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We study determinantal point processes on C induced by the reproducing kernels of generalized Fock spaces as well as those on the unit disc D induced by the reproducing kernels of generalized Bergman spaces. In the first case, we show that all reduced Palm measures of the same order are equivalent. The Radon-Nikodym derivatives are computed explicitly using regularized multiplicative functionals. We also show that these determinantal point processes are rigid in the sense of Ghosh and Peres, hence reduced Palm measures of different orders are singular. In the second case, we show that all reduced Palm measures, of all orders, are equivalent. The Radon-Nikodym derivatives are computed using regularized multiplicative functionals associated with certain Blaschke products. The quasi-invariance of these determinantal point processes under the group of diffeomorphisms with compact supports follows as a corollary.

where ∆ is the Euclidean Laplacian differential operator.

Denote by F ψ the generalized Fock space with respect to the weight e -2ψ(z) and let B ψ be the reproducing kernel of F ψ , whose definition is recalled in Definition 3.1. The condition [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF] implies in particular the useful Christ's pointwise estimate for the reproducing kernel B ψ , see Theorem 3.1 below.

By the Macchì-Soshnikov theorem, the kernel B ψ induces a determinantal point process on C, which will be denoted by P B ψ . For more background on determinantal point processes, see, e.g. [START_REF] Hough | Determinantal processes and independence[END_REF], [START_REF] Lyons | Determinantal probability measures[END_REF], [START_REF] Soshnikov | Determinantal random point fields[END_REF], [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF] and §2 below.

Let p ∈ C ℓ and q ∈ C k be two tuples of distinct points in C. Denote by P p B ψ and P q B ψ the reduced Palm measures of P B ψ conditioned at p and q respectively. For the definition, see, e.g. [START_REF] Kallenberg | Random measures[END_REF], here, we follow the notation and conventions of [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF].

Our first main result is that, under the assumption (1), Palm measures P p B ψ and P q B ψ of the same order are equivalent.

Theorem 1.1 (Palm measures of the same order). Let ψ satisfy (1) and let p, q ∈ C ℓ be any two tuples of distinct points in C. Then 1) The limit Σ p,q (Z) := lim R→∞ z∈Z:|z|≤R log (z -p 1 ) . . . (z -p ℓ ) (z -q 1 ) . . . (z -q ℓ ) -E P q B ψ z∈Z:|z|≤R log (z -p 1 ) . . . (z -p ℓ ) (z -q 1 ) . . . (z -q ℓ ) exists for P q B ψ -almost every configuration Z and the function Z → e 2Σp,q(Z) is integrable with respect to P q B ψ .

2) The Palm measures P p B ψ and P q B ψ are equivalent. Moreover, for P q B ψ -almost every configuration Z, we have

dP p B ψ dP q B ψ (Z) = e 2Σp,q(Z) E P q B ψ (e 2Σp,q ) . ( 2 
)
Definition 1.1 (Ghosh [8], Ghosh-Peres [START_REF] Ghosh | Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues[END_REF]). A point process P on C is said to be rigid if for any bounded open set D ⊂ C with Lebesgue-negligible boundary ∂D, there exists a function F D defined on the set of configurations, measurable with respect to the σ-algebra generated by the family of random variables {# A : A ⊂ C \ D bounded and Borel}, where # A is defined by 

# A (Z) =
We will denote by B ω the generalized Bergman space on D with respect to the weight ω, and by B ω its reproducing kernel, the definition is recalled in Definition 3.2. Again, by the Macchì-Soshnikov theorem, the reproducing kernel B ω induces a determinantal point process on D, which we denote by P Bω .

Let p ∈ D ℓ be an ℓ-tuple of distinct points in D and denote by P p Bω the reduced Palm measures of P Bω at p.

Under the assumption (3), we show, for any p ∈ D ℓ of distinct points in D, the reduced Palm measure P p Bω is equivalent to P Bω . In particular, any two reduced Palm measures are equivalent. For the weight ω ≡ 1, this result is due to Holroyd and Soo [START_REF] Holroyd | Insertion and deletion tolerance of point processes[END_REF].

We now proceed to the statement of our main result in the case of D. exists for P Bω -almost every configuration Z and the function Z → e 2Sp(Z) is integrable with respect to P Bω .

2) The Radon-Nikodym derivative dP p Bω /dP Bω is given by the formula:

dP p Bω dP Bω (Z) = e 2Sp(Z) E P Bω (e 2Sp )
, for P Bω -almost every configuration Z.

Theorem 1.4 will be obtained from Proposition 1.5. Let ω be a weight such that (3) holds. Let p ∈ D ℓ and q ∈ D k be two tuples of distinct points in D. Then the Radon-Nikodym derivative dP p Bω /dP q Bω is given by dP p Bω dP q Bω (Z) = e 2Sp,q(Z) E P q

Bω (e 2Sp,q )

, for P q Bω -almost every configuration Z,

where S p,q (Z) is defined for P q Bω -almost every configuration Z, given by S p,q (Z) := lim Remark 1.2. If ψ (resp. ω) is a radial function, then the monomials (z n ) n≥0 are orthogonal in the corresponding Hilbert space, hence the determinantal point process P B ψ (resp. P Bω ) can be naturally approximated by orthogonal polynomial ensembles. In particular, if ψ(z) = 1 2 |z| 2 for all z ∈ C, then P B ψ is the Ginibre point process, see chapter 15 of Mehta's book [START_REF] Madan | Random Matrices[END_REF]; if ω(z) ≡ 1 for all z ∈ D, then P Bω is the determinantal point process describing the zero set of a Gaussian analytic function on the hyperbolic disc D, see [START_REF] Peres | Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process[END_REF]. Our study, however, goes beyond the radial setting and our methods work for more general phase spaces as well.

Remark 1.3. The regularized multiplicative functionals are necessary in Theorem 1.1, Theorem 1.4 and Proposition 1.5: indeed, when ω ≡ 1, for P Bω -almost every configuration Z on D, the points in the configuration Z violate the Blaschke condition:

z∈Z (1 -|z|) = ∞, (9) 
whence for any p ∈ D ℓ , we have,

z∈Z |b p (z)| = 0, for P Bω -almost every configuration Z, (10) 
so the simple multiplicative functional is identically 0. To see [START_REF] Ghosh | Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues[END_REF], we use the Kolmogorov three-series theorem and the fact (Peres and Virág [START_REF] Peres | Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process[END_REF]) that, for P Bω -distributed random configurations Z, the set of moduli {|z| : z ∈ Z} has same law as the set of random variables {U 1/(2k) k }, where U 1 , U 2 , . . . are independent identically distributed random variables such that U 1 has a uniform distribution in [0, 1]. A direct computation shows that

E P Bω z∈Z (1 -|z|) = k (1 -E(U 1/(2k) k )) = ∞.
The determinantal point process P Bω in the case ω ≡ 1 describes the zero set of a Gaussian analytic function on D:

F D (z) = ∞ n=0 g n z n ,
where (g n ) n≥0 is a sequence of independent identically distributed standard complex Gaussian random variables. Direct computation shows that

E F D 2 H 2 = ∞ and E F D 2 Bω = ∞,
hence the random holomorphic function almost surely belongs neither to the Hardy space H 2 nor to the Bergman space, thus it is not surprising that the zero set of F D almost surely violates Blaschke condition.

Quasi-invariance

Let U = C or D. Let F : U → U be a diffeomorphism. Its support, denoted by supp(F ), is defined as the relative closure in U of the subset {z ∈ U : F (z) = z}. The totality of diffeomorphisms with compact supports is a group denoted by Diff c (U), i.e.,

Diff c (U) := F : U → U F is a diffeomorphism and supp(F ) is compact .
The group Diff c (U) naturally acts on the set of configurations on U: given any diffeomorphism F ∈ Diff c (U) and any configuration Z on U,

(F, Z) → F (Z) := {F (z) : z ∈ Z}.
Recall that the Jacobian J F of the function F : U → U is defined by

J F (z) = | det DF (z)|.
Corollary 1.6. Let P K be a determinantal point process on U, which is either the determinantal point process P B ψ on C or the determinantal point process P Bω on D. Then under Assumption (1) in the case of C or, in the case of D Assumption (3), P K is quasi-invariant under the induced action of the group Diff c (U).

More precisely, let F ∈ Diff c (U) and let V ⊂ U be any precompact subset containing supp(F ). For P K -almost every configuration Z the following holds: if Z V = {q 1 , . . . , q ℓ }, then

dP K • F dP K (Z) = det[K(F (q i ), F (q j ))] ℓ i,j=1 det[K(q i , q j )] ℓ i,j=1 • dP p K dP q K (Z) • ℓ i=1 J F (q i ),
where q = (q 1 , . . . , q ℓ ) ∈ U ℓ and p = (F (q 1 ), . . . , F (q ℓ )) ∈ U ℓ

Proof. This is an immediate consequence of Theorem 1.1, Proposition 1.5 and Proposition 2.9 of [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF].

Unified approach for obtaining Radon-Nikodym derivatives

In this section, let us describe briefly the main idea of our unified approach for obtaining the Radon-Nikodym derivatives in Theorem 1.1, Theorem 1.4 and Proposition 1.5.

