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Abstract. We propose an automatic system for annotating accurately
data tables extracted from the web. This system is designed to provide
additional data to an existing querying system called MIEL, which relies
on a common vocabulary used to query local relational databases. We
will use the same vocabulary, translated into an OWL ontology, to anno-
tate the tables. Our annotation system is unsupervised. It uses only the
knowledge defined in the ontology to automatically annotate the entire
content of tables, using an aggregation approach: first annotate cells,
then columns, then relations between those columns. The annotations
are fuzzy: instead of linking an element of the table with a precise con-
cept of the ontology, the elements of the table are annotated with several
concepts, associated with their relevance degree. Our annotation process
has been validated experimentally on scientific domains (microbial risk
in food, chemical risk in food) and a technical domain (aeronautics).

1 Introduction

The web is usually modeled as a set of unstructured documents interconnected
by a hyperlink graph. However, those documents contain a significative amount
of relational data stored in tables. Those tables can be seen as small relational
databases even if they lack the explicit metadata associated with a database.
Those databases are of course very interesting potential external sources to feed
the data warehouse of a company, dedicated to a given domain of application. In
general, those data warehouses are already composed of local relational databases
fed with internal data belonging to the company. The aim of the company, re-
trieving external data from the Web, is to complement local data and/or to
compare external data to local ones. In order to realize this objective, it is nec-
essary to integrate external data into local data. One possibility is to index
external data using the vocabulary already used to index local data. This vo-
cabulary can be easily built from explicit metadata associated with relational
local databases, which correspond to the relational schemas of the databases
and their attributes with their associated domains. This approach has been ex-
perimentally tested on three different domains (microbial risk in food, chemical
risk in food and aeronautics): three OWL ontologies have been created within a



couple of hours thanks to preexisting information retrieved from local databases
and a very simple tool which translates automatically csv files containing the
metadata into an OWL ontology.

In this paper, we present a method to annotate automatically and accurately
Web data tables with a domain ontology expressed in OWL. This method re-
lies on heuristics which uses the relations signatures, the symbolic and numeric
attributes names, associated domains and constraints (set of symbolic possible
values for the symbolic attributes, interval of numeric values and units for the
numeric attributes) of the ontology and can be compared with works in schema
matching (see [1] for a review). Our original contribution in this paper compared
to such works is threefold. Firstly, we instanciate accurately the recognized rela-
tions of the ontology for each row of the Web data table. By accurate, we mean
that each cell of the row which corresponds to a symbolic (or numeric) attribute
is associated with a set of symbolic similar values (or with an interval of possible
numeric values) of the ontology. Thanks to this annotation process, it is possible,
using the MIEL querying system (see [2]) and the ontology, to query simulta-
neously the local relational databases and the annotated Web tables thanks to
adapted wrappers. Secondly, the heuristics used by our annotation method are
based on a set of criteria which can be easily extended. Thirdly, in our approach,
thanks to the ontology easily built from preexisting metadata, we don’t need to
use matching learning methods which imply to learn manually the classifiers on
a part of the corpus of documents (see [3] by example). As we will present in
this paper, we obtain experimental results which are similar to machine learning
methods to identify the type of symbolic columns. This method has been applied
with success in the three following different application fields: microbial risk in
food, chemical risk in food and aeronautics.

Recent propositions in the Semantic Web community propose to extract, fil-
ter, annotate and query Web data tables (see [4–6]), but they have not been
designed with the same objectives. TableSeer (see [4]) for instance permits to
extract a set of predefined metadata (caption, cell content, geographical position
of the table in the HTML page, ...) from Web tables, but it does not compare the
schema of the Web tables to preexisting schemas defined in a ontology. We can
also cite WebTables (see [5, 6]) which proposes a system to identify relational
tables in the huge amount of tables included in HTML documents, index them
to query and rank them. Nevertheless, the WebTables querying language is only
composed of a set of key-words which are compared to the attribute names of
the Web tables. The row content of the Web tables is not used in the query-
ing process which is only based on global co-occurences frequencies statistics of
attribute names. Our approach can be compared to the construction of frames
from tables described in [7] but they use a generic ontology and create new
relations according to the table signature, whereas we want to recognize prede-
fined relations in an ontology specific to the target domain. In [8], relations from
an ontology are instanciated using various HTML structures including tables.
However, they only identify binary concept-role relations between instances that
are assumed to be already annotated (manually or using another information



extraction system). Our work differs as we focus on the recognition of n-ary
relations and we propose a step-by-step algorithm including the recognition of
element types. From this point of view, the work presented in [9] is nearer to
ours, as they transform tables of different structures into a common relational
database schema with n-ary relations. However, their approach depend upon the
manual definition of an “extraction ontology” that defines extraction rules for
each set of objects, giving all synonyms for an attribute name or defining the
context of apparition of a string to extract. Our work differs as the ontology is
built independently from the annotation process.

