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EIGENVALUES FOR MAXWELL'S EQUATIONS WITH DISSIPATIVE BOUNDARY CONDITIONS

Let V (t) = e tG b , t ≥ 0, be the semigroup generated by Maxwell's equations in an exterior domain Ω ⊂ R 3 with dissipative boundary condition Etan -γ(x)(ν ∧ Btan) = 0, γ(x) > 0, ∀x ∈ Γ = ∂Ω. We prove that if γ(x) is nowhere equal to 1, then for every 0 < 1 and every N ∈ N the eigenvalues of G b lie in the region Λ ∪ R N , where Λ = {z ∈ C : | Re z| ≤ C (| Im z| 1 2 + + 1), Re z < 0}, R N = {z

∂ t E = curl B, ∂ t B = -curl E in R + t × Ω, E tan -γ(x)(ν ∧ B tan ) = 0 on R + t ×
Γ, E(0, x) = e 0 (x), B(0, x) = b 0 (x).

(

with initial data f = (e 0 , b 0 ) ∈ (L 2 (Ω)) 6 = H. Here ν(x) denotes the unit outward normal to ∂Ω at x ∈ Γ pointing into Ω, , denotes the scalar product in C 3 , u tan := u -u, ν ν, and γ(x) ∈ C ∞ (Γ) satisfies γ(x) > 0 for all x ∈ Γ. The solution of the problem (1.1) is given by a contraction semigroup (E, B) = V (t)f = e tG b f, t ≥ 0, where the generator G b has domain D(G b ) that is the closure in the graph norm of functions u = (v, w) ∈ (C ∞ (0) (R 3 )) 3 × (C ∞ (0) (R 3 )) 3 satisfying the boundary condition v tan -γ(ν ∧ w tan ) = 0 on Γ.

In an earlier paper [START_REF] Colombini | Spectral problems for non elliptic symmetric systems with dissipative boundary conditions[END_REF] we proved that the spectrum of G b in Re z < 0 consists of isolated eigenvalues with finite multiplicity. If G b f = λf with Re λ < 0, the solution u(t, x) = V (t)f = e λt f (x) of (1.1) has exponentially decreasing global energy. Such solutions are called asymptotically disappearing and they are invisible for inverse scattering problems. It was proved [START_REF] Colombini | Spectral problems for non elliptic symmetric systems with dissipative boundary conditions[END_REF] that if there is at least one eigenvalue λ of G b with Re λ < 0, then the wave operators W ± are not complete, that is Ran W -= Ran W + . Hence we cannot define the scattering operator S related to the Cauchy problem for the Maxwell system and (1.1) by the product W -1 + W -. For the perfect conductor boundary conditions for Maxwell's equations, the energy is conserved in time and the unperturbed and perturbed problems are associated to unitary groups. The corresponding scattering operator S(z) : (L 2 (S 2 )) 2 → (L 2 (S 2 )) 2 satisfies the identity

S -1 (z) = S * (z), z ∈ C (1.2)
2000 Mathematics Subject Classification. Primary 35P20, Secondary 47A40, 35Q61. † The author was partially supported by the ANR project Nosevol BS01019 01 . if S(z) is invertible at z. The scattering operator S(z) defined in [START_REF] Lax | Scattering theory for dissipative systems[END_REF] is such that S(z) and S * (z) are analytic in the "physical" half plane {z ∈ C : Im z < 0} and the above relation for conservative boundary conditions implies that S(z) is invertible for Im z > 0. For dissipative boundary conditions the relation (1.2) in general is not true and S(z 0 ) may have a non trivial kernel for some z 0 , Im z 0 > 0. Lax and Phillips [START_REF] Lax | Scattering theory for dissipative systems[END_REF] proved that this implies that iz 0 is an eigenvalue of G b . The analysis of the location of the eigenvalues of G b is important for the location of the points where the kernel of S(z) is not trivial.

The main result of this paper is the following (see Figure 1)

Theorem 1.1. Assume that for all x ∈ Γ, γ(x) = 1. Then for every 0 < 1 and every N ∈ N there are constants C > 0 and C N > 0 such that the eigenvalues of G b lie in the region Λ ∪ R N , where

Λ = {z ∈ C : | Re z| ≤ C (| Im z| 1/2+ + 1), Re z < 0}, R N = {z ∈ C : | Im z| ≤ C N (| Re z| + 1) -N , Re z < 0}. If Re λ < 0 and G b (E, B) = λ(E, B) = 0, then λE = curl B on Ω, λB = -curl E on Ω, div E = div B = 0, on Ω, E tan -γ(ν ∧ B tan ) = 0 on Γ. (1.3)
This implies that u := (E, B) satisfies ∆u -λ 2 u = 0, on Ω.

The eigenvalues of G b are symmetric with respect to the real axis, so it is sufficient to examine the location of the eigenvalues whose imaginary part is nonnegative. The mapping z → z 2 maps the positive quadrant {z ∈ C : Re z > 0 , Im z > 0} bijectively to the upper half space. Denote by √ z the inverse map. The part of the