Relations between Palm subspaces

If p ∈ C ℓ is an ℓ-tuple of distinct points of C, we define the Palm subspace:

F ψ (p) := {ϕ ∈ F ψ : ϕ(p 1 ) = • • • = ϕ(p ℓ ) = 0} . (11) 
Let B p ψ denote the reproducing kernel of F ψ (p). Similarly, if p ∈ D ℓ is an ℓ-tuple of distinct points of D, we define the Palm subspace

B ω (p) = {ϕ ∈ B ω : ϕ(p 1 ) = • • • = ϕ(p ℓ ) = 0} , (12) 
and denote its reproducing kernel by B p ω . By Shirai-Takahashi's theorem, which motivates our terminology, see Theorem 2.1 below, these Palm subspaces are related to the reduced Palm measures: B p ψ (resp. B p ω ) is the correlation kernel of P p B ψ (resp. P p Bω ), i.e., we have

P p B ψ = P B p ψ (resp. P p Bω = P B p ω ).
Proposition 1.7. For any pair of ℓ-tuples p, q ∈ C ℓ of distinct points in C, we have

F ψ (p) = (z -p 1 ) • • • (z -p ℓ ) (z -q 1 ) • • • (z -q ℓ ) • F ψ (q). ( 13 
)
Proposition 1.8. Let k, ℓ ∈ N ∪ {0} and let p ∈ D ℓ , q ∈ D k be two tuples of distinct points in D, then

B ω (p) = ℓ j=1 z -p j 1 -pj z k j=1 z -q j 1 -qj z -1 • B ω (q). ( 14 
)
In particular, we have

B ω (p) = ℓ j=1 z -p j 1 -pj z • B ω .
Comments.

• The proofs of Propositions 1.7 and 1.8 are immediate from the definitions [START_REF] Hough | Determinantal processes and independence[END_REF] and [START_REF] Kallenberg | Random measures[END_REF] and basic properties of holomorphic functions.

• Notice the analogy of the above Propositions 1.7 and 1.8 with Proposition 3.4 in [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF].

• A common feature, which is crucially used later, of Propositions 1.7 and 1.8, is the following relations

lim |z|→∞ (z -p 1 ) • • • (z -p ℓ ) (z -q 1 ) • • • (z -q ℓ ) = 1 and lim |z|→1 - ℓ j=1 z -p j 1 -pj z = 1. (15) 
The rate of convergence in (15) also plays an important rôle for defining the regularized multiplicative functionals, see §5.2 and §6.2.

Radon-Nikodym derivatives as regularized multiplicative functionals

For obtaining the Radon-Nikodym derivatives in question, we will first develop in Theorem 4.1, the most technical result of this paper, a general method on regularized multiplicative functionals. This result, an extension of Proposition 4.6 of [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF], is, we hope, interesting in its own right; the stronger statement is also necessary for our argument in the case of C, in which Proposition 4.6 of [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF] is not applicable. By Theorem 4.1, under the assumption (1) on ψ, we can show that the regularized multiplicative functional, i.e., the formula [START_REF] Ferguson | Regularity of extremal functions in weighted Bergman and Fock type spaces[END_REF], is well-defined. This regularized multiplicative functional is then shown to be exactly the Radon-Nikodym derivative between the desired reduced Palm measures of the same order for the determinantal point process P B ψ .

The regularized multiplicative functionals in the case of D are technically simpler and the full force of Theorem 4.1 is not needed.

Organization of the paper

spaces and generalized Bergman spaces are given in §3. In §4, our main ingredient, regularized multiplicative functionals, is defined. We also state the most technical Theorem 4.1 in §4. We then apply Theorem 4.1 to prove our main results for determinantal point processes associated with generalized Fock spaces in §5 and to prove the main results in the case of generalized Bergman spaces in §6. The section §7 is devoted to the proof of Theorem 4.1. In the Appendix §8, we give details for the fact that rigid point processes have singular Palm measures with different orders.

Remark 1.4. Part of our main results in this paper were announced in [START_REF] Bufetov | Equivalence of Palm measures for determinantal point processes associated with Hilbert spaces of holomorphic functions[END_REF].

Spaces of configurations and determinantal point processes

For the reader's convenience, we recall the basic definitions and notation on determinantal point processes.

Let E be a locally compact complete separable metric space equipped with a sigmafinite Borel measure µ. The space E will be later referred to as phase space. The measure µ is referred to as reference measure or background measure. By a configuration X on the phase space E, we mean a locally finite subset of X ⊂ E. By identifying any configuration X ∈ Conf(E) with the Radon measure

m X := x∈X δ x ,
where δ x is the Dirac mass on the point x, the space of configurations Conf(E) is identified with a subset of the space M(E) of Radon measures on E and becomes itself a complete separable metric space. We equip Conf(E) with its Borel sigma algebra.

Points in a configuration will also be called particles. In this paper, the italicized letters as X, Y, Z always denote configurations.

Additive functionals and multiplicative functionals

We recall the definitions of additive and multiplicative functionals on the space of configurations.

If ϕ : E → C is a measurable function on E, then the additive functional (which is also called linear statistic) S ϕ : Conf(E) → C corresponding to ϕ is defined by

S ϕ (X) = x∈X ϕ(x)
provided the sum x∈X ϕ(x) converges absolutely. If the sum x∈X ϕ(x) fails to converge absolutely, then the additive functional is not defined at X.

Similarly, the multiplicative functional Ψ g : Conf(E) → [0, ∞] associated with a non-negative measurable function g : E → R + , is defined as the function

Ψ g (X) := x∈X g(x),
provided the product x∈X g(x) absolutely converges to a value in [0, ∞]. If the product x∈X g(x) fails to converge absolutely, then the multiplicative functional is not defined at the configuration X.

Locally trace class operators and their kernels

Let L 2 (E, µ) denote the complex Hilbert space of C-valued square integrable functions on E. Let S 1 (E, µ) be the space of trace class operators on L 2 (E, µ) equipped with the trace class norm • S 1 . Let S 1,loc (E, µ) be the space of locally trace class operators, that is, the space of bounded operators K : L 2 (E, µ) → L 2 (E, µ) such that for any bounded subset B ⊂ E, we have

χ B Kχ B ∈ S 1 (E, µ).
A locally trace class operator K admits a kernel, for which we use the same symbol K. In this paper, we are especially interested in locally trace class orthogonal projection operators. Let, therefore, Π ∈ S 1,loc be an operator of orthogonal projection onto a closed subspace L ⊂ L 2 (E, µ). All kernels considered in this paper are supposed to satisfy the following Assumption 1. There exists a subset E ⊂ E, satisfying µ(E \ E) = 0 such that

• For any q ∈ E, the function v q (•) = Π(•, q) lies in L 2 (E, µ) and for any f ∈ L 2 (E, µ), we have (Πf )(q) = f, v q L 2 (E,µ) .
In particular, if f is a function in L, then by letting f (q) = f, v q L 2 (E,µ) , for any q ∈ E, the function f is defined everywhere on E (which is slightly stronger than almost everywhere defined on E).

• The diagonal values Π(q, q) of the kernel Π are defined for all q ∈ E and we have Π(q, q) = v q , v q L 2 (E,µ) . Moreover, for any bounded Borel subset B ⊂ E,

tr(χ B Πχ B ) = B Π(x, x)dµ(x).

Definition of determinantal point processes

A Borel probability P on Conf(E) will be called a point process on E. Recall that the point process P is said to admit k-th correlation measure ρ k on E k if for any continuous compactly supported function ϕ :

E k → C, we have Conf(E) * x 1 ,...,x k ∈X ϕ(x 1 , . . . , x k )P(dX) = E k ϕ(q 1 , . . . , q k )dρ k (q 1 , . . . , q k ),
where * denotes the sum over all ordered k-tuples

of distinct points (x 1 , . . . , x k ) ∈ X k . Given a bounded measurable subset A ⊂ E, we define # A : Conf(E) → N ∪ {0} by # A (X) = the number of particles in X ∩ A.
Then the point process P is determined by the joint distributions of # A 1 , . . . , # An , if A 1 , . . . , A n range over the family of bounded measurable subsets of E.

A Borel probability measure P on Conf(E) is called determinantal if there exists an operator K ∈ S 1,loc (E, µ) such that for any bounded measurable function g, for which g -1 is supported in a bounded set B, we have

E P Ψ g = det (1 + (g -1)Kχ B ) . ( 16 
)
The Fredholm determinant is well-defined since (g -1)Kχ B ∈ S 1 (E, µ). The equation ( 16) determines the measure P uniquely and we will denote it by P K and the kernel K is said to be a correlation kernel of the determinantal point process P K . Note that P K is uniquely determined by K, but different kernels may yield the same point process. By the Macchì-Soshnikov theorem [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF], [START_REF] Soshnikov | Determinantal random point fields[END_REF], any Hermitian positive contraction in S 1,loc (E, µ) defines a determinantal point process. In particular, the projection operator on a reproducing kernel Hilbert space induces a determinantal point process.

Remark 2.1. If α : E → C is a Borel function such that |α(x)| = 1 for µ-almost every x ∈ E, and if Π ∈ S 1,
loc is the operator of orthogonal projection onto a closed subspace L ⊂ L 2 (E, µ), then Π and αΠα define the same determinantal point process, i.e.,

P αΠα = P Π .
Note that αΠα is the orthogonal projection onto the subspace α(x)L.

Palm measures and Palm subspaces

In this paper, by Palm measures, we always mean reduced Palm measures. We refer to [START_REF] Kallenberg | Random measures[END_REF], [START_REF] Daley | An introduction to the theory of point processes[END_REF] for more details on Palm measures of general point processes.

