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Abstract

In this paper, we introduce a multiresolution analysis on the interval based on non–uniform B–
splines defined on the Fibonacci tiling. The construction of the multiscale structure based on the
substitution rules of an L–system allows the derivation of a known framework from the regular dyadic
setting to a non–uniform setting while limiting the number of different filters to a few and keeping
a similar stability. After having explained how our approach fits into a biorthogonal framework, we
detail how to build analysis wavelet functions in the B–spline setting. Then the emphasis is put on the
definition of boundary scaling and wavelet functions by means of scaling equations. Our implementation
of the multiresolution structure is done in such a way that the computation is carried out in place.
Finally, a numerical analysis of the stability of the proposed scheme shows its similar behavior to the
same multiresolution analysis that would be derived on a dyadic sampling.

1 Introduction

Wavelets built on an irregular grid hierarchy are not translates and dilates of a single mother wavelet
and lead to multiresolution transforms with, in the most general case, as many different rules as there
are samples [Daubechies et al., 1999]. However it is possible to define an irregular grid hierarchy with
a quasicrystal structure which allows us to define wavelets from a finite number of mother wavelets
[Bernuau, 1998]. Andrle et al. use substitution rules to define such a quasicrystal grid hierarchy and
the associated semiorthogonal B–spline wavelets on the line with the aim to do a wavelet analysis of
quasicrystal diffraction patterns [Andrle et al., 2004]. With zero–degree B–spline basis functions, a full
multiresolution framework can be implemented, but with higher degree basis functions, of the recon-
struction and decomposition sides of the associated multiresolution framework, only the former can be
efficiently implemented. Indeed, as explained by Lyche and Quak for their construction of B–spline
wavelets on the interval, semiorthogonality makes the design of a good decomposition algorithm diffi-
cult [Lyche et al., 2001, Quak, 2002]. Since a direct computation of the inverse of the reconstruction
leads to full matrices, the decomposition is rather applied by solving a linear system which can be dif-
ferent at each resolution. On the contrary, we want to decompose the signal using a finite number of
localized filters. To do so, we drop semiorthogonality for general biorthogonality, which allows us to
design non–uniform B–spline wavelets on a hierarchy of irregular grids defined by the substitution rules
of Fibonacci L–system [Nivoliers et al., 2012], and associated with local linear decomposition and recon-
struction making up a perfect reconstruction filter bank. Our construction, inspired by the designing of
second generation wavelets with a lifting scheme [Sweldens, 1998], is made up of four successive steps
presented in successive sections in this paper. In §2, we define a multiresolution analysis, i.e. a set
of nested spaces spanned by scaling functions. In §3, we build a subdivision scheme from refinement
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relations between scaling functions. In §4, we carry out in–place implementation of the perfect recon-
struction filter bank based on the previously defined subdivision scheme. In §5, we stabilize the filter
bank by means of extra updating elementary steps. Finally, since we aim to deal with data displayed
on an interval, specific subdivision rules and update filters are defined at the interval boundaries in §6.
Our construction can be viewed as the derivation of biorthogonal B–spline wavelets defined in the regu-
lar dyadic setting by Cohen Daubechies and Feauveau [Cohen et al., 1992] and their adaptations to the
interval [Bittner, 2006, Primbs, 2010, Černá and Finěk, 2011] to a Fibonacci tiling on the interval, while
keeping similar stability properties as shown by numerical experiments presented in §7.

2 Multiresolution Analysis

Let S be a space of functions defined on a 1D–domain Ω. A multiresolution analysis of S is a sequence
of closed subspaces {Vj ⊂ S | j ∈ J ⊂ N} so that [Sweldens, 1998]:

1. Vj ⊂ Vj+1,

2.
⋃

j∈J Vj is dense in S,

3. for each j ∈ J , Vj has a Riesz basis given by scaling functions {ϕj,κ | κ ∈ K(j)},

where K(j) is an index set satisfying K(j) ⊂ K(j+1). When successive elements of K(j) will be considered,
we will name them {tj,k | k = 1, . . . ,#K(j)}.

In the first generation wavelet setting, scaling functions are translates and dilates of one mother

scaling function. On the contrary, the second generation wavelet setting allows to deal with hierarchies of
irregular grids without mother scaling function [Daubechies et al., 1999]. Our goal is to define a setting
which is in–between, based on a hierarchy of irregular grids and where scaling functions are defined as
translates and dilates of a small set of different functions.
We define the scaling functions ϕj,κ as non–uniform B–spline functions of order d+1 (piecewise polynomial
of degree d) defined on d + 1 successive intervals [tj,k, tj,k+1], . . . , [tj,k+d, tj,k+d+1] where κ = tj,k, and
normalized in the sense given in [de Boor, 1976]:

ϕj,κ(x) :=
tj,k+d+1 − tj,k

d+ 1
Mtj,k,...,tj,k+d+1

(x),

where Mtj,k,...,tj,k+d+1
(x) = (d + 1) [tj,k, . . . tj,k+d+1] (· − x)d+ is the B–spline of Curry and Schoenberg,

xd+ = (max {0, x})d and [tj,k, . . . tj,k+d+1] f denotes the (d + 1)–th divided difference for the function

f at the points {tj,l}
k+d+1
l=k . In [de Boor, 1973], it is shown that {ϕj,κ | κ ∈ K(j)}, is a Riesz basis

in L∞ of Vj . Note that if we were interested in other norms Lp, 1 ≤ p ≤ ∞, we could choose
{

((d+ 1)/(tj,k+d+1 − tj,k))
1/p ϕj,κ

}

as a Riesz basis in Lp of Vj .

