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Abstract Handling dependence or not in feature selection
is still an open question in supervised classification issues
where the number of covariates exceeds the number of obser-
vations. Some recent papers surprisingly show the superiority
of naive Bayes approaches based on an obviously erroneous
assumption of independence, whereas others recommend to
infer on the dependence structure in order to decorrelate the
selection statistics. In the classical linear discriminant analy-
sis (LDA) framework, the present paper first highlights the
impact of dependence in terms of instability of feature selec-
tion. A second objective is to revisit the above issue using a
flexible factor modeling for the covariance. This framework
introduces latent components of dependence, conditionally
on which a new Bayes consistency is defined. A procedure
is then proposed for the joint estimation of the expectation
and variance parameters of the model. The present method is
compared to recent regularized diagonal discriminant analy-
sis approaches, assuming independence among features, and
regularized LDA procedures, both in terms of classification
performance and stability of feature selection. The proposed
method is implemented in the R package FADA, freely avail-
able from the R repository CRAN.
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1 Introduction

High-throughput technologies, increasingly used in diverse
contexts such as brain activity modeling, astronomy, or gene
expression analysis, share the common property to generate
a huge volume of data, which makes possible the large-scale
analysis of complex systems. Such data are generally char-
acterized by their high dimension, as the number of features
can reach several thousands, whereas the sample size is usu-
ally about some tens. More and more authors also point out
their heterogeneity, as the true signal and some confusing
factors (uncontrolled and unobserved) are often observed at
the same time. For example, in Omics data used for quanti-
tative issues in systems biology, both these factors and the
joint contribution of subsets of features to common biologi-
cal pathways generate a biologically meaningful dependence
structure among features. The impact of such a dependence
on the performance of the supervised classification proce-
dures which are used to predict the class of a biological
sample from its genomic profile is still questioning.

Recent advances on the impact of dependence on the per-
formance of supervised classification methods in situations
where the number of covariates is much larger than the num-
ber of sampling items have led to apparently contradictory
conclusions. Indeed, the superiority of approaches based on
an erroneous independence assumption is reported (Dudoit
et al. 2002; Levina 2002; Bickel and Levina 2004), whereas
more and more methods account for the covariance structure
(Guo et al. 2007; Dabney and Storey 2007; Xu et al. 2009;
Zuber and Strimmer 2009). More recently, Ahdesmäki and
Strimmer (2010) gives more insight to this issue by revisiting
the naive Bayes approach of Efron (2008) called diagonal
discriminant analysis (DDA), using decorrelated individ-
ual scores. In the DDA framework in which independence
among features is assumed, finding the support of the sig-
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nal, namely the subset of truly informative covariates, shows
some similarity with large-scale significance study since it
consists in ranking individual scores. However, as recalled by
Ahdesmäki and Strimmer (2010), whereas multiple testing
procedures aimat controlling the number of false discoveries,
this is usually more relevant for selection issues to control
the number of erroneously non-selected features. Interest-
ingly, in this multiple testing context, some papers (Leek
and Storey 2007, 2008; Efron 2007; Friguet et al. 2009; Sun
et al. 2012) have also reported the negative impact of large
correlation among scores on the consistency of the ranking
of p values. The authors propose to handle this correlation
in a joint modeling of the relationships between features and
covariates and residual variance–covariance using a flexible
model which assumes that latent effects can linearly affect
the dependence among features. The present paper intro-
duces a specific procedure for the supervised classification
issue.

The first objective of the present paper is to illustrate
the instability of variable selection in the classical linear
discriminant analysis (LDA) context, when the number of
covariates exceeds the number of observations. For such
high-dimensional issues, regularized procedures based on �1
or �2 penalization of usual loss functions are now well estab-
lished to handle efficiently a bias-variance trade-off for the
estimation of the discriminant scores [see for example Tib-
shirani et al. (2002, 2003) for a regularized DDA, Hastie
et al. (1995) for a penalized LDA or Friedman et al. (2010)
for an elastic net penalization of deviance-based estimation].
The stability and classification performance of some of these
usual procedures are investigated and the impact of depen-
dence on their repeatability properties is studied.

Section 2 introduces the context of feature selection
for high-dimensional supervised classification in a normal
framework, focusing on the two-class issue. A regression
factor model is proposed to identify a low-dimensional lin-
ear kernel which captures data dependence. Some analytical
properties are derived and a new strategy for model selection
is deduced. This approach is described in Sect. 3. Sec-
tions 4 and 5 investigate the properties of variable selection
procedures for high-dimensional data, considering different
structures for dependence and real data. The improvements
brought by the proposed approach in terms of stability and
classification performance are highlighted.

2 High-dimensional variable selection
for classification

In order to highlight the selection stability issue, we inten-
tionally focus hereafter on two-class prediction in a normal
setting with equal covariance in both groups. However, the
general principles of our approach are applicable in the wider

framework of more than two classes or unequal covariance
structures.

2.1 Notation

Let x ∈ R
m denote a vector of explanatory variables. The

response is a two-class variable denoted Y , with prior prob-
abilities p1 = P(Y = 1) and p0 = P(Y = 0) = 1 − p1.
It is assumed that x is normally distributed with mean μ1

if Y = 1, and μ0 otherwise. For both group, the positive
within-group variance–covariance matrix is Σ .

x = μy + e; with y = 1 if Y = 1 and

y = 0 otherwise, (1)

where e is a random error normally distributed with mean 0
and covariance Σ given Y .