Let P be a point process on Conf(E). Assume that P admits k-th correlation measure ρ k on E k . Then for ρ k -almost every q = (q 1 , . . . , q k ) ∈ E k of distinct points in E, one can define a point process on E, denoted by P q and is called (reduced) Palm measure of P conditioned at q, by the following disintegration formula: for any non-negative Borel test function

u : Conf(E) × E k → R, Conf(E) * q 1 ,...,q k ∈X u(X; q)P(dX) = E k ρ k (dq) Conf(E)
u(X ∪ {q 1 , . . . , q k }; q)P q (dX), [START_REF] Osada | Absolute continuity and singularity of Palm measures of the Ginibre point process[END_REF] where * denotes the sum over all mutually distinct points q 1 , . . . , q k ∈ X. Informally, P q is the conditional distribution of X \ {q 1 , . . . , q k } on Conf(E) conditioned to the event that all particles q 1 , . . . , q k are in the configuration X, providing that X has as distribution P.

Now let P Π be a determinantal point process on Conf(E) induced by the projection operator Π.

Let q = (q 1 , . . . , q k ) ∈ E k be a k-tuple of distinct points in E ⊂ E, where E is as in Assumption 1. Set L(q) = {ϕ ∈ L : ϕ(q 1 ) = • • • = ϕ(q k ) = 0}. (18) 
The space L(q) will be called the Palm subspace of L 2 (E, µ) corresponding to q. Both the operator of orthogonal projection from L 2 (E, µ) onto the subspace L(q) and the reproducing kernel of L(q) will be denoted by Π q . Explicit formulae for Π q in terms of the kernel Π are known, see Shirai-Takahashi [START_REF] Shirai | Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes[END_REF]. Here we recall that for a single point q ∈ E, we have

Π q (x, y) = Π(x, y) - Π(x, q)Π(q, y) Π(q, q) . (19) 
If Π(q, q) = 0, we set Π q = Π. In general, we have the iteration

Π q = (• • • (Π q 1 ) q 2 • • • ) q k .
Note that the order of the points q 1 , q 2 , • • • q k has no effect in the above iteration.

Theorem 2.1 (Shirai and Takahashi [20]). For any k ∈ N and for ρ k -almost every k-tuple q ∈ E k of distinct points in E, the Palm measure P q Π is induced by the kernel Π q :

P q Π = P Π q .

Rigidity

Let P be a point process over C. We will use the following result on the rigidity of point processes (see Definition 1.1).

Theorem 2.2 (Ghosh [START_REF] Ghosh | Determinantal processes and completeness of random exponentials: the critical case[END_REF], Ghosh and Peres [START_REF] Ghosh | Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues[END_REF]). Let P be a point process on C whose first correlation measure ρ 1 is absolutely continuous with respect to the Lebesgue measure and let D be an open bounded set D with Lebesgue-negligible boundary. Let ϕ be a continuous function on C. Suppose that for any 0 < ε < 1, there exists a C 2 c -smooth function Φ ε such that Φ ε = ϕ on D, and Var P (S Φε ) < ε. Then the point process P is rigid. 

Generalized Fock spaces and Bergman spaces

F ψ := L 2 (C, dv ψ ) ∩ O(C)
is closed in L 2 (C, dv ψ ), then it will called generalized Fock space with respect to the measure dv ψ . The orthogonal projection P : L 2 (dv ψ ) → F ψ is given by integration against a reproducing kernel B ψ (z, w) (analytic in z and anti-analytic in w): 

(P f )(z) = C f (w)B ψ (z, w)e -2ψ(w) dλ(w). ( 20 
)
B ω := L 2 (D, ωdλ) ∩ O(D)
is closed and the evaluation functionals f → f (z) on B ω are uniformly bounded on any compact subset of D. In such situation, the space B ω is a reproducing kernel Hilbert space, its reproducing kernel will be denoted as B ω .

We shall need Christ's pointwise estimate (cf. [START_REF] Christ | On the ∂ equation in weighted L 2 norms in C 1[END_REF], [START_REF] Delin | Pointwise estimates for the weighted Bergman projection kernel in C n , using a weighted L 2 estimate for the ∂ equation[END_REF], [START_REF] Schuster | Toeplitz operators and Carleson measures on generalized Bargmann-Fock spaces[END_REF]) of the reproducing kernel B ψ (z, w). Theorem 3.2 in [START_REF] Schuster | Toeplitz operators and Carleson measures on generalized Bargmann-Fock spaces[END_REF] gives the estimate in the form most convenient for us. Theorem 3.1 (Christ). Let ψ ∈ C 2 (C) be a real-valued function satisfying [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF]. Then there are contants δ, C > 0 such that for all z, w ∈ C,

|B ψ (z, w)| 2 e -2ψ(z)-2ψ(w) ≤ Ce -δ|z-w| . ( 21 
)
In particular, for all z ∈ C,

B ψ (z, z)e -2ψ(z) ≤ C. ( 22 
)
Remark 3.1. For the Gaussian case ψ(z) = 1 2 |z| 2 , we have the following explicit formula |B ψ (z, w)| 2 e -2ψ(z)-2ψ(w) = π -2 e -|z-w| 2 .

Regularized multiplicative functionals

As [START_REF] Holroyd | Insertion and deletion tolerance of point processes[END_REF] shows, simple multiplicative functionals cannot be used in our situation. Following [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF], we use regularized multiplicative functionals whose definition we now recall.

Let f : E → C be a Borel function. Set

Var(Π, f ) = 1 2 E 2 |f (x) -f (y)| 2 |Π(x, y)| 2 dµ(x)dµ(y). ( 23 
)
Introduce the Hilbert space V(Π) in the following way: the elements of V(Π) are functions f on E satisfying Var(Π, f ) < ∞; functions that differ by a constant are identified. The square of the norm of an element

f ∈ V(Π) is precisely Var(Π, f ). Let S f : Conf(E) → C to be the corresponding additive functional, such that S f ∈ L 1 (Conf(E), P Π ), then we set S f = S f -E P Π S f . (24) 
If moreover, S f ∈ L 2 (Conf(E), P Π ), then it is easy to see that

E P Π |S f | 2 = Var P Π (S f ) = Var(Π, f ). ( 25 
)
Definition 4.1. Let V 0 (Π) be the subset of functions f ∈ V(Π), such that there exists an exhausting sequence of bounded subsets (E n ) n≥1 , depending on f , so that

f χ En V(Π) ---→ n→∞ f.
The identity (25) implies that there exists a unique isometric embedding (as metric spaces)

S : V 0 (Π) → L 2 (Conf(E), P Π )
extending the definition (24), so that we have

S f = lim n→∞ x∈X∩En f (x) -E P Π x∈X∩En f (x).
Definition 4.2. Given a non-negative function g : E → R such that log g ∈ V 0 (Π), then we set

Ψ g = exp(S log g ).
If moreover, Ψ g ∈ L 1 (Conf(E), P Π ), then we set

Ψ g = Ψ g E P Π Ψ g .
The function Ψ g is called the regularized multiplicative functional associated to g and P Π . For specifying the dependence on P Π , the notation Ψ Π g will also be used. By definition, for P Π -almost every configuration X, the following identity holds:

log Ψ Π g (X) = lim n→∞ x∈X∩En log g(x) -E P Π x∈X∩En log g(x) . (26) 
Clearly, Ψ Π g is a probability density for P Π , since

E P Π (Ψ Π g ) = 1. Theorem 4.1. Let E 0 ⊂ E be a Borel subset satisfying tr(χ E 0 Πχ E 0 ) < ∞ and such that if ϕ ∈ L satisfies χ E\E 0 ϕ = 0, then ϕ = 0 identically.
Let g be a nonnegative Borel function on E satisfying g| E 0 = 0, g| E c 0 > 0 and such that for any ε > 0 the subset E ε = {x ∈ E : |g(x) -1| ≥ ε} is bounded. Assume moreover that there exists an increasing sequence of bounded subsets (E n ) n≥1 exhausting the whole phase space E and

En |g(x) -1|Π(x, x)dµ(x) < ∞; (27) 
E c n |g(x) -1| 3 Π(x, x)dµ(x) < ∞; (28) 
E c n ×E c n |g(x) -g(y)| 2 |Π(x, y)| 2 dµ(x)dµ(y) < ∞. ( 29 
)
And

lim n→∞ tr(χ En Π|g -1| 2 χ E c n Πχ En ) = 0. ( 30 
)
Then Ψ g ∈ L 1 (Conf(E), P Π ).
If the subspace √ gL is closed and the corresponding operator of orthogonal projection Π g satisfies, for sufficiently large R, the condition

tr(χ g>R Π g χ g>R ) < ∞ (31)
then we also have

P Π g = Ψ Π g • P Π . Remark 4.1. Note that tr(χ En Π|g -1| 2 χ E c n Πχ En ) = En dµ(y) E c n |g(x) -1| 2 |Π(x, y)| 2 dµ(x).
Remark 4.2. The above theorem is an extension of Proposition 4.6 of [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF]: we replace the convergence of

E c ε |g(x) -1| 2 Π(x, x)dµ(x) in Proposition 4.6 of [1] by the convergence of E c ε |g(x) -1| 3 Π(x, x)dµ(x)
. This extension is crucial for treating the case of Fock space, since the former condition is already violated in the case of the Ginibre point process.

