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Abstract

This paper deals with a problem of dimensionality reduction for
hyperspectral images using the principal component analysis. Hyper-
spectral image reduction is improved by adding structural/spatial in-
formation to the spectral information, by means of mathematical mor-
phology tools. Then it can be useful in supervised classification for
instance. The key element of the approach is the computation of a
covariance matrix which integrates simultaneously both spatial and
spectral information. Thanks to these new covariance matrices, new
features can be extracted. To prove the efficiency of these new fea-
tures we have conducted an extended study showing the interest of the
structural/spatial information.

Keywords: multivariate image ; hyperspectral images, dimensionality
reduction ; mathematical morphology ; nonlinear image processing.

1 Introduction

Hyperspectral images allow us to reconstruct the spectral profiles of ob-
jects imaged by the acquisition of several tens or hundred of narrow spec-
tral bands. Conventionally, in many applications hyperspectral images are
reduced in dimension before any processing. Many hyperspectral image re-
duction methods are linear and do not care about the multiple sources of
nonlinearity presented in this kind of images [1]. Nonlinear reduction tech-
niques are nowadays widely used on data reduction, and some of them have



been used in hyperspectral images [2]. Nevertheless, most of these tech-
niques present some disadvantages [3] in comparison to the canonical linear
principal component analysis (PCA). That is the rationale behind our choice
of PCA as starting point. In particular, one major drawback of those nonlin-
ear techniques is that they are computationally too complex in comparison
to PCA. Hence most of the time, they cannot be applied on real full images.
Another common disadvantage of classical linear and nonlinear dimension-
ality reduction techniques is that they consider a hyperspectral image as a
set of vectors. They are appropriate when the data do not present useful
spatial information, and therefore they are not really adapted to images.

As mentioned above, dimensionality reduction in hyperspectral images
is usually considered as preprocessing step for supervised pixel classifica-
tion as well as for other hyperspectral image tasks such as unmixing, target
detection, etc. Hence, to incorporate spatial information into the classifi-
cation goal is often considered by means of spatial/spectral dimensionality
reduction.

The contribution of our approach can be summarized as follows. We
propose to add structural/spatial information on the estimation of the co-
variance matrix used to carry out the PCA. This is done by means of mor-
phological image representations, which involves a nonlinear embedding of
the original hyperspectral image into a morphological image feature space.

Many previous works have considered how to introduce structural /spatial
information into hyperspectral dimensionality image reduction. We can di-
vide these techniques into different fields. The first family of techniques are
close to our paradigm since they are based on mathematical morphology
[4, 5, 6, 7, 8]. Others approaches are founded on Markov random field im-
age representation such as [9, 10]. Another family of techniques uses kernel
methods, where kernels for spatial information and kernels for spectral infor-
mation are combined together [11, 12, 13, 14]. Techniques based on tensor
representation of hyperspectral images [15, 16] have been successfully con-
sidered. Finally, wavelet representation and image extracted features have
also used to add spatial information [17].

The rest of the paper is organized as follows. Section 2 provides a remind
on the mathematical morphology multi-scale representation tools used in
our approach. Mathematical morphology is a well known nonlinear image
processing methodology based on the application of complete lattice theory
to spatial structures. Section 3 introduces in detail our approach named
morphological principal component analysis (MPCA). In order to justify our
framework, a summary of the classical theory underlying the standard PCA
is provided as well as the notion of Pearson image correlation. Then, the four



variants of MPCA are discussed, including an analysis of their corresponding
covariance matrix meaning. The application of MPCA to hyperspectral
dimensionality image reduction is considered in Section 4. That involves an
assessment of the different variants according to different criteria. For some
of the criteria new techniques to evaluate the quality of a dimensionality
reduction technique on image processing are introduced. Techniques arising
from manifold learning are also considered. Finally, Section 5 closes the
paper with the conclusions.

We note that this paper is an extended and improved version of the
conference contribution [18].

2 Basics on morphological image representation

The goal of this section is to introduce a short background on morphological
operators and transforms used for the sequel. Notation used in the rest of
this paper is also stated.

2.1 Notation

Let E be a subset of the discrete space Z2, which represents the support
space of a 2D image and F' C RP be a set of pixels values in dimension D.
Hence, it is assumed in our case that the value a pixel x € F is represented
by a vector v € F of dimension D, where discrete space E has a size of ny xno
pixels. This vector v represents the spectrum at position z. Additionally, we
will write higher order tensors by a calligraphic upper-case letters (Z, S, .. .).
The order of tensor Z € R™1*"2%--X"J ig J Moreover if Z € R™*"2X"3_for all
i € [1,n3] Z. . ; represents a matrix of size ny x ng where the third component
is equal to 7. In our case we can also associate a tensor to the hyperspectral
image F € Rmxn2xD,

2.2 Nonlinear scale-spaces and morphological decomposition

Let f : E — 7Z be a grey-scale image. Area openings g (f) (resp. area
closings ¢¢ (f)) are morphological filters that remove from the image f the
bright (resp. dark) connected components having a surface area smaller
than the parameter s; € N [19]:

Ve, (f) = \/{’ygi(f)\B,- is connected and card(B;) = s}, (1)

w5, (f) = /\{ngi(f)|Bi is connected and card(B;) = s}, (2)
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where v5(f) and ¢p(f) represent respectively the morphological flat open-
ing and closing according to structuring element B [20]. We note that these
connected filters can be implemented as binary filters on the stack decom-
position of f into upper level sets. Figure 1 illustrates how area opening
and area closing modify a simple image f.

S hn O

Figure 1: Illustration of an area opening 75 and an area closing ¢§, of image
f, with s; = 7 pixels.