The sample consists of n independent joint observations
(x ′

i ,Yi ), i = 1, . . . , n, of the explanatory and response vari-
ables. In the present high-dimensional framework, n can be
much smaller than m. Hereafter, n1 (resp. n0 = n − n1)
denotes the number of observations in the sample for which
Y = 1 (resp. Y = 0).

2.2 Bayes consistency and usual estimation procedures

In the present multivariate normal situation, it is well known
that the log-ratio LR(x) of posterior class probabilities given
x is a linear function of the explanatory profiles:

LR(x) = log
Px (Y = 1)

Px (Y = 0)
= β∗

0 + x ′β∗ (2)

where β∗ ∈ R
m and β∗

0 ∈ R are closed-form functions of
the conditional moments of x given Y :

β∗
0 = log

p1
p0

− 1

2

(
μ′
1Σ

−1μ1 − μ′
0Σ

−1μ0
)

(3)

β∗ = Σ−1(μ1 − μ0
)
. (4)

The above settings therefore provide a natural framework in
which linear classifiers, namely functions x �→ β0+x ′β, can
be used to predict the group variable Y given the explanatory
profile x . The classification rule consists, for a given x , in
predicting Y by Ŷ = 1 if x ′β exceeds a threshold c and
by Ŷ = 0 otherwise. Deduced from the decision theory and
firstly considered as a heuristic classification rule, the Bayes
classifier is the linear predictor with minimal classification
error π(β; c):

π(β; c) = P(Ŷ �= Y )
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= P(x ′β ≤ c|Y = 1) × p1

+P(x ′β > c|Y = 0) × p0

=
[
1 − Φ

(
μ′
1β − c

(β ′Σβ)1/2

)]
p1

+Φ

(
μ′
0β − c

(β ′Σβ)1/2

)
p0. (5)

It is straightforward checked that the slope and threshold of
the linear Bayes classification rule are given by β = β∗ and
c = −β∗

0 . Let γ denote the following function:

γ : Δ �→ γ (Δ) =
[
1 − Φ

(
1

Δ
log

p1
p0

+ Δ

2

)]
p1

+Φ

(
1

Δ
log

p1
p0

− Δ

2

)
p0, (6)

where Φ is the cumulative Gaussian distribution function.
Function γ represents the classification error for Maha-
lanobis distance Δ between 2 groups. One can notice that
the minimal probability of misclassification for the linear
Bayes classifier π∗ can be written as π∗ = γ (ΔΣ), where
ΔΣ stands for the Mahalanobis distance between μ1 and μ0

with metric Σ : Δ2
Σ = (μ1 − μ0)

′Σ−1(μ1 − μ0). Bayes
consistency is defined as the asymptotic achievement of this
optimal classification performance.

Apart from the choice of c which generally aims at a
compromise between false discovery and false non-discovery
rates, deriving a linear classification procedure can be viewed
as an estimation issue for β. Among the most two famous
methods, the so-called Fisher linear discriminant analysis is
obtained by minimizing the least-squares criterion:

(β̂0, β̂)LDA = argmin
β0,β

n∑

i=1

[
Vi − (β0 + x ′

iβ)
]2

, (7)

where V is defined as a symmetric recoding of Y :

V =
{
1 if Y = 1

−1 if Y = 0.

The above optimization issue has a closed-form solution
which coincides with the moment estimator of (β∗

0 , β∗).
In particular, provided the sample within-group covariance
matrix S of the explanatory variables is not singular:

β̂LDA = S−1(x̄1 − x̄0), (8)

where x̄0 and x̄1 are the sample means in each group.
Another famous method is logistic regression which

provides an alternative maximum likelihood estimation pro-
cedure:

(β̂0, β̂)ML = argmin
β0,β

−2
n∑

i=1

log
[
1 + exp

(−Vi (β0 + x ′
iβ)

)]

= argmin
β0,β

D(β), (9)

where D(β) = −2
∑n

i=1 log
[
1 + exp

(−Vi (β0 + x ′
iβ)

)]
is

the deviance.
However, the invertibility of the sample covariance matrix

S is also required to minimize D(β). This invertibility con-
dition does not hold in a high-dimensional framework.

This issue can be addressed by assuming that the support
I = {

j, β j �= 0
} ⊂ [[1;m]] of the classification model is

small regarding the numberm of features.Under this assump-
tion of a sparse model, feature selection procedures, which
aim at identifying the non-zero coefficients in β, are needed
to reduce the explanatory profile to the most group predictive
variables.

2.3 Feature selection

There is an abounding statistical literature dealing with the
issue of feature selection in regression and classification.
Among many other methods, minimization of the Akaike or
Bayesian information criteria (AIC, BIC), which are based
on a �0-penalization of the deviance, are frequently used.
Indeed, minimization of BIC leads to consistent estimators
of the support I andminimization of the AIC tominimax rate
optimal rules for estimating the regression function (Yang
2005). The main cause of concern of these procedures in
high dimension is of a computational nature, as an exhaustive
search through all possible models (2m) is needed. Step-
wise exploration of the whole family of models provides an
alternative, but this strategy can be unstable in high dimen-
sion because the number of fitted candidate models, at most
m(m + 1)/2, is extremely small regarding the number of
possible models.