A sufficient condition for these scaling functions ϕj,κ to be defined as translates and dilates of a small

set of functions is to impose any interval [tj,l, tj,l+1] to have its length in a set {a
(j)
i = ai/ρ

j , i ∈ I ⊂ N },
where ρ is a constant ratio and I a finite set. As shown in [Nivoliers et al., 2012], an L–system is a
convenient tool to define such a set of intervals with a finite set of rules describing how to split each interval

of length a
(j)
i into intervals of length a

(j+1)
i . An L–system is defined by a set of symbols {Ai, i ∈ I}, a

set of rewriting rules
Ai → Ai1 . . . Air , (2.1)

where (i1, . . . , ir) ∈ I
r, the r labels Ai1 . . . Air being not necessarily different, and an axiom defined as

an initial word of symbols. In [Nivoliers et al., 2012], such an L–system is said to be valid if there exist
positive real numbers ai and a ratio ρ strictly larger than 1 such that the rules (2.1) are compatible

with the split of intervals with length a
(j)
i , that is ai =

∑r
l=1(ail/ρ). If the L–system is valid, then its

rules define the subsets K(j) and the subspaces Vj := clos span {ϕj,κ, κ ∈ K(j)} define a multiresolution
analysis of S = L∞(Ω).
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2.1 The case of Fibonacci L–system and cubic B–splines

In this article we consider the Fibonacci system which is defined by labels {A1 = L,A2 = S} and rules
{L→ LS, S → L}, with the following compatible lengths {a1 = 1, a2 = 1/φ} and ratio ρ = φ, where

φ = 1+
√
5

2 > 1 is the golden number. An infinite word obtained using these rules with {L} as the axiom,
is called the Fibonacci word which is known to contain only d+2 different subwords of length d+1. This
means that, in the case of cubic B–splines scaling functions, at each level j, scaling functions ϕj,κ are
defined as dilates and translates of a set of five different B–splines whose support is made up of intervals
labeled as LSLL, SLLS, LLSL, LSLS or SLSL. The eleven other 4–length words, i.e. those containing
SS (8) or LLL (3), cannot appear with the proposed rules and thus will never be present provided they
are not in the axiom. The grid designed at each level j with such rules are sequences of intervals of length
φ−j , labeled by L (for long), and intervals of length φ−j−1, labeled by S (for short). Let tj,k be the k–th
knot at level j, ω ∈ {LSLL, SLLS,LLSL,LSLS, SLSL} be the word defining the length of the support
of the scaling function starting at κ = tj,k, and j = 0 be the coarsest level. The scaling functions may be
written as:

ϕj,κ(x) = ϕω(φ
j(x− tj,k)) =

len(ω)

4
Mδω,0,...,δω,4

(φj(x− tj,k)), (2.2)

where δω,l := φj (tj,k+l − tj,k), for l ∈ {0, . . . , 4}, and len(ω) := δω,4 − δω,0 = δω,4 is the length of the
support of ϕω:

{

len(LSLL) = len(LLSL) = 3 + φ−1,
len(SLLS) = len(LSLS) = len(SLSL) = 2 + 2φ−1.

The five mother functions ϕω are shown in Figure 1.
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Figure 1: The five mother scaling functions ϕω with plain red parts defined above L intervals and blue
dashed parts defined above S intervals. At the bottom right, the mother scaling function ϕLLLL used in
the regular setting

Note that these scaling functions would have been those designed in [Andrle et al., 2004] if the authors
had chosen their so–called minimal case of first category substitution rules instead of those of second
category. They call Fibonacci chain a word produced by rules of whichever category. However, the case of
Ω being an interval is not considered in [Andrle et al., 2004], and requires to add extra boundary scaling
functions. This particular case is handled in §6.

Regular dyadic setting The same modeling for the well-known regular dyadic case would define an
L–system with one label L, one rule L→ LL, one length 1, a ratio ρ = 2, and one mother scaling function
with a support labeled LLLL and len(LLLL) = 4 shown at the bottom right in Figure 1.
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3 Subdivision scheme

The subdivision scheme associated with these scaling functions was already defined in [Nivoliers et al., 2012].
Nevertheless let us recall the main steps of its definition. Let f ∈ Vj be defined as f(x) =

∑

κ∈K(j) fj,κ ϕj,κ(x).
Since Vj ⊂ Vj+1, there are {fj+1,κ, κ ∈ K(j + 1)} such that f(x) =

∑

κ∈K(j+1) fj+1,κ ϕj+1,κ(x). Stencils of
the subdivision scheme associated with the scaling functions write coefficients fj+1,κ as linear combination
of coefficients fj,κ.

Let pj,k be the blossom of the polynomial piece of spline function f on [tj,k, tj,k+1), that is the d
linear function (with values in R) such that pj,k(t, · · · , t) = f(t) on [tj,k, tj,k+1). Then, as explained in
[Goldman, 1990], we can write with κ = tj,k,

fj,κ = pj,k(tj,k+1, · · · , tj,k+d). (3.1)

Note that for allm ∈ {k, . . . , k + d}, pj,k(tj,k+1, · · · , tj,k+d) = pj,m(tj,k+1, · · · , tj,k+d), and if [tj+1,l, tj+1,l+1) ⊂
[tj,k, tj,k+1), then pj+1,l = pj,k. From (3.1) and the multilinearity of pj,k, we deduce the subdivision stencils.
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Figure 2: Configuration around the splitting of LSL, SLS and LL

Because neither SS nor LLL can be produced by the Fibonacci rules, only three configurations can
occur, corresponding to the splitting of LSL, SLS, and LL (Figure 2). These three configurations give
birth to three sets of stencils (3.2) that depend on the kind of intervals making up the support of the
associated functions. More precisely, six classes of coefficients can be defined and, for the sake of simplicity,
we will sometimes write f

j, q
with q ∈ { 1 , . . . , 6 } instead of fj,κ with κ ∈ K(j), where f

j, 1
is associated

with ϕLSLL, fj, 2 with ϕSLLS , fj, 3 with ϕLLSL and the following scaling function is ϕLSLL, fj, 4 with
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ϕLLSL and the following scaling function is ϕLSLS , fj, 5 with ϕLSLS , and fj, 6 with ϕSLSL.

{

f
j+1, 1

= (4− 2φ) f
j, q

+ (2φ− 3) fj, r ,

f
j+1, 2

= (5− 3φ) f
j, q

+ (3φ− 4) fj, r ,

f
j+1, 3

=
(

2φ−1
5

)

f
j, 5

+
(

6−2φ
5

)

f
j, 6

,















f
j+1, 4

= (7− 4φ) f
j, 1

+ (4φ− 6) f
j, 2

,

f
j+1, 5

=
(

18−11φ
2

)

f
j, 1

+ (6φ− 9) f
j, 2

+
(

2−φ
2

)

fj, s ,

f
j+1, 6

= (2− φ) f
j, 2

+ (φ− 1) fj, s ,

(3.2)

with ( q , r ) ∈ {( 3 , 1 ), ( 4 , 5 ), ( 6 , 1 )} and s ∈ { 3 , 4 }. Let us detail the equations for one of the two
stencils involved in the first configuration:

f
j+1, 1

= pj+1,l(tj+1,l+1, tj+1,l+2, tj+1,l+3) = pj,k(tj+1,l+1, tj,k+1, tj,k+2)

=
tj,k+3 − tj+1,l+1

tj,k+3 − tj,k
pj,k(tj,k, tj,k+1, tj,k+2)

+
tj+1,l+1 − tj,k
tj,k+3 − tj,k

pj,k(tj,k+1, tj,k+2, tj,k+3)

=
1 + φ+ φ2

2φ2 + φ
f
j, q

+
φ

2φ2 + φ
fj, r = (4− 2φ) f

j, q
+ (2φ− 3) fj, r .