h δ Z 1 Z 2 Z 3 Figure 2. Contours Z 1 , Z 2 , Z 3 , δ = 1/2 - spectral domain {λ ∈ C : Re λ < 0 , Im λ > 0} is mapped by λ = i √ z to the upper half plane {z ∈ C : Im z > 0}. In {z ∈ C : Im z ≥ 0} introduce the sets Z 1 := {z ∈ C : Re z = 1, h δ ≤ Im z ≤ 1}, 0 < h 1, 0 < δ < 1/2, Z 2 := {z ∈ C : Re z = -1, 0 ≤ Im z ≤ 1}, Z 3 := {z ∈ C : | Re z| ≤ 1, Im z = 1}. Set λ = i √ z/h, z ∈ Z 1 ∪ Z 2 ∪ Z 3 .
To study the eigenvalues λ, |λ| > R 0 , it is sufficient to consider 0 < h 1. As z runs over the rectangle in Figure 2, with 0 < h 1, λ sweeps out the large values in the intersection of left and upper half planes. The values of z ∈ Z 2 near the lower left hand corner, z = -1, of the rectangle go the spectral values near the negative real axis. The spectral analysis near these values in Z 2 for dissipative Maxwell's equations does not have clear analogue with the spectral problems for the wave equation with dissipative boundary conditions. In fact, for the wave equation if 0 < γ(x) < 1, ∀x ∈ Γ, the eigenvalues of the generator of the corresponding semigroup are located in the domain Λ (see Section 3,[START_REF] Petkov | Location of the eigenvalues of the wave equation with dissipative boundary conditions[END_REF] and [START_REF] Majda | The location of the spectrum for the dissipative acoustic operator[END_REF]). For Maxwell's equations the eigenvalues of G b lie in the domain Λ ∪ R N and for 0 < γ(x) < 1 and γ(x) > 1 we have the same location (see Appendix for the case

K = {x ∈ R 3 : x| ≤ 1}). Equation (1.3) implies that on Ω each eigenfunction u = (E, B) of G b satisfies √ z E = h i curl B , √ z B = - h i curl E , (1.4) 
and therefore (-

h 2 ∆ -z)E = (-h 2 ∆ -z)B = 0.
For eigenfunctions (E, B) = 0, we derive a pseudodifferential system on the boundary involving E tan = E -E, ν ν and E nor = E, ν . A semi-classical analysis shows that for z ∈ Z 1 ∪ Z 3 this system implies that for h small enough we have E| Γ = 0 which yields E = B = 0. By scaling one concludes that the eigenvalues

λ = i √ z h of G b lie in the region Λ ∪ M, where M = {z ∈ C : | arg z -π| ≤ π/4, |z| ≥ R 0 > 0, Re z < 0}.
The strategy for the analysis of the case z ∈ Z 1 ∪ Z 3 is similar to that exploited in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] and [START_REF] Petkov | Location of the eigenvalues of the wave equation with dissipative boundary conditions[END_REF]. In these papers the semi-classical Dirichlet-to-Neumann map N (z, h) plays a crucial role and the problem is reduced to the proof that some h-pseudodifferantial operators is elliptic in a suitable class. For the Maxwell system the pseudodifferential equation on the boundary is more complicated. Using the equation div E = 0, yields a pseudodifferential system for E tan and E nor . We show that if (E, B) = 0 is an eigenfunction of G b , then

E nor H 1 h (Γ) is bounded by Ch E tan H 1 h (Γ)
. The term involving E nor then plays the role of a negligible perturbation in the pseudodifferentrial system on the boundary and this reduces the analysis to one involving only E tan . The system concerning E tan has a diagonal leading term and we may apply the same arguments as those of [START_REF] Petkov | Location of the eigenvalues of the wave equation with dissipative boundary conditions[END_REF] to conclude that E tan = 0 and hence E nor = 0.

The analysis of the case z ∈ Z 2 is more difficult since the principal symbol g of the pseudodifferential system for E tan need not be elliptic at some points (see Section 3). Even where g is elliptic, if | Im z| ≤ h 1/2 it is difficult to estimate the norm of the difference Op h (g)Op h (g -1 ) -I. To show that the eigenvalues of G b lying in M are in fact confined to the region R N for every N ∈ N, we analyze the real part of the following scalar product in L 2 (Γ)

Q(E 0 ) := Re (N (z, h) - √ zγ)E 0 , E 0 L 2 (Γ) , E 0 := E| Γ .
We follow the approach in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF], [START_REF] Petkov | Location of the eigenvalues of the wave equation with dissipative boundary conditions[END_REF] based on a Taylor expansion of Q(E 0 ) at z = -1 and the fact that for z = -1 we have

Q(E 0 ) = O(h N ), ∀N ∈ N.
In the Appendix we treat the case when K = {x ∈ R 3 : |x| ≤ 1} is a ball and γ = const. We prove that for γ ≡ 1 the operator G has no eigenvalues in {Re z < 0}, while for every γ ∈ R + \ {1} we have infinite number of real eigenvalues.

Pseudodifferential equation on the boundary

Introduce geodesic normal coordinates (y 1 , y ) ∈ R 3 on a neighborhood of a point x 0 ∈ Γ as follows. For a point x, y (x) is the closest point in Γ and y 1 = dist (x, Γ). Define ν(x) to be the unit normal in the direction of increasing y 1 to the surface y 1 = constant through x. Thus ν(x) is an extension of the unit normal vector to a unit vector field. The boundary Γ is mapped to y 1 = 0 and x = α(y 1 , y ) = β(y ) + y 1 ν(y ).

We have

∂ ∂x k = ν k (y ) ∂ ∂y 1 + 3 j=2 ∂y j ∂x k ∂ ∂y j , k = 1, 2, 3.
Moreover,

3 k=1 ν k (y ) ∂y j ∂x k (y 1 , y ) = ν, ∂y j ∂x = 0, j = 1, 2, 3, and 
3 k=1 ν k (x)∂ x k f (x) = ∂ y1 (f (α(y 1 , y )). Since ν(x) = 1, ν, ∂ xj ν = 0, j = 1, 2, 3. A straight forward computation yields ν(x) ∧ h i curl u(x) = ih∂ ν u tan + D x1 u, ν , D x2 u, ν , D x3 u, ν tan = ih∂ ν u tan + grad h u, ν tan -ihg 0 (u tan ), x ∈ Γ,
where

D xj = -ih∂ xj , j = 1, 2, 3, grad h f = {D xj f } j=1,2,3 , g 0 (u tan ) = { u tan , ∂ xj ν } j=1,2,3
.