Alternatively, one can handle the fitting and selection
issues at the same time by relaxing the �0-penalization by
the �1-penalization. This leads to the LASSO estimator β(λ)

of logistic regression parameters (Tibshirani 1996):

β(λ) = argmin
β

⎛

⎝D(β) + λ

m∑

j=1

|β j |
⎞

⎠ (10)

where the tuning parameter λ is chosen to control the spar-
sity of the estimator: larger values of λ lead to more zero
components in β(λ). The choice of the tuning parameter can
be achieved by minimization of the cross-validated residual
deviance or misclassification rate, as implemented in the R
package glmnet (Friedman et al. 2010). LASSO is compu-
tationally feasible for large m as the optimization problem
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in (10) is convex. For variable selection or prediction pur-
pose, two-stage procedures such as adaptive LASSO (Zou
2006) can be applied, generally improving the control of
the number of false positives, but at the cost of a lack of
power.

As mentioned by Van de Geer (2010), LASSO makes
strong assumptions on the covariance matrix, mainly that
correlations between variables are weak. Consequently, a
major and still open question remains the application of the
procedure while coping with large correlations between vari-
ables.

Let us illustrate the impact of dependence on the stability
of a standard variable selection procedure (LASSO) by a
simulation study, comparing the dependent and independent
cases.

In the dependent case, let us consider a two-group vari-
able Y , taking the value 0 for n0 = 30 sampling items and
1 for the n1 = 30 other items. A (n0 + n1) × m dataset,
with m = 500, of normal m−profiles x is generated, with
mean μ0 = 0 for the sampling items with Y = 0, and the
components of μ1 are also zero except for them1 = 100 last
variables of the profile, for which the mean is δ = 0.74. The
former value of δ guarantees a reasonable power of 0.8 for
the t test of mean comparison in the two groups. The within-
group standard deviations of the explanatory variables are set
to 1 and the within-group correlation matrix is a five-factor
model Σ = Ψ + BB ′, where Ψ is a diagonal matrix of spe-
cific variances and B a m × q-matrix of loadings (q = 5).
The values in B and Ψ are chosen so that the resulting corre-
lations are strong, as shown by the histogram of correlations
in Fig. 1a. The slope coefficients β = Σ−1(μ1 − μ0) dis-
played in Fig. 1b are straightforward deduced from the above
settings. Note that |β| defines a natural rank among features:
it is indeed expected that the features with largest coefficients
are selected more often.

The same simulation setting is used for the independent
case, except that the within-group correlation matrix is here
Im . Besides, μ1 = β to keep the same β as in the dependent
case.

For each case, 1000 datasets are simulated. The same
LASSO selection procedure is implemented using glmnet,
where the penalty parameter is selected by minimization of a
ten fold cross-validation residual deviance.Histograms of the
numbers of selected features in both scenarios of dependence
are reproduced in Fig. 2. The rank in |β| of each selected
feature is also deduced and the accuracy of the selection is
assessed by the mean rank of the subset of selected features.
Histograms of these mean ranks statistics are also provided
in Fig. 3.

The first striking impact of dependence is related to the
number of selected features (Fig. 2), which is much larger
when the features are correlated. Moreover, whereas in the
independent case, no erroneous selection of null features is

(a)

(b)

Fig. 1 Simulation settings. aWithin-group correlations for the depen-
dent case; b slope coefficients of the classification model

reported in the simulations, in 12.1 % of the simulations
under dependence, the FDP is non-zero. Accuracy of selec-
tion is also clearly affected by dependence: the mean ranks in
the independent case are consistent with the expected means
if the most group predictive variables are selected (Fig. 2),
namely half the number of selected features, whereas these
mean ranks are much larger in the dependent case (Fig. 3a).

3 Factor-adjusted variable selection

We propose a framework in which dependence is tractable at
the level of the original data,which allows a direct adjustment
of the data for that dependence. This dependence adjustment
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Fig. 2 Simulation study—number of selected features. aUnder depen-
dence; b under independence

step can be combined to any selection procedures, as pro-
posed in the comparative studies of Sect. 5.

3.1 Factor adjustment

Inmany areas, and particularly in the analysis of gene expres-
sion data (Kustra et al. 2006; Leek and Storey 2008; Carvalho
et al. 2008; Friguet et al. 2009; Teschendorff et al. 2011; Sun
et al. 2012), it has become frequent to cope with dependence
by assuming the existence of a moderate number of latent
factors conditionally on which it is assumed that features
are independent. The main advantage of such an approach
is that dependence is captured into a low-dimensional linear
space. Then the statistical procedures initially designed for

Mean ranks among selected features
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Fig. 3 Simulation study—mean ranks of the selected features in |β|.
a Under dependence; b under independence

the independent (or weak correlation) case can be applied
to the decorrelated data, obtained after adjustment for the
latent effects. Several methods have been proposed to model
the latent factors, such as (Independent) surrogate variable
analysis (Leek and Storey 2007; Teschendorff et al. 2011),
independent component analysis (Lee and Batzoglou 2003),
latent-effect adjustment after primary projection (Sun et al.
2012) or factor analysis (Friguet et al. 2009) for exam-
ple.

Hereafter, we introduce a supervised Factor Analysis
model for classification. Based on this model, the conditional
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linear Bayes classifier is defined and the conditional Bayes
consistency of the factor-adjusted approach is proved.