The last equality comes from the equation satisfied by the golden ratio φ2 = φ + 1 which allows us to
linearize powers of φ. From these stencils and Figure 2, one can write the refinement relations satisfied
by the scaling functions:

ϕLSLL(x) = (2φ− 3)ϕLSLL(φx) + (3φ− 4)ϕSLLS(φx− 1)

+ (7− 4φ)ϕLLSL(φx− 1− φ−1) +
(

18−11φ
2

)

ϕLSLS(φx− 2− φ−1),

ϕSLLS(x) = (4φ− 6)ϕLLSL(φx) + (6φ− 9)ϕLSLS(φx− 1)
+ (2− φ)ϕSLSL(φx− 2),

ϕLLSL(x) =
(

2−φ
2

)

ϕLSLS(φx) + (φ− 1)ϕSLSL(φx− 1)

+ (4− 2φ)ϕLSLL(φx− 1− φ−1) + (5− 3φ)ϕSLLS(φx− 2− φ−1),

ϕLSLS(x) = (2φ− 3)ϕLSLL(φx) + (3φ− 4)ϕSLLS(φx− 1)

+
(

2φ−1
5

)

ϕLSLS(φx− 1− φ−1),

ϕSLSL(x) =
(

6−2φ
5

)

ϕSLSL(φx) + (4− 2φ)ϕLSLL(φx− φ
−1)

+ (5− 3φ)ϕSLLS(φx− 1− φ−1).

(3.3)
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4 Filter bank and wavelets

From here we do not construct semiorthogonal wavelets as proposed in [Bernuau, 1998, Andrle et al., 2004].
Instead, we focus on the efficiency of the associated multiresolution framework that we want to be a
perfect reconstruction filter bank with decomposition and reconstruction defined as simple local lin-
ear operators. The subdivision scheme may be implemented as part of a filter bank if the coefficients
{fj+1,κ, κ ∈ K(j + 1)} are split into two subsets: new coefficients introduced at level j + 1 called Nj and
initialized with zeros, and Aj initialized with the coefficients at level j (in particular, #Aj = #K(j)).
We choose these subsets such that stencils (3.2) define short filters on {fj+1,κ, κ ∈ K(j + 1)}: each coef-
ficient fj,κ is associated with the “central” knot tj,k+2 where κ = tj,k and is changed into fj+1,π where
π = tj+1,p, and such that tj,k+2 = tj+1,p+2. The altered coefficients are f

j+1, 1
← f

j, q
, f

j+1, 2
← fj, r ,

and f
j+1, 5

← f
j, 2

. The new introduced coefficients are f
j+1, 3

, f
j+1, 4

and f
j+1, 6

. In order to be part

of a filter bank implemented as a lifting scheme, the stencils should be decomposed into a succession of
elementary steps, implemented in place. An elementary step is defined as follows: {fj+1,κ, κ ∈ K(j + 1)}
is partitioned into two subsets W (read and written coefficients) and R (read only coefficients). Each
coefficient of W is altered either by a multiplication with a non zero weight, or by an addition with a
linear combination of coefficients of R. The elementary steps composing a regular subdivision stencils,
are typically defined with subsets (W,R) being alternatively (Nj ,Aj) and (Aj ,Nj). In our case, other
subsets have to be used in order to deal with the configuration where no new coefficient is inserted between
two successive coefficients. Let us present our choice for (W,R) with the factorization of stencils into
elementary steps corresponding to the subdivision of a sequence {f

j, 5
, f

j, 6
, f

j, 1
, f

j, 2
, fj, s }. This factor-

ization is illustrated in Figure 3 where altered coefficients belonging to Aj are drawn with black circles,
new coefficients belonging to Nj are drawn with white circles and, for each elementary step, coefficient
belonging to W are framed in a triangle. Weights are equal to:







a35 = 2φ−1
5 ,

a36 = 6−2φ
5 ,















b11 = 4− 2φ,

b22 = φ
2 ,

c12 = 10− 6φ,

d21 = 1− φ
2 ,























a41 = 7− 4φ,
a42 = 4φ− 6,
a62 = 2− φ = b54,
a6s = φ− 1 = b56,
c55 = 1

2 .

This factorization is not unique and depends in particular on the order of the elementary steps that
we apply. Let us detail it with the first two stencils of equation (3.2) where, in the case illustrated by
Figure 3, ( q , r ) = ( 6 , 1 ).











f
j+1, 1

= b11 fj, 6 + c12 b22 fj, 1 = (4− 2φ) f
j, 6

+ (2φ− 3) f
j, 1

,

f
j+1, 2

= d21 b11 fj+1, 1
+ b22 fj, 1 = d21 b11 fj, 6 + (d21 c12 b22 + b22) fj, 1

= (5− 3φ) f
j, 6

+ (3φ− 4) f
j, 1

,














b11 = (4− 2φ) ,
d21 = (5− 3φ) / b11,
b22 = (3φ− 4)− d21 (2φ− 3) ,
c12 = (2φ− 3) / b22.

From a practical point of view, when the filter bank is implemented in place, a unique vector of coefficients
and zeros may be used. In order to apply the elementary steps described above, one should be able to
find, in this vector, the first neighbors of a given coefficient within the same resolution j. Let J be the
maximum resolution and Fib(j) be the Fibonacci sequence initialized with Fib(0) = Fib(1) = 1. Let ϕω

be the mother function associated with the coefficient of interest. The left neighbor of this coefficient
within the same resolution j, lies in the entry distanced by Fib(J − j + 1) if the second symbol of ω is
L, and Fib(J − j) if the symbol is S. The right neighbor is found similarly when considering the third
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Figure 3: Subdivision stencils decomposed into in place steps

symbol of ω. Note that in the regular dyadic setting, the distance between two coefficients of the same
resolution j is 2J−j .

