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5 Determinantal point processes associated with

Hilbert spaces of holomorphic functions

Alexander I. Bufetov, Yanqi Qiu

Abstract

We study determinantal point processes onC induced by the reproducing ker-
nels of generalized Fock spaces as well as those on the unit discD induced by the
reproducing kernels of generalized Bergman spaces. In the first case, we show that
all reduced Palm measuresof the same orderare equivalent. The Radon-Nikodym
derivatives are computed explicitly using regularized multiplicative functionals. We
also show that these determinantal point processes are rigid in the sense of Ghosh
and Peres, hence reduced Palm measuresof different ordersare singular. In the sec-
ond case, we show that all reduced Palm measures,of all orders, are equivalent. The
Radon-Nikodym derivatives are computed using regularizedmultiplicative function-
als associated with certain Blaschke products. The quasi-invariance of these deter-
minantal point processes under the group of diffeomorphisms with compact supports
follows as a corollary.

Keywords.Determinantal point processes, Palm measures, generalized Fock spaces,
generalized Bergman spaces, regularized multiplicative functionals, rigidity.
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1 Introduction

1.1 Main results

1.1.1 The case ofC

Let ψ : C → R be aC2-smooth function and equip the complex planeC with the mea-

suree−2ψ(z)dλ(z), wheredλ is the Lebesgue measure. Assume that there exist positive

constantsm,M > 0 so that

m ≤ ∆ψ ≤M, (1)
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where∆ is the Euclidean Laplacian differential operator.

Denote byFψ the generalized Fock space with respect to the weighte−2ψ(z) and letBψ

be the reproducing kernel ofFψ, whose definition is recalled in Definition3.1. The con-

dition (1) implies in particular the useful Christ’s pointwise estimate for the reproducing

kernelBψ, see Theorem3.1below.

By the Macchı̀-Soshnikov theorem, the kernelBψ induces a determinantal point pro-

cess onC, which will be denoted byPBψ . For more background on determinantal point

processes, see, e.g. [11], [14], [21], [15] and§2 below.

Let p ∈ Cℓ andq ∈ Ck be two tuples ofdistinctpoints inC. Denote byPp
Bψ

andPq
Bψ

the reduced Palm measures ofPBψ conditioned atp andq respectively. For the definition,

see, e.g. [12], here, we follow the notation and conventions of [1].

Our first main result is that, under the assumption (1), Palm measuresPp
Bψ

andPq
Bψ

of

the same order are equivalent.

Theorem 1.1(Palm measures of the same order). Let ψ satisfy(1) and letp, q ∈ C
ℓ be

any two tuples of distinct points inC. Then

1) The limit

Σp,q(Z) := lim
R→∞

{ ∑

z∈Z:|z|≤R

log

∣∣∣∣
(z − p1) . . . (z − pℓ)

(z − q1) . . . (z − qℓ)

∣∣∣∣

− EP
q

Bψ

∑

z∈Z:|z|≤R

log

∣∣∣∣
(z − p1) . . . (z − pℓ)

(z − q1) . . . (z − qℓ)

∣∣∣∣
}

exists forPq
Bψ

-almost every configurationZ and the functionZ → e2Σp,q(Z) is inte-

grable with respect toPq
Bψ

.

2) The Palm measuresPp
Bψ

andPq
Bψ

are equivalent. Moreover, forPq
Bψ

-almost every

configurationZ, we have

dPp
Bψ

dPq
Bψ

(Z) =
e2Σp,q(Z)

EP
q

Bψ

(e2Σp,q)
. (2)

Definition 1.1 (Ghosh [8], Ghosh-Peres[9]). A point processP onC is said to be rigid if

for any bounded open setD ⊂ C with Lebesgue-negligible boundary∂D, there exists a

functionFD defined on the set of configurations, measurable with respectto theσ-algebra

generated by the family of random variables{#A : A ⊂ C \ D bounded and Borel},

where#A is defined by

#A(Z) = the cardinality of the finite setZ ∩A,

such that

#D(Z) = FD(Z \D), for P-almost every configurationZ overC.
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Proposition 1.2 (Rigidity). Under the assumption(1), the determinantal point process

PBψ is rigid in the sense of Ghosh and Peres.

Proposition8.1 in the Appendix now implies

Corollary 1.3 (Palm measures of different orders). Under the assumption(1), if ℓ 6= k,

then the reduced Palm measuresP
p
Bψ

andPq
Bψ

are mutually singular.

Remark1.1. In the particular caseψ(z) = 1
2
|z|2 (Ginibre point process), the results of

Theorem1.1and Corollary1.3were obtained in [17] with a different approach, where the

authors used finite dimensional approximation by orthogonal polynomial ensembles. The

rigidity in the caseψ(z) = 1
2
|z|2 is due to Ghosh and Peres [9], their original approach

will be followed in our proof of Proposition1.2.

1.1.2 The case ofD

In the case of Bergman spaces on the unit discD, the situation becomes quite different

and the corresponding determinantal point processes in this case are not rigid.

Consider a weight functionω : D → R+ and equipD with the measureω(z)dλ(z).

Assume thatω satisfies that
∫

D

(1− |z|)2Bω(z, z)ω(z)dλ(z) <∞. (3)

We will denote byBω the generalized Bergman space onD with respect to the weightω,

and byBω its reproducing kernel, the definition is recalled in Definition 3.2.

Again, by the Macchı̀-Soshnikov theorem, the reproducing kernelBω induces a deter-

minantal point process onD, which we denote byPBω .

Let p ∈ Dℓ be anℓ-tuple of distinct points inD and denote byPp
Bω

the reduced Palm

measures ofPBω atp.

Under the assumption (3), we show, for anyp ∈ Dℓ of distinct points inD, the reduced

Palm measurePp
Bω

is equivalent toPBω . In particular, any two reduced Palm measures are

equivalent. For the weightω ≡ 1, this result is due to Holroyd and Soo [10].

We now proceed to the statement of our main result in the case of D. For anℓ-tuple

p = (p1, · · · , pℓ) of distinct points inD, set

bp(z) =

ℓ∏

j=1

z − pj
1− p̄jz

. (4)

Theorem 1.4. Letω be a weight such that(3) holds. Letp ∈ Dℓ be anℓ-tuple of distinct

points inD. Then
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1) The limit

Sp(Z) := lim
r→1−


 ∑

z∈Z:|z|≤r

log |bp(z)| − EPBω

∑

z∈Z:|z|≤r

log |bp(z)|


 (5)

exists forPBω -almost every configurationZ and the functionZ → e2Sp(Z) is inte-

grable with respect toPBω .

2) The Radon-Nikodym derivativedPp
Bω
/dPBω is given by the formula:

dPp
Bω

dPBω
(Z) =

e2Sp(Z)

EPBω
(e2Sp)

, for PBω -almost every configurationZ. (6)

Theorem1.4will be obtained from

Proposition 1.5. Let ω be a weight such that(3) holds. Letp ∈ Dℓ andq ∈ Dk be two

tuples of distinct points inD. Then the Radon-Nikodym derivativedPp
Bω
/dPq

Bω
is given by

dPp
Bω

dPq
Bω

(Z) =
e2Sp,q(Z)

EP
q

Bω
(e2Sp,q)

, for Pq
Bω

-almost every configurationZ, (7)

whereSp,q(Z) is defined forPq
Bω

-almost every configurationZ, given by

Sp,q(Z) := lim
r→1−


 ∑

z∈Z:|z|≤r

log |bp(z)bq(z)−1| − EP
q

Bω

∑

z∈Z:|z|≤r

log |bp(z)bq(z)−1|


 . (8)

Remark1.2. If ψ (resp.ω) is a radial function, then the monomials(zn)n≥0 are orthogo-

nal in the corresponding Hilbert space, hence the determinantal point processPBψ (resp.

PBω ) can be naturally approximated byorthogonal polynomial ensembles. In particular,

if ψ(z) = 1
2
|z|2 for all z ∈ C, thenPBψ is the Ginibre point process, see chapter 15 of

Mehta’s book [16]; if ω(z) ≡ 1 for all z ∈ D, thenPBω is the determinantal point pro-

cess describing the zero set of a Gaussian analytic functionon the hyperbolic discD, see

[18]. Our study, however, goes beyond the radial setting and ourmethods work for more

general phase spaces as well.

Remark1.3. The regularized multiplicative functionals are necessaryin Theorem1.1,

Theorem1.4and Proposition1.5: indeed, whenω ≡ 1, for PBω -almost every configura-

tionZ onD, the points in the configurationZ violate the Blaschke condition:
∑

z∈Z

(1− |z|) = ∞, (9)

whence for anyp ∈ Dℓ, we have,
∏

z∈Z

|bp(z)| = 0, for PBω -almost every configurationZ, (10)



6 Alexander I. Bufetov, Yanqi Qiu

so the simple multiplicative functional is identically0. To see (9), we use the Kolmogorov

three-series theorem and the fact (Peres and Virág [18]) that, forPBω -distributed random

configurationsZ, the set of moduli{|z| : z ∈ Z} has same law as the set of random vari-

ables{U1/(2k)
k }, whereU1, U2, . . . are independent identically distributed random vari-

ables such thatU1 has a uniform distribution in[0, 1]. A direct computation shows that

EPBω

∑

z∈Z

(1− |z|) =
∑

k

(1− E(U
1/(2k)
k )) = ∞.

The determinantal point processPBω in the caseω ≡ 1 describes the zero set of a

Gaussian analytic function onD:

FD(z) =
∞∑

n=0

gnz
n,

where (gn)n≥0 is a sequence of independent identically distributed standard complex

Gaussian random variables. Direct computation shows that

E‖FD‖2H2 = ∞ andE‖FD‖2Bω = ∞,

hence the random holomorphic function almost surely belongs neither to the Hardy space

H2 nor to the Bergman space, thus it is not surprising that the zero set ofFD almost surely

violates Blaschke condition.

1.2 Quasi-invariance

LetU = C orD. LetF : U → U be a diffeomorphism. Its support, denoted bysupp(F ),

is defined as therelative closurein U of the subset{z ∈ U : F (z) 6= z}. The totality of

diffeomorphisms with compact supports is a group denoted byDiffc(U), i.e.,

Diffc(U) :=
{
F : U → U

∣∣∣F is a diffeomorphism andsupp(F ) is compact
}
.

The groupDiffc(U) naturally acts on the set of configurations onU : given any diffeomor-

phismF ∈ Diffc(U) and any configurationZ onU ,

(F,Z) 7→ F (Z) := {F (z) : z ∈ Z}.

Recall that the JacobianJF of the functionF : U → U is defined by

JF (z) = | detDF (z)|.

Corollary 1.6. LetPK be a determinantal point process onU , which is either the determi-

nantal point processPBψ onC or the determinantal point processPBω onD. Then under
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Assumption(1) in the case ofC or, in the case ofD Assumption(3), PK is quasi-invariant

under the induced action of the groupDiffc(U).