3.2 A flexible framework for dependence

Latent effects models are used for many years in economics,
social sciences, and psychometrics, originally in the field
of intelligence research (Spearman 1904) and has appeared
recently in the study of the dependence structure of high-
dimensional data, such as those provided by microarray
technology (Pournara andWernisch 2007; Kustra et al. 2006;
Blum et al. 2010). The model defined in (1) can indeed take
advantage of a flexible parameterization of the within-group
covariance matrix Σ . In practice, and especially in gene
expression data for example, unmodeled and/or uncontrolled
factors can interfere with the true signal, which introduces
heterogeneity in the data and generates dependence across
the variables. Residual e in model (1) is then split into two
terms, one associated to heterogeneity components through
latent variables Z , and independent residuals ε:

x = μy + BZ + ε; with y = 1 if Y = 1 (11)

and y = 0 otherwise,

where ε is a random vector with independent normal compo-
nents ε j ∼ N (0, ψ2

j ) and B is a m × q matrix of loadings.

Hence, V(ε) = Ψ = diag(ψ2
j , 1 ≤ j ≤ m).

Model (12) establishes the existence of q latent variables
Z = [Z1, . . . , Zq ]′ which capture the dependence among the
m variables in a q−dimensional linear space, with q � m.
Such model is called a regression Factor Analysis model
(Carvalho et al. 2008) and the latent variables Z are here-
after called (common) factors. Without loss of generality, in
the following, it is assumed that Z is normally distributed
with mean 0 and variance Iq . The mixed-effects regres-
sion model (12) is equivalently defined as a fixed-effects
regression model as in (1) but the residual variance Σ is
decomposed into the sum of two components, the diagonal
matrix Ψ of specific variances and the common variance
component BB ′:

Σ = BB ′ + Ψ. (12)

Note that, under the above assumptions, the joint distribu-
tion of the factors and the explanatory variables, given Y , is
normal:

(
X
Z

)
∼ N

[(
μy

0

)
,

(
Σ B
B ′

Iq

)]
. (13)

The following linear Bayes classifier, which is optimal con-
ditionally on the explanatory variables and the factors, is

straightforward derived from the inversion of the partitioned
variance matrix in expression (13):

LR(x, z) = log
p1
p0

− 1

2

(
μ′
1Ψ

−1μ1 − μ′
0Ψ

−1μ0
)

+ (x − Bz)′Ψ −1(μ1 − μ0
)
. (14)

It turns out that the conditional linear Bayes classifier (14)
depends on x and z through the factor-adjusted explanatory
variables x − Bz, which confirms that, assuming the factor
structure is known, the best linear classifier is just the usual
linear Bayes classifier based on the factor-adjusted explana-
tory profiles.

The minimal probability of misclassification for the con-
ditional linear Bayes classifier is π∗

z = γ (ΔΨ ), where γ

is defined in (6) and ΔΨ stands for the Mahalanobis dis-
tance between μ1 and μ0 with metric Ψ : Δ2

Ψ = (μ1 −
μ0)

′Ψ −1(μ1 − μ0). If B� = Ψ −1/2B stands for the normal-
ized loadings of the factor model, the following inequalities
hold:

1

1 + ρ2
max

≤ Δ2
Σ

Δ2
Ψ

≤ 1, (15)

where ρmax is the largest singular value of B�. As γ is
a decreasing function of Δ, it is deduced from the right
inequality in (15) thatπ∗

z ≤ π∗. Moreover, the left inequality
shows that the gain which can be expected by the conditional
approach is increasing with ρ2

max, which is also the largest
eigenvalue of B ′Ψ −1B. In other words, this expected gain
is larger in situations of strong dependence, in which the
loadings take large values with respect to the corresponding
specific variances.

Note that the Bayes classifier general optimality, which is
established without any assumption on Σ , is not questioned
here. However, under the assumption of a factor model for
Σ , the above result establishes the theoretical superiority of
a conditional approach based on the factor-adjusted explana-
tory variables x − Bz. Consequently, we propose hereafter
an estimation procedure for the regression factor model (12).

3.3 An iterative estimation procedure for the supervised
factor model

We propose an iterative method, which alternates the esti-
mation of μ0, μ1, B and Ψ , and the derivation of the latent
factors Z .

3.3.1 Initialization

The algorithm starts with μ̂0 = x̄0, μ̂1 = x̄1. Based on these
estimates of the groupmeans, the centered profiles x−μ̂y are
used to estimate B and Ψ , using the EM algorithm detailed
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in Friguet et al. (2009). The corresponding estimators are
hereafter denoted B̂ and Ψ̂ .

3.3.2 Step 1: factors extraction (Z)

Thompson’s method to derive the factors is adapted to the
present regression factor model. It is indeed deduced from
the joint multivariate normal distribution of the explanatory
variables and the factors (see expression (13)) that the con-
ditional expectation of the factors, given x , is given by:

Ex (Z) = (Iq + B ′Ψ −1B)−1B ′Ψ −1

(
x − [

μ0Px (Y = 0) + μ1Px (Y = 1)
])

, (16)

where

Px (Y = 1) = 1 − Px (Y = 0) = 1

1 + exp(−β∗
0 − β∗′x)

.

3.3.3 Remarks about the implementation

1. Note that the calculation of β∗
0 and β∗, using expressions

(3) and (4), only involves the inversion of a q ×q-matrix
according to the Woodbury’s identity:

Σ−1 = Ψ −1 − Ψ −1B(Iq + B ′Ψ −1B)−1B ′Ψ −1.

2. Besides, the plug-in estimator of Px (Y = 1) can be
affected if the factormodel is over-fitted, which penalizes
the classification performance. Alternative estimation
procedures can therefore be preferred to estimatePx (Y =
1), such as �1-penalized logistic regression, which intro-
duces sparsity to reduce the effects of over-fitting.