Setting E nor = E, ν , from (1.3) one deduces ν ∧ B = - 1 √ z ν ∧ h i curl E = 1 √ z D ν E tan - 1 √ z grad h E nor tan -ihg 0 (E tan ) ,
where D ν = -ih∂ ν and the boundary condition in (1.3) becomes

D ν - 1 γ √ z E tan -grad h E nor tan + ihg 0 (E tan ) = 0, x ∈ Γ. (2.1) Next grad h f (x)| tan = 3 j=2 ∂y j ∂ x k D yj f (α(y 1 , y )) k=1,2,3 and for u = (u 1 , u 2 , u 3 ) ∈ C 3 , h i div u(α(y 1 , y )) = D y1 u(α(y 1 , y )), ν(y ) + 3 k=1 3 j=2 ∂y j ∂ x k D yj u k (α(y 1 , y )) = D y1 u nor (y 1 , y ) + 3 j=2 D yj u tan (α(y 1 , y )), ∂y j ∂x + h u tan , Z ,
where u(α(y 1 , y )), ν(y ) := u nor (y 1 , y ) and Z depends on the second derivatives of y j , j = 2.3. Apply the operator D y1 -

√ z γ(y ) to div E(α(y 1 , y )) = 0 to find (D 2 y1 - √ z γ(y ) D y1 )E nor (y 1 , y ) + 3 j=2 D yj (D y1 - √ z γ(y ) )E tan (α(y 1 , y )), ∂y j ∂x = h (D y1 - √ z γ )E tan , Z + h E tan , Z 1 ,
where γ(y ) := γ(β(y )).

Taking the trace y 1 = 0 and applying the boundary condition (2.1), yields

D 2 y1 + 3 j,µ=2 3 
k=1 ∂y j ∂x k ∂y µ ∂x k D 2 yj ,yµ E nor (0, y ) - √ z γ(y ) D y1 E nor (0, y ) = h grad h E nor tan (0, y ), Z + hQ 1 (E tan (0, y )), (2.2) with Q 1 (E tan (0, y )) L 2 (R 2 ) ≤ C 2 E tan (0, y ) H 1 h (R 2 ) . Here H s h (Γ), s ∈ R, denotes the semi-classical Sobolev spaces with norm h∂ x s u L 2 (Γ) , h∂ x = (1 + h∂ x 2 ) 1/2 .
In the exposition below we use the spaces (L 2 (Γ)) 3 and (H s h (Γ)) 3 of vector-valued functions but we will omit this in the notations writing simply L 2 (Γ) and H s h (Γ).

The operator -h 2 ∆ x -z in the coordinates (y 1 , y ) has the form

P(z, h) = D 2 y1 + r(y, D y ) + q 1 (y, D y ) + h 2 q -z with r(y, η ) = R(y)η , η , q 1 (y, η) = q 1 (y), η) . Here R(y) = 3 k=1 ∂y j ∂x k ∂y µ ∂x k 3 j,µ=2 = ∂y j ∂x , ∂y µ ∂x 3 j,µ=2
is a symmetric (2 × 2) matrix and r(0, y , η ) = r 0 (y , η ), where r 0 (y , η ) is the principal symbol of the Laplace-Beltrami operator -h 2 ∆ Γ on Γ equipped with the Riemannian metric induced by the Euclidean one in R 3 . We have

P(z, h)E nor (0, y ) = P(z, h)E, ν (0, y ) + hQ 2 (E(0, y )),
where

Q 2 (E(0, y )) L 2 (R 2 ) ≤ C 2 E(0, y ) H 1 h (R 2 )
. Since P(z, h)E = 0, this lets us replace the terms with all second derivatives of E nor in (2.4) by zE nor (0, y ) modulo terms having a factor h and containing first order derivatives of E nor . This follows from the form of the matrix R(y) given above. After a multiplication by -γ(y )

√ z the equation (2.2) yields (D y1 -γ(y ) √ z)E nor (0, y ) = hQ 3 (E(0, y )), (2.3) 
where Q 3 (E(0, y )) has the same properties as

Q 2 (E(0, y )). Let ψ(x) ∈ C ∞ 0 (R 3 ) be a cut-off function with support in small neighborhood of x 0 ∈ Γ. Replace E, B by E ψ = Eψ, B ψ = Bψ.
The above analysis works for E ψ and B ψ with lower order terms depending on ψ. We obtain

(D ν -γ(x) √ z)E| Γ ψ(x), ν(x) = h Q 3,ψ (E| Γ ).
Taking a partition of unity in a neighborhood of Γ, yields

(D ν -γ(x) √ z)E| Γ , ν = hQ 4 (E| Γ ), Q 4 (E| Γ ) L 2 (Γ) ≤ C E| Γ H 1 h (Γ) . (2.4) For z ∈ Z 1 ∪ Z 2 ∪ Z 3 let ρ(x , ξ , z) = z -r 0 (x , ξ ) ∈ C ∞ (T * Γ) be the root of the equation ρ 2 + r 0 (x , ξ ) -z = 0 with Im ρ(x , ξ , z) > 0. For large |ξ |, ρ(x , ξ , z) ∼ |ξ |, Im ρ(x , ξ , z) ∼ |ξ |, while for bounded |ξ |, Im ρ(x , ξ , z) ≥ h δ C .
We recall some basic facts about h-pseudodifferential operators that the reader can find in [START_REF] Dimassi | Spectral asymptotics in semi-classical limits[END_REF]. Let X be a C ∞ smooth compact manifold without boundary with dimension d ≥ 2. Let (x, ξ) be the coordinates in T * (X) and let a(x, ξ, h) ∈ C ∞ (T * (X)). Given m ∈ R, l ∈ R, δ > 0 and a function c(h) > 0, one denotes by S l,m δ (c(h)) the set of symbols so that

|∂ α x ∂ β ξ a(x, ξ, h)| ≤ C α,β (c(h)) -l-δ(|α|+|β|) (1 + |ξ|) m-|β| , ∀α, ∀β, (x, ξ) ∈ T * (X).
If c(h) = h, we denote S l,m δ (c(h)) simply by S l,m δ . Symbols restricted to a domain where |ξ| ≤ C will be denoted by a ∈ S l δ (c(h)). The h-pseudodifferential operator with symbol a(x, ξ, h) acts by

(Op h (a)f )(x) := (2πh) -d+1
T * X e -i x-y,ξ /h a(x, ξ, h)f (y)dydξ.