Area opening and area closing are quite good to simplify images, with-
out deforming the contours of the objects. In addition, area opening and
closing can be used to produce a multi-scale decomposition of an image.
The notion of morphological decomposition is related to the granulometry
axiomatic [20]. Let us consider {y¢}, 1 <1 < S and {¢g}, 1 <1 <5, two
indexed families of are openings and closings respectively. Typically, the
index [ is associated to scale, or more precisely to the surface area. Namely,
we have on the one hand

S

fo= D 05 () =v8(h) + 75 (); (3)
=1 ;

o= h(f Z%l — 98 (). (4)

On the other hand, we can rewrite the decomposition [15]:

S
f=1/2 ((vss(f) + s () + D (V8 () = e(f Z (2 (f @?l_l(f))> :
=1 =1

Therefore we have an additive decomposition of the initial image f into
S scales, together with the average larger area opening and closing. We
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remark that residue (vg_ (f) — 74 (f)) represents bright details between
levels s; and s;_1. Similarly, (o5 (f) — % | (f)) stands for dark details
between levels s; and s;_1. At this point, some issues must be taken into
account. First, after decomposing an image into S scales, we have now to
deal with an image representation of higher dimensionality. Second, the
decomposition may not be optimal since it depends on the discretization of
S scales, i.e., size of each scale. In order to illustrate that issue, we have
represented in Figure 2(a) a channel of Pavia hyperspectral image and in
Figure 2(b) its morphological decomposition by area openings that we have
over-estimated. As it may be noticed from Figure 2(b), the choice of the
scales is fundamental in order to avoid a redundant decomposition.

In order to deal with the problem of scale discretization, we propose
to use the pattern spectrum that provides information about the image
component size distribution. We can also notice another technique to find
the optimal discretization [21].

2.3 Pattern Spectrum

The notion of pattern spectrum (PS) [22] corresponds to the probability
density function (pdf) underlying a granulometric decomposition by mor-
phological openings and closings [23, 20]. The area-based PS of f at size s;
is given by

PS*(f,1) = [Mes(7,(f) = 75, (£))] /Mes(), (5)
PS(f,~1) = [Mes(¢f,,(f) = &%, (£)] /Mes(f), (6)

where Mes represents here the integral of the image. Two images having
the same pattern spectrum have the same morphological distribution ac-
cording to the choice of the family of openings/closings. Since our goal is
to have a non-redundant multi-scale representation with the same morpho-
logical representation than the original image, then by sampling the PS and
choosing the scales of the distribution which keep it as similar as possible to
the image PS, we can expect to find the appropriate discretization of scales.
However, as you can see in Figure 3, the PS is not a smooth function, and
consequently, sampling it with a limited number of scales would not lead to
a good result.

Based on the analogy between the PS and probability density function,
we can compute its corresponding cumulative pattern spectrum (CPS) for
both sides [ > 0 and [ < 0. Naturally, this function is smoother than the PS.
In order to select the appropriate scales, the CPS for openings and closings



are sampled, where the number of samples is fixed and is equal to S, under
the constrain that the sampled function must be as similar as possible to
the original function.

An example of such sampling is given in Figure 3, where the approxi-
mation of the CPS is depicted in red and the CPS of the original image in
blue. It is well known in probability that two distributions that have the
same cumulative distribution function have the same probability distribu-
tion function. Based on this property, we can expect that the discretization
from the CPS approximates the original PS of the image and consequently,
the selected scales represent properly the size distribution of the image.

2.4 Gray-scale distance function

Let X be the closed set associated to a binary image. The distance function
corresponding to set X gives at each point z € X a positive number that
depends on the position of z with respect to X and is given by [24]:

dist(X)(z) = min{d(x,y) : y € X} (7)

where d(z,y) is the Euclidean distance between points z and y, and where
X¢is the complement of set X. This well known transform is very useful in
image processing [24].

Distance function of binary images can be extended to gray-scale images
f by considering its representation into upper level sets { X4 (f)},<, <, where

Xn(f)={z € E : f(z)=hj,
such that a = min{f(z),x € E}, and b = max{f(z),z € E}. Then, the

so-called the gray-scale distance transform of f is defined as [25]:

b
dist(f)(2) = (b—a)™" Y dist (Xa(f)) (). (8)
h=a

That is, the gray-scale distance transform of f is equal to the sum of the
distance functions from its upper level sets.



Figure 2: (a) Channel number 50 of Pavia hyperspectral image

and (b) its morphological decomposition by area openings g, s =
{0.510%,1 10%,5 10,7 10%,1 103,2 103,5 103,7 103,1 10%,1.2 10%, 1.5 10%,2.5 10%}.
Last image in (b) correspond to 7¢,, sg = 2.5 10*; the other images in (b)

are (vg,_, (f) — 75 (f)). Note that the contrast of images has been enhanced

to improve visualization.
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Figure 3: On the left, the pattern spectrum (PS) by area openings of a
gray-scale image using 100 scales. On the right, in blue, its corresponding
cumulative pattern spectrum (CPS); in red, its approximation with S = 8
scales.



3 Morphological Principal Component Analysis (MPCA)

We introduce in this section the notion of MPCA and its variants. Before
that, a mathematical background on PCA and covariance/correlation matrix
will be provided in order to state the rationale behind MPCA.

3.1 Remind on classical PCA

Principal Component Analysis (PCA), also known as Karhunen-Loeve trans-
form, Hotelling transform, SVD transform, etc., is without any doubt the
most useful technique for data dimensionality reduction.

Let us start with a set of vectors {v;} € RP 1 < i < n, where n
represents the number of vectors; in our case it corresponds to the number
of image pixels, i.e., n = nins since ny and n9 are the two spatial dimensions.
The goal of the PCA is to reduce the dimension of this vector space thanks
to a projection on the principal component space, namely

F={v}io, — F = {v}}, (9)

with v} € R, where d < D. In our case, dataset F' € M, p(R) represents the
hyperspectral image F, where each column Fy, € R", 1 < k < D corresponds
to a vectorized spectral band. PCA should find a projective space such that
the mean squared distance between the original vectors and their projections
is as small as possible. As we just show, this is equivalent to find the
projection that maximizes the variance.