Therefore, estimated factors Ẑ are derived by plugging-in
μ̂0, μ̂1, B̂ and Ψ̂ into expression (16):

Ẑ = (Iq + B̂ ′Ψ̂ −1 B̂)−1 B̂ ′Ψ̂ −1

(
x − [

μ̂0P̂x (Y = 0) + μ̂1P̂x (Y = 1)
])

. (17)

3.3.4 Step 2: model parameters estimation (μ0, μ1, B
and Ψ )

The estimations ofμ0 andμ1 are updated by the least-squares
fitting of the multivariate regression model (12), where Z
is replaced by Ẑ . The factor decomposition of the centered
profiles (x − μ̂y) covariance provides updated estimates of
B and Ψ .

3.3.5 Iterations and stop criterion

Steps 1 and 2 are iterated, updating alternatively factors and
model parameters estimations. The algorithm stopswhen two
successive estimates of the factor model parameters are sim-
ilar.

Therefore, the proposed strategy consists in defining
factor-adjusted versions of usual classification methods by
applying these methods on the factor-adjusted data x − B̂ Ẑ .

A crucial point in the present feature selection context
is the choice of the proper number of factors. Indeed, an
over-estimation of q would artificially reduce the estimation
of the residual specific variances Ψ̂ , which could generate
false positives. In a multiple testing context, Friguet et al.
(2009) notice that the variance of the number of false posi-
tives is an increasing function of the amount of dependence
among the test statistics and give a closed-form expression
for the variance inflation Vk due to the k-factor model for
this dependence. Consequently, they suggest an ad hoc pro-
cedure which consists, for each k-factor model (Ψk, Bk), to
estimate the variance of the number of false positives when
the tests are calculated with the k-factor-adjusted residuals:
ê − Ẑk B̂k .

The algorithm described in this section is implemented in
the R package FADA available from the R repository CRAN,
providing functions for decorrelation, feature selection, and
estimation of a classification model.

In the following two sections, we illustrate, on real data
and by simulations, that this new factor adjustment algorithm
improves variable selection, both in terms of classification or
prediction performance and reproducibility of the selected
variables.

4 Stability of variable selection in high dimension

4.1 DNA microarray data

In genomics, microarrays let biologists measure expression
levels for thousands of genes in a single sample all at once.
The level of measured gene expressions is influenced both
by a biological trait of interest and by unwanted technical
and/or biological factors, referred to as heterogeneity factors
(Leek and Storey 2007, 2008). Moreover, it is now widely
considered that groups of genes contributing to some few
biological processes can show co-expression patterns: some
genes are activators or inhibitors of others. This motivates
the emerging issue of gene co-expression network inference
from microarray data. In such context, dealing with depen-
dence is a major concern in carrying statistical analyses.

Feature selection is increasingly common in genomic
data analysis to identify genes which expression patterns
have meaningful biological links with a phenotypic trait.
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Therefore, as an illustration of selection issues in high dimen-
sion, let us consider the microarray experiment detailed in
Hedenfalk et al. (2001), which is commonly used in the sta-
tistical literature for comparative studies of high-dimensional
statistical procedures.

4.1.1 Data: breast cancer study

The data were primarily analyzed in order to compare
expressions of three types of breast cancer tumor tissues:
BRCA1, BRCA2, and Sporadic. The raw expression data,
downloaded from http://research.nhgri.nih.gov/microarray/
NEJM_Supplement/, initially consist of 3226 genes in 22
arrays; seven arrays from the BRCA1 group, eight from the
BRCA2 group, and six from the Sporadic group. The label
of one sample being unclear, it has been removed from the
study. 196 genes presenting some suspicious levels of expres-
sion (larger than 10 or lower than 0.1) are removed and the
data are finally log2 transformed. In the following, we focus
on the selection of gene expressions among the m = 3030
included in the study that best predict the two types of tumors
BRCA1 and BRCA2. The sample size is then n = 15.

4.1.2 Methods

Variable selection is performed using theR packageglmnet
(Friedman et al. 2010) which provides a function to fit a two-
group logistic regressionmodel via �1-regularizedmaximum
likelihood (Tibshirani 1996). The sample being small, the
choice of the tuning parameter is done thanks to Leave-One-
Out cross-validation. LASSO is known to be non consistent
when performed on correlated data (Bach 2008). However,
the following example aims to illustrate howa lackof stability
can be observed on real data and how factor adjustment can
stabilize a usual selection procedure.

Theprocedure is first appliedon the complete dataset (with
n = 15 observations). The performance of the procedure is
evaluated through the number of selected variables and the
cross-validation error.

Then to illustrate instability of variable selection, the same
procedure is applied, removing successively one of the obser-
vations. The aim is to evaluate the sensibility of the procedure
to changes in the data. The results of the selection procedure
are compared to those obtained on the complete data consid-
ering the number of selected variables and the overlap with
the subset of variables initially selected using the complete
data.

Finally, the same procedure is applied on the factor-
adjusted data. Factor adjustment is performed with the
method presented in Sect. 3.3. The minimization of the vari-
ance inflation criterion suggests to keep q = 1 common
factor for the complete data and for each incomplete dataset.

Table 1 Selection procedure on the complete dataset

Data Features Prediction error

Raw data 11 0.400

Factor-adjusted data 8 0.267

4.1.3 Results

Selection procedure on the complete dataset The results of
the selection procedure on the complete dataset (for raw and
factor-adjusted data) are reported in Table 1. The number of
features selected by the LASSO procedure is lower when
considering the factor-adjusted data. Moreover, the decorre-
lation step of factor adjustment leads to a better performance
of the selection procedure, i.e. a lower prediction error. In the
following, Iraw (resp. IFA) denotes the subset of selected fea-
tures when the selection procedure is applied on the complete
raw (resp. complete factor-adjusted) data.