Our annotation process is divided into several steps: first, find documents
on the web that are relevant to the application domain by regularly crawling
sites that are specialized in the domain of interest (for example, JIFSAN1 or
EFSA2 for risk in food purposes) or even by accessing the “hidden web” via
subscription using alerting systems such as RSS feeds (for example on a site
like Web Of Knowledge3); second, extract the tables from the documents; third
annotate the tables; and finally, query the tables using an extended version of
the MIEL system (see [2]). The three first steps are implemented in the @Web
software, developed using the standards of the WebContent platform4. The Web
data tables are stored in an XML document using the predefined data model of
the WebContent platform which permits to exchange data between web services
available on the platform. The annotations generated by the Web service are
associated with the tuples of the Web data table and expressed in RDF.

This paper will focus on the third step of the @Web software: the automatic
annotation of Web data tables. The structure and OWL representation of our
ontology is presented in section 2. We then describe the annotation process:
section 3 presents how we recognize the semantic relations represented by a
table, and section 4 shows how we create the actual annotations for the table.

2 The ontology

In the current MIEL system, when a user ask a query on a database, he/she
can define the selection criteria according to a predefined vocabulary. We have
brought together this vocabulary and the domain information available within
the databases schemas to create an ontology. The given examples come from
the ontology of the food microbiology domain, but the structure we propose is
generic and can be applied to many other domains such as chemical risk in food
or aeronautics.

2.1 The ontology structure

The structure of our ontology relies on the structure of database schemas and is
organised into numeric types, symbolic types and relations.
1 Joint Institute for Food Safety and Applied Nutrition, http://www.jifsan.umd.edu
2 European Food Safety Authority, http://www.efsa.europa.eu
3 http://www.isiwebofknowledge.com/
4 http://www.webcontent.fr



Symbolic types are described by a type name, a list of synonyms for the
type name and a taxonomy of possible values. In our ontology on the food
microbiology domain, the type Food Product is associated with a taxonomy of
more than 500 food products, the type Microorganism with a taxonomy of more
than 150 microorganisms and the type Response is a flat list of the possible
responses of a microorganism to a treatment: growth, absence of growth or death.

Numeric types are described by a type name, a list of synonyms for the type
name and the set of units in which the type can be expressed and eventually a nu-
merical range. Our ontology on food microbiology contains 18 numeric types, for
example Temperature which can be expressed in ◦C or ◦F and has no numerical
range, or pH which has no unit and is restricted to the range [0, 14].

Relations are described by the name of the relation and its signature. The
signature of a relation is divided into one result type (the range of the rela-
tion) and several access types (the domain of the relation). Our ontology on
food microbiology contains 16 relations. For example, in the relation Growth ki-
netics, the result type is Microorganism concentration and the access types are
Microorganism, Food product, Temperature and Time.

The names of types and relations, as well as the possible values of a symbolic
type defined in its taxonomy, are called terms. Those terms will be used to
annotate Web tables extracted from the web.

2.2 The ontology in OWL format

The OWL representation of the ontology is divided in two parts. First, the
definition of the structure of the ontology is domain independent: what is a
symbolic type, a numeric type or a relation and what are the properties of these
different objects. Then, the second part of the ontology presents the definition
of the actual types and relations of the domain.