For matrix valued symbols we use the same definition. This means that every element of a matrix symbol is in the class S l,m δ (c(h)). Now suppose that a(x, ξ, h) satisfies the estimates

|∂ α x a(x, ξ, h)| ≤ c 0 (h)h -|α|/2 , (x, ξ) ∈ T * (X) (2.5)
for |α| ≤ d -1, where c 0 (h) > 0 is a parameter. Then there exists a constant C > 0 independent of h such that

Op h (a) L 2 (X)→L 2 (X) ≤ C c 0 (h). (2.6) For 0 ≤ δ < 1/2 products of h-pseudodifferential operators are well behaved. If a ∈ S l1,m1 δ , b ∈ S l2,m2 δ and s ∈ R, then Op h (a)Op h (b) -Op h (ab) H s (X)→H s-m 1 -m 2 +1 (X) ≤ Ch -l1-l2-2δ+1 . (2.7)
Let u ∈ C 3 be the solution of the Dirichlet problem

(-h 2 ∆ -z)u = 0 on Ω, u = F on Γ. (2.8)
Introduce the semi-classical Dirichlet-to-Neumann map

N (z, h) : H s h (Γ) F -→ D ν u| Γ ∈ H s-1 h (Γ).
G. Vodev [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] established for bounded domains K ⊂ R d , d ≥ 2, with C ∞ boundary the following approximation of the interior Dirichlet-to-Neumann map N int (z, h) related to (2.8), where the equation (-h 2 ∆ -z)u = 0 is satisfied in K.

Theorem 2.1 ([9]

). For every 0 < 1 there exists 0 < h 0 ( )

1 such that for z ∈ Z 1, := {z ∈ Z 1 , | Im z| ≥ h 1 2 -} and 0 < h ≤ h 0 ( ) we have N int (z, h)(F ) -Op h (ρ + hb)F H 1 h (Γ) ≤ Ch | Im z| F L 2 (Γ) , (2.9) 
where b ∈ S 0 0,1 (Γ) does not depend on h and z. Moreover, (2.9) holds for z ∈ Z 2 ∪Z 3 with | Im z| replaced by 1.

With small modifications (2.9) holds for the Dirichlet-to-Neumann map N (z, h) related to (2.8) (see [START_REF] Petkov | Location of the eigenvalues of the wave equation with dissipative boundary conditions[END_REF]). Applying (2.9) with N (z, h) and F = E 0 = E| Γ , we obtain

N (z, h)E 0 , ν -Op h (ρ)E 0 , ν L 2 (Γ) ≤ Ch | Im z| E 0 L 2 (Γ) .
(2.10)

Therefore (2.4) yields Op h (ρ) -γ √ z)E 0 , ν -hQ 4 (E 0 ) L 2 (Γ) ≤ Ch | Im z| E 0 L 2 (Γ) .
(2.11)

The commutator [Op h (ρ), ν(x)] is a pseudodifferential operator with symbol in h 1-δ S 0,0 δ and so

[Op h (ρ), ν k (x)]E nor H j h (Γ) ≤ C 2 h 1-δ E nor H j h (Γ) , k = 1, 2, 3, j = 0, 1. The last estimate combined with (2.11) implies (Op h (ρ) -γ √ z)E nor -hQ 4 (E 0 ) L 2 (Γ) ≤ C 3 h | Im z| + h 1-δ E 0 L 2 (Γ) .
(2.12)

Eigenvalues-free regions

For z ∈ Z 1, we have ρ ∈ S 0,1 δ with 0 < δ = 1/2-< 1/2, while for z ∈ Z 2 ∪Z 3 we have ρ ∈ S 0,1 0 (see [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF]). Since Γ is connected one has either γ(x) > 1 or 0 < γ(z) < 1. We present the analysis in the case where 0 < γ(x) < 1, ∀x ∈ Γ. The case 1 < γ(x) is reduced to this case at the end of the section. Clearly, there exists 0 > 0 such that

0 ≤ γ(x) ≤ 1 -0 , ∀x ∈ Γ.
Combing (2.4) and (2.9), yields

(Op h (ρ) -γ(x) √ z)E 0 , ν(x) L 2 (Γ) ≤ C h | Im z| E 0 L 2 (Γ) + C 1 h E 0 H 1 h (Γ) ,
where for z ∈ Z 2 ∪ Z 3 we can replace | Im z| by 1. This estimate for E 0 and the estimate for the commutator [Op h (ρ), ν k (x)] imply

(Op h (ρ) -γ(x) √ z)E nor L 2 (Γ) ≤ C 3 h | Im z| E 0 L 2 (Γ) + C 4 h 1-δ E 0 H 1 h (Γ) . (3.1)
Let (x , ξ ) be coordinates on T * (Γ). Consider the symbol

c(x , ξ , z) := ρ(x , ξ , z) -γ(x ) √ z, x ∈ Γ.
Following the analysis in Section 3, [START_REF] Petkov | Location of the eigenvalues of the wave equation with dissipative boundary conditions[END_REF], we know that c is elliptic in the case 0 < γ(x