More precisely, letF ∈ Diffc(U) and letV ⊂ U be any precompact subset con-

taining supp(F ). For PK-almost every configurationZ the following holds: ifZ
⋂
V =

{q1, . . . , qℓ}, then

dPK ◦ F
dPK

(Z) =
det[K(F (qi), F (qj))]

ℓ
i,j=1

det[K(qi, qj)]
ℓ
i,j=1

· dP
p
K

dPq
K

(Z) ·
ℓ∏

i=1

JF (qi),

whereq = (q1, . . . , qℓ) ∈ U ℓ andp = (F (q1), . . . , F (qℓ)) ∈ U ℓ

Proof. This is an immediate consequence of Theorem1.1, Proposition1.5 and Proposi-

tion 2.9 of [1].

1.3 Unified approach for obtaining Radon-Nikodym derivatives

In this section, let us describe briefly the main idea of our unified approach for obtaining

the Radon-Nikodym derivatives in Theorem1.1, Theorem1.4and Proposition1.5.

1.3.1 Relations between Palm subspaces

If p ∈ Cℓ is anℓ-tuple of distinct points ofC, we define thePalm subspace:

Fψ(p) := {ϕ ∈ Fψ : ϕ(p1) = · · · = ϕ(pℓ) = 0} . (11)

LetBp
ψ denote the reproducing kernel ofFψ(p).

Similarly, if p ∈ Dℓ is anℓ-tuple of distinct points ofD, we define the Palm subspace

Bω(p) = {ϕ ∈ Bω : ϕ(p1) = · · · = ϕ(pℓ) = 0} , (12)

and denote its reproducing kernel byBp
ω.

By Shirai-Takahashi’s theorem, which motivates our terminology, see Theorem2.1

below, these Palm subspaces are related to the reduced Palm measures:Bp
ψ (resp.Bp

ω) is

the correlation kernel ofPp
Bψ

(resp.Pp
Bω

), i.e., we have

P
p
Bψ

= PBp

ψ
(resp.Pp

Bω
= PBp

ω
).

Proposition 1.7. For any pair ofℓ-tuplesp, q ∈ Cℓ of distinct points inC, we have

Fψ(p) =
(z − p1) · · · (z − pℓ)

(z − q1) · · · (z − qℓ)
· Fψ(q). (13)
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Proposition 1.8. Let k, ℓ ∈ N ∪ {0} and letp ∈ Dℓ, q ∈ Dk be two tuples of distinct

points inD, then

Bω(p) =

ℓ∏

j=1

z − pj
1− p̄jz

(
k∏

j=1

z − qj
1− q̄jz

)−1

· Bω(q). (14)

In particular, we have

Bω(p) =
ℓ∏

j=1

z − pj
1− p̄jz

· Bω.

Comments. • The proofs of Propositions1.7and1.8are immediate from the defini-

tions (11) and (12) and basic properties of holomorphic functions.

• Notice the analogy of the above Propositions1.7 and1.8 with Proposition 3.4 in

[1].

• A common feature, which is crucially used later, of Propositions1.7and1.8, is the

following relations

lim
|z|→∞

∣∣∣∣
(z − p1) · · · (z − pℓ)

(z − q1) · · · (z − qℓ)

∣∣∣∣ = 1 and lim
|z|→1−

∣∣∣∣∣

ℓ∏

j=1

z − pj
1− p̄jz

∣∣∣∣∣ = 1. (15)

The rate of convergence in (15) also plays an important rôle for defining the regu-

larized multiplicative functionals, see§5.2and§6.2.

1.3.2 Radon-Nikodym derivatives as regularized multiplicative functionals

For obtaining the Radon-Nikodym derivatives in question, we will first develop in The-

orem4.1, the most technical result of this paper, a general method onregularized mul-

tiplicative functionals. This result, an extension of Proposition 4.6 of [1], is, we hope,

interesting in its own right; the stronger statement is alsonecessary for our argument in

the case ofC, in which Proposition 4.6 of [1] is not applicable.

By Theorem4.1, under the assumption (1) onψ, we can show that the regularized mul-

tiplicative functional, i.e., the formula (7), is well-defined. This regularized multiplicative

functional is then shown to be exactly the Radon-Nikodym derivative between the desired

reduced Palm measures of the same order for the determinantal point processPBψ .

The regularized multiplicative functionals in the case ofD are technically simpler and

the full force of Theorem4.1is not needed.

1.4 Organization of the paper

The paper is organized as follows. In the introduction section §1, we give necessary defi-

nitions and notation and state our main results. The basic materials in the theory of deter-

minantal point processes are recalled in§2. The definitioins concerning generalized Fock
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spaces and generalized Bergman spaces are given in§3. In §4, our main ingredient,reg-

ularized multiplicative functionals, is defined. We also state the most technical Theorem

4.1 in §4. We then apply Theorem4.1 to prove our main results for determinantal point

processes associated with generalized Fock spaces in§5 and to prove the main results in

the case of generalized Bergman spaces in§6. The section§7 is devoted to the proof of

Theorem4.1. In the Appendix§8, we give details for the fact that rigid point processes

have singular Palm measures with different orders.

Remark1.4. Part of our main results in this paper were announced in [3].

2 Spaces of configurations and determinantal point pro-
cesses

For the reader’s convenience, we recall the basic definitions and notation on determinantal

point processes.

Let E be a locally compact complete separable metric space equipped with a sigma-

finite Borel measureµ. The spaceE will be later referred to asphase space. The measure

µ is referred to asreference measureor background measure. By a configurationX on the

phase spaceE, we mean a locally finite subset ofX ⊂ E. By identifying any configuration

X ∈ Conf(E) with the Radon measure

mX :=
∑

x∈X

δx,

whereδx is the Dirac mass on the pointx, the space of configurationsConf(E) is iden-

tified with a subset of the spaceM(E) of Radon measures onE and becomes itself a

complete separable metric space. We equipConf(E) with its Borel sigma algebra.

Points in a configuration will also be called particles. In this paper, the italicized letters

asX,Y,Z always denote configurations.

2.1 Additive functionals and multiplicative functionals

We recall the definitions of additive and multiplicative functionals on the space of config-

urations.

If ϕ : E → C is a measurable function onE, then the additive functional (which is

also called linear statistic)Sϕ : Conf(E) → C corresponding toϕ is defined by

Sϕ(X) =
∑

x∈X

ϕ(x)

provided the sum
∑

x∈X ϕ(x) converges absolutely. If the sum
∑

x∈X ϕ(x) fails to con-

verge absolutely, then the additive functional is not defined atX.
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Similarly, the multiplicative functionalΨg : Conf(E) → [0,∞] associated with a

non-negative measurable functiong : E → R+, is defined as the function

Ψg(X) :=
∏

x∈X

g(x),

provided the product
∏
x∈X

g(x) absolutely converges to a value in[0,∞]. If the product
∏
x∈X

g(x) fails to converge absolutely, then the multiplicative functional is not defined at

the configurationX.

2.2 Locally trace class operators and their kernels

Let L2(E, µ) denote the complex Hilbert space ofC-valued square integrable functions

onE. Let S1(E, µ) be the space of trace class operators onL2(E, µ) equipped with the

trace class norm‖ · ‖S1. LetS1,loc(E, µ) be the space of locally trace class operators, that

is, the space of bounded operatorsK : L2(E, µ) → L2(E, µ) such that for any bounded

subsetB ⊂ E, we have

χBKχB ∈ S1(E, µ).

A locally trace class operatorK admits a kernel, for which we use the same symbol

K. In this paper, we are especially interested in locally trace class orthogonal projection

operators. Let, therefore,Π ∈ S1,loc be an operator of orthogonal projection onto a closed

subspaceL ⊂ L2(E, µ). All kernels considered in this paper are supposed to satisfy the

following

Assumption 1. There exists a subset̃E ⊂ E, satisfyingµ(E \ Ẽ) = 0 such that

• For anyq ∈ Ẽ, the functionvq(·) = Π(·, q) lies in L2(E, µ) and for anyf ∈
L2(E, µ), we have

(Πf)(q) = 〈f, vq〉L2(E,µ).

In particular, iff is a function inL, then by lettingf(q) = 〈f, vq〉L2(E,µ), for any

q ∈ Ẽ, the functionf is defined everywhere oñE (which is slightly stronger than

almost everywhere defined onE).

• The diagonal valuesΠ(q, q) of the kernelΠ are defined for allq ∈ Ẽ and we have

Π(q, q) = 〈vq, vq〉L2(E,µ). Moreover, for any bounded Borel subsetB ⊂ E,

tr(χBΠχB) =

∫

B

Π(x, x)dµ(x).
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2.3 Definition of determinantal point processes

A Borel probabilityP on Conf(E) will be called a point process onE. Recall that the

point processP is said to admitk-th correlation measureρk onEk if for any continuous

compactly supported functionϕ : Ek → C, we have

∫

Conf(E)

∗∑

x1,...,xk∈X

ϕ(x1, . . . , xk)P(dX) =

∫

Ek

ϕ(q1, . . . , qk)dρk(q1, . . . , qk),

where
∗∑

denotes the sum over all orderedk-tuples ofdistinctpoints(x1, . . . , xk) ∈ Xk.

Given a bounded measurable subsetA ⊂ E, we define#A : Conf(E) → N ∪ {0} by

#A(X) = the number of particles inX ∩ A.

Then the point processP is determined by the joint distributions of#A1 , . . . ,#An, if

A1, . . . , An range over the family of bounded measurable subsets ofE.

A Borel probability measureP onConf(E) is called determinantal if there exists an

operatorK ∈ S1,loc(E, µ) such that for any bounded measurable functiong, for which

g − 1 is supported in a bounded setB, we have

EPΨg = det (1 + (g − 1)KχB) . (16)

The Fredholm determinant is well-defined since(g − 1)KχB ∈ S1(E, µ). The equation

(16) determines the measureP uniquely and we will denote it byPK and the kernelK

is said to bea correlation kernelof the determinantal point processPK . Note thatPK is

uniquely determined byK, but different kernels may yield the same point process.

By the Macchı̀-Soshnikov theorem [15], [21], any Hermitian positive contraction in

S1,loc(E, µ) defines a determinantal point process. In particular, the projection operator

on areproducing kernel Hilbert spaceinduces a determinantal point process.

Remark2.1. If α : E → C is a Borel function such that|α(x)| = 1 for µ-almost every

x ∈ E, and ifΠ ∈ S1,loc is the operator of orthogonal projection onto a closed subspace

L ⊂ L2(E, µ), thenΠ andαΠα define the same determinantal point process, i.e.,

PαΠα = PΠ.

Note thatαΠα is the orthogonal projection onto the subspaceα(x)L.

