Vesselin Petkov 
  
LOCATION OF EIGENVALUES FOR THE WAVE EQUATION WITH DISSIPATIVE BOUNDARY CONDITIONS

Keywords: 2010 Mathematics Subject Classification. Primary 35P20, Secondary 47A40, 35L05 Dissipative boundary conditions, Asymptotically disappearing solutions, Scattering theory

d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

utt -∆u = 0 in R + t × Ω, ∂ν u -γ(x)∂tu = 0 on R + t × Γ, u(0, x) = f 1 , ut(0, x) = f 2 with initial data (f 1 , f 2 ) ∈ H 1 (Ω) × L 2 (Ω) = H. Here ν(x) is the unit outward normal at x ∈ Γ pointing into Ω and γ(x) ≥ 0 is a C ∞ function on Γ. The solution of the problem (1.1) is given by (u(t, x), ut(t, x)) = V (t)f = e tG f, t ≥ 0, where V (t) is a contraction semi-group in H whose generator G = " 0 1 ∆ 0 " has a domain D(G) which is the closure in the graph norm of functions (f 1 , f 2 ) ∈ C ∞ (0) ( Ω)×C ∞ (0) ( Ω) satisfying the boundary condition ∂ν f 1 -γf 2 = 0 on Γ. For d odd Lax and Phillips [START_REF] Lax | Scattering theory for dissipative systems[END_REF] proved that the spectrum of G in Re z < 0 is formed by isolated eigenvalues with finite multiplicity, while the continuous spectrum of G coincides with iR. We obtain the same result for all dimensions d ≥ 2 under the restriction γ(x) = 1 ,∀x ∈ Γ in the case d even by using the Dirichlet-to-Neumann map N (λ) (see Section 6). Notice that if Gf = λf with f = (f 1 , f 2 ) = 0, Re λ < 0 and ∂ν f 1 -γf 2 = 0 on Γ, we get (1.2)

( (∆ -λ 2 )f 1 = 0 in Ω, ∂ν f 1 -λγf 1 = 0 on Γ
and V (t)f = e λt f has an exponentially decreasing global energy. Such solutions are called asymptotically disappearing and they perturb the inverse scattering problems. Recently it was proved [START_REF] Colombini | Spectral problems for non elliptic symmetric systems with dissipative boundary conditions[END_REF] that if we have at least one eigenvalue λ of G with Re λ < 0, then the wave operators W ± related to the Cauchy problem for the wave equation and the boundary problem (1.1) are not complete, that is Ran W -= Ran W + . Hence we cannot define the scattering operator S by the product W -1 + • W -. Notice that if the global energy is conserved in time and the unperturbed and perturbed problems are associated to unitary groups, the corresponding scattering operator S(z) : L 2 (S d-1 ) → L 2 (S d-1 ) satisfies the identity S -1 (z) = S * (z), z ∈ C, if S(z) is invertible at z. Since S(z) and S * (z) are analytic operator-valued operators in the "physical" half plane {z ∈ C : Im z < 0} (see [START_REF] Lax | Scattering Theory[END_REF]) the above relation implies that S(z) is invertible for Im z > 0. For dissipative boundary problems this relation in general is not true and S(z 0 ) may have a non trivial kernel for some z 0 , Im z 0 > 0. For odd dimensions d Lax and Phillips [START_REF] Lax | Scattering theory for dissipative systems[END_REF] proved that this implies that iz 0 is an eigenvalue of G. Thus the analysis of the location of the eigenvalues of G is important for the location of the points where the kernel of S(z) is not trivial.

In the scattering theory of Lax-Phillips [START_REF] Lax | Scattering theory for dissipative systems[END_REF] for odd dimensions d the energy space can be presented as a direct sum H = D - a ⊕ Ka ⊕ D + a , a > 0, and we have the relations