) < 1 and if z ∈ Z 1 we have c ∈ S 0,1 δ , | Im z|c -1 ∈ S 0,-1 δ , while if z ∈ Z 2 ∪ Z 3 one gets c ∈ S 0,1 0 , c -1 ∈ S 0,-1 0 . This implies Op h (c -1 )Op h (c)E nor H 1 h (Γ) ≤ C | Im z| Op h (c)E nor L 2 (Γ) .
On the other hand, according to Section 7 in [START_REF] Dimassi | Spectral asymptotics in semi-classical limits[END_REF], the symbol of the operator Op h (c -1 )Op h (c) -I is given by

N j=1 (ih) j j! |α|=j D α ξ (c -1 )(x , ξ )D α y c(y , η ) x =y ,ξ =η + bN (x , ξ ) := b N (x , ξ ) + bN (x , ξ ), where |∂ α x bN (x , ξ )| ≤ C α h N (1-2δ)-s d -|α|/2
. Taking into account the estimates for c -1 and c, and applying (2.5), and (2.6) yields

Op h (c -1 )Op h (c) -I E nor H j h (Γ) ≤ C 5 h | Im z| 2 E nor H j h (Γ) , j = 0, 1.
Repeating the argument in Section 3 in [START_REF] Petkov | Location of the eigenvalues of the wave equation with dissipative boundary conditions[END_REF] concerning the case 0 < γ(x ) < 1, for z ∈ Z 1 and 0 < δ < 1/2, one finds

E nor H 1 h (Γ) ≤ Op h (c -1 )Op h (c) -I E nor H 1 h (Γ) + Op h (c -1 )Op h (c)E nor H 1 h (Γ) ≤ C 6 h 1-2δ E 0 L 2 (Γ) + C 5 h 1-2δ E nor H 1 h (Γ) + C 7 h 1-δ E 0 H 1 h (Γ) . (3.2) Clearly, E 0 H k h (Γ) ≤ E tan H k h (Γ) + B k E nor H k h (Γ) , k ∈ N
with B k independent of h. Hence we can absorb the terms involving the norms of E nor in the right hand side of (3.2) choosing h small enough, and we get

E nor H 1 h (Γ) ≤ Ch 1-2δ E tan H 1 h (Γ) . (3.
3)

The analysis of the case z ∈ Z 2 ∪ Z 3 is simpler since in the estimates above we have no coefficient | Im z| -1 and we obtain the same result with a factor h on the right hand side of (3.3).

With a similar argument it is easy to show that

E nor L 2 (Γ) ≤ C h 1-2δ E tan L 2 (Γ) . (3.4) 
In fact from (2.12) one obtains

Op h (c -1 ) ( Op h (ρ)-γ √ z)E nor -hQ 4 (E 0 ) L 2 (Γ) ≤ C 8 | Im z| h | Im z| +h 1-δ E 0 L 2 (Γ)
and

Op h (c -1 )Q 4 (E 0 ) L 2 (Γ) ≤ C 9 | Im z| E 0 L 2 (Γ) .
Combining these estimates with the estimate of Op h (c -1 )Op h (c) -

I L 2 (Γ)→L 2 (Γ) yields (3.4).
Going back to the equation (2.1), we have

D ν - 1 γ √ z E = D ν -γ √ z E nor ν -( 1 γ -γ) √ zE nor ν +ihg 0 (E tan ) + grad h (E nor ) tan , x ∈ Γ. (3.5)
Notice that for the first term on the right hand side of (3.5) we can apply the equality (2.4), while for E nor and grad h (E nor ) tan we have a control by the estimate (3.3). Consequently, setting E 0 = E| Γ , the right hand side of (3.5) is bounded by Ch

1-2δ E 0 H 1 h (Γ) . Next 1 < 1 1 -0 ≤ 1 γ(x) ≤ 1 0 , ∀x ∈ Γ.
This corresponds to the case (B) examined in Section 4 of [START_REF] Petkov | Location of the eigenvalues of the wave equation with dissipative boundary conditions[END_REF]. The approximation of the operator N (z, h) given by (2.9) yields the estimate

(Op h (ρ) - 1 γ √ z)E 0 L 2 (Γ) ≤ C h | Im z| E 0 L 2 (Γ) + h 1-2δ E 0 H 1 h (Γ) . (3.6) For z ∈ Z 1 ∪ Z 3 the symbol d(x , ξ , z) := ρ(x , ξ , z) - 1 γ(x ) √ z
is elliptic (see Section 4, [START_REF] Petkov | Location of the eigenvalues of the wave equation with dissipative boundary conditions[END_REF]) and d ∈ S 0,1 δ , d -1 ∈ S 0,-1 δ . Then from (3.6) we estimate E 0 H 1 h (Γ) and we obtain E 0 = 0 for h small enough. This implies E = B = 0.