Let us call w; € RP, where j are the principal components. The aim of
PCA is to find the set of vectors {w;,1 < j < D} such as

n
argmin |n ! Z |vi— < v, w; > wj||?|, V1<j<D. (10)
w;

i=1
Developing now the distance we have:
||UZ'— < v, wj > ZUjH = HUZH2 —-2< Vi, Wy >2 + < Vi, W >2 '||ZUjH2,

then, by adding the additional constraint that [Jw;||* = 1, replacing in (10),
and keeping only terms that depend on w;, we obtain the following new
objective function:

n

arg max n_lz <wi,w; > V1<j<D. (11)

wy,|lwj[|2=1 i=1



Since
n n
var(< v, w; >) =n"" Z(< v, wj >)? — (n7! Z(< vi,wj >))%,
i=1 i

if we consider that the dataset F' has been column-centered, which means
that Y1 v; = 0, then var(< v, w; >) = n~! 3% (< v;,w; >)% Thus
we can see that the PCA aims finding principal components that maximize
the variance. The problem can be rewritten in a matrix way using the
development:

n
n! Z <wvi,w; >2 = n Y (Fuw))T (Fw;)
i=1

= w;*r(n_l(FTF))wj = w;*-Fij,

where V = n"YFTF), V € Mp p(R), is the covariance matrix of F. Hence
the problem to be optimized is written as

arg max w;*-Fij, Vi<j<D. (12)
wjs[lw;|2=1

Thanks to Lagrange multiplier theorem, we can rewrite the objective
function (12) as:

L(wj,\) = w;fFij — )\(w;*-rwj - 1), (13)

where A € R. Since one should maximize this function, we had to derive it
and to make it equal to zero, i.e.,

OL
8—10]‘(1%’ )\) = ZVZUj - 2)\’[0]' =0.
Finally, we obtain the solution:

Thus, the principal component w; that satisfies the objective function is an
eigenvector of the covariance matrix V, and the one maximizing L(wj, A) is
the one with the largest eigenvalue. Then we can have all the w; by simply
computing the SVD of V.

There are different approaches to choose the reduced dimension d, that
is the number of the principal component to be kept. The underlying as-
sumption is the following: if the intrinsic dimension of the data is d, then
the remaining d — D eigenvalues, corresponding to the eigenvectors that are
discarded, should be significantly small. This principle is expressed using
Prop = Z;l:l A/ ZjDzl Aj, which is equal to the proportion of the original
variance kept. Typically, in all our examples we fix Prop = 0.9.
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3.2 Covariance matrix and Pearson correlation matrix

The covariance between two channels (or spectral bands) of an hyperspectral
image JF is computed as

niy n2

Covar (F. .k, For) = ZZ ik — E(F)] [Fijw —EF)],  (15)

lel

where E(F) is the mean of the hyperspectral image. The covariance is very
meaningful, however this is not a similarity measure [26], in the sense of a
metric, since it is not range limited. In order to fulfill this requirement, a
solution consists in normalizing the covariance, which leads to the notion of
Pearson correlation:

Corr (Fops For) ii [ ,jk )] {fm,k/% E(f)] C(6)

=1 j=1

1/2
where oy, = [l ity 252y (Figk — E(.F))2] . The correlation coefficient

n
varies between +1 and —1, such that Corr (.F,;,k,}";,;,k/) = 1 involves that
F..r and F. . s perfectly coincide. It has been proved that the best fitting
case corresponds to[27]:

g
Fijh = Corr (Fuop Frow) 7 (Fijur — B(F)) +E(F), (17)
k

Therefore, from (17), we can see that the correlation is a linear coefficient
between F; ;  and F; ; ;. This means that Pearson correlation is a similarity
criterion which depends on the intensities of the images and their linear
relations.

3.3 MPCA and its variants

The fundamental idea of Morphological Principal Component Analysis (MPCA)
consists in replacing the covariance matrix V' of PCA, which represents
the statistical interaction of spectral bands, by a covariance matrix Vitorpho
computed from a morphological representation of the bands. Therefore,
mathematical morphology is fully integrated in the dimensionality reduc-
tion problem by standard SVD computation to solve

VMorphowj = )\jwj .

11
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Figure 4: Process of MPCA.

The corresponding principal components w; provides the projection space
for the hyperspectral image F. This principle is illustrated in the diagram
of Figure 4.

We propose three variants of MPCA which are summarized in the flowchart
of Fig. 5, 6 and 8, and in Fig. 9 we embedded three different bands in the
space used by these Morphological Principal Component techniques.

3.3.1 Scale-space Decomposition MPCA

In the first variant, we just use the area-based nonlinear scale-space discussed
in the previous section. So the grey-scale image of each spectral band F. . ;. is
decomposed into residues of area openings and area closings according to the
discretization into S scales for each operator, i.e., r/(F..x) = 75 _, (F. k) —
Vo (Fo) and ry(Fo . x) = 0% (Fook) =05 (Fi.x), 1 <1< S, Thus we have
increased the dimensionality of the initial dataset from a tensor (n1, 12, D) to
a tensor (ny,n2, D,2S +1). As discussed in [15], this tensor can be reduced
using high order-SVD techniques. We propose here to simply compute a
covariance matrix as the sum of the covariance matrices from the various

scales. More precisely, we introduce Worpho-1 € Mp,p(R) with :
S

S
VMorpho—l = Z(V(l))+Z(V(_l)) (18)
=1

=1

where the covariance matrices at each scale [ is obtained as

V()i = Covar (ry(F. . p),ri(Foop)), 1<k K <D.