We have separated in the OWL representation of the ontology the concepts
(i.e. the types, the relations and the elements of the taxonomies) and the vocab-
ulary (i.e. the actual terms with their words). Any concept in the ontology can
be linked to its corresponding term via a property AssociatedTerm. The taxon-
omy of a symbolic type is viewed as a hierarchy of subclasses from a generic
OWL class Taxonomy: the symbolic type is associated to the root of its hierar-
chy via the property HasForTaxonomy. Each concept in the hierarchy (except
the taxonomy root) is associated with its corresponding term. Relations in the
ontology are n-ary. They are thus represented as advised by [10], a relation
being an OWL class associated to the types of its signature via the proper-
ties AssociatedKey (for the access types) and AssociatedResult (for the result
type). The complete OWL definition of our ontology is available for download
at http://metarisk.inapg.inra.fr/UserFiles/File/Gaelle/onto.owl.

3 Recognising relations represented in a table

Given the ontology and given a table extracted from the web, we want to find
which semantic relations described in the ontology are represented in the table.



For that purpose, we use an aggregation approach, first looking at the contents
of the cells, then computing the type of the columns and finally comparing the
signature of the table (the column types) with the signatures of the relations in
the ontology. We first distinguish between symbolic and numeric columns, using
some of the knowledge described in the ontology (mainly the units): for better
description of this step, please refer to [11] which is a preliminary version of this
work. We present here how we find the type of symbolic then numeric columns,
and finally the relations represented in the table.

3.1 Finding the type of a symbolic column

When a column contains symbolic data, we want to find which symbolic type of
the ontology corresponds to the contents of the column. For that purpose, we
compute a score of each symbolic type of the ontology for the column. This score
is a combination of the score of the type for the column according to the column
contents and the score of the type for the column according to the column title.
Both these scores use the notion of term similarity: let a and b be two terms,
represented as weighted vectors (a1, . . . , an) and (b1, . . . , bn), the coordinate axis
corresponding to the lemmatised words, the coordinate values corresponding to
the weight of the word in the term (0 if the word is not part of the term); the
term similarity between a and b is the cosine similarity [12] between the two
vectors.

sim(a, b) =
∑n

i=1 aibi√∑n
i=1 a2

i ×
∑n

i=1 b2
i

(1)

Each word, of terms from the web and in the ontology, is given a weight of
1 (except for stopwords such as articles or prepositions, as well as words that
contain only one letter, which are given a weight of 0). The score of a symbolic
type t for a column col according to the column title, noted scoretitle(t, col), is
the term similarity between the type name and the column title.

To compute the score of a symbolic type for the column according to the
column contents, we first explore each cell of the column (excluding the title).
For each cell of the column, we compute the score of each symbolic type for the
cell as the sum of the term similarities between the content of the cell and the
terms in the taxonomy of the symbolic type. Let cell be the term in a cell of the
column and t be a symbolic type, with taxo(t) the set of terms in the taxonomy
of possible values associated with t. Then the score of type t for the cell cell is:

score(t, cell) =
∑

x∈taxo(t)

sim(cell, x) (2)

For each cell of the column, we compute the proportional advantage of the type
having the best score: let best be the type with the best score and secondBest
be the type with the second best score. We compute the proportional advantage
of best for the cell cell:

advantage(best, cell) =
score(best, cell)− score(secondBest, cell)

score(best, cell)
(3)



The cell is affected the type best if its proportional advantage is higher than a
specified threshold (for our experiments, this threshold is set to 10%). Otherwise,
the cell is considered as having an unknown type.

Once all cells in the column are affected a type, we compute the score of
a type for the column according to the column contents as the proportion of
cells in the column having this type. Let col be a symbolic column with ncol the
number of cells in the column (excluding the column title), t a symbolic type
with n(t, col) the number of cells in the column having the type t, then

scorecontents(t, col) =
n(t, col)

ncol
(4)

The score of a symbolic type t for the column col is then computed as a combi-
nation of the score from the title and the score from the contents:

scorefinal(t, col) = 1− (1− scoretitle(t, col))(1− scorecontents(t, col)) (5)

The type of the column is the type having the best final score for the column,
assuming that its proportional advantage (see equation 3, replacing the score for
the cell by the final score for the column) is greater than a specified threshold
(in our experiments, this threshold was set to 10%). Otherwise the column is
considered as having an unknown type.