Now recall that we have

Re λ = - Im √ z h , Im λ = Re √ z h . Suppose that z ∈ Z 1 . Then | Re λ| ≥ C(h -1 ) 1-δ , | Im λ| ≤ C 1 h -1 ≤ C 2 | Re λ| 1 1-δ . So if | Re λ| ≥ C 3 | Im λ| 1-δ , Re λ ≤ -C 4 < 0, there are no eigenvalues λ = i √ z h of G b .
In the same way we handle the case z ∈ Z 3 and we conclude that if z ∈ Z 1 ∪ Z 3 for every > 0 the eigenvalues λ = i 

M δ0 = {z ∈ C : | arg z -π| ≤ arctg δ 0 , |z| ≥ R 0 (δ 0 ) > 0, Re z < 0}.
The investigation of the case z ∈ Z 2 is more complicated since the symbol d may vanish for Im z = 0 and (x 0 , ξ 0 ) ∈ T * (Γ) satisfying the equation

1 + r 0 (x 0 , ξ 0 ) - 1 γ(x 0 ) = 0.
To cover this case and to prove that the eigenvalues λ = i √ z h with z ∈ Z 2 are confined in the domain R N , ∀N ∈ N, we follow the arguments in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] and [START_REF] Petkov | Location of the eigenvalues of the wave equation with dissipative boundary conditions[END_REF]. For z ∈ Z 2 we introduce an operator T (z, h) that yields a better approximation of N (z, h). In fact, T (z, h) is defined by the construction of the semi-classical parametrix in Section 3, [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] for the problem (2.8) with F = E 0 . We refer to [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] for the precise definition of T (z, h) and more details. For our exposition we need the next proposition. Since (∆ -z)E = 0, as in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF], we obtain Proposition 3.1. For z ∈ Z 2 and every N ∈ N we have the estimate

N (z, h)E 0 -T (z, h)E 0 H 1 h (Γ) ≤ C N h -s0 h N E 0 L 2 (Γ) (3.7)
with constants C N , s 0 > 0, independent of E 0 , h and z, and s 0 independent of N .

Proof of Theorem 1.1 in the case z ∈ Z 2 . Consider the system

   D ν -1 γ √ z E tan -grad h E nor tan + ihg 0 (E tan ) = 0, x ∈ Γ, div h E tan + div h E nor ν = 0, x ∈ Γ, (3.8) 
where div h F =

3 k=1 D x k F k . Take the scalar product , L 2 (Γ) in L 2 (Γ) of the first equation of (3.8
) and E tan . Applying Green formula, it easy to see that

-Re grad h E nor tan , E tan L 2 (Γ) = -Re div h E tan , E nor L 2 (Γ) .
(3.9)

We claim that

Im g 0 (E tan ), E tan L 2 (Γ) = 0. (3.10) Let E tan = (w 1 , w 2 , w 3 ). Then g 0 (E tan ), E tan C 3 = 3 k,j=1 w k ∂ν k ∂x j w j = 1 q 3 k,j=1 w k ∂V k ∂x j w j = 1 q Sw, w C 3 ,
where S := { ∂V k ∂xj } 3 k,j=1 with V (x) = q(x)ν(x), q(x) > 0 because

3 k=1 (∂ xj q)w k ν k = 0. Thus if the boundary is given locally by x 3 = G(x 1 , x 2 ), we choose V (x) = (-∂ x1 G, -∂ x2 G, 1
) and it is obvious that S is symmetric. Therefore Im Sw, w C 3 = 0 and this proves the claim. Hence (3.10) implies Re[ih g 0 (E tan ), E tan L 2 (Γ) ] = 0.

(3.11)

From the L 2 (Γ) scalar product of the second equation in (3.8) with E nor , we obtain

Re div h E tan , E nor L 2 (Γ) + Re D ν E nor , E nor L 2 (Γ) = 0. (3.12) In fact, div h (E nor ν) = D ν E nor -ihE nor div ν and Im div ν|E nor | 2 = 0.
Taking together (3.9), (3.11) and (3.12), we conclude that

Re (D ν - √ z γ )E tan , E tan L 2 (Γ) + D ν E nor ν, E nor ν L 2 (Γ) = Re D ν E, E L 2 (Γ) -Re √ z γ E tan , E tan L 2 (Γ) = 0.
Here we have used the fact that

D ν E tan , E nor ν C 3 = D ν E tan , E nor ν C 3 = 0. Applying Proposition 3.1 with E| Γ = E 0 , yields Re T (z, h)E 0 , E 0 L 2 (Γ) -Re √ z γ E tan , E tan L 2 (Γ) ≤ C N h -s0 h N E 0 L 2 (Γ) .
(3.13) For z = -1, as in Lemma 3.9 in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] and Lemma 4.1 in [START_REF] Petkov | Location of the eigenvalues of the wave equation with dissipative boundary conditions[END_REF], we have

| Re T (-1, h)E 0 , E 0 L 2 (Γ) | ≤ C N h -s0+N E 0 2 L 2 (Γ) = 0.
Consequently, by using Taylor formula for the real-valued function

Re T (z, h)E 0 , E 0 L 2 (Γ) - √ z γ E tan , E tan L 2 (Γ)
, we get for every N ∈ N the estimate

Im ( ∂T ∂z (z t , h))E 0 , E 0 L 2 (Γ) - γ 1 2 √ z t E tan , E tan L 2 (Γ) ≤ C N h -s0+N | Im z| E 0 2 L 2 (Γ) , (3.14) 
where

z t = -1 + it Im z, 0 < t < 1, γ 1 = γ -1 .
According to Lemma 3.9 in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF], in (3.14) we can replace ∂T ∂z (z t , h) by Op h ( ∂ρ ∂z (z t )) and this yields an error term bounded by Ch E 0 2 H -1 h (Γ) . On the other hand,

Op h ( ∂ρ ∂z (z t ))E tan , E nor ν L 2 (Γ) + Op h ( ∂ρ ∂z (z t ))E nor , E tan ν L 2 (Γ) ≤ Ch E 0 2 L 2 (Γ)
since the estimate (3.4) holds for z ∈ Z 2 with factor h and ∂ρ ∂z (z t ) ∈ S 0,-1 0 .