When a subdivision scheme can be decomposed into elementary steps, it is simple to invert it: ele-
mentary steps are applied in reversed order, with multiplicative update applied with inverse weights, and
additive update applied with weights of opposite sign. From this it is straightforward to build a first
multiresolution framework for signal decomposition and reconstruction as presented in [Sweldens, 1998,
Schröder and Sweldens, 1995]. A signal at resolution j is a sequence of numbers λj := {λj,κ}κ∈K(j). The

framework is made up of a set of four operators for each resolution. A projection (or decimation) operator
H̃j : λj = H̃jλj+1 defines the signal at a coarser resolution. A prediction operator H∗

j reconstructs the fine
signal with errors ej+1 := λj+1−H∗

j λj . Such an error signal takes non zero values on index set K(j+1) but
it can be coded into as a so–called detail signal indexed byM(j) = K(j +1) \K(j): γj := {γj,m}m∈M(j).

This detail signal is defined from the fine signal with the operator G̃j : γj = G̃jλj+1. Finally an operator
G∗

j constructs the error signal from the detail signal allowing us to write the perfect reconstruction as
λj+1 = H∗

j λj +G∗
jγj . These relationships are summarized in Figure 4 and equation (4.1).

λj+1

H̃j

G̃j

λj

γj

H∗

j

G∗

j

+ λj+1

Figure 4: Filter bank for multiresolution analysis and synthesis

[

H∗
j G∗

j

]

[

H̃j

G̃j

]

= H∗
j H̃j +G∗

j G̃j = Ij+1. (4.1)

This notation is the one used in [Sweldens, 1998] with A∗ being the adjoint of operator A. It highlights
the fact that the prediction operator H∗

j defined using subdivision stencils, is the adjoint of a projection
operator and vice versa.

Operators H̃j and G̃j constitute the analysis transform (named also decomposition) whereas operators
H∗

j and G∗
j constitute the synthesis transform (or reconstruction). In order to get the so–called perfect

reconstruction property, synthesis followed by analysis must be the identity as well, and the operators
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must satisfy (4.2) where Ij is the identity operator for signals indexed by K(j).

[

H̃j

G̃j

]

[

H∗
j G∗

j

]

=

[

H̃jH
∗
j H̃jG

∗
j

G̃jH
∗
j G̃jG

∗
j

]

=

[

Ij 0
0 Ij

]

. (4.2)

When equations (4.1) and (4.2) are satisfied, the operators are said to be biorthogonal. The subdivision
scheme designed in §3 defines a prediction operator H∗

j . The filter bank defined by its implementation
into elementary steps as described in Figure 3 and its inverse, both applied to signals λj and λj+1 instead
of coefficients {fj,κ, κ ∈ K(j)} and {fj+1,κ, κ ∈ K(j + 1)}, and with the coefficients of a detail signal γj
replacing the zeros of Nj , define such four biorthogonal operators.

For later purpose, we now translate the notation of operators H∗
j , G

∗
j into the following linear equation:

λj+1,ℓ =
∑

κ∈K(j)

hj,κ,ℓ λj,κ +
∑

m∈M(j)

gj,m,ℓ γj,m, (4.3)

where hj,κ,ℓ are also involved into the refinement relations (3.3) satisfied by the non–uniform cubic B–spline
scaling functions ϕj,κ =

∑

ℓ∈K(j+1) hj,κ,ℓ ϕj+1,ℓ. Equation (4.3) defines also a basis of the complementary
space Wj between two successive subspaces Vj ⊕Wj = Vj+1 with wavelet functions {ψj,m,m ∈M(j)}
defined as

ψj,m =
∑

ℓ∈K(j+1)

gj,m,ℓ ϕj+1,ℓ. (4.4)

Like similar constructions, these first wavelets have poor properties and the whole framework can be
improved by lifting [Sweldens, 1998, Schröder and Sweldens, 1995].

5 Update by lifting

Lifting means, as illustrated by Figure 5, adding another elementary step at the beginning of the synthesis
filter bank decomposition described in Figure 3, where each detail coefficient γj,m (remember these occupy
the zeros location on that figure) diffuses on samples in its vicinity. In order to keep the whole framework
biorthogonal, the inverse of this update elementary step must be added at the end of the analysis filter
bank. By doing so, one changes projection operator H̃j and operator G∗

j , but not prediction operator H∗
j

or operator G̃j .
A biorthogonal framework with good properties is efficient, meaning made of short filters implemented

in place, and stable, that is, allowing robust reconstruction and decomposition with respect to small value
changes due to rounded computation (the golden ratio is an irrational number) or lossy transmission.
Note that by construction the lifting structure of the filter bank ensures that the implementation can be
done in place. The question of stability has been addressed carefully by Dahmen et al., in particular in
[Dahmen, 1994, Carnicer et al., 1996]. Ideally the condition numbers of transformation T relating the fine
scale data to their multiscale representation and its inverse transform should remain uniformly bounded.
This is equivalent to ask that the union of the basis functions of V0 and the wavelets at all levels constitute
a Riesz basis of S; this is called stability over all levels. Necessary and sufficient conditions to get such
a property are threefold: the analysis and synthesis transforms are uniformly bounded, they constitute a
biorthogonal set of filters at each level, and the primal and dual subdivision schemes converge. If the set
of filters are biorthogonal and the primal subdivision scheme converges by construction, to show that the
dual non–uniform subdivision scheme converges is a difficult task.

To get stability over all levels another solution would be to define full orthogonal wavelet functions:
the transformation T is then orthogonal. However, the construction of such orthogonal multiscale bases
can lead to problematic inversion and are often associated with very large filters. To impose some kind
of stability in a non orthogonal framework, a natural approximation is to keep the orthogonality between
successive levels (Wj⊥Vj) but to relax the orthogonality between wavelets at the same level; this is called
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semiorthogonality [Quak, 2002, Bernuau, 1998, Andrle et al., 2004]. As explained in the introduction, this
is not satisfactory for our aim to keep a local approach and to define the wavelets with a finite number
of different filters. To achieve this goal, a first solution consists in approximating semiorthogonality by
defining wavelets basis functions in Wj that are orthogonal to only some functions in Vj . As sumed up in
[Maes and Bultheel, 2008], at this stage, two strategies to define the update are possible and these can be
mixed: local semiorthogonal lifting [Lounsbery et al., 1997, Simoens and Vandewalle, 2003] and wavelets
with vanishing moments [Sweldens, 1998]. As already noted in [Kobbelt and Schröder, 1998], each of these
strategies leads to wavelets orthogonal to a different set of functions in Vj , being respectively a subset of
the basis scaling functions ϕj,k, and some low degree polynomials. However, all sets of functions are not
of equal importance for stability as first vanishing moment is considered as mandatory. Another solution
consists in removing only one knot at each step as proposed by Bertram and then enforce a discrete
orthogonalization instead of orthogonalization of continuous functions [Bertram, 2005]. We prefer to keep
the possibility of removing several knots within each step, and choose consequently the solution based
on the vanishing moments of wavelets. More precisely, we ask the wavelets to be orthogonal to x 7→ xp,
0 ≤ p < Ñ . Combination with local semiorthogonality is left for future work. Note that if dual wavelets
existed, then they would be orthogonal to {ϕj,κ}, and so to x 7→ xp, 0 ≤ p < N = d+ 1 = 4.