Case of C

Examples

In this section, we assume that ψ : C → R is a measurable function on C, the condition (1) is not necessarily satisfied. Recall that we denote dv ψ (z) = e -2ψ(z) dλ(z) and denote

F ψ = f : C → C f holomorphic, C |f | 2 dv ψ < ∞ .
If the evaluation functionals ev z (f ) := f (z) defined on F ψ are uniformly bounded on compact subsets, then F ψ is a closed subspace of L 2 (C, dv ψ ). In this case, denote by B ψ the reproducing kernel of F ψ , we have

B ψ (z, w) = ∞ j=1 f j (z)f j (w),
where (f j ) ∞ j=1 is any orthonormal basis of F ψ .

Assumption 2. The measure dv ψ satisfies

(1) the evaluation functionals ev z defined on F ψ are uniformly bounded on compact subsets;

(2) the polynomials are dense in F ψ ;

(

) C 1 1+|z| 2 B ψ (z, z)dv ψ (z) < ∞. 3 
Example 5.1 (A radial case). Let α > 0, and set ψ α (z) = 1 2 |z| α , then the measure dv ψα (z) = e -|z| α dλ(z) satisfies Assumption 2 if and only if 0 < α < 2. Indeed, the first two conditions in Assumption 2 are satisfied by dv ψα by all α > 0. Now one can see that the third condtion is equivalent to

∞ n=1 z n-1 2 L 2 (dv ψ ) z n 2 L 2 (dv ψ ) < ∞. (32) 
A direct computation shows that

z n 2 L 2 (dv ψ ) = 2π α Γ 2n + 2 α and z n-1 2 L 2 (dv ψ ) z n 2 L 2 (v ψ ) ∼ 1 n 2/α . ( 33 
)
The series (32) converges if and only if 0 < α < 2.

Remark 5.2. As shown in Example 5.1, the third condition in Assumption 2 is too strict: indeed, it fails already for the Ginibre point process (corresponding to ψ(z) = 1 2 |z| 2 ).

Let P B ψ be the determinantal point process induced by the operator B ψ . For any ℓ-tuple q = (q 1 , . . . , q ℓ ) ∈ C ℓ of distinct points, set

F ψ (q) := f ∈ F ψ f (q 1 ) = • • • = f (q ℓ ) = 0 ,
and let B q ψ denote the operator of orthogonal projection onto F q ψ . Recall that the Palm distribution P q B ψ of P B ψ conditioned at q is induced by B q ψ , i.e.,

P q B ψ = P B q ψ .
Given a positive integer ℓ ∈ N, introduce the closed subspace 

F (ℓ) ψ := f ∈ F ψ f (0) = f ′ (0) = • • • = f (ℓ-1) (0) = 0 . ( 34 
ψ = z ℓ F ψ . Indeed, let ψ(z) = 1
2 |z| 2 , we have zF ψ ⊂ F ψ . This can be seen from the closed graph theorem: otherwise, the operator M z : F ψ → F ψ of multiplication by the function z is bounded, which contradicts the explicit computation (33):

M z F ψ →F ψ ≥ sup n z n+1 F ψ z n F ψ = ∞;
see also the related discussion after Theorem 2 in [START_REF] Ferguson | Regularity of extremal functions in weighted Bergman and Fock type spaces[END_REF].

Proposition 5.1. If ψ satisfies Assumption 2, then for any ℓ ∈ N and any ℓ-tuple q = (q 1 , . . . , q ℓ ) ∈ C ℓ of distinct points, we have equivalence of measures:

P q B ψ ≃ P (ℓ) B ψ .
Moreover, if one sets

g q (z) = (z -q 1 ) . . . (z -q ℓ ) z ℓ 2 ,
then the Radon-Nikodym derivative is given by the regularized multiplicative functional

dP q B ψ dP (ℓ) B ψ = Ψ B (ℓ) ψ gq .
In particular, given any two ℓ-tuples q and q ′ of distinct points, the corresponding Palm measures P q B ψ and P q ′ B ψ are equivalent. Proof. First note that, under Assumption 2, for any ℓ ∈ N and any ℓ-tuple q = (q 1 , . . . , q ℓ ) ∈ C ℓ of distinct points,

F ψ (q) = (z -q 1 ) . . . (z -q ℓ ) z ℓ F (ℓ)
ψ . Next we use Proposition 4.6 of [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF]. We now verify the assumption of Proposition 4.6 of [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF] for the pair (B

(ℓ) ψ , g). Note that B (ℓ) ψ (z, z) = O(|z| 2ℓ ) for |z| → 0 and |g(z) -1| 2 = O (1/|z| 2 ), for |z| → ∞. Recall that B (ℓ) ψ (z, z) ≤ B ψ (z, z). Hence, under Assumption 2, we have |z|≤1 |g(z) -1|B (ℓ) ψ (z, z)dv ψ (z) + |z|≥1 |g(z) -1| 2 B (ℓ) ψ (z, z)dv ψ (z) < ∞.
The pair (B (ℓ) ψ , g) satisfies all assumptions of Proposition 4.6 in [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF], and Proposition 5.1 follows immediately.

Proof of Theorem 1.1

We now derive Theorem 1.1 from Theorem 4.1. From now on, the function ψ is assumed to satisfy the condition (1) until the end of this paper.

Let ℓ ≥ 1 and let p = (p 1 , . . . , p ℓ ), q = (q 1 , . . . , q ℓ ) ∈ C ℓ be any two fixed ℓ-tuples of distinct points; let g be the function defined by the formula

g(z) = |g p,q (z)| 2 = (z -p 1 ) • • • (z -p ℓ ) (z -q 1 ) • • • (z -q ℓ ) 2 . ( 35 
) Let 0 < ε < 1 be a small fixed number. Choose R ε > max{|p k |, |q k | : k = 1, . . . , ℓ}, large enough, such that outside E ε := {z ∈ C : |z| ≤ R ε }, we have |g(z) -1| ≤ ε. Finally, for n ∈ N, let E n = {z ∈ C : |z| ≤ max(R ε , n)}.
We start with a simple but very useful observation that conditions (28), (29), (30) and (31) in Theorem 4.1 are preserved under taking finite rank pertubation.

Remark 5.4. Assume that the pair (g, Π) satisfies the conditions (28), (29), (30) and (31) in Theorem 4.1. If Π = Π + Π ′ , where Π ′ has finite rank and Ran(Π) ⊥ Ran(Π ′ ), or Π = Π -Π ′ , where Π ′ has finite rank and Ran(Π ′ ) ⊂ Ran(Π), then conditions (28), ( 29), (30) and (31) hold for the new pair (g, Π) . If g is unbounded, then the condition (27) for the pair (g, Π) does not imply the condition for the pair (g, Π). The condition (27) is on the other hand usually easy to check directly.

Lemma 5.2. Let g be the function defined by the formula (35). We have

En |g(z) -1|B q ψ (z, z)e -2ψ(z) dλ(z) < ∞ and

E c n |g(z) -1| 3 B q ψ (z, z)e -2ψ(z) dλ(z) < ∞.
Proof. We first note that for any small ε > 0, there exists C ε > 0, such that if |z -q k | < ε, then

B q ψ (z, z) ≤ C ε |z -q k | 2 . ( 36 
)
Indeed, B q ψ is the orthogonal projection to the subspace F ψ (q), hence we have

B q ψ (z, w) = ∞ k=1 f j (z)f j (w), (37) 
where (f j ) ∞ j=1 is any orthornomal basis of F ψ (q). The convergence is uniform on any compact subset of C. Thus the function |g(z) -1|B q ψ (z, z)e -2ψ(z) is bounded on E n , this implies the first inequality in the lemma.

By Theorem 3.1, there exists a constant C > 0, such that

B p ψ (z, z)e -2ψ(z) ≤ B ψ (z, z)e -2ψ(z) ≤ C.
Since |g(z) -1| 3 = O(1/|z| 3 ) as |z| → ∞, there exists C ′ > 0, such that

E c n |g(z) -1| 3 B q ψ (z, z)e -2ψ(z) dλ(z) ≤ C ′ |z|≥Rε 1 |z| 3 dλ(z) < ∞.
Lemma 5.3. Let g be the function defined by the formula (35). We have

E c ε ×E c ε |g(z) -g(w)| 2 |B p ψ (z, w)| 2 dv ψ (z)dv ψ (w) < ∞. ( 38 
)
Proof. Since B p ψ is a finite rank perturbation of B ψ , and since g is bounded on E c ε , it suffices to show that

I 1 := |z|≥Rε,|w|≥Rε |g(z) -g(w)| 2 |B ψ (z, w)| 2 dv ψ (z)dv ψ (w) < ∞. (39) 
Christ's pointwise estimate, [START_REF] Soshnikov | Determinantal random point fields[END_REF] in Theorem 3.1, implies that there exists α ∈ C, such that

g(z) = 1 + α z + ᾱ z + O 1/|z| 2 as |z| → ∞.
Thus it suffices to show that

I 2 := |z|≥Rε,|w|≥Rε 1 z - 1 w 2 e -δ|z-w| dλ(z)dλ(w) < ∞. (40) 
To this end, write

I 2 = |w|≥Rε dλ(w) |ζ+w|≥Rε |ζ| 2 |w(w + ζ)| 2 e -δ|ζ| dλ(ζ) ≤ |w|≥Rε dλ(w) |ζ+w|≥Rε χ {|w|≥2|ζ|} |ζ| 2 |w(w + ζ)| 2 e -δ|ζ| dλ(ζ) + |w|≥Rε dλ(w) |ζ+w|≥Rε χ {|w|<2|ζ|} |ζ| 2 |w(w + ζ)| 2 e -δ|ζ| dλ(ζ).
The first integral is controlled by

4 |w|≥Rε dλ(w) C |ζ| 2 |w| 4 e -δ|ζ| dλ(ζ) < ∞, while the second integral is controlled by |w|≥Rε dλ(w) C χ {|w|<2|ζ|} |ζ| 2 |R ε w| 2 e -δ|ζ| dλ(ζ) =2π 2|ζ|≥Rε log 2|ζ| R ε |ζ| 2 |R ε | 2 e -δ|ζ| dλ(ζ) < ∞.
The proof of the lemma is complete.

