 14: aSE = sum ∧ aOP = ndbh −→ aTHS = 17.
Rule 15: aSE = aut ∧ aOP = dbh −→ aTHS = 20.
Rule 16: aSE = aut ∧ aOP = ndbh −→ aTHS = 16.
Rule 17: aSE = win ∧ aOP = dbh −→ aTHS = 18.
Rule 18: aSE = win ∧ aOP = ndbh −→ aTHS = 14.

Let us briefly explain these rules. The first two rules define if we have today (aTD)
a workday (wd) or a weekend day (wk). Rules 3-6 define if the operation hours (aOP )
are during business hours (dbh) or not during business hours (ndbh); they take into
account the workday/weekend condition and the current time (hour). Rules 7-10 define
the season (aSE ) is summer (sum), autumn (aut), winter (win) or spring (spr). Finally,
rules 11-18 define the precise setting of the thermostat (aTHS ). Observe that the set of
rules is flat; basically no control knowledge is provided.

Now, let us attempt to visualize a business process defined with these rules. A
BPMN diagram of the process is presented in Fig. 1. After start, the process is split
into two independent paths of activities. The upper path is aimed at determining the
current season (aSE; it can take one of the values {sum, aut, win, spr}; the detailed
specification is provided with rules 7-10). A visual specification of this activity with an
appropriate set of rules is shown in Fig. 2.

Determining season

month in {1,2,12}

month in {3,4,5}

month in {6,7,8}

month in {9,10,11}

set season
to summer

set season
to autumn

set season
to spring

set season
to winter

Krzysztof Kluza 2 of 5 26.04.2011

Figure 2. An example BPMN diagram — detailed specification a BPMN task

The lower path determines whether the day (aDD) is a workday (aTD = wd) or
a weekend day (aTD = wk), both specifying the value of today (aTD ; specification
provided with rules 1 and 2), and then, taking into account the current time (aTM ),



whether the operation (aOP ) is during business hours (aOP = dbh) or not (aOP =
ndbh); the specification is provided with rules 3-6. This is illustrated with Fig. 3 and
Fig. 4. Determining workday

day in {mon,tue,wed,thu,fri}

day in {sat,sun}

set today
to workday

set today
to weekend

Krzysztof Kluza 4 of 5 26.04.2011

Figure 3. An example BPMN diagram — detailed specification of determining the day task

Determining operation hours

today =  workday &
hour >  17

today =  weekend &
hour =  any

today =  workday &
hour <  9

today =  workday &
hour in [9;17]

set operat ion
to nbizhrs

set operat ion
to bizhrs

Krzysztof Kluza 1 of 1 26.04.2011

Figure 4. An example BPMN diagram — detailed specification of working hours task

Finally, the results are merged together, and the final activity consists in determin-
ing the thermostat settings (aTHS ) for particular season (aSE ) and time (aTM ) (the
specification is provided with rules 11-18). This is illustrated with Fig. 5.

Even in this simple example, answers to the following important questions are not
obvious:

1. Data flow correctness: Is any of the four tasks/activities specified in a correct way?
Will each task end with producing desired output for any admissible input data?

2. Split consistency: Will the workflow possibly explore all the paths after a split? Will
it always explore at least one?

3. Merge consistency: Will it be always possible to merge knowledge coming from
different sources at the merge node?

4. Termination/completeness: Does the specification assure that the system will al-
ways terminate producing some temperature specification for any admissible input
data?

5. Determinism: Will the output setting be determined in a unique way?

Note that we do not ask about correctness of the result; in fact, the rules embedded into
a BPMN diagram provide a kind of executable specification, so there is no reference
point to claim that final output is correct or not.
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Figure 5. An example BPMN diagram — detailed specification of the final thermostat setting
task

5 LOGICAL SPECIFICATION OF CONTROL

This section is devoted to analysis of logical specification of control. In fact, two types
of control elements are analyzed: split nodes and merge nodes.