Regular dyadic setting In the regular dyadic case, this modeling would yield to the Cohen–Daubechies–
Feauveau (N, Ñ) biorthogonal wavelets [Cohen et al., 1992].

5.1 Wavelets as combination of fine scaling functions

Equation (4.4) enables us to write wavelets at level j as a combination of known B–spline scaling functions
at level j + 1. As explained in [Sweldens and Schröder, 1996], the weights involved in such a refinement
relation for a given ψj,m,m ∈ M(j), can be obtained with our filter bank including the update step
(Figure 5) by feeding the synthesis part of the filter bank with null values in every location except
γj,m = 1. Then, the resulting signal λj+1 contains the weights {gj,m,l, l ∈ K(j + 1)}. In order to satisfy
the Ñ equations corresponding to the expected Ñ vanishing moments of wavelet functions, we use Ñ–wide
update filters. It follows that, as in the regular case [Cohen et al., 1992], the support of each wavelet ψj,m

is made up with N + Ñ −1 intervals at level j. This support is associated with a particular word ω whose
central symbol is always L, label of the interval whose splitting creates the detail coefficient γj,m. The
labels of the support of the scaling functions involved in (4.4) are the subwords of length 4 of ω after
application of the L–system rules. Moreover, if the support begins at tj,k then the wavelet can be written
as

ψj,m(x) = ψω(φ
j(x− tj,k)). (5.1)

In the same line as what we did with classes of coefficients fj,κ, we define classes of detail coefficients, but
with the word ω as subscript: γj,ω.

In this section, we detail the case Ñ = 2. Only three words of N + Ñ − 1 = 5 symbols with a central
L are allowed in the word of Fibonacci, as containing neither SS nor LLL: LS−L−SL, LS−L−LS
and SL−L−SL (we emphasize the central L). Therefore we define three classes of detail coefficients and
one 2–wide update filter per class: [α−1, α+1] associated with γj,LS−L−SL, [β−1, β+1] with γj,LS−L−LS , and
[ν−1, ν+1] with γj,SL−L−SL. Using definition of mother scaling (2.2) and wavelet functions (5.1), as well
as Figure 5, we write ψj,LS−L−SL as a combination of mother scaling functions associated with the five
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Figure 5: Lifting scheme for synthesis

4–length subwords of LSLLSLLS ← LSLSL:

ψLS−L−SL(x) = [c12 b22 α−1] ϕLSLL(φx)
+ [(1 + d21c12) b22 α−1] ϕSLLS(φx− 1)
+ [1 + a35 α−1 + a36 α+1] ϕLLSL(φx− 1− φ−1)
+ [b11 α+1] ϕLSLL(φx− 2− φ−1)
+ [d21 b11 α+1] ϕSLLS(φx− 3− φ−1)

= [(2φ− 3) α−1] ϕLSLL(φx)
+ [(3φ− 4) α−1] ϕSLLS(φx− 1)

+
[

1 + 2φ−1
5 α−1 +

6−2φ
5 α+1

]

ϕLLSL(φx− 1− φ−1)

+ [(4− 2φ) α+1] ϕLSLL(φx− 2− φ−1)
+ [(5− 3φ) α+1] ϕSLLS(φx− 3− φ−1).

(5.2)
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Similarly, we write for the two other classes:

ψLS−L−LS(x) = [(2φ− 3) β−1] ϕLSLL(φx)
+ [(3φ− 4) β−1] ϕSLLS(φx− 1)
+ [1 + (7− 4φ) β−1 + (4φ− 6) β+1] ϕLLSL(φx− 1− φ−1)

+
[

2−φ
2 + 18−11φ

2 β−1 + (6φ− 9)β+1

]

ϕLSLS(φx− 2− φ−1)

+ [(2− φ) β+1] ϕSLSL(φx− 3− φ−1),

(5.3)

ψSL−L−SL(x) = [(4φ− 6) ν−1] ϕLLSL(φx)

+
[

φ−1
2 + (6φ− 9) ν−1 +

2−φ
2 ν+1

]

ϕLSLS(φx− 1)

+ [1 + (2− φ) ν−1 + (φ− 1) ν+1] ϕSLSL(φx− 2)
+ [(4− 2φ) ν+1] ϕLSLL(φx− 2− φ−1)
+ [(5− 3φ) ν+1] ϕSLLS(φx− 3− φ−1).

(5.4)
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Figure 6: The three mother wavelet functions ψω for Ñ = 2 with plain red parts defined above L intervals
and blue dashed parts defined above S intervals. At the bottom right, the mother wavelet function
ψLL−L−LL used in the regular setting

5.2 Vanishing first moments of wavelets

As stated in [Neuman, 1981] for distinct knots and generalized in [de Boor, 1976] for tj,k < tj,k+d+1

when B–splines of order d + 1 are considered, the moments of the B–spline of Curry and Schoenberg
Mtj,k,...,tj,k+d+1

defined on the intervals between tj,k and tj,k+d+1 with p ≥ 0 are:

∫

xpMtj,k,...,tj,k+d+1
(x) dx =

(d+ 1)! p!

(d+ 1 + p)!

∑

k≤k1≤k2≤...≤kp≤k+d+1

tj,k1tj,k2 . . . tj,kp .

In particular, the B–spline function ϕω defined by (2.2) satisfy

∫

xpϕω(x) dx =
len(ω)

4

4! p!

(4 + p)!
µω,p with µω,p :=

∑

0≤k1≤k2≤...≤kp≤4

δω,k1δω,k2 . . . δω,kp .