Y
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Figure 5: Process of scale-space decomposition MPCA.

We note that it involves an assumption of independence of the various
scales. We remark also that this technique is different from the classical ap-
proaches of differential profiles as [5] where the morphological decomposition
is applied after computing the spectral PCA (i.e., morphology plays a role
for spatial /spectral classification but not for spatial/spectral dimensionality
reduction as in our case).

3.3.2 Pattern Spectrum MPCA

In the second variant, we can consider a very compact representation of
the morphological information associated to the area-based nonlinear scale-
space of each spectral band. It simply involves considering the area-based
PS of each spectral band as the variable to be used to find statistical re-
dundancy on the data. In other words, the corresponding covariance matrix
Wiorpho-2 € Mp p(R) is defined as :

Vorpho-2 kit = Covar (PS*(F. . i, 1), PS*(F..pr,1)) (19)

with 1 < k, k' < D and where PS*(F..,1), =S <1< S, is the area-based
pattern spectrum obtained by area-openings and area-closings. We note
that the pattern spectrum can be seen as a kind of pdf of image structures.
Consequently the MPCA associated to it explores the intrinsic dimension-
ality of sets of distributions instead of sets of vectors. For illustrating the
information carried out by the PS, we have provided in Figure 9 the pattern
spectra computed from three different bands of a hyperspectral image.
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Figure 6: Process of pattern spectrum MPCA.

In order to better understand the interest of Vitorpho-2, We propose an
analysis based on its Pearson correlation counterpart. Once the correla-
tion of PS distribution is calculated, we have a linear coefficient between
PS*(F..x, 1) and PS*(F..,1). However since the PS is the result of non-
linear operations, the underlying extracted features are naturally nonlinear.

Let us consider the two binary images of Figure 7(a), which represents
two objects having exactly the same size. If the correlations are calculated,
we have:

Corr (imagel,image2) = 0
Corr (PS“(imagel), PS?*(image2)) =

Hence, we can see that the morphological distribution being the same, the
PS correlation is maximal. In a certain way, we observe that this trans-
form builds size-invariants from the images and consequently it is robust to
some group of transforms and deformations. For instance, it is invariant to
rotation and to translation.

Classical PCA on the spectral bands and the MPCA based on the PS
can be compared by the corresponding correlation matrices from a hyper-
spectral image, plotted in Figure 10(a) and (b). From this visualization we
already observe that the bands are better discriminated between them and

14



Image 1 Image 2
Image 1 Image 2 image 3
(b)

Figure 7: (a) Example of pair of binary images for pattern spectrum cor-
relation discussion. (b) Example of triplet of binary images for distance
function correlation discussion.

the clusters of highly correlated bands are consistent.

3.3.3 Distance Function MPCA

Classical PCA for hyperspectral images is based on exploring covariances
between spectral intensities. The previous MPCA involves changing the
covariance into a morphological scale-space representation of the images.
An alternative is founded when transforming each spectral band from an
intensity based map to a metric based map where at each pixel the value
is associated to both the initial intensity and the spatial relationships be-
tween the image structures. This objective can be achieved using Molchanov
gray-scale distance function for each spectral band dist(F. . ;). The new co-

variance matrix Viorpho-3 € Mp,p(R) is now defined as:
VMorpho—S kK = Covar (diSt(}—:7:,k)> diSt(]::,:,k’)) 5 (20)

with 1 < k, k¥ < D. Figure 9 depicts the corresponding gray-scale distance
function from three spectral band of a hyperspectral image. We note the this
function carries out simultaneously both intensity and shape information
from the image.

15
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Let consider in detail the expression of the covariance of distance func-
tions:

Covar (dist(ﬁ7;7k),dist(]-";,;,kr)) =

max(}—:,:,k) max(}—:,:,k)
Covar Yo AX(Fw), Y, dXw(Fae) | =
h=min(F. . 1) h'=min(F. . 1)

max(-F:,:,k) max(]::,:,k)

Z Z Covar (d(Xh(}—;,;,k)),d(Xh’(-F:,:,k’))) )

h:min(]_—:,:,k) h,:min(]::,:,k)

where X}, (F..y) denotes an upper level set at threshold h. The central
term is the covariance between two binary distance functions and can be
developed as follows:

Covar (d(Xp(F..)), d(Xp (Fopwr))) =
E (d(Xn(Fopr)), d(Xp (Foir) — E(d(Xn(Fo) E (d(Xpr (Foppr))) =
n! < d(Xp(Fok)), d( Xy (Fopi)) >r2 —E(d(X ( ) E(d (Xh'(f:,:,k'))) ;

where < -,- >;2 denotes the L? inner product. Using the classical relation-
ship:

||A - BH%2 = HAH%2 + ||B||%2 -2< A7B >12, \V/A7B € Rn)

we finally obtain that:

Covar (d(Xp(F..x)), d(Xp (Fpn))) = (20) 7 (1d(Xn(F o)l Z2 + 1d(Xn (Fop))122)
—(2n) 7 d(Xn(Fiin)) — d(Xn (F, ))HLQ_nl”d(Xh( 72 1A (Xn (Fo)) -

From this latter expression, the term
(X3 (F.. 1)) = d(Xns (F o p)) 72

can be identified as a Baddeley distance [28] used in shape analysis. This
distance is somehow equivalent to the most classical Hausdorff distance be-
tween the upper level sets h of spectral band k and b’ of spectral band &'
Thus, the underlaying similarity from this covariance compares the shape
of the spectral channels, and extracts a richer description than Pearson
correlation from the spectral channels themselves. We note that the use
of Hausdorff distance between upper level sets of hyperspectral bands was
previously used in [29].