5.1 Analysis of Split Conditions

An exclusive split GX (q1, q2, . . . qk) ∈ GX with k outgoing links is modeled by a fork
structure assigned excluding alternative of the form:

q1 Y q2 Y . . . Y qk,

where qi ∧ qj is always false for i 6= j. An exclusive split can be considered correct if
and only if at least one of the alternative conditions is satisfied. We have the following
logical requirement:

|= q1 ∨ q2 ∨ . . . ∨ qk, (1)

i.e. the disjunction is in fact a tautology. In practice, to assure (1), a predefined exclusive
set of conditions is completed with a default q0 condition defined as q0 = ¬q1 ∧ ¬q2 ∧
. . . ∧ ¬qk; obviously, the formula q0 ∨ q1 ∨ q2 ∨ . . . ∨ qk is a tautology.

Note that in case when an input restriction formula φ is specified, the above require-
ment given by (1) can be relaxed to:

φ |= q1 ∨ q2 ∨ . . . ∨ qk. (2)

An inclusive split GO(q1, q2, . . . qk) ∈ GO is modeled as disjunction of the form:

q1 ∨ q2 ∨ . . . ∨ qk,

An inclusive split to be considered correct must also satisfy formula (1), or at least (2).
As before, this can be achieved through completing it with the q0 default formula.



A parallel split GP(q1, q2, . . . qk) ∈ GP is referring to a fork-like structure, where
all the outgoing links should be followed in any case. For simplicity, it can be considered
as an inclusive one, where all the conditions assigned to outgoing links are set to true.

Note that, if φ is the restriction formula valid for data at the input of the split, then
any of the output restriction formula is defined as φ ∧ qi for any of the outgoing link i,
i = 1, 2, . . . , k.

5.2 Analysis of Merge Conditions

Consider a workflow merge node, where k knowledge inputs satisfying restrictions
φ1, φ2, . . . , φk respectively meet together, while the selection of particular input is con-
ditioned by formulae p1, p2, . . . , pk, respectively.

An exclusive merge MX (p1, p2, . . . , pk) ∈ MX of k inputs is considered correct if
and only if the conditions are pairwise disjoint, i.e.

6|= pi ∧ pj (3)

for any i 6= j, i, j ∈ {1, 2, . . . , k}. Moreover, to assure that the merge works, at least
one of the conditions should hold:

|= p1 ∨ p2 ∨ . . . ∨ pk, (4)

i.e. the disjunction is in fact a tautology. If the input restrictions φ1, φ2, . . . , φk are
known, condition (4) might possibly be replaced by |= (p1 ∧ φ1) ∨ (p2 ∧ φ2) ∨ . . . ∨
(pk ∧ φk).

Note that in case a join input restriction formula φ is specified, the above require-
ment can be relaxed to:

φ |= p1 ∨ p2 ∨ . . . ∨ pk, (5)

and if the input restrictions φ1, φ2, . . . , φk are known, it should be replaced by φ |=
(p1 ∧ φ1) ∨ (p2 ∧ φ2) ∨ . . . ∨ (pk ∧ φk).

An inclusive merge MO(p1, p2, . . . , pk) ∈ MO of k inputs is considered correct if
one is assured that the merge works — condition (4) or (5) hold.

A parallel merge MP ∈ MP of k inputs is considered correct by default. However,
if the input restrictions φ1, φ2, . . . , φk are known, a consistency requirement for the
combined out takes the form that φ must be consistent (satisfiable), where:

φ = φ1 ∧ φ2 ∧ . . . ∧ φk (6)

An analogous requirement can be put forward for the active links of an inclusive merge.

|= p1 ∧ p2 ∧ . . . ∧ pk, (7)

i.e. the conjunction is in fact a tautology, or at least

φ |= p1 ∧ p2 ∧ . . . ∧ pk. (8)

In general, parallel merge can be made correct in a trivial way by putting p1 = p2 =
. . . = pk = true .