As a consequence, with (l, s) ∈ Z,

∫

xpϕω(φx− l − sφ
−1) dx =

len(ω)

4φp+1

p
∑

r=0

(

p
r

)

(l + sφ−1)p−r 4! r!

(4 + r)!
µω,r. (5.5)
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In particular for p = 0, µω,0 = 1 whatever ω, and
∫

ϕω(φx − l − sφ
−1) dx = len(ω)

4φ which leads to, with
equations (5.2), (5.3): and (5.4):

4φ

∫

ψLS−L−SL(x)dx = (2φ+ 2) α−1 + (φ+ 2) + (2φ+ 2) α+1,

4φ

∫

ψLS−L−LS(x)dx = (3φ+ 1) β−1 + (2φ+ 1) + (2φ+ 2) β+1,

4φ

∫

ψSL−L−SL(x)dx = (2φ+ 2) ν−1 + (2φ+ 1) + (3φ+ 1) ν+1.

From (5.1), first moment of ψj,m vanishes if first moment of the associated function ψω does and conditions
for vanishing first moments of wavelets are:







(φ− 3) = 2 α−1 + 2 α+1,
φ = (1− 2φ) β−1 − 2 β+1,
φ = −2 ν−1 + (1− 2φ) ν+1.

(5.6)

5.3 Vanishing second moments of wavelets

From (5.5), for any (l, s) ∈ Z
2:

∫

xϕω(φx− l − sφ
−1) dx =

len(ω)

4φ2
(l + sφ−1 +

1

5
µω,1),

where µSLSL,1 = 6φ− 2, µLSLL,1 = 3φ+ 4, µSLLS,1 = 5φ, µLLSL,1 = 2φ+ 6, and µLSLS,1 = 4φ+ 2. As a
consequence,

20φ2
∫

x ψLS−L−SL(x) dx = (32φ+ 20) α−1 + (27φ+ 19) + (48φ+ 30) α+1,

20φ2
∫

x ψLS−L−LS(x) dx = (37φ+ 24) β−1 + (34φ+ 21) + (50φ+ 30) β+1,

20φ2
∫

x ψSL−L−SL(x) dx = (30φ+ 20) ν−1 + (32φ+ 19) + (53φ+ 31) ν+1.

From (5.1), if first and second moments of ψω vanish, then second moment of ψj,m vanishes as well. With
(5.6), we get the values of the update filters which make first and second moments of wavelets ψj,m vanish:

{

α−1 = 11− 7φ,
α+1 =

5
2(3φ− 5),

{

β−1 =
2
5(4− 3φ),

β+1 =
1
2(4− 3φ),

{

ν−1 = φ− 2,
ν+1 = φ− 2.

The three mother functions ψω are shown in Figure 6.

5.4 More vanishing moments of wavelets

With the same procedure, we can compute with our filter bank equations similar to (5.2), (5.3) and (5.4)
for any width Ñ of update filters. With (5.5) we can deduce equations similar to (5.6) for each power
p ∈ {0, . . . , Ñ−1}, making up a linear system which can be solved numerically with a linear algebra library
such as GSL. Update filters and resulting wavelet functions are available as supplementary materials linked
from the main article webpage. Note that the number of different filters needed does not grow quickly
with Ñ : three filters are needed for Ñ = 2, five filters for Ñ = 4 and seven filters for Ñ ∈ {6, 8}.
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6 Boundaries

In [Andrle, 2002, Andrle et al., 2004], the authors deal with infinite domain centered on the origin. With
our Fibonacci L–system, they use these substitution rules, and so original functions, on the right side of
the domain, while mirrored rules and functions are used on the left. A finite number of functions whose
definition domain overlaps the two sides, remains possibly to be designed according to the chosen degree.
The two extremities of the domain are not considered. Such a modeling is used to analyze quasicrystal
diffraction patterns.

On the contrary, we want to design a framework which can be applied in practice and efficiently
to signals defined on the interval, and the question of domain boundaries has to be handled. Differ-
ent solutions can be investigated, either starting with adapting the framework filters as proposed in
[Sweldens and Schröder, 1996], or defining new multiresolution spaces of functions living in the inter-
val. We propose a solution which belongs to the second category. As what has been done by many
authors to adapt uniform B–spline semiorthogonal [Chui and Quak, 1992] or biorthogonal [Bittner, 2006,
Primbs, 2010, Černá and Finěk, 2011] wavelets to an interval, B–splines with multiple knots at endpoints
of the interval may be introduced as a complement to inner ordinary B–spline scaling functions. Quak
used also multiple knot B–splines as boundary scaling functions in his construction of semiorthogonal
non–uniform B–spline wavelets [Quak, 2002]. Note that other adaptations of uniform B–spline wavelets
to the interval preferred to define boundary scaling functions as combinations of truncated simple knot
B–splines [Cohen et al., 1993, Dahmen et al., 1999].

6.1 L–system and scaling functions

We extend the framework described in the previous sections by adding to the Fibonacci L–system a new
label X associated with the rule X → X and a length equal to zero. Besides, the axiom ω0 becomes
Xdω0X

d, with B–splines of order d + 1. In our case, d = 3 and we choose ω0 = L. If ωj is the word
of symbols of the intervals after j subdivision steps with the previous framework, ωj is a subword of
Fibonacci, meaning that ωj+1 = ωj−1ωj . The word of symbols in the new framework after j steps is
XdωjX

d and the number of samples in resolution j is equal to 3 + Fib(j + 1). Note that in the regular
dyadic setting, this number of samples is equal to 3 + 2j .

Regarding scaling functions, since the first word is X3LX3, four scaling functions are used in the first
resolution j = 0: ϕXXXL, ϕXXLX , ϕXLXX and ϕLXXX shown in Figure 7 (top–left function, rightest
function in the second row and the two first functions in the last row). The second word is X3LSX3,
defining five mother scaling functions for resolution j = 1: ϕXXXL, ϕXXLS , ϕXLSX , ϕLSXX , and ϕSXXX

shown in Figure 7 (the two first functions in the first row, the two last functions in the second row and
the last function in the bottom row).

For j > 1, the word ωj starts always as X3LSL . . ., yielding to the three functions in the first row in
Figure 7 as the first mother scaling functions used near the left boundary. However, the word ωj finishes
alternatively as . . . LSLX3 or . . . LLSX3: in even resolution j, the mother scaling functions shown in the
second row in Figure 7 will be used near the right boundary, whereas for odd j the functions in the third
row will be chosen. In total, twelve new mother scaling functions are introduced for managing boundaries.