2.4 Palm measures and Palm subspaces

In this paper, by Palm measures, we always meanreducedPalm measures. We refer to

[12], [5] for more details on Palm measures of general point processes.
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Let P be a point process onConf(E). Assume thatP admitsk-th correlation measure

ρk onEk. Then forρk-almost everyq = (q1, . . . , qk) ∈ Ek of distinct points inE, one

can define a point process onE, denoted byPq and is called (reduced) Palm measure ofP

conditioned atq, by the following disintegration formula: for any non-negative Borel test

functionu : Conf(E)× Ek → R,

∫

Conf(E)

∗∑

q1,...,qk∈X

u(X; q)P(dX) =

∫

Ek

ρk(dq)

∫

Conf(E)

u(X ∪ {q1, . . . , qk}; q)Pq(dX), (17)

where
∗∑

denotes the sum over all mutually distinct pointsq1, . . . , qk ∈ X.

Informally, Pq is the conditional distribution ofX \ {q1, . . . , qk} onConf(E) condi-

tioned to the event that all particlesq1, . . . , qk are in the configurationX, providing thatX

has as distributionP.

Now let PΠ be a determinantal point process onConf(E) induced by the projection

operatorΠ. Let q = (q1, . . . , qk) ∈ Ẽk be ak-tuple of distinct points iñE ⊂ E, whereẼ

is as in Assumption1. Set

L(q) = {ϕ ∈ L : ϕ(q1) = · · · = ϕ(qk) = 0}. (18)

The spaceL(q) will be called thePalm subspaceof L2(E, µ) corresponding toq. Both

the operator of orthogonal projection fromL2(E, µ) onto the subspaceL(q) and the re-

producing kernel ofL(q) will be denoted byΠq.

Explicit formulae forΠq in terms of the kernelΠ are known, see Shirai-Takahashi

[20]. Here we recall that for a single pointq ∈ Ẽ, we have

Πq(x, y) = Π(x, y)− Π(x, q)Π(q, y)

Π(q, q)
. (19)

If Π(q, q) = 0, we setΠq = Π. In general, we have the iteration

Πq = (· · · (Πq1)q2 · · · )qk .

Note that the order of the pointsq1, q2, · · · qk has no effect in the above iteration.

Theorem 2.1(Shirai and Takahashi [20]). For anyk ∈ N and forρk-almost everyk-tuple

q ∈ Ek of distinct points inE, the Palm measurePq
Π is induced by the kernelΠq:

P
q
Π = PΠq.

2.5 Rigidity

Let P be a point process overC. We will use the following result on the rigidity of point

processes (see Definition1.1).
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Theorem 2.2(Ghosh [8], Ghosh and Peres [9]). LetP be a point process onC whose first

correlation measureρ1 is absolutely continuous with respect to the Lebesgue measure and

letD be an open bounded setDwith Lebesgue-negligible boundary. Letϕ be a continuous

function onC. Suppose that for any0 < ε < 1, there exists aC2
c -smooth functionΦε such

thatΦε = ϕ onD, andVarP(SΦε) < ε. Then the point processP is rigid.

3 Generalized Fock spaces and Bergman spaces

Let ψ : C → R be a function satisfying the assumption (1) and denote

dvψ(z) = e−2ψ(z)dλ(z),

wheredλ is the Lebesgue measure onC. Let O(C) denote the space of holomorphic

functions onC.

Definition 3.1. If the linear subspace

Fψ := L2(C, dvψ) ∩ O(C)

is closed inL2(C, dvψ), then it will called generalized Fock space with respect to the

measuredvψ. The orthogonal projectionP : L2(dvψ) → Fψ is given by integration

against a reproducing kernelBψ(z, w) (analytic inz and anti-analytic inw):

(Pf)(z) =

∫

C

f(w)Bψ(z, w)e
−2ψ(w)dλ(w). (20)

Definition 3.2. Let D ⊂ C be the open unit disc. A weight functionω : D → R+ is

called aBergman weight, if it is integrable with respect to the Lebesgue measure andthe

generalized Bergman space

Bω := L2(D, ωdλ) ∩ O(D)

is closed and the evaluation functionalsf → f(z) on Bω are uniformly bounded on

any compact subset ofD. In such situation, the spaceBω is a reproducing kernel Hilbert

space, its reproducing kernel will be denoted asBω.

We shall need Christ’s pointwise estimate (cf. [4], [6], [19]) of the reproducing kernel

Bψ(z, w). Theorem 3.2 in [19] gives the estimate in the form most convenient for us.

Theorem 3.1(Christ). Letψ ∈ C2(C) be a real-valued function satisfying(1). Then there

are contantsδ, C > 0 such that for allz, w ∈ C,

|Bψ(z, w)|2e−2ψ(z)−2ψ(w) ≤ Ce−δ|z−w|. (21)

In particular, for all z ∈ C,

Bψ(z, z)e
−2ψ(z) ≤ C. (22)
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Remark3.1. For the Gaussian caseψ(z) = 1
2
|z|2, we have the following explicit formula

|Bψ(z, w)|2e−2ψ(z)−2ψ(w) = π−2e−|z−w|2.

4 Regularized multiplicative functionals

As (10) shows, simple multiplicative functionals cannot be used in our situation. Follow-

ing [1], we use regularized multiplicative functionals whose definition we now recall.

Let f : E → C be a Borel function. Set

Var(Π, f) =
1

2

∫∫

E2

|f(x)− f(y)|2|Π(x, y)|2dµ(x)dµ(y). (23)

Introduce the Hilbert spaceV(Π) in the following way: the elements ofV(Π) are functions

f onE satisfyingVar(Π, f) < ∞; functions that differ by a constant are identified. The

square of the norm of an elementf ∈ V(Π) is preciselyVar(Π, f).

Let Sf : Conf(E) → C to be the corresponding additive functional, such thatSf ∈
L1(Conf(E),PΠ), then we set

Sf = Sf − EPΠ
Sf . (24)

If moreover,Sf ∈ L2(Conf(E),PΠ), then it is easy to see that

EPΠ
|Sf |2 = VarPΠ

(Sf ) = Var(Π, f). (25)

Definition 4.1. Let V0(Π) be the subset of functionsf ∈ V(Π), such that there exists an

exhausting sequence of bounded subsets(En)n≥1, depending onf , so that

fχEn
V(Π)−−−→
n→∞

f.

The identity (25) implies that there exists a unique isometric embedding (asmetric

spaces)

S : V0(Π) → L2(Conf(E),PΠ)

extending the definition (24), so that we have

Sf = lim
n→∞

∑

x∈X∩En

f(x)− EPΠ

∑

x∈X∩En

f(x).

Definition 4.2. Given a non-negative functiong : E → R such thatlog g ∈ V0(Π), then

we set

Ψ̃g = exp(Slog g).

If moreover,Ψ̃g ∈ L1(Conf(E),PΠ), then we set

Ψg =
Ψ̃g

EPΠ
Ψ̃g

.
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The functionΨg is called the regularized multiplicative functional associated tog and

PΠ. For specifying the dependence onPΠ, the notationΨ
Π

g will also be used. By definition,

for PΠ-almost every configurationX, the following identity holds:

log Ψ
Π

g (X) = lim
n→∞

∑

x∈X∩En

log g(x)− EPΠ

(
∑

x∈X∩En

log g(x)

)
. (26)

Clearly,Ψ
Π

g is a probability density forPΠ, sinceEPΠ
(Ψ

Π

g ) = 1.

Theorem 4.1.LetE0 ⊂ E be a Borel subset satisfyingtr(χE0ΠχE0) <∞ and such that

if ϕ ∈ L satisfiesχE\E0ϕ = 0, thenϕ = 0 identically.

Letg be a nonnegative Borel function onE satisfyingg|E0 = 0, g|Ec0 > 0 and such that

for anyε > 0 the subsetEε = {x ∈ E : |g(x)− 1| ≥ ε} is bounded. Assume moreover

that there exists an increasing sequence of bounded subsets(En)n≥1 exhausting the whole

phase spaceE and
∫

En

|g(x)− 1|Π(x, x)dµ(x) <∞; (27)

∫

Ecn

|g(x)− 1|3Π(x, x)dµ(x) <∞; (28)

∫∫

Ecn×E
c
n

|g(x)− g(y)|2|Π(x, y)|2dµ(x)dµ(y) <∞. (29)

And

lim
n→∞

tr(χEnΠ|g − 1|2χEcnΠχEn) = 0. (30)

Then

Ψ̃g ∈ L1(Conf(E),PΠ).

If the subspace
√
gL is closed and the corresponding operator of orthogonal projection

Πg satisfies, for sufficiently largeR, the condition

tr(χg>RΠ
gχg>R) <∞ (31)

then we also have

PΠg = Ψ
Π

g · PΠ.
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Remark4.1. Note that

tr(χEnΠ|g − 1|2χEcnΠχEn) =
∫

En

dµ(y)

∫

Ecn

|g(x)− 1|2|Π(x, y)|2dµ(x).

Remark4.2. The above theorem is an extension of Proposition 4.6 of [1]: we replace the

convergence of
∫
Ecε

|g(x)− 1|2Π(x, x)dµ(x) in Proposition 4.6 of [1] by the convergence

of
∫
Ecε

|g(x) − 1|3Π(x, x)dµ(x). This extension is crucial for treating the case of Fock

space, since the former condition is already violated in thecase of the Ginibre point

process.

5 Case ofC

5.1 Examples

In this section, we assume thatψ : C → R is a measurable function onC, the condition

(1) is not necessarily satisfied. Recall that we denotedvψ(z) = e−2ψ(z)dλ(z) and de-

noteFψ =

{
f : C → C

∣∣∣f holomorphic,
∫
C

|f |2dvψ <∞
}
. If the evaluation functionals

evz(f) := f(z) defined onFψ are uniformly bounded on compact subsets, thenFψ is a

closed subspace ofL2(C, dvψ). In this case, denote byBψ the reproducing kernel ofFψ,

we have

Bψ(z, w) =
∞∑

j=1

fj(z)fj(w),

where(fj)∞j=1 is any orthonormal basis ofFψ.

Assumption 2. The measuredvψ satisfies

(1) the evaluation functionalsevz defined onFψ are uniformly bounded on compact

subsets;

(2) the polynomials are dense inFψ;

(3)
∫
C

1
1+|z|2

Bψ(z, z)dvψ(z) <∞.

Example5.1 (A radial case). Let α > 0, and setψα(z) = 1
2
|z|α, then the measure

dvψα(z) = e−|z|αdλ(z) satisfies Assumption2 if and only if 0 < α < 2. Indeed, the

first two conditions in Assumption2 are satisfied bydvψα by all α > 0. Now one can see

that the third condtion is equivalent to

∞∑

n=1

‖zn−1‖2L2(dvψ)

‖zn‖2L2(dvψ)

<∞. (32)
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A direct computation shows that

‖zn‖2L2(dvψ)
=

2π

α
Γ

(
2n+ 2

α

)
and

‖zn−1‖2L2(dvψ)

‖zn‖2L2(vψ)

∼ 1

n2/α
. (33)

The series (32) converges if and only if0 < α < 2.