17



Finally, to illustrate qualitatively the behavior of the distance function
correlation, let us consider this time the three binary images depicted in
Figure 7(b), where image 2 and image 3 represent the same object placed
at a different location on the image. One has:

Corr (imagel,image2) = Corr (imagel, image3)
Corr (dist(imagel ), dist(image2)) # Corr (dist(imagel), dist(image3)) .

That is, this similarity criterion related to the use of distance function is
more discriminative to the relative position of the objects on the image
than the classical Pearson Correlation.

From Figure 10(c), one can compare now the correlation matrix using
the gray-scale distance function. We note that this matrix provided also a
better discrimination of cluster of bands than the Pearson correlation matrix
used in standard PCA.

3.3.4 Spatial/Spectral MPCA

As we have discussed, Vyorpho-2 Tepresents a compact morphological repre-
sentation of the image, however the spectral intensity information is also
important for dimensionality reduction. To come with a last variant of
MPCA, we build another covariance matrix Wiorpho-a that represents the
spectral and spatial information without increasing the dimensionality by
the sum of two covariance matrices:

VMorpho—4 8 = (1 - B)V + BVMorpho—% (21)

with 3 € [0, 1], and where obviously V}, ,» = Covar (]'—:,:,k, ]::,:,k’) and 3 stands
for a regularization term that balances the spatial over the spectral infor-
mation. This kind of linear combination of covariance matrices is similar to
the one used in the combination of kernels, where kernels providing different
information sources are combined to have a new kernel which integrates the
various contributions [12].
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(h) (i)

Figure 9: Top, three examples of spectral bands of Pavia image: (a) #1, (b)
#50, (c) #100; middle, (d), (e), (f) PS of corresponding of spectral bands;
(g), (h), (i) PS of corresponding of spectral bands.
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(a)

Figure 10: Visualization of the correlation matrix of (a) the spectral bands
of Pavia hyperspectral image, (b) the PS of its spectral bands, the distance
function of its spectral bands.
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4 MPCA applied to hyperspectral images

4.1 Criteria to evaluate PCA vs. MPCA

We can now use PCA and the four variant of MPCA to achieve dimen-
sionality reduction (DR) of hyperspectral images. In order to evaluate the
interest for such a purpose, it is necessary to establish quantitative crite-
ria that should be assessed. These criteria will evaluate both locally and
globally the effectiveness of our dimension reduction.

e Local criteria.

Criterion 1 (C1) The reconstructed hyperspectral image F using
the first d principal components should be a regularized version
of F in order to be more spatially sparse.

Criterion 2 (C2) The reconstructed hyperspectral image F using
the first d principal components should preserve local homogene-
ity and be coherent with the original hyperspectral image F.

Criterion 3 (C3) The manifold of variables (i.e., intrinsic geometry)
from the reconstructed hyperspectral image F should be as simi-
lar as possible to the manifold from original hyperspectral image

F.
o Global criteria.

Criterion 4 (C4) The number of bands d of the reduced hyperspec-
tral image should be reduced as much as possible. It means that
a spectrally sparse image is obtained.

Criterion 5 (C5) The reconstructed hyperspectral image F using
the first d principal components should preserve the global simi-
larity with the original hyperspectral image F. Or in other words,
it should be a good noise-free approximation.

Criterion 6 (C6) Separability of spectral classes should be improved
in the dimensionality reduced space. That involves in particular
a better pixel classification.

These criteria are used to analyse the effectiveness of the dimensionality
reduction methods studying locally and globally their ability to remove re-
dundancy and to preserve the fully richness of the spectral and spatial in-
formation.
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()

Figure 11: (a) A 3-variate image (first three eigenimages after PCA on
Pavia hyperspectral image) and (b) its corresponding a-flat zone partition
into 84931 spatial classes using the Euclidean distance.

In order to assess C1, we compute the watershed transform [24] on each
channel Fj, of the hyperspectral image. Watershed transform is a morpho-
logical image segmentation approach which in a certain way can be seen
as an unsupervised classification technique. The advantage of using the
watershed is that it allows us to cluster the image according to the local
homogeneity; thus, an image with less details will have less spatial classes
than an image with many insignificant details. Then, the number of clusters
|| N|| of Fj, is considered as an estimation of the image complexity. To eval-
uate the complexity of the reconstructed hyperspectral image, the number
of spatial classes is counted after having done a watershed on each band.
Finally, the mean of the number of spatial classes is taken, i.e.,

D
Errorsparse spatially = (D_l) Z ||Nk || :
k=1

Assessment of C2, which involves image homogeneity, is based on a par-
tition of the image into homogenous regions. Let us first remind the def-
inition of a a-flat zones [30], used for such a purpose. Given a distance
d:RP x RP — R, two pixels (f(x), f(y)) € (RP)2, from a vector-valued
image f, belong to the same a-flat zone of f if and only if there is a
path (po,...,pn) € E™ such as pg = x and p, = y and Vi € [1,n — 1],
d(f(pi), f(pit1)) < a, with « € RT. Computing the a-flat zones for a given
value of o produces therefore a spatial partition of the image into classes
such that in each connected class the image values are linked by paths of
local bounded variation. Working on the d eigenvectors, the image partition
T, associated to the a-flat zones quantize spatially and spectrally an hyper-
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spectral image, see example given in Figure 11. The goal of simultaneous
spatial and spectral quantization of a hyperspectral image has been studied
in [31], where we have studied in detail the dependency on the distance.
Moreover, we have shown that in high dimensional spaces quantization re-
sults are generally not good. For the case considered here, we propose to
use the Euclidean distance on the reduced space by PCA or MPCA. The
choice of « is done in order to guarantee a number C' of a-flat zones similar
for all the compared approaches. We can expect that, by fixing the number
of zones in the partition, the difference between a partition and another
one depends exclusively on the homogeneity of the image. Now, using the
partition m,, the spectral mean value of pixels from the original image F
in each spatial zone is computed. This quantization produces a simplified
hyperspectral image, denoted F . Finally, we assess how far pixels of the
original image from each a-flat zone are from their mean; which involves
computing the following error

D ni,n2

—Ta |2
Errorgomg = E E | Fije — ]:ivj,k’ )

k=11,j=1

This criterion can consequently be seen as a way to see the trustworthiness
of the DR technique, since it is measures if the homogeneous partition of the
reduced hyperspectral corresponds to the homogeneous zone of the original
image.