Lemma 5.4. Let g be the function defined by the formula (35). We have

lim n→∞ tr(χ En B p ψ |g -1| 2 χ E c n B p ψ χ En ) = 0. (41) 
Proof. Since B p ψ is a finite rank perturbation of B ψ , by Remark 5.4, it suffices to check the same condition (41) for the new pair (g, B ψ ). By applying again Christ's pointwise estimate [START_REF] Soshnikov | Determinantal random point fields[END_REF], we have Now since there exists C ′′ > 0, such that re -δr ≤ C ′′ e -δr/2 for all r ≥ 0, we have

I 3 (n) :=tr(χ En B ψ |g -1| 2 χ E c n B ψ χ En ) = χ En B ψ |g -1|χ E c n 2 HS = |z|≤n |w|≥n |g(w) -1| 2 |B ψ (z, w)| 2 e -2ψ(z)-2ψ(w) dλ(z)dλ(w)
I 3 (n) ≤ C ′′′ s≥n e -δ(s-n)/2 s ds = C ′′′ ∞ 1
e -δn(t-1)/2 t dt.

By dominated convergence theorem, we have

lim n→∞ I 3 (n) = 0.
Proof of Theorem 1.1. By Lemma 5.2, Lemma 5.3 and Lemma 5.4, the conditions ( 27), ( 28), ( 29), (30) are satisfied by the pair (g, B q ψ ). Moreover, let

α(z) = |g p,q (z)| g p,q (z) ,
then by Proposition 1.7, we have

g(z)F ψ (q) = α(z)g p,q (z)F ψ (q) = α(z)F ψ (p).
Hence g(z)F ψ (q) is a closed subspace of L 2 (dv ψ ). And (B q ψ ) g = αB p ψ ᾱ is locally of trace class, this implies the condition (31). Now the formula (2) of Radon-Nikodym derivative dP p B ψ /dP q B ψ follows from Theorem 4.1 and Remark 2.1.

Remark 5.5. Under the condition (1), we also have the same result as in Proposition 5.1.

Proof of Proposition 1.2 Lemma 5.5.

There exists a constant C > 0, depending only on ψ, such that for any C 2 -smooth compactly supported function ϕ : C → R, we have

Var P B ψ (S ϕ ) ≤ C C ∇ϕ(w) 2 2 dλ(w). ( 42 
)
Proof. Let ϕ : C → R be a C 2 -smooth compactly supported function. Our convention for the Fourier transform of ϕ will be ϕ(ξ) = C ϕ(w)e -i2π w,ξ dλ(w), where z, w := ℜ(z)ℜ(w) + ℑ(z)ℑ(w).

By definition, we have

Var P B ψ (S ϕ ) = 1 2 C 2 |ϕ(z) -ϕ(w)| 2 |B ψ (z, w)| 2 e -2ψ(z)-2ψ(w) dλ(z)dλ(w).
By Theorem 3.1 and Plancherel identity for Fourier transform, we obtain

Var P B ψ (S ϕ ) ≤ C C 2 |ϕ(z) -ϕ(w)| 2 e -δ|z-w| dλ(z)dλ(w) = C C 2 |ϕ(ζ + w) -ϕ(w)| 2 e -δ|ζ| dλ(w)dλ(ζ) = C C 2 |e i2π ξ,ζ -1| 2 | ϕ(ξ)| 2 e -δ|ζ| dλ(ξ)dλ(ζ). Now since |e i2π ξ,ζ -1| = 2| sin(π ξ, ζ )| ≤ 2π|ξ||ζ|, we have 
Var P B ψ (S ϕ ) ≤ C ′ C 2 |ξ| 2 | ϕ(ξ)| 2 |ζ| 2 e -δ|ζ| dλ(ξ)dλ(ζ) ≤ C ′′ C |ξ| 2 | ϕ(ξ)| 2 dλ(ξ) = C ′′ C ∇ϕ(w) 2 2 dλ(w).
Proof of Proposition 1.2. We will follow the argument of Ghosh and Peres [START_REF] Ghosh | Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues[END_REF]. By Theorem 2. 

Φ ε (z) = φ ε (|z|), with φ ε a function in C 2 c (R + ) such that φ ε | [0,r 0 /2] ≡ 1 and ∞ 0 |φ ′ ε (r)| 2 rdr < ε.
To this end, first we take φε (r) = (1 -ε log + (r/r 0 )) + , where log + (x) = max(log x, 0). Note that φε | [r 0 exp(1/ε),∞) ≡ 0 and φ′ ε (r) = -ε/r on the interval (r 0 , r 0 exp(1/ε)). Next we smooth the function φε at the points r 0 and r 0 exp(1/ε) to obtain a function

φ ε ∈ C 2 c (R + ) such that φ ε identically equals to 1 on [0, r 0 /2] and φ ′ ε is supported on [r 0 /2, 2r 0 exp(1/ε)] such that |φ ′ ε (r)| ≤ ε/r for all r > 0. Hence we have ∞ 0 |φ ′ ε (r)| 2 rdr ≤ 2r 0 exp(1/ε) r 0 /2 ε 2 r dr = ε + ε 2 log 4.
This completes the proof of the proposition.

6 Case of D

Analysis of the conditions on the weight ω

Let ω : D → R + be a Bergman weight. We collect some known results from the literature on the sufficient conditions on the Bergman weight ω, so that the inequality (3): 2) the function (∆ϕ(z)) -1/2 is Lipschitz on D;

D (1 -|z|) 2 B ω (z, z)ω(z)dλ(z) < ∞ holds. Example 6.1 (Classical weights). Assume ω(z) = (1 -|z| 2 ) α , α > -1. Then B ω (z, w) = α + 1 π 1 (1 -z w) α+2 , hence (1 -|z|) 2 B ω (z, z)ω(z) is
3) there exist C 1 , a > 0 and 0 < t < 1, such that

(∆ϕ(z)) -1/2 ≤ C 1 (1 -|z|); (∆ϕ(z)) -1/2 ≤ (∆ϕ(w)) -1/2 + t|z -w| for |z -w| > a(∆ϕ(w)) -1/2 .
By [13, Lemma 3.5], the weight ω is a Bergman weight and

sup z∈D (1 -|z|) 2 B ω (z, z)ω(z) < ∞.
Hence the inequality (3) holds. Some concrete such examples are

• ω(z) = (1 -|z| 2 ) α exp(h(z)) with α > 0 and h(z) any real harmonic function on D;

• ω(z) = (1 -|z| 2 ) α exp(-β(1 -|z| 2 ) -γ + h(z)) with α ≥ 0, β > 0, γ > 0 and h(z)
any real harmonic function on D. Proposition 6.1. Let ω 1 , ω 2 be two Bergman weights on D such that

D (1 -|z|) 2 B ω 1 (z, z)ω 2 (z)dλ(z) < ∞.
Let ω be a Bergman weight on D and assume that there exist c, C > 0 such that

cω 1 (z) ≤ ω(z) ≤ Cω 2 (z)
then ω satisfies the condition [START_REF] Bufetov | Equivalence of Palm measures for determinantal point processes associated with Hilbert spaces of holomorphic functions[END_REF].

Proof. Since B ω (z, z) = sup f Bω ≤1 |f (z)| 2 , we have B ω (z, z) ≤ c 2 B ω 1 (z, z)
. By the assumption, we have

D (1 -|z|) 2 B ω (z, z)ω(z)dλ(z) ≤ c 2 C D (1 -|z|) 2 B ω 1 (z, z)ω 2 (z)dλ(z) < ∞.
Example 6.3. Let ω be a Bergman weight. Assume that there exist c, C > 0 and let α, β be either

0 ≥ α ≥ β > -1 or α ≥ β > α -1 ≥ -1, such that c(1 -|z| 2 ) α ≤ ω(z) ≤ C(1 -|z| 2 ) β
then ω satisfies the condition (3).