Remark5.2. As shown in Example5.1, the third condition in Assumption2 is too strict:

indeed, it fails already for the Ginibre point process (corresponding toψ(z) = 1
2
|z|2).

LetPBψ be the determinantal point process induced by the operatorBψ. For anyℓ-tuple

q = (q1, . . . , qℓ) ∈ Cℓ of distinct points, set

Fψ(q) :=
{
f ∈ Fψ

∣∣∣f(q1) = · · · = f(qℓ) = 0
}
,

and letBq
ψ denote the operator of orthogonal projection ontoF

q
ψ. Recall that the Palm

distributionPq
Bψ

of PBψ conditioned atq is induced byBq
ψ, i.e.,

P
q
Bψ

= PBq

ψ
.

Given a positive integerℓ ∈ N, introduce the closed subspace

F
(ℓ)
ψ :=

{
f ∈ Fψ

∣∣∣f(0) = f ′(0) = · · · = f (ℓ−1)(0) = 0
}
. (34)

DenoteB(ℓ)
ψ the operator of orthogonal projection ontoF

(ℓ)
ψ . LetP(ℓ)

Bψ
be the determinantal

point process induced byB(ℓ)
ψ .

Remark5.3. In general, we do not haveF (ℓ)
ψ = zℓFψ. Indeed, letψ(z) = 1

2
|z|2, we have

zFψ 6⊂ Fψ. This can be seen from the closed graph theorem: otherwise, the operator

Mz : Fψ → Fψ of multiplication by the functionz is bounded, which contradicts the

explicit computation (33):

‖Mz‖Fψ→Fψ
≥ sup

n

‖zn+1‖Fψ

‖zn‖Fψ

= ∞;

see also the related discussion after Theorem 2 in [7].

Proposition 5.1. If ψ satisfies Assumption2, then for anyℓ ∈ N and anyℓ-tuple q =

(q1, . . . , qℓ) ∈ Cℓ of distinct points, we have equivalence of measures:

P
q
Bψ

≃ P
(ℓ)
Bψ
.

Moreover, if one sets

gq(z) =

∣∣∣∣
(z − q1) . . . (z − qℓ)

zℓ

∣∣∣∣
2

,
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then the Radon-Nikodym derivative is given by the regularized multiplicative functional

dPq
Bψ

dP
(ℓ)
Bψ

= Ψ
B

(ℓ)
ψ

gq .

In particular, given any twoℓ-tuplesq andq′ of distinct points, the corresponding Palm

measuresPq
Bψ

andPq′

Bψ
are equivalent.

Proof. First note that, under Assumption2, for anyℓ ∈ N and anyℓ-tupleq = (q1, . . . , qℓ) ∈
Cℓ of distinct points,

Fψ(q) =
(z − q1) . . . (z − qℓ)

zℓ
F

(ℓ)
ψ .

Next we use Proposition 4.6 of [1]. We now verify the assumption of Proposition 4.6

of [1] for the pair(B(ℓ)
ψ , g). Note thatB(ℓ)

ψ (z, z) = O(|z|2ℓ) for |z| → 0 and|g(z)− 1|2 =
O (1/|z|2), for |z| → ∞. Recall thatB(ℓ)

ψ (z, z) ≤ Bψ(z, z). Hence, under Assumption2,

we have∫

|z|≤1

|g(z)− 1|B(ℓ)
ψ (z, z)dvψ(z) +

∫

|z|≥1

|g(z)− 1|2B(ℓ)
ψ (z, z)dvψ(z) <∞.

The pair(B(ℓ)
ψ , g) satisfies all assumptions of Proposition 4.6 in [1], and Proposition5.1

follows immediately.

5.2 Proof of Theorem1.1

We now derive Theorem1.1from Theorem4.1. From now on, the functionψ is assumed

to satisfy the condition (1) until the end of this paper.

Let ℓ ≥ 1 and letp = (p1, . . . , pℓ), q = (q1, . . . , qℓ) ∈ Cℓ be any two fixedℓ-tuples of

distinct points; letg be the function defined by the formula

g(z) = |gp,q(z)|2 =
∣∣∣∣
(z − p1) · · · (z − pℓ)

(z − q1) · · · (z − qℓ)

∣∣∣∣
2

. (35)

Let 0 < ε < 1 be a small fixed number. ChooseRε > max{|pk|, |qk| : k = 1, . . . , ℓ},
large enough, such that outsideEε := {z ∈ C : |z| ≤ Rε}, we have|g(z) − 1| ≤ ε.

Finally, forn ∈ N, letEn = {z ∈ C : |z| ≤ max(Rε, n)}.

We start with a simple but very useful observation that conditions (28), (29), (30) and

(31) in Theorem4.1are preserved under taking finite rank pertubation.

Remark5.4. Assume that the pair(g,Π) satisfies the conditions (28), (29), (30) and (31)

in Theorem4.1. If Π̃ = Π + Π′, whereΠ′ has finite rank andRan(Π) ⊥ Ran(Π′), or

Π̃ = Π−Π′, whereΠ′ has finite rank andRan(Π′) ⊂ Ran(Π), then conditions (28), (29),

(30) and (31) hold for the new pair(g, Π̃) . If g is unbounded, then the condition (27) for

the pair(g,Π) does not imply the condition for the pair(g, Π̃). The condition (27) is on

the other hand usually easy to check directly.
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Lemma 5.2. Let g be the function defined by the formula(35). We have
∫

En

|g(z)− 1|Bq
ψ(z, z)e

−2ψ(z)dλ(z) <∞ and
∫

Ecn

|g(z)− 1|3Bq
ψ(z, z)e

−2ψ(z)dλ(z) <∞.

Proof. We first note that for any smallε > 0, there existsCε > 0, such that if|z−qk| < ε,

then

Bq
ψ(z, z) ≤ Cε|z − qk|2. (36)

Indeed,Bq
ψ is the orthogonal projection to the subspaceFψ(q), hence we have

Bq
ψ(z, w) =

∞∑

k=1

fj(z)fj(w), (37)

where(fj)∞j=1 is any orthornomal basis ofFψ(q). The convergence is uniform on any

compact subset ofC. Thus the function|g(z)− 1|Bq
ψ(z, z)e

−2ψ(z) is bounded onEn, this

implies the first inequality in the lemma.

By Theorem3.1, there exists a constantC > 0, such that

Bp
ψ(z, z)e

−2ψ(z) ≤ Bψ(z, z)e
−2ψ(z) ≤ C.

Since|g(z)− 1|3 = O(1/|z|3) as |z| → ∞, there existsC ′ > 0, such that

∫

Ecn

|g(z)− 1|3Bq
ψ(z, z)e

−2ψ(z)dλ(z) ≤ C ′

∫

|z|≥Rε

1

|z|3dλ(z) <∞.

Lemma 5.3. Let g be the function defined by the formula(35). We have
∫∫

Ecε×E
c
ε

|g(z)− g(w)|2|Bp
ψ(z, w)|2dvψ(z)dvψ(w) <∞. (38)

Proof. SinceBp
ψ is a finite rank perturbation ofBψ, and sinceg is bounded onEc

ε, it

suffices to show that

I1 :=

∫∫

|z|≥Rε,|w|≥Rε

|g(z)− g(w)|2|Bψ(z, w)|2dvψ(z)dvψ(w) <∞. (39)

Christ’s pointwise estimate, (21) in Theorem3.1, implies that there existsα ∈ C, such

that

g(z) = 1 +
α

z
+
ᾱ

z̄
+O

(
1/|z|2

)
as |z| → ∞.
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Thus it suffices to show that

I2 :=

∫∫

|z|≥Rε,|w|≥Rε

∣∣∣∣
1

z
− 1

w

∣∣∣∣
2

e−δ|z−w|dλ(z)dλ(w) <∞. (40)

To this end, write

I2 =

∫

|w|≥Rε

dλ(w)

∫

|ζ+w|≥Rε

|ζ |2
|w(w + ζ)|2 e

−δ|ζ|dλ(ζ)

≤
∫

|w|≥Rε

dλ(w)

∫

|ζ+w|≥Rε

χ{|w|≥2|ζ|}
|ζ |2

|w(w + ζ)|2e
−δ|ζ|dλ(ζ)

+

∫

|w|≥Rε

dλ(w)

∫

|ζ+w|≥Rε

χ{|w|<2|ζ|}
|ζ |2

|w(w + ζ)|2 e
−δ|ζ|dλ(ζ).

The first integral is controlled by

4

∫

|w|≥Rε

dλ(w)

∫

C

|ζ |2
|w|4 e

−δ|ζ|dλ(ζ) <∞,

while the second integral is controlled by
∫

|w|≥Rε

dλ(w)

∫

C

χ{|w|<2|ζ|}
|ζ |2

|Rεw|2
e−δ|ζ|dλ(ζ)

=2π

∫

2|ζ|≥Rε

log

(
2|ζ |
Rε

) |ζ |2
|Rε|2

e−δ|ζ|dλ(ζ) <∞.

The proof of the lemma is complete.

Lemma 5.4. Let g be the function defined by the formula(35). We have

lim
n→∞

tr(χEnB
p
ψ|g − 1|2χEcnB

p
ψχEn) = 0. (41)

Proof. SinceBp
ψ is a finite rank perturbation ofBψ, by Remark5.4, it suffices to check

the same condition (41) for the new pair(g, Bψ). By applying again Christ’s pointwise

estimate (21), we have

I3(n) :=tr(χEnBψ|g − 1|2χEcnBψχEn) = ‖χEnBψ|g − 1|χEcn‖2HS
=

∫

|z|≤n

∫

|w|≥n

|g(w)− 1|2|Bψ(z, w)|2e−2ψ(z)−2ψ(w)dλ(z)dλ(w)

≤C
∫

|z|≤n

∫

|w|≥n

|g(w)− 1|2e−δ|z−w|dλ(z)dλ(w)

≤C ′

∫

|z|≤n

∫

|w|≥n

1

|w|2e
−δ|z−w|dλ(z)dλ(w) = C ′

∫

|w|≥n

dλ(w)

|w|2
∫

|w+ζ|≤n

e−δ|ζ|dλ(ζ)

≤C ′

∫

|w|≥n

dλ(w)

|w|2
∫

|w|−n≤|ζ|≤|w|+n

e−δ|ζ|dλ(ζ) = 4π2C ′

∫

s≥n

ds

s

∫ s+n

s−n

re−δrdr.



Determinantal processes and holomorphic function spaces 21

Now since there existsC ′′ > 0, such thatre−δr ≤ C ′′e−δr/2 for all r ≥ 0, we have

I3(n) ≤ C ′′′

∫

s≥n

e−δ(s−n)/2

s
ds = C ′′′

∫ ∞

1

e−δn(t−1)/2

t
dt.

By dominated convergence theorem, we have

lim
n→∞

I3(n) = 0.