Selection procedure on the incomplete datasets The selec-
tion procedure is then applied on the 15 sub-datasets,
removing successively one of the observations from the com-
plete raw data (resp. complete factor-adjusted data). Table 2a
(resp. 2b) reports the number of selected features, the num-
ber and proportion of selected variables which belongs to
Iraw (resp. IFA) and cross-validated prediction error of the
selection procedure for each sub-dataset. For each criterion,
the tables report the results after the removal of the first four
and last four observations as an overview of results, as well as
the mean and standard deviation in the last column. Results
for all observations are not presented to avoid overloading.

A wide range of situations are reported in Table 2a,
regarding both the number and the set of selected features,
depending on which observation has been removed. Each
observation has therefore a strong influence on the stability
of the selection procedure.

For instance, the LASSO procedure seems to be very sen-
sitive to removing the first observation as only one feature is
selected instead of 11 for the complete data. Among the six
variables selected after removing observation 14, only three
are part of Iraw. This phenomenon becomes less pronounced
when the procedure is applied on the factor-adjusted data
(Table 2b). In this case, there is a much higher proportion
of selected variables included in IFA (38.2 vs. 70.8 %) and
cross-validation errors are smaller.

Conclusion This illustrative situation shows that the usual
statistical approaches for variable selection, such as LASSO
selectionhere, are questioned for dependent high-dimensional
data analysis. A small change in the data, just considering the
removal of one observation, induces variability in the perfor-
mance of the procedure and leads to different sets of selected
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Table 2 Selection procedure after having removed one observation

Removed id. 1 2 3 4 … 12 13 14 15 Mean (SD)

(a) Raw data

Features 1 10 7 8 … 6 12 6 6 6.4 (3.6)

Included (N) 1 9 3 6 … 6 6 3 5 4.2 (2.5)

Included (%) 9.1 81.8 27.3 54.5 … 54.5 54.5 27.3 45.5 38.2 (22.3)

Prediction error 0.571 0.214 0.286 0.214 … 0.214 0.357 0.214 0.357 0.3 (0.138)

(b) Factor-adjusted data

Features 9 7 9 10 … 9 7 12 8 7.9 (2.5)

Included (N) 5 7 6 8 … 7 6 8 7 5.7 (2)

Included (%) 62.5 87.5 75.0 100.0 … 87.5 75.0 100.0 87.5 70.8 (24.9)

Prediction error 0.357 0.214 0.286 0.071 … 0.357 0.357 0.214 0.214 0.229 (0.115)

Features number of selected features; included (N) number of stable inclusions:number of selected variables which belongs to Iraw or IFA; included
(%) proportion of stable inclusions; prediction error cross-validated prediction error

variables. Factor adjustment helps to block such effects of
heterogeneity and improves both the stability of the set of
selected variables and the prediction error.

4.2 DNA methylation data

Recently, DNA methylation data have focused the attention
of biologists because new biological processes can be identi-
fied from the analysis of such data. In this section, a study is
conducted to highlight the contribution of factor adjustment
for the analysis of data generated by such experiments.

4.2.1 Data: gastric tumors study

The data were primarily published in Zouridis (2012) and
initially consist of 27578 DNA methylation measures and
297 observations. 2573 variables were removed because of
missing data so that the studied dataset has 25,005 columns.
The binary response variable codes for gastric tumors (203
cases) and gastric non-malignant samples (94 cases).

4.2.2 Methods

According to the simulation study in Sect. 5, shrinkage dis-
criminant analysis (SDA) appears to be the most efficient
method regarding the prediction error and the precision of
selection. Thus, SDA is conducted on the whole dataset
using the R package sda. The results are compared to the
following three-step procedure. (1) A decorrelation step is
performed on the whole dataset using FADA R package then,
(2) to decrease the dimension of the dataset and to avoid high
computation time in step (3), a rough selection is performed
through standard t tests on decorrelated data and the first 3000
CpG sites are selected for the next step. (3) Variable selection
and classificationmodel are finally performed by SDA on the
factor-adjusted sub-dataset. Prediction errors are computed

Table 3 Nb. of selected features and estimated prediction errors for
gastric tumors data

Method Nb. features Error rate

SDA 2638 0.0301

Factor-adjusted SDA 305 0.0217

through a tenfold cross-validation with 20 repetitions so that
the model is estimated on 200 splits of the data.

4.2.3 Results

Ten factors are extracted from the whole dataset for factor
adjustment at step (1). On the sub-dataset composed of the
first 3000 CpG sites, one factor is extracted [step (2)]. Table 3
reports the prediction error and the precision of selection
for the two compared procedures. When applied on factor-
adjusted data, SDA leads to slightly lower prediction error
rate than standard SDA but, most importantly, less variables
are selected to achieve this precision.