Thus the problem is reduced to a lower bound of

J := Im Op h ( ∂ρ ∂z (z t ))- γ 1 2 √ z E tan , E tan L 2 (Γ) + Op h ( ∂ρ ∂z (z t ))E nor ν, E nor ν L 2 (Γ) ≥ Im Op h ( ∂ρ ∂z (z t )) - γ 1 2 √ z E tan , E tan L 2 (Γ) -C 1 E nor 2 L 2 (Γ) .
Since γ 1 (x) > 1, ∀x ∈ Γ, applying the analysis of Section 4 in [START_REF] Petkov | Location of the eigenvalues of the wave equation with dissipative boundary conditions[END_REF] for the scalar product involving E tan , one deduces

Im Op h ( ∂ρ ∂z (z t )) - γ 1 2 √ z E tan , E tan L 2 (Γ) ≥ η 1 E tan 2 L 2 (Γ) , η 1 > 0.
By using once more the estimate (3.4), for h small enough we obtain

J ≥ η 1 E tan 2 L 2 (Γ) + E nor 2 L 2 (Γ) -B 0 h E tan 2 L 2 (Γ) ≥ η 2 E 0 2 L 2 (Γ) , 0 < η 2 < η 1 .
Consequently, (3.14) yields

(η 2 -B 1 h) E 0 2 L 2 (Γ) ≤ C N h -s0+N | Im z| E 0 2 L 2 (Γ)
and for small h we conclude that for z ∈ Z 2 the eigenvalues λ = i √ z h of G b lie in the region R N . This completes the analysis of the case 0 < γ(x) < 1, ∀x ∈ Γ.

To study the case γ(x) > 1, ∀x ∈ Γ, we write the boundary condition in (1.1) as

1 γ(x) (ν ∧ E tan ) -(ν ∧ (ν ∧ B tan )) = 1 γ(x) (ν ∧ E tan ) + B tan = 0. Next ν ∧ E = 1 √ z ν ∧ h i curl B = - 1 √ z D ν B tan + 1 √ z grad h B nor tan -ihg 0 (B tan )
and one obtains

D ν -γ(x) √ z B tan -grad h B nor tan + ihg 0 (B tan ) = 0, x ∈ Γ (3.15)
which is the same as (2.1) with E tan , E nor replaced respectively by B tan , B nor and 1 γ(x) replaced by γ(x) > 1. We apply the operator D y1 -γ √ z to the equation div B = 0 and repeat without any change the above analysis concerning E tan , E nor . Thus the proof of Theorem 1.1 is complete.

Remark 3.2. The result of Theorem 1.1 holds for obstacles K = ∪ J j=1 K j , where K j , j = 1, ..., J are open connected domains with C ∞ boundary and K i ∩ K j = ∅, i = j. Let Γ j = ∂K j , j = 1, ..., J. In this case we may have γ(x) < 1 for some obstacles Γ j and γ(x) > 1 for other ones. The proof extends with only minor modifications. The construction of the semi-classical parametrix in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] is local and for the Dirichlet-to-Neumann map N j (z, h) related to Γ j we get the estimate

N j (z, h)(F ) -Op h (ρ + hb)F H 1 h (Γj ) ≤ Ch | Im z| F L 2 (Γj ) .
The boundary condition in (1.1) is local and we can reduce the analysis to a fixed obstacle K j . If (E, B) = 0 is an eigenfunction of G b , our argument implies E tan = 0 for x ∈ Γ j if 0 < γ(x) < 1 on Γ j and B tan = 0 for x ∈ Γ j in the case γ(x) > 1 on Γ j . By the boundary condition we get E tan = 0 on Γ and this yields E = B = 0 since the Maxwell system with boundary condition E tan = 0 has no eigenvalues in {z ∈ C : Re z < 0}.

Appendix

In this Appendix, assume that γ > 0 is constant. Our purpose is to study the eigenvalues of G b in case the obstacle is equal to the ball

B 3 = {x ∈ R 3 : |x| ≤ 1}. Setting λ = iµ, Im µ > 0, an eigenfunction (E, B) = 0 of G b satisfies curl E = -iµB, curl B = iµE. (4.1)
Replacing B by H = -B yields for (E, H) ∈ (H 2 (|x| ≤ 1)) 6 ,

curl E = iµH, curl H = -iµE, for x ∈ B 3 , E tan + γ(ν ∧ H tan ) = 0, for x ∈ S 2 . (4.2)
Expand E(x), H(x) in the spherical functions Y m n (ω), n = 0, 1, 2, ..., |m| ≤ n, ω ∈ S 2 and the modified Hankel functions h [START_REF] Colombini | Incoming and disappearing solutions of Maxwell's equations[END_REF] n (z) of first kind. An application of Theorem 2.50 in [START_REF] Kirsch | The Mathematical Theory of Time-Harmonic Maxwells Equations[END_REF] (in the notation of [START_REF] Kirsch | The Mathematical Theory of Time-Harmonic Maxwells Equations[END_REF] it is necessary to replace ω by µ ∈ C \ {0}) says that the solution of the system (4.2) for |x| = r = 1 has the form

E tan (ω) = ∞ n=1 |m|≤n α m n h (1) n (µ) + d dr h (1) n (µr)| r=1 U m n (ω) + β m n h (1) n (µ)V m n (ω) , H tan (ω) = - 1 iµ ∞ n=1 |m|≤n β m n h (1) n (µ)+ d dr h (1) n (µr)| r=1 U m n (ω)+µ 2 α m n h (1) n (µ)V m n (ω) .
Here

U m n (ω) = 1 √ n(n+1) grad S 2 Y m n (ω) and V m n (ω) = ν ∧ U m n (ω) for n ∈ N, -n ≤ m ≤ n form a complete orthonormal basis in L 2 t (S 2 ) = {u ∈ (L 2 (S 2 )) 3 : ν, u = 0 on S 2 }. To find a representation of ν ∧ H tan , observe that ν ∧ (ν ∧ U m n ) = -U m n , so (ν∧H tan )(ω) = - 1 iµ ∞ n=1 |m|≤n β m n h (1) n (µ)+ d dr h (1) n (µr)| r=1 V m n (ω)-µ 2 α m n h (1) n (µ)U m n (ω)
and the boundary condition in (4.2) is satisfied if