Proof of Theorem1.1. By Lemma5.2, Lemma5.3 and Lemma5.4, the conditions (27),

(28), (29), (30) are satisfied by the pair(g, Bq
ψ). Moreover, let

α(z) =
|gp,q(z)|
gp,q(z)

,

then by Proposition1.7, we have

√
g(z)Fψ(q) = α(z)gp,q(z)Fψ(q) = α(z)Fψ(p).

Hence
√
g(z)Fψ(q) is a closed subspace ofL2(dvψ). And (Bq

ψ)
g = αBp

ψᾱ is locally

of trace class, this implies the condition (31). Now the formula (2) of Radon-Nikodym

derivativedPp
Bψ
/dPq

Bψ
follows from Theorem4.1and Remark2.1.

Remark5.5. Under the condition (1), we also have the same result as in Proposition5.1.

5.3 Proof of Proposition1.2

Lemma 5.5. There exists a constantC > 0, depending only onψ, such that for any

C2-smooth compactly supported functionϕ : C → R, we have

VarPBψ (Sϕ) ≤ C

∫

C

‖∇ϕ(w)‖22dλ(w). (42)

Proof. Let ϕ : C → R be aC2-smooth compactly supported function. Our convention

for the Fourier transform ofϕ will be

ϕ̂(ξ) =

∫

C

ϕ(w)e−i2π〈w,ξ〉dλ(w), where〈z, w〉 := ℜ(z)ℜ(w) + ℑ(z)ℑ(w).

By definition, we have

VarPBψ (Sϕ) =
1

2

∫∫

C2

|ϕ(z)− ϕ(w)|2|Bψ(z, w)|2e−2ψ(z)−2ψ(w)dλ(z)dλ(w).
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By Theorem3.1and Plancherel identity for Fourier transform, we obtain

VarPBψ (Sϕ) ≤ C

∫∫

C2

|ϕ(z)− ϕ(w)|2e−δ|z−w|dλ(z)dλ(w)

= C

∫∫

C2

|ϕ(ζ + w)− ϕ(w)|2e−δ|ζ|dλ(w)dλ(ζ)

= C

∫∫

C2

|ei2π〈ξ,ζ〉 − 1|2|ϕ̂(ξ)|2e−δ|ζ|dλ(ξ)dλ(ζ).

Now since|ei2π〈ξ,ζ〉 − 1| = 2| sin(π〈ξ, ζ〉)| ≤ 2π|ξ||ζ |, we have

VarPBψ (Sϕ) ≤ C ′

∫∫

C2

|ξ|2|ϕ̂(ξ)|2|ζ |2e−δ|ζ|dλ(ξ)dλ(ζ)

≤ C ′′

∫

C

|ξ|2|ϕ̂(ξ)|2dλ(ξ) = C ′′

∫

C

‖∇ϕ(w)‖22dλ(w).

Proof of Proposition1.2. We will follow the argument of Ghosh and Peres [9]. By The-

orem2.2, it suffices, for any fixed bounded open setD with Lebesgue-negligible bound-

ary and anyε > 0, to construct a functionΦε ∈ C2
c (C) such thatΦε|D ≡ 1 and

VarPBψ (SΦε) < ε.

Let r0 = 2 sup{|z| : z ∈ D}. By Lemma5.5, it suffices to construct a radial function

Φε(z) = φε(|z|),

with φε a function inC2
c (R+) such thatφε|[0,r0/2] ≡ 1 and

∫ ∞

0

|φ′
ε(r)|2rdr < ε.

To this end, first we takẽφε(r) = (1 − ε log+(r/r0))+, wherelog+(x) = max(log x, 0).

Note that φ̃ε|[r0 exp(1/ε),∞) ≡ 0 and φ̃′
ε(r) = −ε/r on the interval(r0, r0 exp(1/ε)).

Next we smooth the functioñφε at the pointsr0 and r0 exp(1/ε) to obtain a function

φε ∈ C2
c (R+) such thatφε identically equals to1 on [0, r0/2] andφ′

ε is supported on

[r0/2, 2r0 exp(1/ε)] such that|φ′
ε(r)| ≤ ε/r for all r > 0. Hence we have

∫ ∞

0

|φ′
ε(r)|2rdr ≤

∫ 2r0 exp(1/ε)

r0/2

ε2

r
dr = ε+ ε2 log 4.

This completes the proof of the proposition.
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6 Case ofD

6.1 Analysis of the conditions on the weightω

Letω : D → R+ be a Bergman weight. We collect some known results from the literature

on the sufficient conditions on the Bergman weightω, so that the inequality (3):
∫

D

(1− |z|)2Bω(z, z)ω(z)dλ(z) <∞

holds.

Example6.1 (Classical weights). Assumeω(z) = (1− |z|2)α, α > −1. Then

Bω(z, w) =
α + 1

π

1

(1− zw̄)α+2
,

hence(1− |z|)2Bω(z, z)ω(z) is bounded and the inequality (3) holds.

Example6.2 (A class of logarithmatically superharmonic weights). Let

ω(z) = e−2ϕ(z).

Assume

1) ϕ ∈ C2(D) and∆ϕ > 0;

2) the function(∆ϕ(z))−1/2 is Lipschitz onD;

3) there existC1, a > 0 and0 < t < 1, such that

(∆ϕ(z))−1/2 ≤ C1(1− |z|);

(∆ϕ(z))−1/2 ≤ (∆ϕ(w))−1/2 + t|z − w| for |z − w| > a(∆ϕ(w))−1/2.

By [13, Lemma 3.5], the weightω is a Bergman weight and

sup
z∈D

(1− |z|)2Bω(z, z)ω(z) <∞.

Hence the inequality (3) holds. Some concrete such examples are

• ω(z) = (1 − |z|2)α exp(h(z)) with α > 0 andh(z) any real harmonic function on

D;

• ω(z) = (1−|z|2)α exp(−β(1−|z|2)−γ +h(z)) with α ≥ 0, β > 0, γ > 0 andh(z)

any real harmonic function onD.
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Proposition 6.1. Letω1, ω2 be two Bergman weights onD such that

∫

D

(1− |z|)2Bω1(z, z)ω2(z)dλ(z) <∞.

Letω be a Bergman weight onD and assume that there existc, C > 0 such that

cω1(z) ≤ ω(z) ≤ Cω2(z)

thenω satisfies the condition(3).

Proof. SinceBω(z, z) = sup‖f‖Bω≤1
|f(z)|2, we haveBω(z, z) ≤ c2Bω1(z, z). By the

assumption, we have

∫

D

(1− |z|)2Bω(z, z)ω(z)dλ(z) ≤ c2C

∫

D

(1− |z|)2Bω1(z, z)ω2(z)dλ(z) <∞.

Example6.3. Let ω be a Bergman weight. Assume that there existc, C > 0 and letα, β

be either0 ≥ α ≥ β > −1 or α ≥ β > α− 1 ≥ −1, such that

c(1− |z|2)α ≤ ω(z) ≤ C(1− |z|2)β

thenω satisfies the condition (3).

6.2 Proof of Theorem1.4and Proposition1.5

Let k, ℓ ∈ N ∪ {0}, let p ∈ Dℓ be anℓ-tuple ofdistinctpoints andq ∈ Dk a k-tuple of

distinct points. Set

g(z) = |bp(z)bq(z)−1|2 =
ℓ∏

j=1

∣∣∣∣
z − pj
1− p̄jz

∣∣∣∣
2

·
k∏

j=1

∣∣∣∣
1− q̄jz

z − qj

∣∣∣∣
2

.

By virtue of Proposition1.8, to prove Proposition1.5 and hence Theorem1.4, it suf-

fices to prove that the pair(g, Bq
ω) satisfies the assumption of Proposition 4.6 of [1]. This

is done in the following

Lemma 6.2. Takeε > 0 small enough and letEε =
⋃k
i=1 Uε(qi), whereUε(qi) is a disc

centred at pointqi with radiusε in D. Then we have

∫

Eε

|g(z)− 1|Bq
ω(z, z)ω(z)dλ(z) +

∫

Ecε

|g(z)− 1|2Bq
ω(z, z)ω(z)dλ(z) <∞. (43)
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Proof. For ε > 0 small enough, there existsC > 0 such that for anyz ∈ Eε, we have

Bq
ω(z, z) ≤ C

k∏

i=1

|z − qi|2,

whence|g(z)− 1|Bq
ω(z, z) is bounded onEε, and the first integral in (43) is bounded.

For the second integral, the identities
∣∣∣∣
z − pj
1− p̄jz

∣∣∣∣
2

= 1− (1− |z|2)(1− |pj|2)
|1− p̄jz|2

,

together with the same identities forqj : j = 1, . . . , k, imply that there existsC ′ > 0 such

that

|g(z)− 1| ≤ C ′(1− |z|) for z ∈ Ec
ε.

Note also that sinceRan(Bq
ω) ⊂ Ran(Bω), we haveBq

ω(z, z) ≤ Bω(z, z), hence by our

assumption (3), we have
∫

Ecε

|g(z)− 1|2Bq
ω(z, z)ω(z)dλ(z) ≤ C ′

∫

Ecε

(1− |z|)2Bω(z, z)ω(z)dλ(z) <∞.

7 Proof of Theorem4.1

Recall that we denote byΠ an orthogonal projection onL2(E, µ) which is locally in trace

class.

In [1], a class of Borel functions onE, denoted there byA2(Π), plays a central role in

the proof of the main result. Recall that, by definition,A2(Π) is the set of positive Borel

functionsg onE satisfying

(1) 0 < inf
E
g ≤ sup

E
g <∞;

(2)
∫
E
|g(x)− 1|2Π(x, x)dµ(x) <∞.

If g ∈ A2(Π), then the subspace
√
gL, whereL is the range of the orthogonal projection

Π, is automatically closed; we setΠg to be the corresponding operator of orthogonal

projection. The main property ofA2(Π) that will be used later is stated in the following

Proposition 7.1(Cor. 4.11 of [1]). If g ∈ A2(Π) satisfies

sup
E

|g(x)− 1| < 1.

Then the operatorΠg is locally of trace class, and we have

PΠg = Ψ
Π

g · PΠ. (44)
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Let g : E → R be a Borel function, set

L(g) :=

∫

E

|g(x)− 1|3Π(x, x)dµ(x) ∈ [0,∞] (45)

and

V (g) :=

∫∫

E2

|g(x)− g(y)|2|Π(x, y)|2dµ(x)dµ(y) ∈ [0,∞]. (46)

And then, we introduce a new class of Borel functions onE as follows. LetA3(Π) be the

set of positive Borel functionsg onE satisfying

(1) 0 < inf
E
g ≤ sup

E
g <∞;

(2) L(g) =
∫
E
|g(x)− 1|3Π(x, x)dµ(x) <∞;

(3) V (g) =
∫∫

E2 |g(x)− g(y)|2|Π(x, y)|2dµ(x)dµ(y) <∞;

(4) there exists an exhausting sequence(En)n≥1 of bounded subsets ofE, possibly

depending ong, such that

lim
n→∞

tr(χEnΠ|g − 1|2χEcnΠχEn) = 0. (47)

More precisely, Relation (47) can equivalently be rewritten as follows:

lim
n→∞

∫∫

E2

χEcn(x)χEn(y)|g(x)− 1|2|Π(x, y)|2dµ(x)dµ(y) = 0. (48)

Remark7.1. We have the following useful identity

V (g) = ‖[g,Π]‖2HS, (49)

where‖·‖HS stands for the Hilbert-Schmidt norm and[g,Π] = gΠ−Πg is the commutator

of the operator of multiplication byg and the projection operatorΠ.