C3 has been evaluated by means of two manifold learning criteria called
the K-intrusion and K-extrusion [32]. They are based on other criteria
called continuity and trustworthiness [33]. These criteria reveal DR behavior
in terms of its ability to preserve the data manifold structure. We have
first sampled randomly 10 thousands spectra from our hyperspectral images,
where each spectrum is a vector of dimension D. Then we have modelled the
manifold by a graph where each node is a vector and each edge is the pairwise
distance. We used the Euclidean distance as the pairwise distance. For the
rest of the paragraph we note by x; a point from the original manifold, I/Z-K
its neighbourhood of size K, &; the same point from the manifold after a
DR and 7f its corresponding neighbourhood of size K. A neighbourhood
of size K at point x; is composed of the K closest points to z; according
to used metric. More precisely, the goal of K-extrusion is measures how
the points that were in the K-neighbourhood of z; are preserved in the K-
neighbourhood of #; after DR. The K-intrusion evaluates if points on the
K-neighbourhood of Z; on the DR manifold were in the K-neighbourhood of
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xz;, i.e.,

Miptrusion(K) = 1-— G(2K) X Z Z r(i,j) — K, (22)

i=1 jEDiK\I/iK

Mextrusion () = 1- % X Z Z T‘(Z:j) - K, (23)

i=1 jevK\iK

where r(i,j) is the rank of the data z; in the ordering according to the
distance from z;, and respectively T(Z: j) the rank of z; in the ordering
according to the distance from z;, and the term G scales the measure to
be between zero and one, i.e.,

NK@2N —3K —1)if K < N\ 2

G(K):{N(N—K)(N—K—l)iszN\z (24)

For a better understanding of these formulae, see [34]. An important point
is the dependence of these parameters on the size of the neighbourhood.
From (22) and (23), the following parameters are computed[34]:

M ion(K) + M, ‘on (K)
QK) = extrusion 5 mtrusion 7 (25)
B(K) = Miptrusion(K) = Mextrusion ()- (26)

The interest of Q(K) is that it estimates in average the quality of a DR
technique, whereas B(K) reveals its behavior as being more intrusive or
extrusive.

In order to assess C4, as classically done, the fraction of explained covari-
ance is fixed. Then, the number of principal components needed is counted.
The rationale is based on the fact that a good DR technique should re-
duce the number of dimensions and extract a limited number of features
that would explain most of the image image. However since this criterion
is linked to a sparsity criterion, we would like to add a distortion criterion,
C5.

The evaluation of C5 is founded on computing a pattern spectrum of
both the original hyperspectral image and the DR image. An important
point is that the pattern spectrum will be computed by openings on the
hyperspectral image viewed as a 3D image. By doing such assumption, the
3D openings are decomposing in a simultaneous way the spatial /spectral ob-
ject of the image and the corresponding curves of the PS will represent the
distribution of both the spatial and the spectral objects. Two hyperspectral
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images are similar if they have the same spectral/spatial size distribution.
As discussed in Section 2, we prefer to use the cumulative PS in order to ob-
tain a smoother curve. Normally we cannot deal with both spatial/spectral
distortions with the reconstruction error of the two images. However we will
also assess the SNR of the reconstruction error as an additional parameter.

Finally, C6 is related to supervised pixel classification of the hyperspec-
tral image. We have considered the least square SVM algorithm [35] as
a learning technique, with a linear kernel or RBF kernel, where the RBF
kernel is initialized for each DR technique using cross validation. For each
supervised classification run, we used for the AVIRIS Indian Pine Image 5%
of the available data as a training set and the remaining 95% to validate. For
the ROSIS Pavia University image we use a subset of 50 spectra (about 1%
of the available data) per class as a training set and the remaining spectra
to validate.

4.2 Evaluation of algorithms

The studied DR techniques presented are listed and compared upon three
mathematical and computing properties in Tab. 1. These properties were
also considered in the excellent comparative review [3]. For comparison, we
have also included in the table the Kernel-PCA (KPCA), which is a pow-
erful generalization of PCA allowing integrating morphological and spatial
features into DR.

The first one is the number of free parameters to be chosen. The inter-
est of having these free parameters is that it provides more flexibility to the
techniques, whereas the related inconvenient is the difficulty for properly
tuning the right parameter. We notice that KPCA provides good flexibil-
ity thanks to the choice of any possible kernel which fits the data geometry.
The most simple algorithms are the PCA, and the distance function MPCA.
Then, we have the scale-space decomposition MPCA, and finally the pattern
spectrum MPCA. The second issue analyzed is the computational complex-
ity, and the third one is the memory requirements. From a computational
viewpoint, the most demanding step in the PCA is the SVD, which can
be done in O(D?). PCA is the technique with the smallest computational
need. On the contrary, the computational requirement of KPCA is O(n?);
since n > D, this kind of algorithm seems infeasible in standard hyperspec-
tral images. That is reason why most of hyperspectral KPCA techniques
use tricks to be able to deal with the number of spectra [13, 36, 37]. All
these techniques lead to a spatial distortion, which is not avoidable by the
need of a sampling procedure aiming at reducing the number of spectra.
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Between the complexity of PCA and KPCA, we have our proposed MPCA
algorithms. Regarding MPCA, the computationally demanding step is the
computation of the morphological representation used in the corresponding
covariance matrix. The complexity estimation has been carried out each
time in the worse case, however efficient efficient morphological algorithms
can improve this part. Distance function MPCA is last demanding, then the
scale-space decomposition MPCA and finally the pattern spectrum MPCA.
Regarding memory needs, for the PCA, the pattern spectrum MPCA, and
the distance function MPCA, the steps requiring more memory is the storage
of the covariance matrix, just of O(D?). The Spatial/Spectral MPCA needs
to store 2 covariance matrices then its memory need is O(2D?); similarly
the scale-space MPCA needs to store 25 + 1 covariance matrices, then its
required memory is O((2S + 1)D?). Note that KPCA uses a Gram matrix
of size (n x n).