Proof of Theorem 1.4 and Proposition 1.5

Let k, ℓ ∈ N ∪ {0}, let p ∈ D ℓ be an ℓ-tuple of distinct points and q ∈ D k a k-tuple of distinct points. Set

g(z) = |b p (z)b q (z) -1 | 2 = ℓ j=1 z -p j 1 -pj z 2 • k j=1 1 -qj z z -q j 2 .
By virtue of Proposition 1.8, to prove Proposition 1.5 and hence Theorem 1.4, it suffices to prove that the pair (g, B q ω ) satisfies the assumption of Proposition 4.6 of [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF]. This is done in the following Lemma 6.2. Take ε > 0 small enough and let

E ε = k i=1 U ε (q i ), where U ε (q i ) is a disc centred at point q i with radius ε in D. Then we have Eε |g(z) -1|B q ω (z, z)ω(z)dλ(z) + E c ε |g(z) -1| 2 B q ω (z, z)ω(z)dλ(z) < ∞. ( 43 
)
Proof. For ε > 0 small enough, there exists C > 0 such that for any z ∈ E ε , we have

B q ω (z, z) ≤ C k i=1 |z -q i | 2 ,
whence |g(z) -1|B q ω (z, z) is bounded on E ε , and the first integral in (43) is bounded. For the second integral, the identities

z -p j 1 -pj z 2 = 1 - (1 -|z| 2 )(1 -|p j | 2 ) |1 -pj z| 2 ,
together with the same identities for q j : j = 1, . . . , k, imply that there exists

C ′ > 0 such that |g(z) -1| ≤ C ′ (1 -|z|) for z ∈ E c ε . Note also that since Ran(B q ω ) ⊂ Ran(B ω ), we have B q ω (z, z) ≤ B ω (z, z)
, hence by our assumption (3), we have

E c ε |g(z) -1| 2 B q ω (z, z)ω(z)dλ(z) ≤ C ′ E c ε (1 -|z|) 2 B ω (z, z)ω(z)dλ(z) < ∞.

Proof of Theorem 4.1

Recall that we denote by Π an orthogonal projection on L 2 (E, µ) which is locally in trace class.

In [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF], a class of Borel functions on E, denoted there by A 2 (Π), plays a central role in the proof of the main result. Recall that, by definition, A 2 (Π) is the set of positive Borel functions g on E satisfying

(1) 0 < inf E g ≤ sup E g < ∞; (2) E |g(x) -1| 2 Π(x, x)dµ(x) < ∞. If g ∈ A 2 (Π), then the subspace √ gL,
where L is the range of the orthogonal projection Π, is automatically closed; we set Π g to be the corresponding operator of orthogonal projection. The main property of A 2 (Π) that will be used later is stated in the following

Proposition 7.1 (Cor. 4.11 of [1]). If g ∈ A 2 (Π) satisfies sup E |g(x) -1| < 1.
Then the operator Π g is locally of trace class, and we have

P Π g = Ψ Π g • P Π . ( 44 
)
Let g : E → R be a Borel function, set

L(g) := E |g(x) -1| 3 Π(x, x)dµ(x) ∈ [0, ∞] (45) 
and

V (g) := E 2 |g(x) -g(y)| 2 |Π(x, y)| 2 dµ(x)dµ(y) ∈ [0, ∞]. (46) 
And then, we introduce a new class of Borel functions on E as follows. Let A 3 (Π) be the set of positive Borel functions g on E satisfying

(1) 0 < inf

E g ≤ sup E g < ∞;
(2)

L(g) = E |g(x) -1| 3 Π(x, x)dµ(x) < ∞; (3) V (g) = E 2 |g(x) -g(y)| 2 |Π(x, y)| 2 dµ(x)dµ(y) < ∞; (4) 
there exists an exhausting sequence (E n ) n≥1 of bounded subsets of E, possibly depending on g, such that

lim n→∞ tr(χ En Π|g -1| 2 χ E c n Πχ En ) = 0. (47) 
More precisely, Relation (47) can equivalently be rewritten as follows:

lim n→∞ E 2 χ E c n (x)χ En (y)|g(x) -1| 2 |Π(x, y)| 2 dµ(x)dµ(y) = 0. ( 48 
)
Remark 7.1. We have the following useful identity

V (g) = [g, Π] 2 HS , (49) 
where • HS stands for the Hilbert-Schmidt norm and [g, Π] = gΠ-Πg is the commutator of the operator of multiplication by g and the projection operator Π.

Remark 7.2. The sequence (E n ) n≥1 in the definition of A 3 (Π) is an analogue of the sequence of the subsets ({z ∈ C : |z| ≤ n}) n≥1 in the proof of Lemma 5.4.

The most technical result in this section is the following

Proposition 7.2. If g ∈ A 3 (Π) satisfies sup E |g(x) -1| < 1. ( 50 
)
Then the operator Π g is locally of trace class, and we have

P Π g = Ψ Π g • P Π . ( 51 
)
Remark 7.3. Note that the condition (47) holds automatically for any g ∈ A 2 (Π), hence we have

A 2 (Π) ⊂ A 3 (Π).
Proof of Theorem 4.1. We now derive Theorem 4.1 from Proposition 7.2. The proof is similar to the proof of Proposition 4.6 of [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF]. Proving the statement for A 3 (Π) instead of A 2 (Π) requires extra effort, however. For sake of completeness, let us sketch the proof here.

Let Conf(E; E \ E 0 )) stand for the subset of Conf(E) consisting of those configurations whose particles all lie in E \ E 0 . The assumptions of Theorem 4.1 imply that P Π (Conf(E; E \ E 0 )) > 0. Replacing, if necessary, g by g| E c 0 and L by χ E c 0 L, we may assume that g is positive on E.

By our assumption, we may choose 0 < ε 1 < ε 2 < 1 and a bounded subset

E 1 ⊂ E, such that {x ∈ E : |g(x) -1| ≥ ε 2 } ⊂ E 1 ⊂ {x ∈ E : |g(x) -1| ≥ ε 1 }, and χ {x∈E:|g(x)-1|≤ε 2 } Π < 1.
Decompose

E 1 = E + 1 ⊔ E - 1 by setting E + 1 = {x ∈ E : g(x) > 1} ∩ E 1 and E - 1 = {x ∈ E : g(x) < 1} ∩ E 1 .
Note that

E + 1 ⊂ {x ∈ E : g(x) > 1 + ε 1 } and E - 1 ⊂ {x ∈ E : g(x) < 1 -ε 1 }.
Then we can decompose g as g = g 1 g 2 g 3 with

g 1 = (g -1)χ E c 1 + 1, g 2 = (g -1)χ E - 1 + 1, g 3 = (g -1)χ E + 1 + 1.
Claim. We have g 1 ∈ A 3 (Π).

Indeed, the first two and the last condition in the definition of A 3 (Π) are immediate for g 1 . We now check the third condition. We have

|g 1 (x) -g 1 (y)| =        |g(x) -g(y)| (x, y) ∈ E c 1 × E c 1 |g(x) -1| (x, y) ∈ E c 1 × E 1 |g(y) -1| (x, y) ∈ E 1 × E c 1 0 (x, y) × E 1 × E 1 , whence V (g 1 ) = E 2 |g 1 (x) -g 1 (y)| 2 |Π(x, y)| 2 dµ(x)dµ(y) = E c 1 ×E c 1 |g(x) -g(y)| 2 |Π(x, y)| 2 dµ(x)dµ(y) + 2 E 1 dµ(y) E c 1 |g(x) -1| 2 |Π(x, y)| 2 dµ(x).
By ( 29), (30) and Remark 4.1, we have V (g 1 ) < ∞. By Proposition 7.2, we have

P Π g 1 = Ψ Π g 1 • P Π .
The rest of the proof of Theorem 4.1 follows the scheme of the proof of Proposition 4.6 of [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF]. First, we have

Π g 1 g 2 = (Π g 1 ) g 2 and Π g = Π g 1 g 2 g 3 = (Π g 1 g 2 ) g 3 .
Since g 2 is bounded and g 2 -1 is compactly supported, the usual multiplicative functional

Ψ g 2 (X) = x∈X g 2 (x),
is well defined and

P Π g 1 g 2 = C 1 Ψ g 2 P Π g 1 .
The function g 3 -1, although not necessarily bounded, is compactly supported and positive. The usual multiplicative functional Ψ g 3 is also well defined for P Π g 1 g 2 -almost every configuration. Indeed, since g 1 g 2 is bounded and by Proposition 4.1 of [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF], there exists C > 0 such that Π g 1 g 2 (x, x) ≤ CΠ(x, x).

Consequently, we have

E |g 3 (x) -1|Π g 1 g 2 (x, x)dµ(x) ≤ C E + 1 |g 3 (x) -1|Π(x, x)dµ(x) < ∞. (52) 
In the relation (52), we used the fact that g 3 -1 is supported on E + 1 and our assumption (27). It follows that

E P Π g 1 g 2 (Ψ g 3 ) = det(1 + (g 3 -1)Π g 1 g 2 ) < ∞.
Hence, by Proposition 4.4 in [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF], we have 

P Π g = C ′ Ψ g 3 P Π g 1 g 2 = C ′ CΨ g 3 Ψ g 2 • P Π g 1 = C ′ CΨ g 3 Ψ g 2 Ψ Π g 1 • P Π , whence P Π g = Ψ
U(ε, g) = {g ′ ∈ A N (Π) : L(g ′ /g) < ε, V (g ′ /g) < ε} ,
where L, V are defined by formulae (45), (46). With respect to the topology T , a sequence g n tends to g in A 3 (Π) if and only if L(g n /g) → 0 and V (g n /g) → 0.

(53) Lemma 7.3. Let g ∈ A 3 (Π) and let (E n ) n≥1 be the exhausting sequence of bounded subsets of E such that condition (47) holds. Denote

g n = 1 + (g -1)χ En .
Then

g n T ---→ n→∞ g.
Proof. Assume that g ∈ A 3 (Π). First, by definition, we have

|g n /g -1| = |1/g -1|χ E c n ≤ 1 inf E g |g -1|.
It follows that L(g n /g) → 0.