Remark7.2. The sequence(En)n≥1 in the definition ofA3(Π) is an analogue of the se-

quence of the subsets({z ∈ C : |z| ≤ n})n≥1 in the proof of Lemma5.4.

The most technical result in this section is the following

Proposition 7.2. If g ∈ A3(Π) satisfies

sup
E

|g(x)− 1| < 1. (50)

Then the operatorΠg is locally of trace class, and we have

PΠg = Ψ
Π

g · PΠ. (51)
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Remark7.3. Note that the condition (47) holds automatically for anyg ∈ A2(Π), hence

we have

A2(Π) ⊂ A3(Π).

Proof of Theorem4.1. We now derive Theorem4.1 from Proposition7.2. The proof is

similar to the proof of Proposition 4.6 of [1]. Proving the statement forA3(Π) instead of

A2(Π) requires extra effort, however. For sake of completeness, let us sketch the proof

here.

Let Conf(E;E \ E0)) stand for the subset ofConf(E) consisting of those configu-

rations whose particles all lie inE \ E0. The assumptions of Theorem4.1 imply that

PΠ(Conf(E;E \ E0)) > 0. Replacing, if necessary,g by g|Ec0 andL by χEc0L, we may

assume thatg is positive onE.

By our assumption, we may choose0 < ε1 < ε2 < 1 and a bounded subsetE1 ⊂ E,

such that

{x ∈ E : |g(x)− 1| ≥ ε2} ⊂ E1 ⊂ {x ∈ E : |g(x)− 1| ≥ ε1},

and

‖χ{x∈E:|g(x)−1|≤ε2}Π‖ < 1.

DecomposeE1 = E+
1 ⊔ E−

1 by setting

E+
1 = {x ∈ E : g(x) > 1} ∩ E1 andE−

1 = {x ∈ E : g(x) < 1} ∩ E1.

Note that

E+
1 ⊂ {x ∈ E : g(x) > 1 + ε1} andE−

1 ⊂ {x ∈ E : g(x) < 1− ε1}.

Then we can decomposeg asg = g1g2g3 with

g1 = (g − 1)χEc1 + 1,

g2 = (g − 1)χE−
1
+ 1,

g3 = (g − 1)χE+
1
+ 1.

Claim. We haveg1 ∈ A3(Π).

Indeed, the first two and the last condition in the definition of A3(Π) are immediate

for g1. We now check the third condition. We have

|g1(x)− g1(y)| =





|g(x)− g(y)| (x, y) ∈ Ec
1 × Ec

1

|g(x)− 1| (x, y) ∈ Ec
1 ×E1

|g(y)− 1| (x, y) ∈ E1 ×Ec
1

0 (x, y)×E1 × E1

,
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whence

V (g1) =

∫∫

E2

|g1(x)− g1(y)|2|Π(x, y)|2dµ(x)dµ(y)

=

∫∫

Ec1×E
c
1

|g(x)− g(y)|2|Π(x, y)|2dµ(x)dµ(y)

+ 2

∫

E1

dµ(y)

∫

Ec1

|g(x)− 1|2|Π(x, y)|2dµ(x).

By (29), (30) and Remark4.1, we haveV (g1) <∞.

By Proposition7.2, we have

PΠg1 = Ψ
Π

g1
· PΠ.

The rest of the proof of Theorem4.1 follows the scheme of the proof of Proposition

4.6 of [1]. First, we have

Πg1g2 = (Πg1)g2 andΠg = Πg1g2g3 = (Πg1g2)g3.

Sinceg2 is bounded andg2−1 is compactly supported, the usual multiplicative functional

Ψg2(X) =
∏

x∈X

g2(x),

is well defined and

PΠg1g2 = C1Ψg2PΠg1 .

The functiong3 − 1, although not necessarily bounded, is compactly supportedand pos-

itive. The usual multiplicative functionalΨg3 is also well defined forPΠg1g2 -almost every

configuration. Indeed, sinceg1g2 is bounded and by Proposition 4.1 of [1], there exists

C > 0 such that

Πg1g2(x, x) ≤ CΠ(x, x).

Consequently, we have
∫

E

|g3(x)− 1|Πg1g2(x, x)dµ(x) ≤ C

∫

E+
1

|g3(x)− 1|Π(x, x)dµ(x) <∞. (52)

In the relation (52), we used the fact thatg3 − 1 is supported onE+
1 and our assumption

(27). It follows that

EPΠg1g2
(Ψg3) = det(1 + (g3 − 1)Πg1g2) <∞.

Hence, by Proposition 4.4 in [1], we have

PΠg = C ′Ψg3PΠg1g2 = C ′CΨg3Ψg2 · PΠg1 = C ′CΨg3Ψg2Ψ
Π

g1 · PΠ,

whencePΠg = Ψ
Π

g PΠ and Theorem4.1 is completely proved.
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Introduce a topologyT onA3(Π) generated by the open sets

U(ε, g) = {g′ ∈ AN(Π) : L(g
′/g) < ε, V (g′/g) < ε} ,

whereL, V are defined by formulae (45), (46). With respect to the topologyT , a sequence

gn tends tog in A3(Π) if and only if

L(gn/g) → 0 and V (gn/g) → 0. (53)

Lemma 7.3. Let g ∈ A3(Π) and let (En)n≥1 be the exhausting sequence of bounded

subsets ofE such that condition(47) holds. Denote

gn = 1 + (g − 1)χEn.

Then

gn
T−−−→

n→∞
g.

Proof. Assume thatg ∈ A3(Π). First, by definition, we have

|gn/g − 1| = |1/g − 1|χEcn ≤ 1

infE g
|g − 1|.

It follows thatL(gn/g) → 0.

Next, setting

Vn(x, y) = |gn(x)/g(x)− gn(y)/g(y)|2|Π(x, y)|2,

we have

V (gn/g) =

∫∫

En×Ecn

Vn +

∫∫

Ecn×En

Vn +

∫∫

Ecn×E
c
n

Vn. (54)

The first and second terms in (54) are equal and
∫∫

En×Ecn

Vn =

∫∫

En×Ecn

|1− 1/g(y)|2|Π(x, y)|2dµ(x)dµ(y)

≤ 1

infE g2

∫∫

En×Ecn

|g(y)− 1|2|Π(x, y)|2dµ(x)dµ(y)

=
1

infE g2
‖χEnΠ|g − 1|χEcn‖22 → 0.

The third term in (54) converges to 0 since
∫∫

Ecn×E
c
n

Vn ≤ 1

infE g2

∫∫

Ecn×E
c
n

|g(x)− g(y)|2|Π(x, y)|2dµ(x)dµ(y),

and the latter integral tends to0 asn → ∞. ThusV (gn/g) → 0, and Lemma7.3 is

completely proved.
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Lemma 7.4. Let gn ∈ A3(Π), n ≥ 1, g ∈ A3(Π), and assume that the sequence(gn) is

uniformly bounded. Ifgn
T−−−→

n→∞
g, thenL(gn) → L(g) andV (gn) → V (g).

Proof. By definition, we haveL(gn/g) → 0 andV (gn/g) → 0.

The relationL(gn/g) → 0 together with the inequality
∫

|gn(x)− g(x)|3Π(x, x)dµ(x) ≤ sup
E
g ·
∫

|gn(x)/g(x)− 1|3Π(x, x)dµ(x)

implies that

lim
n→∞

‖(gn − 1)− (g − 1)‖L3(E;Π(x,x)dµ(x)) = 0,

whence

lim
n→∞

‖gn − 1‖L3(E;Π(x,x)dµ(x) = ‖g − 1‖L3(E;Π(x,x)dµ(x)).

This is equivalent toL(gn) → L(g) asn→ ∞.

We turn to the proof of the convergenceV (gn) → V (g). It suffices to prove any

convergent subsequence (in[0,∞]) of the sequence(V (gn))n≥1 converges toV (g). We

have already shown that
∫

E

|gn(x)− g(x)|3Π(x, x)dµ(x) → 0.

Passing perhaps to a subsequence, we may assume thatgn → g almost everywhere with

respect toΠ(x, x)dµ(x). Set

Fn(x, y) = gn(x)− gn(y) andF (x, y) = g(x)− g(y).

The desired relationV (gn) → V (g) is equivalent to the relation

lim
n→∞

‖Fn‖L2(E×E; |Π(x,y)|2dµ(x)dµ(y)) = ‖F‖L2(E×E; |Π(x,y)|2dµ(x)dµ(y))

To simplify notation, we denotedM2(x, y) = |Π(x, y)|2dµ(x)dµ(y). It suffices to prove

that

lim
n→∞

‖Fn − F‖L2(E×E; dM2) = 0. (55)

A direct computation shows that

Fn(x, y)− F (x, y)

g(x)
=
gn(x)

g(x)
− gn(y)

g(y)
+
F (x, y)(gn(y)− g(y))

g(x)g(y)
.

Hence we have

|Fn(x, y)− F (x, y)| ≤ sup
E
g ·
∣∣∣∣
gn(x)

g(x)
− gn(y)

g(y)

∣∣∣∣+
1

infE g
|F (x, y)| · |gn(y)− g(y)|,
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and

‖Fn − F‖L2(E×E; dM2) ≤ sup
E
g ·
∥∥∥∥
gn(x)

g(x)
− gn(y)

g(y)

∥∥∥∥
L2(E×E; dM2)

+
1

infE g
‖F (x, y) · |gn(y)− g(y)|‖L2(E×E;dM2)

The limit relationV (gn/g) → 0 implies that

lim
n→∞

∥∥∥∥
gn(x)

g(x)
− gn(y)

g(y)

∥∥∥∥
L2(E×E; dM2)

= 0.

By definition,F ∈ L2(E × E; dM2). Since the sequence(gn) is uniformly bounded and

gn → g almost everywhere with respect toΠ(x, x)dµ(x), the dominated convergence

theorem yields

lim
n→∞

‖F (x, y) · |gn(y)− g(y)|‖L2(E×E;dM2)
= 0.

This completes the proof of (55). Lemma7.4 is proved completely.