We have experimented our process on 81 columns containing symbolic data,
extracted from tables that appeared in publications on food microbiology. Those
columns were manually classified in one of the three symbolic types of our ontol-
ogy, or Other if it corresponded to data not modeled in the ontology. Then we
ran our process to automatically classify the columns according to their symbolic
type. The columns that were of unknown type at the end of our type recognition
process were considered as belonging to the Other category. In order to assess
the quality of our results, we wanted to compare our method with a machine
learning classifier. To our knowledge, there is no classifier that is dedicated to the
classification of symbolic data using a domain ontology. We have compared our
process to the SMO classifier [13]: as it is an optimized version of the well-known
SVM, it allows comparing our results with a machine learning method. It is thus
a comparison between two alternatives: SMO uses no domain knowledge but uses
learning, while our method is based on domain knowledge but has no learning
phase. For the SMO classifier, we used the following pre-treatment: each distinct
lemmatized word present in a column results in an attribute; the value of this
attribute for a given column is the frequency of the word in the column. The
SMO classifier was evaluated using a leave-one-out cross-validation, with default
parameters of the Weka5 implementation. Results of this experiment are given
in Table 1.

Over the three symbolic types of the ontology, we obtain a precision of 89%
and a recall of 81% with our annotation method, while the SMO classifier gives a
84% precision and a 90% recall. Our method, which uses domain knowledge but
no learning phase, gives similar results to the learning classifier, with a slightly

5 http://www.cs.waikato.ac.nz/ml/weka



our method using the ontology SMO
XXXXXXXXXmanual

computed
Food Micro. Resp. Other Food Micro. Resp. Other

Food 34 0 0 12 45 0 0 1

Micro. 0 16 0 0 4 12 0 0

Response 0 0 1 0 0 0 0 1

Other 3 3 0 12 7 0 0 11
Table 1. Classification results on 81 symbolic columns.

better precision and lower recall. This is mainly because we have biased our
annotation technique towards precision: whenever we do not know for sure the
type of a column, it is considered as unknown.

Our process has been also experimented on two other corpora: chemical risk
in food whose ontology contains 3 symbolic types and aeronautics whose ontology
contains 4 symbolic types. Over the 22 columns of the chemical risk in food
corpus containing symbolic data, we obtain a precision of 100% and a recall
of 100% with our annotation method. Over the 46 columns of the aeronautics
corpus containing symbolic data, we obtain a precision of 82% and a recall of
100% with our annotation method.

3.2 Finding the type of a numeric column

As it has been done for the symbolic columns, we find the type of a numeric
column by computing the score of each numeric type in the ontology for the
column, this score being a combination of the score of the type for the column
according to the units in the column and the score of the type for the column
according to the column title.

The score of a numeric type t for a column col according to the column title,
noted scoretitle(t, col) is the term similarity between the type name and the
column title.

To compute the numeric type for the column according to the units in the
column, we first compute the score of the numeric type for each unit that is
present in the column: a numeric type has a score for each unit, depending on
the number of numeric types that can be expressed in this unit. Let u be a unit
and Tu the set of numeric types for which this unit has been declared in the
ontology, the score of a type t for the unit u is score(t, u) = 0 if t 6∈ Tu, and
score(t, u) = 1

|Tu| if t ∈ Tu.
The score of a numeric type for the column is computed as the maximum

of the scores of the type for each unit present in the column. If no unit from
the ontology was identified in the column, then the column is considered as
presenting the unit “no unit”, which is treated as a normal unit in the ontology.

The final score of a numeric type t for the column col is a combination of the
score of t for col according to the title of the column (scoretitle(t, col)), and the



score of t for col according to the units in the column (scoreunit(t, col)). However,
types are filtered according to the numeric values presented in the column:

– if the column contains a numeric value outside the range of values for the
type t, then scorefinal(t, col) = 0.

– if all values in the column are compatible with the range of type t, then

scorefinal(t, col) = 1− (1− scoretitle(t, col))(1− scoreunit(t, col)) (6)

The type of the column is then the type having the best final score for the
column, assuming that its proportional advantage is greater than a specified
threshold (in our experiments, this threshold was set to 10%). Otherwise the
column is considered as having an unknown type.

We have experimented our method of numeric column annotation on 261
columns containing numeric data extracted from tables found in publications on
food microbiology. The columns were manually annotated with the 18 numeric
types of our domain ontology, and we compared the manual annotation with
the types computed by our method. On the 261 columns, 243 were correctly
annotated, 9 were considered as unknown and 9 were annotated with a wrong
type (i.e. 96% precision, 93% recall). By comparison, when considering the score
from title as the final score with no use of the units defined in the ontology (as
was done in [14]), precision was 96% but recall was only 83%: the use of the
units defined in the ontology allows better recall with no more errors.