Technique Parameter Computational Memory

(1) (2) (3)
PCA Prop oD% 0D?)
MPCA Morpho-1  Prop, S O(DnSs(25+1)) O(D?*(2S +1))
MPCA Morpho-2  Prop O(DnSs(25+1)) O(D?)
MPCA Morpho- 3  Prop O(Dn(b —a)) O(D?)
MPCA Morpho-4 3 Prop, 3 O(DnSs(25+1)) 0(2D?)
KPCA Prop, K O(n?) O(n?)

Table 1: Comparison of the properties of dimensionality reduction algo-
rithms for hyperspectral images.

4.3 Evaluation on hyperspectral images

The assessment of the performance of PCA and MPCA has been carried out
on three hyperspectral images. The first image was acquired over the city of
Pavia (Italy) and it represents the university campus. The dimensions of the
image are 610 x 340 pixels, with D = 103 spectral bands and its geometrical
resolution is of 1.3 m. We also used a second hyperspectral image which
represents the University of Houston campus and the neighbouring urban
area at the spatial resolution of 2.5 m and which dimensions are 349 x 1905
pixels and D = 144 spectral bands [38]. The third image, acquired over the
region of the Indian Pines test site in North-western Indiana, is composed
for two-thirds of agriculture, and one-third of forest. The dimensions of this
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image are 145 x 145 pixels, D = 224 spectral bands and its geometrical
resolution is of 3.7 m.

We have applied classical PCA and the different variants of MPCA to
Pavia hyperspectral image. Figure 12 shows the first three eigenimages,
visualized as a RGB false color. We note that the pattern spectrum MPCA
requires d = 5 to represent 92% of the variance whereas the other approaches
only impose d = 3. An interesting aspect observed on the projection of
the 103 spectral channels of Pavia hyperspectral image into the first two
eigenvectors is how PCA and the scale-space decomposition MPCA cluster
the bands linearly, see Figures 13(a) and 13(b). Bands close in the projection
are also near in the spectral domain, whereas the patter spectrum MPCA,
13(c), and distance function MPCA, 13(d), tend to cluster spectral bands
which are not necessary spectrally contiguous. This can be explained thanks
to Figure 10, where the MPCA correlation matrices are different from the
classical PCA one.

It can be noticed that in classical manifold learning techniques, the goal
is to decrease the dimension of the data while keeping some properties on
the data manifold. We work here on the manifold of the channels. This
manifold is easier to use, but finding the good 3 in Wiorpho-4 g that would
maintain some property of the manifold is not always easy, since we had to
deal with a double optimization problem, i.e., 8 and d.

From a quantitative viewpoint, one can see in Table 2 that globally
MPCA produces a more homogenous regularization of the image than clas-
sical PCA, especially the distance function MPCA and Spatial/Spectral
MPCA with an appropriate 8 = 0.2, which gives the lowest values of
Errorgomg. We noted that Errorgparse spatially follows a different ranking.
A good method is the one with a good trade-off between both criteria, since
one wants a DR to be trustworthy, which is evaluated thanks to Errorgomg.
But if the signal is too noisy, one may prefer a sparser representation. Ac-
cording to these criteria, the distance function MPCA and the pattern spec-
trum MPCA seem to have the best result. We can also note that if we use
manifold learning parameters for criterion C3, see Figure 14, the pattern
spectrum MPCA has the best results.

With respect to criterion C5, we have computed the 3D pattern spec-
trum distribution of Pavia hyperspectral image and of the different reduced
images into d components, see Figure 15. From this result, we can see that
both PCA and scale-space decomposition MPCA follow very well the hyper-
spectral image, since their spatial and spectral cumulative distributions are
similar. However if one would like to denoise the hyperspectral image thanks
to a DR technique, these results are not always positive. If we compare the
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(c)

Figure 12: RGB false color visualization of first three eigenimages from
Pavia hyperspectral image: (a) classd@l PCA on spectral bands, (b) scale-
decomposition MPCA, (c¢) pattern spectrum MPCA, (d) distance function
MPCA.
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Figure 13: Hyperspectral band projection into the first two eigenvectors
(i.e., image manifold) from Pavia hyperspectral image: (a) classical PCA
on spectral bands, (b) scale-decomposition MPCA, (¢) pattern spectrum
MPCA, (d) distance function MPCA.
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|4 VMorpho-l VMorpho-2 VMorpho-.B

Errorgomg 100 100 95.9 79.3
ElToTsparse spatially 998 99.7 100 88.3
VMorpho-4 B VMorpho-4 B VMorpho-4 B
B8=038 B8=0.2 B8=05
Errortgomg 93.2 83.9 88.3
Errorsparse spatially  93.3 96.7 98,6
@
|4 VMorpho-l VMorpho-2 VMorpho-.B
Errorgomg 100 90.4 35.3 38.3
ElTolsparse spatially 977 97.6 100 89
0
V VMorpho-l VMorpho-2 VMorpho-3
Errordomg 98.1 100 96.5 97.8
Errorsparse spatially = 91 100 91.2 82.7
()

Table 2: Comparison of PCA and MPCA analysis using criteria C1 and C2:
(a) for Pavia hyperspectral image, (b) for Houston hyperspectral image, (d)
for Indian Pines hyperspectral image. The values have been normalized to
the worst case, which gives 100.

spatial and spectral cumulative distribution of the distance function MPCA
and the one of the hyperspectral image, we notice that for small 3D size (i.e.,
small spatial/spectral variations) that can be considered as noise, there are
differences between these two distributions. But when the size increases,
the distribution of the the distance function MPCA tends to the hyperspec-
tral image one. So it seems that the distance function MPCA simplifies the
spectral /spatial noise, view as the small 3D objects, but keeps the objects
of interest.