Recall that, in Definition4.1 and Definition4.2, we introduced the subsetV0(Π) ⊂
V(Π) and the functional̃Ψg for functionsg such thatlog g ∈ V0(Π). Recall also that we

introduced in (23) the notationVar(Π, f) for any Borel functionf : E → C.

Lemma 7.5. If g ∈ A3(Π), then

Var(Π, log g) <∞ and log g ∈ V0(Π).

In particular, for any functiong ∈ A3(Π), the functional̃Ψg is well-defined.

Proof. By the third condition in the definition ofA3(Π), if g ∈ A3(Π), then

Var(Π, g − 1) <∞.

Define a function

F (t) :=

{
log(1+t)−t

t2
if t 6= 0

−1
2

if t = 0
,

so thatF is continuous on(−1,∞). It follows that for any0 < ε ≤ 1 andM ≥ 1, there

existsCε,M > 0, such that ift ∈ [−1 + ε,−1 +M ], then

|log(1 + t)− t| ≤ Cε,Mt
2. (56)

By the first condition in the definition ofA3(Π), we can apply the above inequality to

g − 1. A simple computation yields

|log g(x)− log g(y)|2 ≤20M2|g(x)− g(y)|2

+ 8MC2
ε,M(|g(x)− 1|3 + |g(y)− 1|3),

(57)
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whereε = min(1, infE g) andM = max(1, supE g). Inequality (57), combined with the

reproducing property

Π(x, x) =

∫

E

|Π(x, y)|2dµ(y)

and the second and third conditions ong in the definition ofA3(Π), yields the desired

result:

Var(Π, log g) <∞.

We turn to the proof of the relationlog g ∈ V0(Π). By definition, there exists a se-

quence(En) of exhausting bounded subsets ofE, such that the relation (48) holds. It

suffices to show that

lim
n→∞

‖χEn log g − log g‖V(Π) = lim
n→∞

‖χEcn log g‖V(Π) = 0. (58)

We have

‖χEcn log g‖2V(Π) =
1

2

∫∫

Ecn×E
c
n

| log g(x)− log g(y)|2|Π(x, y)|2dµ(x)dµ(y)

+
1

2

∫∫

E2

χEcn(x)χEn(y)| log g(x)|2|Π(x, y)|2dµ(x)dµ(y)

+
1

2

∫∫

E2

χEcn(y)χEn(x)| log g(y)|2|Π(x, y)|2dµ(x)dµ(y).

The fact that first integral in the above identity tends to0 whenn tends to infinity follows

from the fact thatVar(Π, log g) < ∞. The second and the third integrals are equal, and

sinceε ≤ g ≤M , we may use| log g(x)| ≤ Cε,M |g(x)− 1| and we get
∫∫

E2

χEcn(x)χEn(y)| log g(x)|2|Π(x, y)|2dµ(x)dµ(y)

≤C2
ε,M

∫∫

E2

χEcn(x)χEn(y)|g(x)− 1|2|Π(x, y)|2dµ(x)dµ(y).
(59)

The assumption (48) implies that the last integral in (59) tends to0 asn tends to infinity.

This completes the proof of the desired relation (58).

Proposition 7.6. For any ε,M : 0 < ε ≤ 1, M ≥ 1, there exists a constantCε,M > 0

such that ifg ∈ A3(Π) satisfies

ε ≤ inf
E
g ≤ sup

E
g ≤ M (60)

then

logE|Ψ̃g|2 ≤ Cε,M(L(g) + V (g)). (61)

Definition 7.1. Let A ε,M
3 (Π) ⊂ A3(Π) be the subset of functions satisfying the condition

(60).
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By definition|Ψ̃g|2 = Ψ̃g2. If g ∈ A
ε,M
3 (Π), then

L(g2) ≤ 8M3L(g) andV (g2) ≤ 4M2V (g). (62)

Consequently, in order to establish (61), it suffices to obtain the estimate (63) in Lemma

7.7below.

Lemma 7.7. For anyε,M : 0 < ε ≤ 1, M ≥ 1, there exists a constantCε,M > 0 such

that if g ∈ A
ε,M
3 (Π), then

logEΨ̃g ≤ C(L(g) + V (g)). (63)

Denote

g+ = 1 + χg≥1(g − 1) andg− = 1 + χg≤1(g − 1).

Then

g = g+g− andg+ ≥ 1, g− ≤ 1. (64)

Our aim here is to reduce Lemma7.7for g to the same statement forg+, g−.

Lemma 7.8. Bothg+ andg− are in the classA ε,M
3 (Π), moreover, we have

L(g±) ≤ L(g) andV (g±) ≤ V (g). (65)

Proof. Inequalities (65) follow from the elementary inequalities

|g± − 1| ≤ |g − 1| and |g±(x)− g±(y)| ≤ |g(x)− g(y)|. (66)

Let (En)n≥1 be the exhausting sequence of bounded subsets such that (47) holds. The first

inequality in (66) yields the following inequalities for self-adjoint operators:

χEnΠ|g± − 1|2χEcnΠχEn ≤ χEnΠ|g − 1|2χEcnΠχEn.

Hence (47) holds forg± with respect to the sequence(En)n≥1.

Denote byA ε,M
3 (Π)+ the subclass of functions inA ε,M

3 (Π) such that

g ∈ A3(Π) andg ≥ 1.

Similarly, denote byA ε,M
3 (Π)− the subclass of functions inA ε,M

3 (Π) such that

g ∈ A
ε,M
3 (Π) andg ≤ 1.

Let

A
ε,M
3 (Π)± = A

ε,M
3 (Π)+ ∪ A

ε,M
3 (Π)−.
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We reduce the statement of Lemma7.7for generalg in A
ε,M
3 (Π) to the particular case

g in A
ε,M
3 (Π)±. Indeed, assume that we have established (63) in the case ofA ε,M

3 (Π)±,

then by multiplicativity, for generalg in A
ε,M
3 (Π), we have

EΨ̃g = E(Ψ̃g+Ψ̃g−) ≤ (EΨ̃2
g+ · EΨ̃2

g−)
1/2 = (EΨ̃(g+)2 · EΨ̃(g−)2)

1/2

≤ 1

2
(EΨ̃(g+)2 + EΨ̃(g−)2).

Now we may apply (63) for functions(g+)2 ∈ A
ε,M
3 (Π)+ and (g−)2 ∈ A

ε,M
3 (Π)−

respectively and use the relations (62) together with Lemma7.8, to obtain that

EΨ̃g ≤ C ′
[
L((g+)2) + V ((g+)2) + L((g−)2) + V ((g−)2

]

≤ C ′′
[
L(g+) + V (g+) + L(g−) + V (g−))

]

≤ C ′′′(L(g) + V (g)).

We now proceed to the proof of (63) for functionsg in A
ε,M
3 (Π)± and, consequently,

Lemma7.7. By definition, if g ∈ A
ε,M
3 (Π)±, then the sequences(gn)n≥1 defined in the

proof of Lemma7.3all stay in the setA ε,M
3 (Π)± . Since

‖S log gn − S log g‖22 = Var(Π, log gn/g),

passing perhaps to a subsequence, we may assume that

Ψ̃gn = exp(S log gn)
a.e.−−−→
n→∞

Ψ̃g = exp(S log g).

By Fatou’s Lemma and Lemma7.4 , it suffices to establish (63) for a functiong ∈
A

ε,M
3 (Π)± such that the subset{x ∈ E : g(x) 6= 1} is bounded. We will assume the

boundedness of{x ∈ E : g(x) 6= 1} until the end of the proof of Proposition7.6.

For any0 < ε ≤ 1 and anyM ≥ 1, there existsCε,M > 0 such that ift ∈ [−1 +

ε,−1 +M ], then
∣∣∣∣log(1 + t)− t+

1

2
t2
∣∣∣∣ ≤ Cε,M · |t|3. (67)

Recall that for any bounded linear operatorA acts on a Hilbert space, we set|A| =√
A∗A. The inequality (67) applied to the eigenvalues of trace class operator with spec-

trum contained in[−1 + ε,−1 +M ] yields the following

Lemma 7.9. Let ε,M,Cε,M be as in the inequality(67). For any self-adjoint trace class

operatorA whose spectrumσ(A) satisfiesσ(A) ⊂ [−1 + ε,−1 +M ], we have

log det(1 + A) ≤ tr(A)− 1

2
tr(A2) + Cε,Mtr(|A|3). (68)
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Proof. The lemma is an immediate consequence of the inequality (67) and the identity

log det(1 + A) =

∞∑

i=1

log(1 + λi(A)),

where(λi(A))∞i=1 is the sequence of the eigenvalues ofA.

In order to simplify notation, forg ∈ A
ε,M
3 (Π)+, set

h = g − 1 ≥ 0 andT+
g =

√
hΠ

√
h ≥ 0; (69)

and forg ∈ A
ε,M
3 (Π)−, set

h = g − 1 ≤ 0 andT−
g = ΠhΠ ≤ 0. (70)

By applying the relation (68), for g ∈ A
ε,M
3 (Π)±, we have

logEΨg = log det(1 + (g − 1)Π) = log det(1 + T±
g )

≤ tr(T±
g )−

1

2
tr((T±

g )
2) + Cε,Mtr(|T+

g |3).
(71)

Clearly, the tracestr(T+
g ) andtr(T−

g ) are given by the formula:

tr(T±
g ) =

∫

E

h(x)Π(x, x)dµ(x). (72)

Recall that the inner product on the space of Hilbert-Schmidt operators is defined by

the formula

〈a, b〉HS = tr(ab∗).

Lemma 7.10.For anyg ∈ A
ε,M
3 (Π)±, we have

tr((T±
g )

2) =

∫

E

h(x)2Π(x, x)dµ(x)− 1

2
V (g). (73)

Proof. If g ∈ A
ε,M
3 (Π)+, then

tr((T+
g )

2) = tr(
√
hΠhΠ

√
h) = tr(ΠhΠh) = 〈Πh, hΠ〉HS. (74)

Note that

‖Πh‖2HS = ‖hΠ‖2HS =

∫

E

h(x)2Π(x, x)dµ(x). (75)

By (49), we have

V (g) = ‖[g,Π]‖2HS = ‖[h,Π]‖2HS = ‖hΠ−Πh‖2HS
= ‖hΠ‖2HS + ‖Πh‖2HS − 2〈hΠ,Πh〉.

(76)
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Combining (74), (75) and (76), we complete the proof of the desired identity (73) for

g ∈ A
ε,M
3 (Π)+.

The argument forg ∈ A
ε,M
3 (Π)− is completely the same, since we have

tr((T−
g )

2) = tr(ΠfΠfΠ) = tr(ΠfΠf).