Our process has been also experimented on two other corpora: chemical risk
in food whose ontology contains 5 numeric types and aeronautics whose ontology
contains 29 numeric types. Over the 65 columns of the chemical risk in food
corpus containing numeric data, we obtain a precision of 100% and a recall
of 85% with our annotation method. Over the 114 columns of the aeronautics
corpus containing numeric data, we obtain a precision of 96% and a recall of
86% with our annotation method.

3.3 Finding the relations represented in the table

Once all columns of the table are assigned a type, we want to find the semantic
relations that are represented in the table. For that purpose, we compute a score
of each relation of the ontology for the table. This score is a combination of a
score of the relation for the table according to the table title and a score of the
relation for the table according to the table signature.

The score of a relation for the table according to the table title is computed
as the term similarity between the table title and the relation name.

The score of a relation r for the table tab according to the table signature is
computed as follows:

– if the result type of the relation r was not recognized as a type of a column
of the table, then scoresignature(r, tab) = 0

– else, the score of the relation for the table is the proportion of types in its
signature that were recognized in the table columns. Let Sign(r) be the set



of types in the signature of relation r and Signtab the set of types that were
recognized for the table columns, then

scoresignature(r, tab) =
| Sign(r) ∩ Signtab |

| Sign(r) |
(7)

Then the final score of a relation r for the table tab is computed as:

scorefinal(r, tab) = 1− (1− scoretitle(r, tab))(1− scoresignature(r, tab)) (8)

When the scores of all relations of the ontology have been computed for the
table, we choose the relation(s) to keep for the table. A table can represent
several relations at a time: for example, if a table gives the pH and the water
activity of a food product, we will consider it as two separate relations: food
pH and food water activity. We define the notion of concurrent relations: two
relations are called concurrent if they have the same result type. If a relation
has a non-zero score for the table and has no concurrent relation, this relation is
considered as represented in the table. If there are several concurrent relations
with non-zero scores for the table, then we only keep the one with the highest
score for the annotation of the table. If several concurrent relations have the
same highest score, we keep them all.

We have experimented our method on 60 tables extracted from publications
on food microbiology. Those tables were manually annotated with the 16 rela-
tions of the ontology: one table was typically annotated with 1 to 5 relations,
which gives a total of 123 relations (the manually annotated tables are available
at http://metarisk.inapg.inra.fr/UserFiles/File/Gaelle/tables.zip).

We ran the different steps of our relation recognition system without validat-
ing the intermediate steps, i.e. even columns that were wrongly recognized were
further annotated and used for the relation annotation. Over the 123 relations
in the manual annotation, 119 were correctly recognized in our process, 4 were
not recognized and there were 30 relations that were kept for the tables while
they should not have been recognized. This gives a precision of 80% for a recall
of 97%. The relation recognition is biased towards recall, as we accept partially
recognized relations (only the result type is mandatory): it often happens that
we recognize two different binary relations for one result type (for example Food
property: pH and Growth parameter: pH) — one of the two relations is the one
represented in the table, the other is false.

Our process has been also experimented on two other corpora: chemical risk
in food whose ontology contains 4 relations and aeronautics whose ontology
contains 26 relations. Over the 34 relations in the manual annotation of the
chemical risk in food corpus, 27 were correctly recognized in our process, 7 were
not recognized and there were 2 relations that were kept for the tables while they
should not have been recognized. This gives a precision of 93% for a recall of 79%
with our annotation method. Over the 113 relations in the manual annotation
of the aeronautics corpus, 100 were correctly recognized in our process, 13 were
not recognized and there were 2 relations that were kept for the tables while
they should not have been recognized. This gives a precision of 98% for a recall
of 88% with our annotation method.



4 Instanciating relations and annotating the tables

To annotate the tables, we annotate each row of the table with an instance of each
relation that was recognized for the table. These instances of relations are linked
to the instances of numeric and symbolic types of their signature, corresponding
to the data available in the table row. The annotations we generate are fuzzy:
they allow one to take into account the imprecision of the initial data in the table
(for example an interval for a numeric type) as well as the problems of matching
between the vocabulary of the table and the vocabulary of the ontology, and the
uncertainty of the recognition of relations. We first present briefly the theory of
fuzzy sets that we use for our annotations, then we present how we instanciate
numeric types, symbolic types and relations.