V (t)D + a ⊂ D + a , V (t)(Ka) ⊂ Ka ⊕ D a + , V (t)D - a ⊂ H, t ≥ 0.
R. Phillips defined a system as non controllable if there exists a state f ∈ Ka such that V (t)f ⊥ D + a , t ≥ 0. This means that there exist states in the "black box" Ka which remain undetected by the scattering process. Majda [START_REF] Majda | Disappearing solutions for the dissipative wave equation[END_REF] proved that if we have such state f , then (u(t, x), ut(t, x)) = V (t)f is a disappearing solution, that is there exists T > 0 depending on f such that u(t, x) vanishes for all t ≥ T > 0. On the other hand, if γ(x) = 1, ∀x ∈ Γ, and the boundary is analytic there are no disappearing solutions (see [START_REF] Majda | Disappearing solutions for the dissipative wave equation[END_REF]). Thus in this case it is natural to search asymptotically disappearing solutions. The existence of examples in the case γ ≡ 1 when the point spectrum of G is empty has been mentioned in [START_REF] Majda | The location of the spectrum for the dissipative acoustic operator[END_REF]. Since we did not found a proof of this result in the literature, for reader convenience we propose a simple analysis of this question for the ball B 3 = {x ∈ R 3 : |x| ≤ 1}. In the Appendix we prove that if γ ≡ 1 and K = B 3 , the generator G has no eigenvalues in {z ∈ C : Re z < 0}.

We study in the Appendix also the case when γ ≡ const = 1 and K = B 3 . If 0 < γ < 1, we show that there are no real eigenvalues of G. On the other hand, for γ > 1 all eigenvalues of G are real and lie in the interval (-∞, -1 γ-1 ]. Moreover, in this case there are infinite number real eigenvalues of G and when γ 1 the eigenvalues of G go to -∞. For arbitrary strictly convex obstacle K and γ(x) > 1, ∀x ∈ Γ, we obtain a similar result in Theorem 1.3 proving that with exception of a finite number eigenvalues all other are confined in a very small neighbourhood of the negative real axis.

If max x∈Γ |γ(x) -1| is sufficiently small, the leading term of the back-scattering amplitude a(λ, -ω, ω), ω ∈ S n-1 , becomes very small for all directions ω ∈ S n-1 and for γ ≡ 1 this leading term vanishes for all directions (see [START_REF] Majda | High frequency asymptotics for the scattering matrix and the inverse problem of acoustical scattering[END_REF]). For strictly convex obstacles and γ ≡ 1 the second term of the back-scattering amplitude does not vanish (see [START_REF] Georgiev | Inverse scattering problem for dissipative wave equation[END_REF]), but it is negligible for the applications (see Section 5 in [START_REF] Petkov | Scattering problems for symmetric systems with dissipative boundary conditions[END_REF] for the case of first order systems). The existence of a space with infinite dimension of eigenfunctions of G implies that one has a large set of initial data for which the solutions of (1.1) are asymptotically disappearing. Notice that these solutions cannot be outgoing in the sense of Lax-Phillips (see [START_REF] Majda | Disappearing solutions for the dissipative wave equation[END_REF]), that is they have a non-vanishing projection on the space D - a mentioned above. Moreover, the eigenvalues of G are stable under perturbations of the boundary and the boundary condition (see [START_REF] Colombini | Spectral problems for non elliptic symmetric systems with dissipative boundary conditions[END_REF]). Now we pass to the description of our results. In [START_REF] Majda | The location of the spectrum for the dissipative acoustic operator[END_REF] Majda examined the location of the eigenvalues of G and he proved that if sup γ(x) < 1, the eigenvalues of G lie in the region

E 1 = {z ∈ C : |Re z| ≤ C 1 (|Im z| 3/4 + 1), Re z < 0}, while if sup γ(x) ≥ 1, the eigenvalues of G lie in E 1 ∪ E 2 , where E 2 = {z ∈ C : |Im z| ≤ C 2 (|Re z| 1/2 + 1), Re z < 0}.
The purpose of this paper is to improve the above results for the location of eigenvalues. We consider two cases: (A) : 0 < γ(x) < 1, ∀x ∈ Γ, (B) : γ(x) > 1, ∀x ∈ Γ. Our main result is the following
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In the case (A) for every , 0 < 1, the eigenvalues of G lie in the region

Λ = {z ∈ C : |Re z| ≤ C (|Im z| 1 2 + + 1), Re z < 0}.
In the case (B) for every , 0 < 1, and every N ∈ N the eigenvalues of G lie in the region Λ ∪ R N , where

R N = {z ∈ C : |Im z| ≤ C N (|Re z| + 1) -N , Re z < 0}.
For strictly convex obstacles K we prove a better result in the case (B).