Note that even correct merge leading to a satisfiable formula assure only passing the
merge node; the funnel principle must further be satisfied with respect to the following-
in-line object. To illustrate that consider the input of the component determining ther-
mostat setting (see Fig. 1). This is the case of parallel merge of two inputs. The joint
formula defining the restrictions on combined output of the components for determining
season and determining operation hours is of the form:

φ = (aSE = sum ∨ aSE = aut ∨ aSE = win ∨
aSE = spr) ∧ (aOP = dbh ∨ aOP = ndbh).

A simple check of all possible combinations of season and operation hours shows that
all the eight possibilities are covered by preconditions of rules 11-18; hence the funnel
condition (11) holds.

6 DATAFLOW SEQUENCE GRAPH

A Dataflow Sequence Graph (DSG) can be any DFD-type graph showing the flow of
data that specifies the data transfers among data processing components. It shows that
data produced by certain components should be sent to some next-in-chain ones. In the
case of our thermostat example, it happens that the DSG can be represented with the
graph shown in Fig. 1 — the workflow and the dataflow structure are the same.

7 LOGICAL SPECIFICATION OF DATA

Logical Specification of Data (LSD) are constraints on data being input, output or pro-
cessed at some nodes.

7.1 Logical Constraints on Component Behavior

In this section we put forward some minimal requirements defining correct work of
rule-based process components performing BPMN activities. Each such component is
composed of a set of inference rules, designed to work within the same context; in fact,
preconditions of the rules incorporate the same attributes. In our example, we have four
such components: determining workday (rules 1-2), determining operation hours (rules
3-6), determining season (rules 7-10) and determining the thermostat setting (rules 11-
18).

In general, the outermost logical model of a component T performing some activi-
ty/task can be defined as a triple of the form:

T = (ψT , ϕT ,A), (9)

where ψT is a formula defining the restrictions on the component input, ϕT defines
the restrictions for component output, and A is an algorithm which for a given input
satisfying ψT produces an (desirably uniquely defined) output, satisfying ϕT . For in-
tuition, ψT and ϕT define a kind of a ’logical tube’ — for every input data satisfying



ψT (located at the entry of the tube), the component will produce and output satisfying
ϕT (still located within the tube at its output). The precise recipe for data processing is
given by algorithm A.

The specification of a rule-based process component given by (9) is considered
correct, if and only if for any input data satisfying ψT the algorithm A produces an
output satisfying ϕT . It is further deterministic (unambiguous) if the generated output
is unique for any admissible input.

For example, consider the component determining operation hours. Its input restric-
tion formula ψT is the disjunction of precondition formulae ψ3 ∨ ψ4 ∨ ψ5 ∨ ψ6, where
ψi is a precondition formula for rule i. We have ψT = ((aTD = wd) ∧ (aTM ∈
[0, 8] ∨ aTM ∈ [9, 17] ∨ aTM ∈ [18, 24])) ∨ (aTD = wk). The output restriction
formula is given by ϕT = (aOP = dbh) ∨ (aOP = ndbh). The algorithm is specified
directly by the rules; rules are in fact a kind of executable specification.

In order to be sure that the produced output is unique, the following mutual exclu-
sion condition should hold:

6|= ψi ∧ ψj (10)

for any i 6= j, i, j ∈ {1, 2, . . . , k}. A simple analysis shows that the four rules have
mutually exclusive preconditions, and the joint precondition formula ψT covers any ad-
missible combination of input parameters; in fact, the subset of rules is locally complete
and deterministic [20].

7.2 Logical Specification of Data Flow

In our example we consider only rule-based components. Let φ define the context of op-
eration, i.e. a formula defining some restrictions over the current state of the knowledge-
base that must be satisfied before the rules of a component are explored. For example,
φ may be given by ϕT ′ of a component T ′ directly preceding the current one. Further,
let there be k rules in the current component, and let ψi denote the joint precondition
formula (a conjunction of atoms) of rule i, i = 1, 2, . . . , k. In order to be sure that at
least one of the rules will be fired, the following condition must hold:

φ |= ψT , (11)

where ψT = ψ1 ∨ ψ2 ∨ . . . ∨ ψk is the disjunction of all precondition formulae of the
component rules. The above restriction will be called the funnel principle. For intuition,
if the current knowledge specification satisfies restriction defined by φ, then at least one
of the formula preconditions must be satisfied as well.