5 Impact of the dependence design: a simulation
study

In order to study the performance of factor adjustment for
classification and variable selection, we propose a more
intensive simulation study. Considering several scenarios of
dependence between variables [independence, block depen-
dence, factor structure, and Toeplitz design, in the manner
of Meinshausen and Bühlmann (2010)], some well-known
classificationmethods are applied on simulated datasets. The
stability of original procedures is compared to their factor-
adjusted versions.
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5.1 Simulation design

Let us consider datasets simulated according to a multi-
variate normal distribution, each dataset being composed of
m = 1000 variables and n = 30 observations. Besides, let
us consider a binary variable Y such that the observations
are split into two arbitrary groups of size n0 = n1 = n/2.
The m-dimensional profiles X are normally distributed with
mean μ0 = 0m in the first group (Y = 0), where 0m ∈ R

m is
the zero vector, andμ1 in the second group (Y = 1). A subset
I of 50 variables is randomly chosen to be group predictive.
For these variables, μ1 has non-zero components: μ1 j = δ

for j ∈ I and μ1 j = 0 otherwise. The value of δ is set to
0.55 or 0.47, which matches with high and moderate signal
strength, as introduced by Donoho and Jin (2008).

Thousand datasets are simulated considering each of the
four following scenarios for the covariance matrix Σ :

(A) Them variables are normally and independently distrib-
uted with variance 1 so that Σ is the m-diagonal matrix
Im . This scenario is used as a control situation to check
that the proposed method does not falsely catch depen-
dence;

(B) Σ is a two-blocks matrix. Correlation between the first
100 variables is set to 0.7 and correlation between the
remaining 900 variables is equal to 0.3. This correlation
matrix is used to study impact of dependence in multi-
ple testing in the context of gene expression analysis in
Zuber and Strimmer (2009);

(C) Σ is decomposed into a specific and a common part as
in a factor model (see Sect. 3.2): Σ = BB ′ + Ψ . Ψ is a
diagonal matrix of specific variances and B is a m × q-
matrix of coefficients, chosen so that the proportion
trace(BB ′)/trace(Σ) of dependence among variables is
high (78 %). In the present simulation study, the num-
ber of common factors is q = 5. Note that the signal is
here set to a weaker value δ = 0.47 because generat-
ing dependence through a factor structure is a favored
scenario.

(D) Σ is a Toeplitz matrix. This kind of design corresponds
to auto-regressive time dependence such that the covari-
ance between two variables i and j is equal to σρ|i− j |.
In this simulation study, σ = 1 and ρ = 0.99.

5.2 Methods

The following selection procedures are applied on each sim-
ulated dataset:

(LASSO) �1-regularized logistic regression using the R
package glmnet (Friedman et al. 2010);

(SLDA) Sparse linear discriminant analysis, which is
an �1-penalized LDA using the R package
SparseLDA (Clemmensen et al. 2011), the
stop parameter was set to 10;

(SDA) Shrinkage discriminant analysis, which is a
James–Stein regularized version of LDA, using
the R package sda (Ahdesmäki and Strimmer
2010). Note that SDA consists finally in a corre-
lation adjustment of the scores used for feature
selection in DDA;

(DDA) Shrinkagediagonal discriminant analysis,which
assumeswithin-group independence among fea-
tures, using theR package sda (Ahdesmäki and
Strimmer 2010). Estimation of the DDA model
is here regularized using a ridge approach.

Several cutoffs are implemented in the R package sda
to conduct DDA and SDA such as the False Non-Discovery
Rate (FNDR) or Higher Criticism (Donoho and Jin 2008).
Both lead to similar results in this simulation study and the
results reported here concern the FNDR cutoff.

Each procedure is applied both on raw data and on factor-
adjusted data, using the decorrelation method presented in
Sect. 3.3: for each simulated dataset, covariance parame-
ters Ψ and B and latent factors Z are estimated on training
datasets and factor-adjusted training data (decorrelation step)
are computed using formula x−Bz introduced in expression
(14). Estimates Ψ̂ and B̂ are used to estimate latent factors of
testing data and factor-adjusted testing data are computed in
the same way. Classification methods are finally trained on
decorrelated training samples and assessed on decorrelated
testing sample.

Prediction errors are calculated on an independent bal-
anced test dataset consisting of 10,000 sampling items,
generated according to each structure of dependence. Per-
formances of methods are assessed by calculating, for each
simulated dataset, the prediction error calculated on the test
dataset, the number of selected features, and the proportion of
truly selected variables (or positive predictive value, reported
hereafter as “precision”).

5.3 Results

5.3.1 Cross-validation

Table 4 reports the prediction errors for a no-signal simula-
tion study (μ0 = μ1 = 0m , covariance pattern set here to
two-blocks structure). Results are not overoptimistic as pre-
diction errors are close to 0.5. This insures that all parameters
are estimated independently of the test dataset and that selec-
tion and parameters estimation are newly performed for each
simulated dataset.
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Table 4 Check of cross-validated error rates (prediction errors) for a
no-signal design

Raw data Factor-adjusted data

LASSO 0.4989 0.4990

SLDA 0.4989 0.4992

SDA 0.5000 0.5004

DDA 0.4999 0.4996

Table 5 No factor found for independence design (A)

Prediction error Features Precision (%)
mean (SD)

LASSO 0.3858 12.82 40.32 (20.96)

SLDA 0.3873 10.00 39.50 (15.33)

SDA 0.3868 35.09 35.52 (21.77)

DDA 0.3489 32.90 38.44 (23.68)

5.3.2 Independence design

Scenario (A) confirms that the factor adjustment is not
overoptimistic and does not wrongly locate correlation for
an independent design. Indeed, no factor is extracted for
the 1000 independently simulated datasets: factor-adjusted
methods are therefore similar to their original versions (see
Table 5).