Theorem 1.2. Assume that K is strictly convex. In the case (B) there exists R 0 > 0 such that for every N ∈ N the eigenvalues of G lie in the region {z ∈ C :

|z| ≤ R 0 , Re z < 0} ∪ R N .
The eigenvalues of G are symmetric with respect to the real axis, so it is sufficient to examine the location of the eigenvalues whose imaginary part is non negative. Introduce in {z ∈ C : Im z ≥ 0} the sets

Z 1 = {z ∈ C : Re z = 1, h δ ≤ Im z ≤ 1}, 0 < h 1, 0 < δ < 1/2, Z 2 = {z ∈ C : Re z = -1, 0 ≤ Im z ≤ 1}, Z 3 = {z ∈ C : |Re z| ≤ 1, Im z = 1}.
We put λ = i √ z h and we use the branch 0 ≤ arg z < 2π with Im

√ z > 0 if Im z > 0. From (1.2) we deduce that if (u, v) is an eigenfunction of G, then u satisfies the problem (1.3) ( (-h 2 ∆ -z)u = 0 in Ω, -ih∂ν u -γ √ zu = 0 on Γ.
The proofs of Theorems 1.1 and 1.2 are based on a semi-classical analysis of the equation

(1.4) Next(z, h)f -γ √ zf = 0,
where f = u| x∈Γ is the trace of the first component of an eigenfunction of G. Here

Next(z, h)f : H s h (Γ) f -→ hDν u| Γ ∈ H s-1 h (Γ)
is the exterior Dirichlet-to-Neumann map, Dν = -i∂ν and u is the solution of the problem (1.5)

( (-h 2 ∆ -z)u = 0 in Ω, u ∈ H 2 h (Ω), u| x∈Γ = f.
In the paper we use the semi-classical Sobolev space

H s h (Γ), s ∈ R, with norm hD s u L 2 (Γ) , where hD = (1 + (hDx) 2 ) 1/2 . The purpose is to prove that if z ∈ Z 1 ∪ Z 2 ∪ Z 3 lies in some 4 VESSELIN PETKOV x R x x x x x x x x x x x x x x x x 0 x x x x x x x Figure 2. Eigenvalues, 1 < γ(x)
regions and h is small enough from (1.4) we get f = 0 which is not possible for an eigenfunction u. In this direction our strategy is close to that for the analysis of eigenvalues-free regions for the interior transmission eigenvalues in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] and [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF]. We apply some results for the interior Dirichlet-to-Neumann map N int (z, h) established in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] and [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF] for bounded domains which after modifications and some constructions remain true for the exterior Dirichlet-to-Neumann map Next(z, h) defined above.

The paper is organized as follows. In Section 2 we collect some results concerning the semiclassical exterior Dirichlet-to-Neumann map Next(z, h). The eigenvalues-free regions for the case (A) are discussed in Section 3. In Section 4 we study the case (B), where the arguments for the case (A) are not applicable for the investigation of eigenvalues close to the negative real axis. The strictly convex obstacles are examined in Section 5. In Section 6 we discuss the question of the discreteness of the spectrum of G in {z ∈ C : Re z < 0} for dimensions d ≥ 2. For odd dimensions d, as it was mentioned above, this result was obtained in the classical paper [START_REF] Lax | Scattering theory for dissipative systems[END_REF]. For d even we present a proof based on the properties of the Dirichlet-to-Neumann map Next(λ). Moreover, we obtain a trace formula for the counting function of the eigenvalues of G in an open domain ω ⊂ {z ∈ C : Re z < 0}. Finally, in the Appendix we examine the special case when K is unit ball in R 3 and γ is a constant.

Dirichlet-to-Neumann map.

In our exposition we apply some h-pseudo-differential operators and we are going to recall some basic facts. Let X be a C ∞ smooth compact manifold without boundary with dimension d -1 ≥ 1. Let (x, ξ) be the canonical local coordinates in T * (X) and let a(x, ξ, h) ∈ C ∞ (T * (X)). Given m ∈ R, l ∈ R, δ > 0 and a function c(h) > 0, one denotes by S l,m δ (c(h)) the set of symbols a(x, ξ, h) such that

|∂ α x ∂ β ξ a(x, ξ, h)| ≤ C α,β (c(h)) -l-δ(|α|+|β|) (1 + |ξ|) m-|β| , (x, ξ) ∈ T * (X), ∀α, ∀β.
If c(h) = h, we denote S l,m δ (c(h)) simply by S l,m δ and the symbols restricted to a domain where |ξ| ≤ C will be denoted by a ∈ S l δ (c(h)). We use also symbols a(x, ξ, h) ∈ S m 0,1 satisfying the estimates

|∂ α x ∂ β ξ a(x, ξ, h)| ≤ C α,β (1 + |ξ|) m-|β| , (x, ξ) ∈ T * (X)
, ∀α, ∀β. One defines the h-pseudo-differential operator Op h (a) with symbol a(x, ξ, h) by