For example, consider the connection between the component determining workday
and the following it component determining operation hours. After leaving the former
one, we have that aTD = wd ∨ aTD = wk. Assuming that the time can always be
read as an input value, we have φ = (aTD = wd ∨ aTD = wk) ∧ aTM ∈ [0, 24]. On
the other hand, the disjunction of precondition formulae ψ3 ∨ψ4 ∨ψ5 ∨ψ6 is given by
ψT = (aTD = wd)∧ (aTM ∈ [0, 8]∨aTM ∈ [9, 17]∨aTM ∈ [18, 24]))∨aTD =
wk. Obviously, the funnel condition given by (11) holds.



8 ANOMALIES

Answering questions about essential properties of the model, such as correctness, con-
sistency, termination/completeness requires at the very beginning verification whether
the model contains any anomalies. These anomalies may appear in the model in all five
layers of the framework proposed in section 2.3. Proper detection of an anomaly can
in simple case use information delivered and available within single layer of the frame-
work, but in more complex cases it must utilize information which are derived from
two or even more layers. An example of the former is deterministic deadlock (XOR
split gateway followed by an AND join gateway) where only graph structure deter-
mines occurrence of an anomaly in control flow, whereas an example of the latter is
potential livelock (model with infinite cycle, AND split gateway followed by OR join
gateway) where besides specific graph structure also some control flow preconditions
must be satisfied.

Essential anomalies which can be detected by framework are as follows:

1. Within Workflow Structure/Sequence Graph and Logical Specification of Control:
– deadlocks;
– livelocks;
– races;
– lacks of synchronization;
– dead tasks/nodes;
– starvation;

2. Within Dataflow Sequence Graph and Logical Specification of Data:
– too restrictive preconditions;
– implicit routing;
– implicit constraints on the execution order;

Business process is deadlocked if activities, which are on path to the end event,
are waiting infinitely for a token that can only be passed by another activity in the
process. In such situation, all activities of business process are put into idle state, there-
fore none operations of business process are carried out. Common example of an anti-
pattern where deadlock can occur is construction consisting of an XOR/OR split to-
gether with an AND join. In such anti-pattern XOR/OR split creates alternative paths
that are later joined by an AND join causing that eventually process cannot make any
forward progress. Examples of deterministic and potential deadlock are illustrated with
Fig. 6 and Fig. 7.

Figure 6. Deterministic deadlock Figure 7. Potential deadlock



In the literature numerous different descriptions of livelock have been used, how-
ever taking into consideration business processes, only one of them can be applied, i.e.
infinite execution. Infinite execution would occur in business process diagram when
the individual activities of a business process model are running successfully but the
model as a whole stuck in a loop. Such erroneous situation may occurs, in trivial case,
when activity A always passes token to activity B that similarly, continuously passes a
token back to process A. A livelock is very similar to a deadlock, with an exception that
the states of the processes participating in the livelock continually change with regard
to one another without any progress [23]. Common, significant property which joins
definitions of deadlock and livelock is impossibility to maintain liveness of a business
process model. Examples of deterministic and potential livelock are illustrated with
Fig. 8 and Fig. 9.

Figure 8. Deterministic livelock Figure 9. Potential livelock

Race in business process means situation when result of the execution of business
process depends on order in which activities are performed. In model depicted in Fig. 10
when the former token is before split gateway s2 and the latter one before merge gate-
way j2, gateway j2 is allowed to be activated since there exists direct path from gateway
s2 to gateway j2. Alternatively, when tokens are respectively before merge gateway j2
and before split gateway s3, gateway j2 cannot be activated unless token will leave gate-
way j3. Such two scenarios lead to totally different execution of the business process.