Lemma 7.11.For anyg ∈ A
ε,M
3 (Π)±, we have

tr(|T±
g |3) ≤ L(g) =

∫

E

|g(x)− 1|3Π(x, x)dµ(x). (77)

Proof. First, letg ∈ A
ε,M
3 (Π)+. Recall the definition ofh andT+

g in (69). By the ele-

mentary operator inequality

√
hΠhΠhΠ

√
h ≤

√
hΠh2Π

√
h,

we get

tr(|T+
g |3) = tr(

√
hΠhΠhΠ

√
h) ≤ tr(

√
hΠh2Π

√
h) = ‖

√
hΠh‖2HS. (78)

Since

‖
√
hΠh‖2HS = tr(

√
hΠh2Π

√
h) = tr(Πh3/2h1/2Πh)

= 〈Πh3/2, hΠh1/2〉HS ≤ ‖Πh3/2‖HS‖hΠh1/2‖HS
= ‖Πh3/2‖HS‖

√
hΠh‖HS,

we also have

‖
√
hΠh‖2HS ≤ ‖Πh3/2‖2HS = tr(Πh3Π) = tr(h3Π) = L(g). (79)

Combining inequalities (78) and (79), we obtain the desired inequality (77) for g ∈
A

ε,M
3 (Π)+.

The proof of the inequality (77) for g ∈ A
ε,M
3 (Π)− is similar just by noting that in

this case,|T−
g |3 = −ΠhΠ = Π|h|Π and

tr(|T−
g |3) = tr(Π|h|Π|h|Π|h|Π) = tr(

√
|h|Π|h|Π|h|Π

√
|h|)

≤ tr(
√
|h|Π|h|2Π

√
|h|).
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Conclusion of the proof of Lemma7.7. It suffices to establish (63) wheng ∈ A
ε,M
3 (Π)±.

An application of (67) yields that
∣∣∣∣∣∣

∫

E

(
log g(x)− h(x) +

h(x)2

2

)
Π(x, x)dµ(x)

∣∣∣∣∣∣
≤ Cε,ML(g). (80)

It follows that

logEΨ̃g = logEΨg − ESlog g

≤tr(T±
g )−

1

2
tr((T±

g )
2) + Cε,Mtr(|T±

g |3)− ESlog g

≤
∫

E

h(x)Π(x, x)dµ(x)− 1

2

∫

E

h(x)2Π(x, x)dµ(x) +
1

4
V (g)

+ Cε,ML(g)−
∫

E

log g(x)Π(x, x)dµ(x)

≤2Cε,ML(g) +
1

4
V (g) = C ′

ε,M(L(g) + V (g)).

Proposition 7.12. Given0 < ε ≤ 1 andM ≥ 1, there exists a constantCε,M > 0 such

that if g1, g2 ∈ A
ε,M
3 (Π), then

(
E|Ψ̃g1 − Ψ̃g2|

)2
≤ E|Ψ̃g2|2 ·

[
exp

(
Cε,M

(
L(g1/g2) + V (g1/g2)

))
− 1

]
. (81)

Proof. Let g1, g2 be as in the proposition. Setg := (g1/g2)
2. Applying Proposition7.6to

the functiong yields

EΨ̃g ≤ exp
(
Cε,M

(
L(g) + V (g)

))
≤ exp

(
C ′
ε,M

(
L(g1/g2) + V (g1/g2)

))
.

By multiplicativity, we have

E|Ψ̃g1 − Ψ̃g2| = E

(
|Ψ̃g1/g2 − 1||Ψ̃g2|

)
≤
(
E|Ψ̃g2|2

) 1
2
(
E|Ψ̃g1/g2 − 1|2

) 1
2
.

SinceEΨ̃g1/g2 ≥ 1, we have

E|Ψ̃g1/g2 − 1|2 ≤ E|Ψ̃g1/g2 |2 − 1 = EΨ̃g − 1.

Combining the above inequalities, we obtain Proposition7.12.

Slightly abusing notation, we keep the notationT for the induced topology defined

by (53) onA
ε,M
3 (Π). As an immediate consequence of Proposition7.12, we have
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Corollary 7.13. The two mappings fromA ε,M
3 (Π) toL1(Conf(E),PΠ) defined by

g → Ψ̃g, g → Ψg

are continuous with respect to the topologyT onA
ε,M
3 (Π).

Proof of Proposition7.2. The proof follows the proof of Corollary 4.11 in [1], the rôle of

Proposition 4.8 of [1] played here by Corollary7.13. Indeed, letg be a function satisfying

the assumption (50). Takinggn as in Lemma7.3, we obtain the convergence ofΠgn toΠg

in the space of locally trace class operators and hence the weak convergence ofPΠgn to

PΠg in the space of probability measures onConf(E). By assumption,gn−1 is compactly

supported, so by Proposition 2.1 of [2], we have

PΠgn = Ψgn · PΠ.

By Corollary7.13, Ψgn → Ψg in L1(Conf(E),PΠ), so we have

Ψgn · PΠ → Ψg · PΠ

weakly in the space of probability measures onConf(E), whence

PΠg = Ψg · PΠ.

The proof Proposition7.2is complete.

8 Appendix

Our aim here is to show that Palm measures of different ordersaremutually singularfor

a point process rigid in the sense of Ghosh [8], Ghosh-Peres [9].

Let E be a complete metric space, and letP be a probability measure onConf(E)

admitting correlation measures of all orders; thek-th correlation measure ofP is denoted

by ρk. GivenB ⊂ E a bounded Borel subset, letF(E \B) be the sigma-algebra generated

by all events of the form{#C = n} with C ⊂ E \ B bounded and Borel,n ∈ N, and let

FP(E \B) be the completion ofF(E \B) with respect toP. We can canonically identify

Conf(E) with Conf(B)×Conf(E\B). Then in this identification, the events inF(E\B)

have the form

Conf(B)× A,

whereA ⊂ Conf(E \B) is a measurable subset. By definition, assume thatX ∈ F(E \
B), and let(p1, . . . , pk) ∈ Bk be anyk-tuple of distinct points, thenX ∈ X if and only

if X ∪ {p1, . . . , pk} ∈ X . Recall that a point process with distributionP onConf(E) is

said to be rigid if for any bounded Borel subsetB ⊂ E, the function#B is FP(E \ B)-

measurable.
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Proposition 8.1. LetB ⊂ E be a bounded Borel subset. Assume that the function#B

is FP(E \ B)-measurable. Then, for anyk, l ∈ N, k 6= l, for ρk-almost anyk-tuple

(p1, . . . , pk) ∈ Bk andρl-almost anyl-tuple(q1, . . . , ql) ∈ Bl, the reduced Palm measures

Pp1,...,pk andPq1,...,ql are mutually singular.

Proof. For a nonnegative integern, let

Cn = {X ∈ Conf(E) : #B(X) = n}.

By assumption, the function#B isFP(E\B)-measurable. Take a sequenceXn of disjoint

F(E\B)-measurable subsets ofConf(E) such that for any nonnegative integernwe have

P(Xn∆Cn) = 0.

Set

Y =
⋃

n≥k

Xn ∩ Cn−k;

Z =
⋃

n≥l

Xn ∩ Cn−l.

The setsY andZ are disjoint by construction.

Claim: For ρk-almost anyk-tuple (p1, . . . , pk) andρl-almost anyl-tuple (q1, . . . , ql)

we have

P
p1,...,pk(Y ) = 1, P

q1,...,ql(Z ) = 1.

Indeed, by definition of reduced Palm measures (17), for any non-negative Borel func-

tion u : Conf(E)× Ek → R, we have
∫

Conf(E)

∗∑

z1,...,zk∈Z

u(Z; z1, . . . , zk)P(dZ)

=

∫

Ek

ρk(dp1 . . . dpk)

∫

Conf(E)

u(X ∪ {p1, . . . , pk}; p1, . . . , pk)Pp1,...,pk(dX),
(82)

where
∗∑

denotes the sum overk-tuples of distinct pointsz1, . . . , zk in Z.

For anyn ≥ k, substituting the function

un(Z; z1, . . . , zk) = 1Xn∩Cn(Z) · 1Bk(z1, . . . , zk)

into (82), we get
∫

Conf(E)

1Xn∩Cn(Z)

∗∑

z1,...,zk∈Z

1Bk(z1, . . . , zk)P(dZ)

=

∫

Bk

ρk(dp1 . . . dpk)

∫

Conf(E)

1Xn∩Cn(X ∪ {p1, . . . , pk})Pp1,...,pk(dX).
(83)
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Recall that by construction,Xn ∈ F(E \B), hencefor all p1, . . . , pk ∈ B, we have

1Xn∩Cn(X ∪ {p1, . . . , pk})
=1Xn

(X ∪ {p1, . . . , pk}) · 1Cn(X ∪ {p1, . . . , pk})
=1Xn

(X) · 1Cn−k
(X) = 1Xn∩Cn−k

(X).

Substituting the above equality into (83), we get
∫

Conf(E)

1Xn∩Cn(Z)

∗∑

z1,...,zk∈Z

1Bk(z1, . . . , zk)P(dZ)

=

∫

Bk

P
p1,...,pk(Xn ∩ Cn−k)ρk(dp1 . . . dpk).

(84)

Summing up the terms on the left hand side of (84) for n ≥ k, we obtain the expression
∞∑

n=k

∫

Conf(E)

1Xn∩Cn(Z)

∗∑

z1,...,zk∈Z

1Bk(z1, . . . , zk)P(dZ)

=
∞∑

n=k

∫

Conf(E)

1Cn(Z)
∗∑

z1,...,zk∈Z

1Bk(z1, . . . , zk)P(dZ)

=

∞∑

n=0

∫

Conf(E)

1Cn(Z)

∗∑

z1,...,zk∈Z

1Bk(z1, . . . , zk)P(dZ)

=

∫

Conf(E)

∗∑

z1,...,zk∈Z

1Bk(z1, . . . , zk)P(dZ)

=

∫

Ek

1Bk(p1, . . . , pk)ρk(dp1 . . . dpk) = ρk(B
k),

(85)

where we used the fact that ifn = 0, . . . , k − 1, then

∀Z ∈ Cn,

∗∑

z1,...,zk∈Z

1Bk(z1, . . . , zk) = 0.

Similarly, summing up the terms on the right hand side of (84) for n ≥ k, we obtain the

expression
∞∑

n=k

∫

Bk

P
p1,...,pk(Xn ∩ Cn−k)ρk(dp1 . . . dpk)

=

∫

Bk

P
p1,...,pk

(
⋃

n≥k

Xn ∩ Cn−k

)
ρk(dp1 . . . dpk)

=

∫

Bk

P
p1,...,pk (Y ) ρk(dp1 . . . dpk).

(86)
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By (84),

ρk(B
k) =

∫

Bk

P
p1,...,pk (Y ) ρk(dp1 . . . dpk). (87)

The equality (87) immediately implies that

P
p1,...,pk(Y ) = 1, for ρk-almost anyk-tuple(p1, . . . , pk) ∈ Bk.

The same argument yields that

P
q1,...,ql(Z ) = 1, for ρl-almost anyl-tuple(q1, . . . , ql) ∈ Bl.

The claim is proved, and Proposition8.1is proved completely.
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