(Op h (a)f )(x) = (2πh) -d+1 Z T * X e -i x-y,ξ /h a(x, ξ, h)f (y)dydξ.
For the reader convenience we recall two properties of the semi-classical pseudo-differential operators Op h (a) (see Section 7 of [START_REF] Dimassi | Spectral asymptotics in semi-classical limits[END_REF] and Proposition 2.1 of [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF]). Assume that a ∈ C ∞ (T * (X)) satisfies the bounds (2.1)

|∂ α x a(x, ξ, h)| ≤ Cαc 0 (h)h -|α|/2 , ∀(x, ξ) ∈ T * (X) for |α| ≤ d, where c 0 (h) > 0 is a parameter. Then there exists a constant C > 0 independent of h such that

(2.2) Op h (a) L 2 (X)→L 2 (X) ≤ Cc 0 (h).
Next for 0 ≤ δ < 1/2 we have a calculus and if

a ∈ S l 1 ,m 1 δ , b ∈ S l 2 ,m 2 δ , then for s ∈ R we get Op h (a)Op h (b) -Op h (ab) H s (X)→H s-m 1 -m 2 +1 (X) ≤ Csh -l 1 -l 2 -2δ+1 .
We refer to [START_REF] Dimassi | Spectral asymptotics in semi-classical limits[END_REF] for more details concerning the calculus. The left hand side of last inequality can be estimated also in some cases when one of the symbols a or b is in a class S l,m δ with 0 ≤ δ < 1. For the precise statements the reader should consult Proposition 2.2 in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] and Proposition 4.2 in [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF].

Let (x , ξ ) be the coordinates on T * (Γ). Denote by r 0 (x , ξ ) the principal symbol of the Laplace-Beltrami operator -∆ Γ on Γ equipped with the Riemannian metric induced by the Eu-

clidean metric in R d . For z ∈ Z 1 ∪ Z 2 ∪ Z 3 let ρ(x , ξ , z) = p z -r 0 (x , ξ ) ∈ C ∞ (T * Γ)
be the root of the equation

ρ 2 + r 0 (x , ξ ) -z = 0 with Im ρ(x , ξ , z) > 0. For large |ξ | we have |ρ(x , ξ , z)| ∼ |ξ |, Im ρ(x , ξ , z) ∼ |ξ |. Moreover, for z ∈ Z 1 ∪ Z 3 we have Im ρ(x , ξ , z) ≥ |Im z| 2|ρ| , |ρ| ≥ p |Im z|,
while for r 0 ≥ 2, we have

C 1 √ r 0 + 1 ≥ 2Im ρ ≥ |ρ| ≥ C 2 √ r 0 + 1.
For z ∈ Z 2 the last equality is true for all (x , ξ ) (see Lemma 3.1 in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF]). G. Vodev established for bounded domains K ⊂ R d , d ≥ 2, the following approximation of the interior Dirichlet-to-Neumann map N int (z, h) related to the boundary problem (1.5), where the equation (-h 2 ∆ -z)u = 0 is satisfied in K.

Theorem 2.1 ([19], Theorem 3.3). For every 0 < 1 there exists 0 < h 0 ( )

1 such that for z ∈ Z 1, = {z ∈ C : Re z = 1, 1 ≥ Im z ≥ h 1/2-} and 0 < h ≤ h 0 we have (2.3) N int (z, h)(f ) -Op h (ρ + hb)f H 1 h (Γ) ≤ Ch p |Im z| f L 2 (Γ) ,
where b ∈ S 0 0,1 (Γ) does not depend on h and z. Moreover, (2.3) holds for z ∈ Z 2 ∪ Z 3 with |Im z| replaced by 1.