Figure 10. Races

Lack of synchronization occurs in case of multiple, unintentional activation of the
activity. Such situation may be triggered as result of appearance more than one token
in the same flow branch. Lack of synchronization may occurs after XOR join gateway



which merges two paths coming from OR/AND split gateway. Since BPMN uses im-
plicit termination semantics, which means that a process instance completes only when
each token existing in the model reaches an end event, lack of synchronization does not
trigger multiple termination anomaly.

Figure 11. Deterministic lack of synchroniza-
tion

Figure 12. Potential lack of synchronization

Dead task within BPMN model is an activity that can never be reached and exe-
cuted. Occurrence of dead task is always connected with existence of dead transition.
This anomaly could occur because of some specific input preconditions, that would al-
ways route control flow omitting one of all possible flows Fig. 14 or in simple case there
is no path from start to task/node or no path from task/node to the end Fig. 13.

Figure 13. Dead tasks

Figure 14. Potential dead task

Starvation anomaly can be observed in message flow when specific task is waiting
infinitely for a message from another task. This anomaly may arise because of existence
of dead tasks in process or simply because of specific control flow which omits task
responsible for sending messages between pools.

Fig. 15 depicts case when task B1 of Pool 1 potentially cannot make any forward
progress due to specific input precondition which route control flow omitting task A2 of
Pool 2. Although control flow in Pool 1 seems to be correct the whole process cannot be
terminated. In contrast to deadlock and livelock which can be considered only within
single pool, starvation is a consequence of improper interactions between pools.

Too restrictive preconditions [24] is an error that occurs when task which is ready
for for an execution from a flow control perspective is put into idle state because of



Figure 15. Starvation

waiting for a particular data object state. This data object state is a necessary condition
for an activation of task. In Fig. 16 task D is expecting data object to be in state State 4
while there is possibility that data object will be in State 3.

DB

C

A

Figure 16. Data flow anomalies

Implicit routing is an anomaly which causes that some necessary data precondi-
tions are omitted during execution of the process. Such situation can happen in model
with XOR/OR split gateway where improper path is selected, eventually resulting in
omitting some data object. Although process still can be continued, final result may be
wrong. Example of this problem is depicted in Fig. 16 where task A can change data
object’s state to State 2 whereas the control flow could be still routed to task C by XOR
split gateway. Such anomaly could be considered as a specific variant of too restrictive
precondition error.



Implicit constraints on the execution order anomaly takes into account situations
when two concurrent activities share preconditions. The problem may occur when one
of these activities updates the state of the data object.

9 CONCLUSIONS AND FUTURE WORK

In this paper, BPMN and BR were explored as tools for Knowledge Management. It is
argued that integration of these approaches can overcome some disadvantages of these
approaches when considered in separate. Four areas of knowledge specification were
put forward: Workflow Specification Graph, Logical Specification of Control (missing
in current BPMN), Dataflow Sequence Graph and Logical specification of Data. The
ideas of knowledge representation and analysis were illustrated with an example.

The original contribution of our work consists in presenting a framework combining
BPMN and BR as a tool for Knowledge Management. The papers only deals with a re-
stricted view of Knowledge Management, where knowledge can be modeled explicitly
in a formal representation, and it does not take into account the knowledge residing in
people’s heads.

As future work, a more complex modeling and verification approach is considered.
In the case of modeling issue, we plan to implement this approach by extending one
of the existing BPMN tools in order to integrate it with the HeKatE Qt Editor (HQEd)
for XTT2-based Business Rules [25]. XTT2 [15] constitutes a formalized attributive
language for representing rules in decision tables. Thus, the XTT2 rules (and tables) can
be formally analyzed using the so-called verification HalVA framework [17] Although
table-level verification can be performed with HalVA [26], the global verification is
a more complex issue [27]. Our preliminary works on global verification have been
presented in [28].
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