4.1 Fuzzy sets

We use the definition of fuzzy sets given by [15, 16]. The notion of fuzzy set is
an extension of classical subsets. In the classical case, elements of a reference set
X that have some properties belong to a subset A, and elements that do not
have these properties belong to the complementary subset of A in X. In a fuzzy
set, elements can belong partially to the fuzzy set, with a membership degree
comprised between 0 (element which is not part of the fuzzy set) and 1 (element
which is completely part of the fuzzy set). The membership degree of an element
x ∈ X for the fuzzy set A is noted µA(x). When X is a continuous domain, we
talk about a continuous fuzzy set; if X is discrete, we talk about a discrete fuzzy
set.

The support of a fuzzy set A defined on a reference set X is the set (in the
classic definition) of elements x ∈ X so that µA(x) > 0. The kernel of a fuzzy set
A defined on a reference set X is the set (in the classic definition) of elements
x ∈ X so that µA(x) = 1. A trapezoid fuzzy set TFS is a special continuous
fuzzy set that is described only by its support sup = [minsup,maxsup] and its
kernel ker = [minker,maxker]. The membership degree of a numeric value x in
the reference set, is then defined as follows:
– if x ≤ minsup or x ≥ maxsup then µTFS(x) = 0;
– if minker ≤ x ≤ maxker then µTFS(x) = 1;
– if minsup ≤ x ≤ minker then µTFS(x) = x−minsup

minker−minsup
;

– if maxker ≤ x ≤ maxsup then µTFS(x) = x−maxker

maxker−maxsup
.

There are several semantics for fuzzy sets, defined in [17]:

– preferences: the elements with the higher membership degrees are the pref-
ered elements. This is used in the MIEL querying system for the user to
define query preferences;

– uncertainty or imprecision: there exists a “true” value, but we do not know
it. The higher is the membership degree of a value x, the more probable is
x to be the “true” value. This is used in our annotations to represent the
imprecision of the original data in the tables (in the instanciation of numeric
types);



– similarity: a new object is represented by its similarity with known objects.
The higher is the membership degree of a known object x, the more it is
similar to the new object. This is used in our annotations to represent the
similarity between a term from the web and terms from the ontology.

4.2 Instanciating numeric types

When instanciating a numeric type t in the signature of a relation that has been
recognised for the table, there are three possibilities:

1. There is one column in the table (thus one cell in the row to annotate) that
has been recognized as having the numeric type t. In this case, the values
in the cell are used to instanciate the type: it can be an isolated value,
an enumeration of isolated values, an interval or a mean with a standard
error. Intervals and mean with standard error are recognized using specific
patterns; if those patterns are not recognized, then all numeric values in the
cell are considered as isolated.

2. There are several columns in the table that have been recognized as having
the numeric type t. In this case, we have to find the relations between the
columns: it is done by looking for keywords in the column title. A column
can represent a minimum value, a maximum value or an optimum value
(comprised between the minimum and maximum); it can also represent a
mean value or a standard error.

3. There is no column in the table that was recognized as having the type t. If
the numeric type t has a defined unit, we search for occurences of a numeric
value followed by this unit, in the title of the table or in the titles of columns:
those occurences are then considered as isolated values.

An instance of a numeric type is represented as a fuzzy set, the reference set
being the value range defined in the ontology for the numeric type. The fuzzy
set used for annotation is a union of trapezoid fuzzy sets. The trapezoid fuzzy
sets used for the instanciation of a numeric type are constructed as follows:

– when recognizing an isolated value x in the table, we construct a trapezoid
fuzzy set with sup = ker = [x, x];

– when recognizing an interval [a, b] in the table, either in one cell or when
a is the value in a cell recognized as minimum and b is the value in a cell
recognized as maximum with no cell recognized as optimum, we construct a
trapezoid fuzzy set with sup = ker = [a, b];

– when recognizing a cell as minimum, its minimum numeric value being min,
a cell as maximum, its maximum numeric value being max and a cell as opti-
mum, its values being comprised in the minimum interval [a, b], we construct
a trapezoid fuzzy set with sup = [min,max] and ker = [a, b];

– when recognizing a mean m and a standard error e, we construct a trapezoid
fuzzy set with sup = [m− e,m + e] and ker = [m,m].