The same result remains true for unbounded domains Ω with N int (z, h) replaced by Next(z, h) by modifications to the proof in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] based on the construction of a semi-classical parametrix close to the boundary. For reader convenience we recall below some facts from [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] and we discuss some modifications which will be necessary for our exposition. Consider normal geodesic coordinates (x 1 , x ) in a neighbourhood of a fixed point x 0 ∈ Γ, where x 1 = dist(x, Γ). Then -h 2 ∆ -z in these coordinates has the form

P(z, h) = h 2 D 2
x 1 + r(x, hD x ) + q(x, hDx) + h 2 q(x) -z. with Dx 1 = -i∂x 1 , D x = -i∂ x , r(x, ξ ) = R(x)ξ , ξ , q(x, ξ) = q(x), ξ . Here R(x) is a symmetric (d -1) × (d -1) matrix with smooth real-valued entries and r(0, x , ξ ) = r 0 (x , ξ ). Let φ(σ) ∈ C ∞ (R) be a cut-off function such that φ(σ) = 1 for |σ| ≤ 1, φ(σ) = 0 for |σ| ≥ 2. Let ψ(x ) be a C ∞ cut-off function on Γ supported in a small neighbourhood of x 0 and ψ(x 0 ) = 1. In [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF], Proposition 3.4 for δ 1 > 0 small enough one constructs a semi-classical parametrix (2.4)

( ũψ (x) = (2πh) -d+1 R R e i h ϕ(x,y ,ξ ,z) φ " x 1 δ 1 " φ " x 1 δ 1 ρ 1 " a(x, ξ , z; h)f (y )dy dξ , ũψ | x 1 =0 = ψf,
where

ρ 1 = 1 if z ∈ Z 2 ∪ Z 3 , ρ 1 = |ρ| 3 if z ∈ Z 1 .
The phase ϕ(x, y , ξ , z) is complex-valued and

ϕ = -x -y , ξ + N -1 X k=1 x k 1 ϕ k (x , ξ , z) = -x -y , ξ + φ, a = N -1 X k=0 N -1 X j=0 x k 1 h j a k,j (x , ξ , z), N 1 being a large integer. Moreover, ϕ 1 = ρ, Im ϕ ≥ x 1 Im ρ/2, 0 ≤ x 1 ≤ 2δ 1 min{1, ρ 1 }
and the amplitude a satisfies a ˛x1 =0 = ψ(x ). The phase ϕ and the amplitude a are determined so that

e -iϕ h P(z, h)e iϕ h a = x N 1 A N (x, ξ , z; h) + h N B N (x, ξ , z; h)
, where A N , B N are smooth functions. To describe the behavior of A N , B N , introduce the function χ(x , ξ ) = φ(δ 0 r 0 (x , ξ )), where 0 < δ 0 1. Following [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF], we say that a symbol b

∈ C ∞ (T * Γ) belongs to S l 1 δ 1 ,δ 2 (µ 1 ) + S l 2 δ 3 ,δ 4 (µ 2 ) if |∂ α x ∂ β ξ (χb)| ≤ C α,β |µ 1 | l 1 -δ 1 |α|-δ 2 |β| , |∂ α x ∂ β ξ ((1 -χ)b)| ≤ C α,β |µ 2 | l 2 -δ 3 |α|-δ 4 |β| , ∀α, ∀β. Therefore, ∂ k x 1 A N ∈ S 2-3N -3k 2,2 (|ρ|) + S 2 0,1 (|ρ|), ∂ k x 1 B N ∈ S 3-4N -3k 2,2 (|ρ|) + S 1-N 0,1 (|ρ|), ∀k ∈ N uniformly with respect to z, h and 0 ≤ x 1 ≤ 2δ 1 min{1, ρ 1 }.
For z ∈ Z 1,0 and any integer s ≥ 0, there exist ls, Ns > 0 so that for N ≥ Ns we have the estimate (see Proposition 3.7 in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF])

(2.5) P(z, h)ũ ψ H s h (Ω) ≤ C N h -ls " √ h |Im z| " 2N f L 2 (Γ) ,
while for z ∈ Z 2 ∪ Z 3 the above estimate holds with |Im z| replaced by 1. Next introduce the operator