Let us illustrate how the blossom–based construction of subdivision stencils presented in §3, adapts
to such 0–length knot intervals. With the same notation, we can write (Figure 8):

fj+1,tj+1,0
= pj+1,0(tj+1,1, tj+1,2, tj+1,3) = pj,0(tj,1, tj,2, tj,3) = fj,tj,0 ,

fj+1,tj+1,1
= pj+1,1(tj+1,2, tj+1,3, tj+1,4) = pj,1(tj,2, tj,3, tj+1,4)

=
tj,4 − tj+1,4

tj,4 − tj,1
pj,1(tj,1, tj,2, tj,3) +

tj+1,4 − tj,1
tj,4 − tj,1

pj,1(tj,2, tj,3, tj,4)

=
1

φ2
fj,tj,0 +

φ

φ2
fj,tj,1 = (2− φ) fj,tj,0 + (φ− 1) fj,tj,1 .
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Figure 7: The twelve mother scaling functions ϕω with plain red parts defined above L intervals and blue
dashed parts defined above S intervals, used near the boundaries with Ñ = 2.

6.2 Update filters and wavelet functions

We follow the same process as the one described in previous sections, leading to filter banks implemented
in place and wavelets with vanishing moments. Figures 8, 9, and 11 illustrate the synthesis filter banks
for the different boundary neighborhoods considered above, and with an update elementary step designed
in order to get wavelet functions with two vanishing moments. Note that for simplicity, we name in these
figures the introduced classes of coefficients and details as λj,ω instead of λ

j, q
. The associated wavelet

functions satisfy the following equations, and are illustrated in Figure 10:

ψXX−L−SL(x) = (6− 4φ) ϕXXLS(φx) + (4φ− 6) ϕXLSL(φx)
+ (16φ− 26) ϕLSLL(φx) + (21φ− 34) ϕSLLS(φx− 1)

ψLS−L−XX(x) = (21φ− 34) ϕLSLL(φx) + (29φ− 47) ϕSLLS(φx− 1)
+ (7φ− 11) ϕLLSX(φx− 1− φ−1)
+ (11− 7φ) ϕLSXX(φx− 2− φ−1)

ψSL−L−SX(x) = 3−2φ
2 ϕLLSL(φx) + 10−5φ

4 ϕSLSL(φx− 2)

+ 4−3φ
2 ϕLSLX(φx− 2− φ−1)

ψXX−L−XX(x) = (3− 2φ) ϕXXLS(φx) + (4φ− 6) ϕXLSX(φx)
+ (3− 2φ) ϕLSXX(φx)

ψXX−L−SX(x) = (φ− 2) ϕXXLS(φx) + (4φ− 6) ϕXLSL(φx)
+ (3− 2φ) ϕLSLX(φx)

On the contrary with wavelets defined far from the boundaries, these wavelet functions are not defined
as the sum of five scaling functions. Indeed, due to the presence of X in the label of the support of the
wavelet function, the word produced by the L–system rules contains less than five 4–length factors. For
example, XXLSL→ XXLSLLS contains only four 4–length factors.
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Figure 9: Lifting scheme for synthesis near the right boundary for j > 1 and even (to the left) or odd (to
the right)

The same procedure can be applied to design update filters defining wavelet functions with Ñ > 2
vanishing moments. However, as the filter width grows with Ñ , the level must be greater than the
minimum level which provides enough neighbors (for instance j >= 2 if Ñ = 6), and precautions have
to be taken near the boundaries. If Ñ ≥ 6, some filters may not expand equally on the left and on the
right of the central L interval. We choose to keep the filter width as short as possible and use the first
following right neighbors to replace the neighbors which do not exist on the left, and vice versa near the
right boundary of Ω. This choice implies that several wavelet functions, such as ψXXX−L−SLLSLSL and
ψXXXLS−L−LSLSL, may be defined as a linear combination of the same scaling functions. But due to the
different position of the central L within the common ω, these functions are well distinct. Note that, due
to the presence of S intervals, these cases are less numerous in the Fibonacci setting than in the regular
dyadic setting: they occur only for Ñ ≥ 8 with only two wavelet functions per boundary defined with
the same scaling functions within each level. In the regular dyadic setting, this occurs from Ñ = 6, with
Ñ/2− 1 wavelet functions per boundary (in general, (Ñ −N)/2+ 1). Update filters for Ñ ∈ {4, 6, 8} are
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Figure 10: The five mother wavelet functions ψω used near boundaries, for Ñ = 2, with plain red parts
defined above L intervals and blue dashed parts defined above S intervals.
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Figure 11: Lifting scheme for synthesis from j = 0 to 1 (to the left) or from j = 1 to 2 (to the right)

available as supplementary materials linked from the main article webpage.

Regular dyadic setting In the regular dyadic case, our construction to deal with boundaries would
yield to the same wavelet functions as Type A wavelets built by Kai Bittner [Bittner, 2006].

7 Stability

In §5, we recalled the necessity for our multiresolution framework to be as stable as possible, with the
desirable property of stability over all levels being subordinate to the convergence of the dual subdi-
vision scheme, which is difficult to prove since the scheme in non–stationary. In this section, we give
an insight into this stability through numerical analysis of condition number of the framework. But
first of all, we remark that our framework fulfills the conditions for a weaker definition of stability pro-
posed in [Carnicer et al., 1996]: the uniform stability of {Φj ∪Ψj}, with Φj := {ϕ̃j,κ, κ ∈ K(j)} and
Ψj := {ψj,m,m ∈M(j)}.
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7.1 Uniform stability

Let Aj be the synthesis operator from K(j + 1) onto K(j + 1) which transforms λj ∪ γj into λj+1 and
Bj the analysis operator which, by construction, is the inverse of Aj . The sets Φj and Ψj satisfy the
hypotheses of Corollary 2.1 in [Carnicer et al., 1996], and then {Φj ∪Ψj} is said uniformly stable if and
only if

‖Aj‖ = O(1), ‖Bj‖ = O(1), j →∞.

Whatever the update filter chosen in order to get wavelets with vanishing moments, there is only a finite
number of different rules to be applied. Let us consider the norm of the operators defined by the infinity
norm of their matrix representation which will be noted also as Aj and Bj for simplicity. The weights
included in each line of Aj or Bj depend on a factor of a given length l in XdωjX

d. As we know that the
number of different factors of length l in the infinite word of Fibonacci is l + 1 and because l does not
depend on j, the number of different possible absolute row sums in Aj or Bj is finite, which leads to the
result.