Once all trapezoid fuzzy sets are created, the annotation is constructed as the
union of all those sets (for example, there can be a union of several isolated
values).



Example 1. Table 2 is annotated with the relation of the ontology Growth pa-
rameter: pH, with the access type Microorganism and the result type pH. This
result type is instanciated, for the first row of data in the table, as a unique
trapezoid fuzzy set with sup = [5, 8.8] and ker = [6, 7].

Species pH Min pH Opt. pH Max

Bacillus cereus 5 6–7 8.8
Table 2. Excerpt of a table: Ecologic values for some foodborne bacterial pathogens
(extracted from [18])

Below is the RDF representation of the fuzzy set used for the instanciation
of type pH in the first data row of Table 2.
<onto:CFS rdf:about="Row :2/ GrowthParameterPH/PH/CFS">

<onto:IsComposedOf rdf:resource="Row :2/ GrowthParameterPH/PH/CFS/TFS:1"/>
</onto:CFS >
<onto:TrapezoidFuzzySet rdf:about="Row :2/ GrowthParameterPH/PH/CFS/TFS:1">

<onto:HasForMinSupport >5</onto:HasForMinSupport >
<onto:HasForMaxSupport >8.8</ onto:HasForMaxSupport >
<onto:HasForMinKernel >6</onto:HasForMinKernel >
<onto:HasForMaxKernel >7</onto:HasForMaxKernel >

</onto:TrapezoidFuzzySet >

To evaluate our annotation system, we have instanciated the 119 relations that
were correctly recognized in the 60 tables used for the experiment on relation
recognition. The instanciation of numeric values was analyzed for the first data
row of each table: we assume that the structure is homogeneous inside a table,
so the instanciation of the first row is representative of what happens for the
whole table. On the 119 relations, there were 2 errors on the extraction of nu-
meric values (one was an error of type recognition, one was an error of numeric
value recognition). For 5 tables (corresponding to 13 relations), the numeric type
Temperature was not instanciated because its value was not present in the table
but in the textual environment of the table in the original publication. There
also were 3 errors in interval reconstruction (values were considered as isolated
while it was an interval) and one error in the construction of a minimum/opti-
mum/maximum trapezoid fuzzy set (values were considered as isolated). For all
100 remaining relations, all numeric values were correctly instanciated.

4.3 Instanciating symbolic types

To instanciate a symbolic type t in the signature of a relation that has been
recognized for the table, we construct a fuzzy set. The reference set of this fuzzy
set is the set of all terms in the taxonomy of the type. The membership degree
of a term x in the annotation fuzzy set is the term similarity between x and the
term in the cell that has been recognized as having type t. In our 60 tables, it
did not happen that several columns in a table were recognized as having the



same type t, however, would that happen, we would construct a union of fuzzy
sets (one fuzzy set for each column).

Below is the RDF representation of the fuzzy set used for the instanciation
of type Microorganism in the first data row of Table 2 (we only represent the
elements of the taxonomy for which the membership degree is not equal to 0).

<onto:DFS rdf:about="Row :2/ GrowthParameterPH/Microorganism/DFS">
<onto:HasForElement rdf:resource="Row :2/ GrowthParameterPH/Microorganism/DFS

/elt:1"/>
<onto:HasForElement rdf:resource="Row :2/ GrowthParameterPH/Microorganism/DFS

/elt:2"/>
</onto:DFS >
<onto:BacillusCereus rdf:about="Row :2/ GrowthParameterPH/Microorganism/DFS/elt

:1">
<onto:HasForMembershipDegree >1.0</ onto:HasForMembershipDegree >

</onto:BacillusCereus >
<onto:Bacillus rdf:about="Row :2/ GrowthParameterPH/Microorganism/DFS/elt:2">

<onto:HasForMembershipDegree >0.7</ onto:HasForMembershipDegree >
</onto:Bacillus >