5.3.3 Structures with correlations

Considering the three scenarios of dependence (B), (C), and
(D), Table 6 and Fig. 4 show that the four tested selec-
tion procedures (LASSO, Sparse LDA, DDA, and SDA) are
improved overall while considering the factor adjustment:
error rates are smaller and precisions are greatly improved.

Table 6 Simulation results for
several designs of dependence

Method Prediction error Features Precision (%) mean (SD)

Block structure (B)

LASSO 0.3780 12.64 40.05 (23.85)

Factor-adjusted LASSO 0.3118 15.44 49.16 (21.30)

SLDA 0.3872 10.00 39.80 (15.50)

Factor-adjusted SLDA 0.3426 10.00 50.80 (16.00)

SDA 0.3244 41.63 42.12 (17.77)

Factor-adjusted SDA 0.2863 44.19 42.46 (18.08)

DDA 0.4393 165.10 28.31 (24.46)

Factor-adjusted DDA 0.2820 48.44 42.13 (19.14)

Factor structure (C)

LASSO 0.2660 14.025 62.67 (14.94)

Factor-adjusted LASSO 0.1038 8.477 90.43 (12.35)

SLDA 0.3000 10.00 68.80 (17.25)

Factor-adjusted SLDA 0.0926 10.00 87.50 (11.67)

SDA 0.1258 70.00 50.29 (14.84)

Factor-adjusted SDA 0.0452 53.17 65.17 (19.00)

DDA 0.4772 4.18 69.75 (18.30)

Factor-adjusted DDA 0.0474 55.26 65.04 (20.61)

Temporal dependence (D)

LASSO 0.3020 13.10 62.36 (20.63)

Factor-adjusted LASSO 0.1510 8.03 93.02 (9.69)

SLDA 0.3314 10.00 62.50 (17.08)

Facto-adjusted SLDA 0.1222 10.00 90.90 (10.83)

SDA 0.2695 57.20 75.07 (23.94)

Factor-adjusted SDA 0.0893 68.22 67.93 (25.66)

DDA 0.4813 149.42 15.58 (15.27)

Factor-adjusted DDA 0.3146 97.65 48.76 (29.91)
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Fig. 4 Violin plots of error
rates. a Two-blocks structure
(B); b factor structure (C); c
temporal dependence (D)
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Considering the block structure (B), errors rates are
reduced for each classification method and relevant features
are more often selected except for SDA.

As expected, scenario (C) leads to the most significant
results mainly because this scenario is favored by the factor
model used for the covariance matrix.

When applied on raw data, DDA always leads to the high-
est error rates. In scenario (C), the selection step is very
unstable as no variable was selected in 15 % of simulations,
which explains that the average number of selected features
only rates 4.18 % variables. For the two other scenarios, the
number of selected features is high, but without catching rel-
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evant ones. As expected, DDA,which assumes independence
between covariates, is more suitable on factor-adjusted data
and performances are better both in terms of prediction abil-
ity and in selection.

LASSO and Sparse LDA are considerably improved by
factor adjustment. Interestingly, the former methods give
similar results, probably because they are both based on �1-
regularization. However, the benefit of factor adjustment on
SDA is lesser than on the other classification methods. SDA
is indeed a competing method to factor adjustment as it is
also based on decorrelation. Nevertheless, SDA seems to be
improved by a factor adjustment, which could be explained
by the better ability of the factor model to catch a complex
dependence than the James–Stein approach.

6 Discussion and conclusion

The analysis of high-dimensional data hasmarkedly renewed
the statistical methodology for feature selection in classifi-
cation issues. Such data are characterized by their hetero-
geneity, as confusing factors can interfere with the signal of
interest. A common and notorious difficulty in large-scale
data analysis is therefore the handling of these confounding
factors, which may induce bias in significance studies, cause
unreliable feature selection and high error rates.

The present article illustrates that data heterogeneity
affects the ranking and the stability of supervised classi-
fication model selection. Most of the usual procedures in
supervised classification assume aweak correlation structure
between variables and heterogeneity of the data violates this
assumption. This article describes an innovative methodol-
ogy based on an explicit modeling of the data heterogeneity,
which provides a general framework to deal with depen-
dence in variable selection. A supervised factormodel is used
to capture data dependence into a linear low-dimensional
space and a conditional Bayes consistency is defined in this
framework. This paper provides an algorithm which takes
advantage of the correlation structure to estimate at the same
time the correlation structure, the signal and individual prob-
abilities in order to decorrelate data. Furthermore, we show
that the conditional optimality of the linear Bayes classifier
is achieved by the usual Bayes classifier applied to the factor-
adjusted data.

Factor adjustment is shown to improve stability of some
usual procedures of selection and classification. One very
important implication of the factor-adjusted approach is that,
in situationswhere a strong dependence can be approximated
using a factor decomposition, the performance for classifica-
tion is markedly improved.

Our simulation study shows nice operating characteristics
considering dependence structures that fit well to genomics,
according to several authors, which is one of our scientific

area of interest.We believe that this approach can also be con-
venient for other scientific areas. As an illustration, we have
considered a Toeplitz design, which can be used to model
simple auto-regressive time dependence structures.

In this paper, it is assumed that the covariance struc-
tures in both groups are the same, which is consistent with
the homoscedasticity assumption of Linear Discriminant
Analysis. Extraction of factors Z depending on the response
variable Y is possible by considering a different factor model
in each group. In such case, two models are independently
estimated from the two sets of observations where Y = 0 or
Y = 1. However, in high-dimensional data analysis, where
the total number of observation is often small, it could reduce
the power to detect the biological signal (different means in
each group).

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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