α m n h (1) n (µ) + d dr (h (1) n (µr))| r=1 -γiµh (1) n (µ) = 0, ∀n ∈ N, |m| ≤ n, (4.3) 
- β m n γ iµ h (1) n (µ) + d dr (h (1) n (µr))| r=1 - iµ γ h (1) n (µ) = 0, ∀n ∈ N, |m| ≤ n. (4.4) 
For γ ≡ 1, there are no eigenvalues. Proof. The functions h

n (z) have the form (see for example [START_REF] Olver | Asymptotics and Special Functions[END_REF])

h (1) n (x) = (-i) n+1 e ix x n m=0 i m m!(2x) m (n + m)! (n -m)! = (-i) n+1 e ix x R n i 2x with R n (z) := n m=0 z m m! (n + m)! (n -m)! = n m=0 a m z m .
Therefore the term in the brackets [...] in (4.3) becomes

(1 -γ)iµR n i 2µ - n m=0 a m m i 2µ m .
Setting w = i 2µ , we must study for Re w > 0 the roots of the equation

g n (w) := 1 -γ 2w R n (w) + wR n (w) = 0 . (4.5) 
For γ = 1 one obtains R n (w) = 0. A result of Macdonald says that the zeros of the function h

n (z) lie in the half plane Im z < 0 (see Theorem 8.2 in [START_REF] Olver | Asymptotics and Special Functions[END_REF]), hence R n (w) = 0 for Re w ≥ 0. By the theorem of Gauss-Lucas we deduce that the roots of R n (w) = 0 lie in the convex hull of the set of the roots of R n (w) = 0, so R n (w) = 0 for Re w > 0. Consequently, (4.3) and (4.4) are satisfied only for α m n = β m n = 0 and E tan = 0. This implies E = H = 0.

For the case γ = 1, there are an infinite number of real eigenvalues. Proposition 4.2. Assume that γ ∈ R + \{1} is a constant. Then G b has an infinite number of real eigenvalues. Let γ 0 = max{γ, 1 γ }. Then all real eigenvalues λ with exception of the eigenvalue

λ 1 = - 2 (γ 0 -1) 1 + 1 + 4 γ0-1 . (4.6) 
satisfy the estimate

λ ≤ - 1 max{(γ 0 -1), √ γ 0 -1} . ( 4.7) 
Proof. Assume first that γ > 1. Then q n (w) = wg n (w) = 0 has at least one real root w 0 > 0. Indeed, q n (0) = 1-γ 2 < 0, q n (w) → +∞ as w → +∞. Choosing α m0 n = 0 for an integer m 0 , |m 0 | ≤ n and taking all other coefficients α m n , β m n equal to 0, yields E tan = 0 and G b has an eigenfunction with eigenvalue λ = -1 2w0 < 0. It is not excluded that g n (w) and g m (w) for n = m have the same real positive root. If we assume that for Re w > 0 the sequence of functions {g n (w)} ∞ n=1 has only a finite number of real roots w 1 , ..., w N , w j ∈ R + , then there exists an infinite number of functions g nj (w) having the same root which implies that we have an eigenvalue of G b with infinite multiplicity. This is a contradiction, and the number of real eigenvalues of G b is infinite.

It remains to establish the bound on the real eigenvalues. First, consider the case n = 1. Then one obtains the equation This easily yields λ ≤ -1 (γ -1) . (4.9)

In the case 0 < γ < 1 one has 1/γ > 1 and we apply the above analysis to the equation (4.4). Setting γ 0 = max{γ, 1 γ } and taking into account (4.8) and (4.9), we obtain the result. This completes the proof. Remark 4.3. Proposition 4.2 yields a more precise result than that in [START_REF] Colombini | Incoming and disappearing solutions of Maxwell's equations[END_REF] since we prove the existence of an infinite number of real eigenvalues G b for every γ ∈ R + \ {1}. In the case γ = 1 1+ , > 0 the eigenvalue λ 1 has the form

λ 1 = 1 2 1 -1 + 4
and this result for small > 0 has been obtained in [START_REF] Colombini | Incoming and disappearing solutions of Maxwell's equations[END_REF]. Clearly, as γ → 1 the real eigenvalues of G b go to -∞. .

It is easy to see that for γ > 1 the equation g n (w) = 0 has no complex roots. Denote by z j , Re z j < 0, j = 1, ..., n, n ≥ 1
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  of G b lie in the domain Λ ∪ M, where M = {z ∈ C : | arg z -π| ≤ π/4, |z| ≥ R 0 > 0, Re z < 0}, Λ being the domain introduced in Theorem 1.1. Of course, if we consider the domain Z 3,δ0 = {z ∈ C : | Re z| ≤ 1, Im z = δ 0 > 0}, instead of Z 3 , we obtain an eigenvalue-free region with M replaced by
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the roots of R n (w) = 0. Suppose that g n (w 0 ) = 0, n ≥ 1 with Re w 0 > 0, Im w 0 = 0. Then

and

On the other hand, if z j with Im z j = 0 is a root of R n (w) = 0, then zj is also a root and Im

The term in the brackets [...] is positive, and one concludes that Im w 0 = 0. Repeating the argument of the Appendix in [START_REF] Petkov | Location of the eigenvalues of the wave equation with dissipative boundary conditions[END_REF], one can show that for 0 < γ < 1 the complex eigenvalues of G b lie in the region z ∈ C : |arg z -π| > π/4, Re z < 0 . Remark 4.4. We do not know if there exist non real eigenvalues for B 3 .