The quality of the annotation has been evaluated on 185 instances of food prod-
ucts. For those food products, the “best match” in the ontology (i.e. the term in
the ontology that was the nearest to the meaning of the term in the table) was
manually defined. The evaluation is done by looking at the position of the “best
match” in the automatic annotation, by order of descending membership degree.
The position is evaluated at worse, i.e. if there are several terms in the ontology
having the same membership degree in the fuzzy set used for the annotation, the
“best match” is always considered as being in last position. This evaluation at
worse is due to the need for manual validation of the annotations: if we present a
user with the 5 terms having the best membership degree for him to choose the
best, we want to be sure that the “best match” will be among those 5. On the
185 terms from the web, 78% had a “best match” for which the term similarity
with the term from the web was not null. 46% of the terms from the web had
their “best match” in first position in the computed annotation, while 66% had
their “best match” among the five best positions. This validates the approach of
keeping a fuzzy set for instanciating the symbolic types, instead of keeping only
the concept in the taxonomy having the best term similarity with the term in
the table.

4.4 Representing the relations in the table annotation

Once all types of the signature of a relation have been instanciated for a row of
the table, we can annotate the row with the relation: we create an instance of
the relation, which is related to a degree of certainty (the score that has been
computed during the relation recognition phase) via the property HasForScore,
and is related to the instances of numeric and symbolic types of its signature
that were created for the row.

Below is the annotation of the first data row of Table 2, given the DFS and
CFS that were already defined during the intanciation of symbolic and numeric
types.



<onto:GrowthParameterPH rdf:about="Row :2/ GrowthParameterPH" >
<onto:HasForScore >1.0 </ onto:HasForScore >
<onto:AssociatedKey rdf:resource="Row :2/ GrowthParameterPH/Microorganism"

/>
<onto:AssociatedResult rdf:resource="Row :2/ GrowthParameterPH/PH" />

</onto:GrowthParameterPH >
<onto:Microorganism rdf:about="Row :2/ GrowthParameterPH/Microorganism">

<onto:IsConstructedFrom rdf:resource="Row :2/ Text:1"/>
<onto:IsAnnotatedBy >

<onto:DFS rdf:resource="Row :2/ GrowthParameterPH/Microorganism/DFS"/>
</onto:IsAnnotatedBy >

</onto:Microorganism >
<onto:PH rdf:about="Row :2/ GrowthParameterPH/PH">

<onto:IsConstructedFrom rdf:resource="Row :2/ Text:2"/>
<onto:IsConstructedFrom rdf:resource="Row :2/ Text:3"/>
<onto:IsConstructedFrom rdf:resource="Row :2/ Text:4"/>
<onto:IsAnnotatedBy rdf:resource="Row :2/ GrowthParameterPH/PH/CFS" />

</onto:PH>

5 Conclusion and perspectives

In this paper we have described a complete annotation system to annotate data
tables extracted from the web. It is implemented in the @Web software which
has been developed using the standards of the WebContent platform. In @Web,
the workflow is divided into three steps: first, find documents on the web that are
relevant to the application domain; then, extract the tables from the documents;
finally annotate the tables. @Web proposes very efficient and powerful tools
which permit to transform semi-automatically the structure of a Web data table
before its automatic annotation using a domain ontology. To the best of our
knowledge, @Web is the only software which permits first to deal efficiently with
the heterogeneity and the complexity of the table structures available on the Web
and second to annotate accurately a Web table with a domain ontology. This
annotation entirely relies on the domain knowledge given in the ontology, with
no learning phase. After segregating between numeric and symbolic columns, we
recognize the types of the columns using both the column title and the contents of
the column. Then, we recognize the relations represented in the table: the use of
both the table title and the table signature helps finding the relations with a very
good recall and an acceptable precision. The relations are then instanciated for
each row of the table: the instanciation of numeric types gives very good results,
the instanciation of symbolic types being more difficult due to language variation
from one author to another. Annotations associated with each row are expressed
in a fuzzy extension of RDF representing either imprecises data or the semantic
distance between Web data tables and the ontology. This fuzzy representation
allows the use of approximate reasoning techniques in the querying step of the
annotated Web data tables using the ontology (see [2]).

In the very next future, we want to explore two ideas. The first one consists
in enhancing the performance of the annotation system using machine learning
techniques on the knowledge of the ontology but without manual training on a
subset of the corpus. The second perspective will be to exploit the annotated
Web data tables in three different applications. The Web data tables annotated



by our method will be incorporated in two applications in the field of microbial
and chemical risk in food. A third application in economic watch in the field of
aeronautics will be also realized with EADS.
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