T ψ (z, h)f := Dx 1 ũψ ˛x1 =0 = Op h (τ ψ )f with τ ψ = a ∂ϕ ∂x 1 ˛x1 =0 -ih ∂a ∂x 1 ˛x1 =0 = ψρ -ih N -1 X j=0 h j a 1,j .
Let G D be the self-adjoin realization of the operator -∆ on L 2 (Ω) with Dirichlet boundary condition on Γ. Since the spectrum of G D is the positive real axis, for z ∈ Z 1,0 we have the estimate

' ' ' " h 2 G D -z) -1 ' ' ' H 2k h (Ω)→H 2k h (Ω) ≤ C k |Im z| , ∀k ∈ N,
while for z ∈ Z 2 ∪ Z 3 the above estimate holds with |Im z| replaced by 1. For k = 0 this estimate is trivial, and for k ≥ 1 it follows from the coercive estimates for the Dirichlet problem in unbounded domains (see [START_REF] Lax | Scattering Theory[END_REF])

v H 2k h (Ω) ≤ C k " h 2 G D v H 2k-2 h (Ω) + v H 2k-2 h (Ω) " , v ∈ D(G D ) ∩ H 2k-2 h (Ω). Now let u ψ ∈ H 2 h (Ω) be the solution of the problem P(z, h)u ψ = 0 in Ω, u ψ | Γ = ψf. Then w ψ := u ψ -ũψ + " h 2 G D -z " -1 P(z, h)ũ ψ will be a solution of (h 2 G D -z)w ψ = 0 in Ω, w ψ | Γ = 0. Since for z ∈ Z 1,0 ∪ Z 2 ∪ Z 3 the point z/h 2 is
not in the spectrum of G D , one deduces w ψ = 0. This implies as in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] the following Proposition 2.1. For z ∈ Z 1,0 we have the estimate

(2.6) Next(z, h)u ψ -T ψ (z, h)f H 1 h (Γ) ≤ C N h -s d " √ h |Im z| " 2N f L 2 (Γ) , ∀N ∈ N
with constants C N , s d > 0, independent of f, h and z, and Choose a partition of unity P J j=1 ψ j (x ) = 1 on Γ and set T (z, h) = P J j=1 T ψ j (z, h). Notice that the principal symbol of T (z, h) is ρ. By using Proposition 2.1 and repeating without any change the argument in Section 3 in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF], one concludes that the statement of Theorem 2.1 remains true replacing in (2.3) N int (z, h) by Next(z, h).

s d independent of N . If z ∈ Z 2 ∪ Z 3 , then (2 

3.

Eigenvalues-free regions in the case (A). In this section we suppose that 0

< 0 ≤ γ(x) ≤ 1 -0 , 0 > 0, ∀x ∈ Γ. If (u, v) = 0 is an eigenfunction of G with eigenvalue λ ∈ {z ∈ C : Re z < 0}, then f = u| x∈Γ = 0. Indeed, if f = 0 on Γ, then u ∈ H 2
(Ω) will be eigenfunction of the Dirichlet problem in Ω and this is impossible. From (1.3) one obtains the equation (1.4).

According to Theorem 2.1 with

Next(z, h), for z ∈ Z 1 , δ = 1/2 -, we have (3.1) Op h (ρ)f - √ zγf L 2 (Γ) ≤ C h p |Im z| f L 2 (Γ) ,
where for z ∈ Z 2 ∪ Z 3 the above estimate holds with |Im z| replaced by 1. Here we use the fact that

Op h (b) L 2 (Γ)→L 2 (Ω) ≤ C which follows from [19], Proposition 2.1. Introduce the symbol c(x , ξ , z) := ρ(x , ξ , z) -γ √ z.
We will show that c(x , ξ , z) is elliptic in a suitable class. Write

c(x , ξ , z) = (1 -γ 2 )z -r 0 (x , ξ ) ρ(x , ξ , z) + γ √ z . Case I. z ∈ Z 1, . Set δ = 1/2 -.
The symbol c is elliptic for |ξ | large enough and it remains to examine its behavior for |ξ | ≤ C 0 . For these values of ξ we have |ρ

+ γ √ z| ≤ C 1 . First consider the set F = {(x , ξ ) : |1 -r 0 (x .ξ )| ≤ 2 0 2 }. Then Re " (1 -γ 2 )z -r 0 " = 1 -r 0 -γ 2 ≤ - 2 0 2 . If (x , ξ ) / ∈ F , we get Im " (1 -γ 2 )z -r 0 " = (1 -γ 2 )Im z ≥ (1 -γ 2 )h δ ≥ 0 h δ .
Consequently, the symbol c is elliptic and