Next, setting

V n (x, y) = |g n (x)/g(x) -g n (y)/g(y)| 2 |Π(x, y)| 2 ,
we have

V (g n /g) = En×E c n V n + E c n ×En V n + E c n ×E c n V n . (54) 
The first and second terms in (54) are equal and

En×E c n V n = En×E c n |1 -1/g(y)| 2 |Π(x, y)| 2 dµ(x)dµ(y) ≤ 1 inf E g 2 En×E c n |g(y) -1| 2 |Π(x, y)| 2 dµ(x)dµ(y) = 1 inf E g 2 χ En Π|g -1|χ E c n 2 2 → 0.
The third term in (54) converges to 0 since

E c n ×E c n V n ≤ 1 inf E g 2 E c n ×E c n |g(x) -g(y)| 2 |Π(x, y)| 2 dµ(x)dµ(y),
and the latter integral tends to 0 as n → ∞. Thus V (g n /g) → 0, and Lemma 7.3 is completely proved.

Lemma 7.4. Let g n ∈ A 3 (Π), n ≥ 1, g ∈ A 3 (Π), and assume that the sequence

(g n ) is uniformly bounded. If g n T ---→ n→∞ g, then L(g n ) → L(g) and V (g n ) → V (g).
Proof. By definition, we have L(g n /g) → 0 and V (g n /g) → 0.

The relation L(g n /g) → 0 together with the inequality

|g n (x) -g(x)| 3 Π(x, x)dµ(x) ≤ sup E g • |g n (x)/g(x) -1| 3 Π(x, x)dµ(x) implies that lim n→∞ (g n -1) -(g -1) L 3 (E;Π(x,x)dµ(x)) = 0, whence lim n→∞ g n -1 L 3 (E;Π(x,x)dµ(x) = g -1 L 3 (E;Π(x,x)dµ(x)) .
This is equivalent to L(g n ) → L(g) as n → ∞.

We turn to the proof of the convergence V (g n ) → V (g). It suffices to prove any convergent subsequence (in [0, ∞]) of the sequence (V (g n )) n≥1 converges to V (g). We have already shown that

E |g n (x) -g(x)| 3 Π(x, x)dµ(x) → 0.
Passing perhaps to a subsequence, we may assume that g n → g almost everywhere with respect to Π(x, x)dµ(x). Set F n (x, y) = g n (x) -g n (y) and F (x, y) = g(x) -g(y).

The desired relation

V (g n ) → V (g) is equivalent to the relation lim n→∞ F n L 2 (E×E; |Π(x,y)| 2 dµ(x)dµ(y)) = F L 2 (E×E; |Π(x,y)| 2 dµ(x)dµ(y))
To simplify notation, we denote dM 2 (x, y) = |Π(x, y)| 2 dµ(x)dµ(y). It suffices to prove that

lim n→∞ F n -F L 2 (E×E; dM 2 ) = 0. (55) 
A direct computation shows that

F n (x, y) -F (x, y) g(x) = g n (x) g(x) - g n (y) g(y) + F (x, y)(g n (y) -g(y)) g(x)g(y) .
Hence we have

|F n (x, y) -F (x, y)| ≤ sup E g • g n (x) g(x) - g n (y) g(y) + 1 inf E g |F (x, y)| • |g n (y) -g(y)|, and 
F n -F L 2 (E×E; dM 2 ) ≤ sup E g • g n (x) g(x) - g n (y) g(y) L 2 (E×E; dM 2 ) + 1 inf E g F (x, y) • |g n (y) -g(y)| L 2 (E×E; dM 2 )
The limit relation V (g n /g) → 0 implies that

lim n→∞ g n (x) g(x) - g n (y) g(y) L 2 (E×E; dM 2 ) = 0.
By definition, F ∈ L 2 (E × E; dM 2 ). Since the sequence (g n ) is uniformly bounded and g n → g almost everywhere with respect to Π(x, x)dµ(x), the dominated convergence theorem yields

lim n→∞ F (x, y) • |g n (y) -g(y)| L 2 (E×E; dM 2 ) = 0.
This completes the proof of (55). Lemma 7.4 is proved completely.

Recall that, in Definition 4.1 and Definition 4.2, we introduced the subset V 0 (Π) ⊂ V(Π) and the functional Ψ g for functions g such that log g ∈ V 0 (Π). Recall also that we introduced in (23) the notation Var(Π, f ) for any Borel function f : E → C. Lemma 7.5. If g ∈ A 3 (Π), then Var(Π, log g) < ∞ and log g ∈ V 0 (Π).

In particular, for any function g ∈ A 3 (Π), the functional Ψ g is well-defined.

Proof. By the third condition in the definition of

A 3 (Π), if g ∈ A 3 (Π), then Var(Π, g -1) < ∞.

Define a function

F (t) := log(1+t)-t t 2 if t = 0 -1 2 if t = 0 , so that F is continuous on (-1, ∞). It follows that for any 0 < ε ≤ 1 and M ≥ 1, there exists C ε,M > 0, such that if t ∈ [-1 + ε, -1 + M], then |log(1 + t) -t| ≤ C ε,M t 2 . ( 56 
)
By the first condition in the definition of A 3 (Π), we can apply the above inequality to g -1. A simple computation yields

|log g(x) -log g(y)| 2 ≤20M 2 |g(x) -g(y)| 2 + 8MC 2 ε,M (|g(x) -1| 3 + |g(y) -1| 3 ), (57) 
where ε = min(1, inf E g) and M = max(1, sup E g). Inequality (57), combined with the reproducing property

Π(x, x) = E |Π(x, y)| 2 dµ(y)
and the second and third conditions on g in the definition of A 3 (Π), yields the desired result: Var(Π, log g) < ∞.

We turn to the proof of the relation log g ∈ V 0 (Π). By definition, there exists a sequence (E n ) of exhausting bounded subsets of E, such that the relation (48) holds. It suffices to show that

lim n→∞ χ En log g -log g V(Π) = lim n→∞ χ E c n log g V(Π) = 0. (58) 
We have

χ E c n log g 2 V(Π) = 1 2 E c n ×E c n | log g(x) -log g(y)| 2 |Π(x, y)| 2 dµ(x)dµ(y) + 1 2 E 2 χ E c n (x)χ En (y)| log g(x)| 2 |Π(x, y)| 2 dµ(x)dµ(y) + 1 2 E 2 χ E c n (y)χ En (x)| log g(y)| 2 |Π(x, y)| 2 dµ(x)dµ(y).
The fact that first integral in the above identity tends to 0 when n tends to infinity follows from the fact that Var(Π, log g) < ∞. The second and the third integrals are equal, and since ε ≤ g ≤ M, we may use | log g(x)| ≤ C ε,M |g(x) -1| and we get

E 2 χ E c n (x)χ En (y)| log g(x)| 2 |Π(x, y)| 2 dµ(x)dµ(y) ≤C 2 ε,M E 2 χ E c n (x)χ En (y)|g(x) -1| 2 |Π(x, y)| 2 dµ(x)dµ(y). (59) 
The assumption (48) implies that the last integral in (59) tends to 0 as n tends to infinity. This completes the proof of the desired relation (58).

Proposition 7.6. For any ε, M : 0 We reduce the statement of Lemma 7.7 for general g in A ε,M 3 (Π) to the particular case g in A ε,M 3 (Π) ± . Indeed, assume that we have established (63) in the case of A ε,M 3 (Π) ± , then by multiplicativity, for general g in A ε,M 3 (Π), we have

< ε ≤ 1, M ≥ 1, there exists a constant C ε,M > 0 such that if g ∈ A 3 (Π) satisfies ε ≤ inf E g ≤ sup E g ≤ M (60) then log E| Ψ g | 2 ≤ C ε,M (L(g) + V (g)). (61 
E Ψ g = E( Ψ g + Ψ g -) ≤ (E Ψ 2 g + • E Ψ 2 g -) 1/2 = (E Ψ (g + ) 2 • E Ψ (g -) 2 ) 1/2 ≤ 1 2 (E Ψ (g + ) 2 + E Ψ (g -) 2
).

Now we may apply (63) for functions (g

+ ) 2 ∈ A ε,M 3 (Π) + and (g -) 2 ∈ A ε,M 3 
(Π) - respectively and use the relations (62) together with Lemma 7.8 , to obtain that

E Ψ g ≤ C ′ L((g + ) 2 ) + V ((g + ) 2 ) + L((g -) 2 ) + V ((g -) 2 ≤ C ′′ L(g + ) + V (g + ) + L(g -) + V (g -)) ≤ C ′′′ (L(g) + V (g)).
We now proceed to the proof of (63) for functions g in A ε,M ---→ n→∞ Ψ g = exp(S log g ). By Fatou's Lemma and Lemma 7.4 , it suffices to establish (63) for a function g ∈ A ε,M 3 (Π) ± such that the subset {x ∈ E : g(x) = 1} is bounded. We will assume the boundedness of {x ∈ E : g(x) = 1} until the end of the proof of Proposition 7.6.

For any 0 < ε ≤ 1 and any M ≥ 1, there exists C ε,M > 0 such that if t ∈ [-1 + ε, -1 + M], then

log(1 + t) -t + 1 2 t 2 ≤ C ε,M • |t| 3 . ( 67 
)
Recall that for any bounded linear operator A acts on a Hilbert space, we set |A| = √ A * A. The inequality (67) applied to the eigenvalues of trace class operator with spectrum contained in [-1 + ε, -1 + M] yields the following Lemma 7.9. Let ε, M, C ε,M be as in the inequality (67). where (λ i (A)) ∞ i=1 is the sequence of the eigenvalues of A.