Finally, Table 3 summarizes the results of supervised classification of
respectively Pavia and Indian Pine hyperspectral images. We note that re-
sults for Pavia image are quite similar in all the case even if MPCA seems
to be better than PCA. Therefore, we have chosen to focus on the Indian
Pine image, which is more challenging for supervised classification bench-
mark, see also Figures 16 and 17. We note that MPCA improves the results,
especially the scale-space decomposition MPCA. To evaluate the classifica-
tion results, first we fixed the dimension d of the reduce image. We have
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Figure 14: Intrusion/Extrusion parameters for PCA and the different vari-
ants of MPCA from Pavia hyperspectral image: (a) Q(K), (b) B(K).

chosen d = 5. Then, we used the least square SVM, which is a multi-class
classification technique, contrary to classical two-class SVM. We also used
two simple kernels: the linear one, which is the simplest one, and the RBF
one, which is appropriate for hyperspectral images since we can assume that
these data follow Gaussian distribution. Finally, to visualize the influence
of dimension d on the different DR techniques over the classification results;
we have depicted in Figure 4.3 the evolution of the kappa statistics. From
the latter plot we can see that the PCA and the pattern spectrum PCA have
the worst results. By combining the spectral and the spatial information, a
better classification can be achieved. This is the case of the distance func-
tion MPCA, the scale-space decomposition MPCA, and the Spatial-Spectral
MPCA for g =0.2.
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Figure 15: (a) 3D pattern spectrum distribution of Pavia hyperspectral
image and of the different reduced images into d components. (b) Corre-
sponding 3D cumulative pattern spectrum distributions.

Overall Accuracy Overall Accuracy Kappa statistic
with linear kernel with RBF kernel with RBF kernel

i% 5151+ 0.9 84.9+3.1 0.84+1x 102
Viorpho-1 59.6 £ 2.2 85.8 £ 2.6 0.84+1x 102
Viorpho-2 56.99 + 1.1 852+ 2.1 0.84+1x 102
Viorpho-3 59.0 £ 2.5 86.0 L 1.9 0.84+1x 102
Viorpho-a 5, 3 = 0.2 61.0 £1.73 852+ 1.1 0.83+1x 102
Vitorphoa 85 B = 0.5 59.9+ 1.5 84.6 £ 1.0 0.83L1x 102
Vilorpho-a 5> 3 = 0.8 b57.87 +3 84.7+25 0.83+£2x 102

(a)

Overall Accuracy Overall Accuracy Kappa statistic
with linear kernel with RBF kernel with RBF kernel

V 43.9+ 3.6 752+ 3.7 0.73+4.3 x 1077
VMorpho-1 50.5£3.8 79.6 £3.7 0.78+4 x 10~*
VMorpho-2 41.5+3.8 66.6 £ 4.6 0.63+4.5 x 1077
VMorpho-3 51.3£3.2 79.1£3.2 0.77+3.7x 10~*
VMorpho-4 8, =02 43.5+3.3 75.1+£23 0.724+2.6 x 1077
VMorpho-4 8, 5 =05 431429 71.2+£2.6 0.68+3 x 10~*
VMorpho-4 8, 5 =0.8 43.0+2.2 69.7+3.3 0.67+£3.9 x 1072
(b)

Table 3: Comparison of hyperspectral supervised classification on PCA and
MPCA spaces using least square SVM algorithm and different kernels: (a)
Pavia hyperspectral image, (b) Indian Pines hyperspectral image.
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Morpho-1 g3, OA : 43.5

Morpho-t 5_g.5. OA : 43.1 Morpho-4 5_q.5. OA : 43

Figure 16: Results of supervised classification using least square SVM with
a linear kernel on Indian Pines hyperspectral image. Note the OA is the
overall accuracy.
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Morpho-d 5, OA : 435

Morpho-4 5_g.5, OA : 43.1 Morpho-4 5—q.5, OA : 43

Figure 17: Results of supervised classification using least square SVM with
a RBF kernel on Indian Pines hyperspectral image. Note the OA is the
overall accuracy.
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Figure 18: Results of kappa statistic for the least square SVM with a RBF
kernel and different number of dimensions on Indian Pines hyperspectral
image.
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5 Conclusions

We have introduced in the paper the notion of MPCA, which is available
in four different approaches. We have also conducted a study to evaluate
the performance of each technique. On this study we used classical and
new criteria. Hence we proposed new criteria based on mathematical mor-
phology image representation. MPCA allows to deal with a spatial/spectral
representation of the image based on mathematical morphology tools for
SVD-based dimensionality reduction. It is important to note that it in-
volves only to change the covariance matrix used in order to add spatial
information in this matrix. Then we have just done ah SVD to obtain the
eigenvectors where the spectral bands are projected.

We have shown that the best results are obtained when we combine
spatial and spectral information.

Let us point out that we did not compare our MPCA techniques to
KPCA since, as explained above, the size of the covariance (gram) matrix
used in KPCA is n x n, where n is the number of pixels and it is impossible
to manipulate such a matrix using our test images. In the state-of-the-art,
some works randomly select some pixels and consequently the results will
depend on the selected pixels or sampling technique.

Acknowledgement. The authors thank Prof. P. Gamba, University of
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