To be more specific, numerical experiments give ‖Aj‖∞ ≈ 2 and ‖Bj‖∞ ≈ 4 whatever Ñ , yielding to
a condition number ‖Aj‖∞ · ‖Bj‖∞ < 10 for any resolution j which is large enough (greater than 1 to 6,
depending on Ñ ∈ {0, 2, 4, 6, 8}). Indeed, ωj+1 = ωj−1ωj means that once ωj0 contains all the possible
factors (without X) of a given length, the following ωj do so. Moreover, the l–length factors starting with
an X are the same whatever j as soon as 3+Fib(j+1) ≥ l, when the l–length factors ending with X are
the same every two resolutions.

Note that the boundary management does not alter too much this one–step stability. Indeed, if we
compute the maximum absolute value row sum of Bj and Aj without the rows which contains a weight
defined for the boundary management, the norms remain of the same order. Besides, these values are
similar to the norms computed with similar frameworks designed with the regular dyadic hierarchy instead
of the Fibonacci tiling.

7.2 Stability over all levels

The stability over all levels defined in [Carnicer et al., 1996] is closely related to the condition of the
framework defined as follows. Let Tj be the synthesis operator from K(j + 1) onto K(j + 1) which

transforms λ0 ∪
⋃j

k=0 γk into λj+1. The operators Tj are well conditioned if

‖Tj‖ = O(1), ‖T
−1
j ‖ = O(1), j →∞.

As for Aj and Bj , the weights in any row of Tj or T−1
j are determined by a factor of a given length lj

in XdωjX
d. Unfortunately, in contrast with l, the length lj grows with j, which prevents us to conclude

to the stability over all levels. However, numerical experiments show that this instability is of the same
order as the instability of the framework designed with the regular dyadic setting.

Let Tj0,∆ be the synthesis matrix which transforms λj0 ∪
⋃j0+∆

k=j0
γk into λj0+∆. T

−1
j0,∆

is the analysis
matrix. Figure 12 (top left) shows the values of the condition number against ∆, for different update
lifting corresponding to Ñ ∈ {0, 2, 4, 6, 8}, and with j0 = 3 which is the first level where the update filters
for Ñ = 8 can be applied. As expected, the framework is more stable as Ñ grows. However the condition
numbers for Ñ = 8 are slightly higher than for Ñ = 6. This counter–intuitive order appears with the

rules added for managing the boundaries. Indeed, let us note Tj0,∆ and T−1
j0,∆

the matrices without the
rows containing at least one entry which depends on the boundary management. Note that the one is not
the inverse of the other. However, with the same argument as the one used for the uniform stability, when
j0 becomes large enough for these submatrices to contain all the possible set of weights within a row,
their infinity norms are also the norms of the bi–infinite matrices corresponding to the framework applied
on signals without boundary. Figure 12 (top right) shows the conditions numbers of these matrices with
j0 = 6 which yields to norms numerically stable against j ≥ j0, whatever Ñ and ∆. The same general
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Figure 12: Condition numbers of ∆ successive steps of our Fibonacci framework (top row) and of the
similar framework with the regular dyadic setting (bottom row), for Ñ ∈ {0, 2, 4, 6, 8}. On the left, the
norms are computed with all the rows. On the right, rows depending on the boundary management are
excluded.

behavior of the condition numbers can be observed with, this time, the curve corresponding to Ñ = 8
strictly below the curve for Ñ = 6 for ∆ ≥ 5.

The bottom row of the same figure shows the same quantities computed with the framework designed
with the regular dyadic setting, and values for j0 and ∆ chosen in order to get similar numbers of samples
at the finest resolution to those got in the experiments illustrated in the top row. The behavior and values
of the quantities are very similar between the two rows. This can be explained by the low discrepancy
between interval lengths of our non–uniform tiling, outside the boundaries neighborhood: within each
resolution, the ratio between interval lengths is never greater than the golden ratio (1.618...).

8 Conclusion

In this paper, we have presented a new multiresolution analysis based on non uniform B–splines and
defined on the Fibonacci grid. Similar constructions are possible with other valid L–system than Fibonacci
substitution rules as far as the associated subdivision scheme can be decomposed into elementary steps.
Define conditions on the L–system for such a decomposition to be possible is left for future work. Since
we focus on the study of a signal supported on an interval, after having explained how to perform its
decomposition at inner locations, the emphasis is put on the definition of boundary wavelets and scaling
functions. In our framework, the analysis/synthesis steps are naturally associated with biorthogonal
filters which allow the decomposition to be computed in place. Furthermore, since the downsampling rate
between each level of resolution is lower than 2 and the filter bank is designed on non–uniform samples, we
believe that the proposed decomposition could have good properties for further applications in particular
in regard to aliasing. This aspect will be the scope of future work. Moreover, the analysis could be
extended to image decomposition using a tensor–product approach and the properties of such an encoding
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should be investigated. Finally, we carried a numerical study showing that the proposed multiscale
representation is as stable as the same analysis implemented on a dyadic grid. Alternative strategies
combining vanishing moments and local semiorthogonalization could improve the condition number of
the framework [Simoens and Vandewalle, 2003]. Furthermore, the stability of the decomposition is not
theoretically guaranteed yet, because the existence of the dual bases remains to be proven. However the
lifting structure of the framework makes the first step of this study, that is, the definition of the dual
non–stationary subdivision scheme, easier. But the proof of its convergence is a much more difficult task.
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irregular point sets. Phil. Trans. R. Soc. Lond. A, 357(1760):2397–2413.

[de Boor, 1973] de Boor, C. (1973). The quasi–interpolant as a tool in elementary polynomial spline
theory. In Lorentz, G. G., Berens, H., Cheney, E. W., and Schumaker, L. L., editors, Approximation

theory, pages 269–276. Academic Press, New York.

19



[de Boor, 1976] de Boor, C. (1976). Splines as linear combinations of B-splines. a survey. In Lorentz,
G. G., Chui, C. K., and Schumaker, L. L., editors, Approximation theory II, pages 1–47. Academic
Press, New York.

[Goldman, 1990] Goldman, R. N. (1990). Blossoming and knot insertion algorithms for B–spline curves.
Computer Aided Geometric Design, 7(1-4):69–81.
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