In order to simplify notation, for g ∈ A ε,M Proposition 7.12. Given 0 < ε ≤ 1 and M ≥ 1, there exists a constant C ε,M > 0 such that if g 1 , g 2 ∈ A ε,M 3 (Π), then

E| Ψ g 1 -Ψ g 2 | 2 ≤ E| Ψ g 2 | 2 • exp C ε,M L(g 1 /g 2 ) + V (g 1 /g 2 ) -1 . ( 81 
)
Proof. Let g 1 , g 2 be as in the proposition. Set g := (g 1 /g 2 ) 2 . Applying Proposition 7.6 to the function g yields

E Ψ g ≤ exp C ε,M L(g) + V (g) ≤ exp C ′ ε,M L(g 1 /g 2 ) + V (g 1 /g 2 ) .
By multiplicativity, we have

E| Ψ g 1 -Ψ g 2 | = E | Ψ g 1 /g 2 -1|| Ψ g 2 | ≤ E| Ψ g 2 | 2 1 2 E| Ψ g 1 /g 2 -1| 2 1 2
.

Since E Ψ g 1 /g 2 ≥ 1, we have

E| Ψ g 1 /g 2 -1| 2 ≤ E| Ψ g 1 /g 2 | 2 -1 = E Ψ g -1.
Combining the above inequalities, we obtain Proposition 7.12.

Slightly abusing notation, we keep the notation T for the induced topology defined by (53) on A ε,M 3 (Π). As an immediate consequence of Proposition 7.12, we have
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  For any self-adjoint trace class operatorA whose spectrum σ(A) satisfies σ(A) ⊂ [-1 + ε, -1 + M], we have log det(1 + A) ≤ tr(A) -1 2 tr(A 2 ) + C ε,M tr(|A| 3 ). (68)Proof. The lemma is an immediate consequence of the inequality (67) and the identitylog det(1 + A) = ∞ i=1 log(1 + λ i (A)),
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 710332222 traces tr(T + g ) and tr(T - g ) are given by the formula:tr(T ± g ) = E h(x)Π(x, x)dµ(x).(72)Recall that the inner product on the space of Hilbert-Schmidt operators is defined by the formula a, b HS = tr(ab * ). For any g ∈ A ε,M Π) ± , we havetr((T ± g ) 2 ) = E h(x) 2 Π(x, x)dµ(x) -If g ∈ A ε,M Π) + , then tr((T + g ) 2 ) = tr( √ hΠhΠ √ h) = tr(ΠhΠh) = Πh, hΠ HS . ) 2 Π(x, x)dµ(x).(75)By (49), we haveV (g) = [g, Π] 2 HS = [h, Π] 2 HS = hΠ -Πh hΠ, Πh .
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 3371133222333244 ), (75) and (76), we complete the proof of the desired identity (73) for g ∈ A ε,M Π) + .The argument for g ∈ A ε,M Π) -is completely the same, since we havetr((T - g ) 2 ) = tr(Πf Πf Π) = tr(Πf Πf ). For any g ∈ A ε,M Π) ± , we have tr(|T ± g | 3 ) ≤ L(g) = E |g(x) -1| 3 Π(x, x)dµ(x). (77)Proof. First, let g ∈ A ε,M Π) + . Recall the definition of h and T + g in (69). By the elementary operator inequality tr(Πh3/2 h 1/2 Πh) = Πh 3/2 , hΠh 1/2 HS ≤ Πh 3/2 HS hΠh 1/HS = tr(Πh 3 Π) = tr(h 3 Π) = L(g).(79)Combining inequalities (78) and (79), we obtain the desired inequality (77) for g ∈ A ε,M Π) + .The proof of the inequality (77) for g ∈ A ε,M Π) -is similar just by noting that in this case, |T - g | 3 = -ΠhΠ = Π|h|Π andtr(|T - g | 3 ) = tr(Π|h|Π|h|Π|h|Π) = tr( |h|Π|h|Π|h|Π |h|) ≤ tr( |h|Π|h| 2 Π |h|).Conclusion of the proof of Lemma 7.7. It suffices to establish (63) when g ∈ A ε,M Π) ± . An application of (67) yields thatE log g(x) -h(x) + h(x) 2 2 Π(x, x)dµ(x) ≤ C ε,M L(g).(80)It follows thatlog E Ψ g = log EΨ g -ES log g g ) 2 ) + C ε,M tr(|T ± g | 3 ) -ES log g ≤ E h(x)Π(x, x)dµ(x) -1 h(x) 2 Π(x, x)dµ(x) + 1 (g) + C ε,M L(g) -E log g(x)Π(x, x)dµ(x)≤2C ε,M L(g) + 1 (g) = C ′ ε,M (L(g) + V (g)).

The paper is organized as follows. In the introduction section §1, we give necessary definitions and notation and state our main results. The basic materials in the theory of determinantal point processes are recalled in §2. The definitioins concerning generalized Fock
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By definition

Consequently, in order to establish (61), it suffices to obtain the estimate (63) in Lemma 7.7 below.

Lemma 7.7. For any ε, M : 0

Denote g + = 1 + χ g≥1 (g -1) and g -= 1 + χ g≤1 (g -1).

Then

Our aim here is to reduce Lemma 7.7 for g to the same statement for g + , g -.

Lemma 7.8. Both g + and g -are in the class A ε,M

3

(Π), moreover, we have

Proof. Inequalities (65) follow from the elementary inequalities

Let (E n ) n≥1 be the exhausting sequence of bounded subsets such that (47) holds. The first inequality in (66) yields the following inequalities for self-adjoint operators:

Hence (47) holds for g ± with respect to the sequence

Similarly, denote by

Corollary 7.13. The two mappings from A ε,M 3 (Π) to L 1 (Conf(E), P Π ) defined by

are continuous with respect to the topology T on A ε,M 3 (Π).

Proof of Proposition 7.2. The proof follows the proof of Corollary 4.11 in [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF], the rôle of Proposition 4.8 of [START_REF] Bufetov | Quasi-Symmetries of Determinantal Point Processes[END_REF] played here by Corollary 7.13. Indeed, let g be a function satisfying the assumption (50). Taking g n as in Lemma 7.3, we obtain the convergence of Π gn to Π g in the space of locally trace class operators and hence the weak convergence of P Π gn to P Π g in the space of probability measures on Conf(E). By assumption, g n -1 is compactly supported, so by Proposition 2.1 of [START_REF] Bufetov | Infinite determinantal measures[END_REF], we have

By Corollary 7.13, Ψ gn → Ψ g in L 1 (Conf(E), P Π ), so we have

weakly in the space of probability measures on Conf(E), whence

The proof Proposition 7.2 is complete.

Appendix

Our aim here is to show that Palm measures of different orders are mutually singular for a point process rigid in the sense of Ghosh [START_REF] Ghosh | Determinantal processes and completeness of random exponentials: the critical case[END_REF], Ghosh-Peres [START_REF] Ghosh | Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues[END_REF]. Let E be a complete metric space, and let P be a probability measure on Conf(E) admitting correlation measures of all orders; the k-th correlation measure of P is denoted by ρ k . Given B ⊂ E a bounded Borel subset, let F(E \ B) be the sigma-algebra generated by all events of the form {# C = n} with C ⊂ E \ B bounded and Borel, n ∈ N, and let F P (E \ B) be the completion of F(E \ B) with respect to P. We can canonically identify Conf(E) with Conf(B)×Conf(E \B). Then in this identification, the events in F(E \B) have the form

where and ρ l -almost any l-tuple (q 1 , . . . , q l ) ∈ B l , the reduced Palm measures P p 1 ,...,p k and P q 1 ,...,q l are mutually singular.

Proof. For a nonnegative integer n, let

By assumption, the function # B is F P (E \B)-measurable. Take a sequence X n of disjoint F(E \B)-measurable subsets of Conf(E) such that for any nonnegative integer n we have

The sets Y and Z are disjoint by construction. Claim: For ρ k -almost any k-tuple (p 1 , . . . , p k ) and ρ l -almost any l-tuple (q 1 , . . . , q l ) we have P p 1 ,...,p k (Y ) = 1, P q 1 ,...,q l (Z ) = 1.

Indeed, by definition of reduced Palm measures [START_REF] Osada | Absolute continuity and singularity of Palm measures of the Ginibre point process[END_REF], for any non-negative Borel function u : Conf(E) × E k → R, we have

where * denotes the sum over k-tuples of distinct points z 1 , . . . , z k in Z. For any n ≥ k, substituting the function

1 Xn∩Cn (X ∪ {p 1 , . . . , p k })P p 1 ,...,p k (dX).

(83) Recall that by construction, X n ∈ F(E \ B), hence for all p 1 , . . . , p k ∈ B, we have

Substituting the above equality into (83), we get

(84) Summing up the terms on the left hand side of (84) for n ≥ k, we obtain the expression

where we used the fact that if n = 0, . . . , k -1, then

Similarly, summing up the terms on the right hand side of (84) for n ≥ k, we obtain the expression The same argument yields that P q 1 ,...,q l (Z ) = 1, for ρ l -almost any l-tuple (q 1 , . . . , q l ) ∈ B l .

The claim is proved, and Proposition 8.1 is proved completely.