Im (ρ + γ √ z) = Im ρ + γIm √ z ≥ Ch δ .
Hence, for bounded |ξ | we have |c| ≥ C 3 h δ , C 3 > 0, while for large |ξ | we have |c| ∼ |ξ |. As in Section 2 we use the function χ and define

M 1 := Z 1 × suppχ, M 2 := (Z 1 × supp(1 -χ)) ∪ ((Z 2 ∪ Z 3 ) × T * Γ). Set ξ = (1 + |ξ |) 1/2 . It is easy to see that for (z, x , ξ ) ∈ M 1 , we have (3.2) ˛∂α x ∂ β ξ ρ ˛≤ C α,β |Im z| 1/2-|α|-|β| , |α| + |β| ≥ 1, |ρ| ≤ C, while for (z, x , ξ ) ∈ M 2 we have (3.3) ˛∂α x ∂ β ξ ρ ˛≤ C α,β ξ 1-|β| . Thus, we conclude that c = (ρ -γ √ z) ∈ S 0,1 δ . Now consider the symbol c -1 = ρ+γ √ z (1-γ 2 )z-r 0 . Since ρ + γ √ z ∈ S 0,1 δ , it remains to study the properties of g := ((1 -γ 2 )z -r 0 ) -1 . For (x , ξ ) ∈ F , we get |(1 -γ 2 )z -r 0 | ≥ 2 0 2 > 0 and |∂ α x ∂ β ξ g| ≤ C α,β . Therefore for (x , ξ ) ∈ F , we have (3.4) |∂ α x ∂ β ξ (c -1 )| ≤ C α,β |Im z| 1/2-|α|-|β| . Next for (x , ξ ) / ∈ F notice that for every 0 < δ 1, if |(1 -γ 2 ) -r 0 | ≤ δ , Im z = 0, we have (3.5) ˛∂α x ∂ β ξ g| ≤ C α,β |Im z| -1-|α|-|β| , while for |(1 -γ 2 ) -r 0 | ≥ δ we get (3.6) ˛∂α x ∂ β ξ g| ≤ C α,β ξ -2-|β| .
On the other hand, (x , ξ

) / ∈ F yields |1 -r 0 (x , ξ )| > 2 0
2 and for (x , ξ ) / ∈ F we obtain

(3.7) |∂ α x ∂ β ξ ρ| ≤ C α,β ξ 1-|α|-|β| . Thus for bounded |ξ | and (x , ξ ) / ∈ F , we deduce (3.8) |∂ α x ∂ β ξ (c -1 )| ≤ C α,β |Im z| -1-|α|-|β| .
Combining this with the estimates (3.4), one concludes that |Im z|c -1 ∈ S 0,-1 δ .

Case II. z ∈ Z 2 . We have

Re " (1 -γ 2 )z -r 0 " ≤ -(1 -γ 2 ) ≤ -1 < 0.
Consequently, c is elliptic and c ∈ S 0,1 0 , c -1 ∈ S 0,-1 0 .

Case III. z ∈ Z 3 . In this case Im z = 1 and one has

˛Im " (1 -γ 2 )z -r 0 " ˛= |(1 -γ 2 )| ≥ 1 > 0.
This implies that c ∈ S 0,1 0 is elliptic and c -1 ∈ S 0,-1 0 .

Consequently, we get

Op h (c -1 )g L 2 (Γ) ≤ C|Im z| -1 g L 2 (Γ)
and, applying (3.1), we deduce

Op h (c -1 )Op h (c)f L 2 (Γ) ≤ C 5 h |Im z| 3/2 f L 2 (Γ) .
On the other hand, for

|α 1 | + |β 1 | ≥ 1, |α 2 | + |β 2 | ≥ 1 and |ξ | ≤ C 0 according to (3.2), (3.4), (3.7), (3.8), for (x , ξ ) ∈ F we get (3.9) ˛∂α 1 x ∂ β 1 ξ (c -1 (x , ξ ))∂ α 2 x ∂ β 2 ξ c(x , ξ ) ˛≤ C α 1 ,β 1 ,α 2 ,β 2 |Im z| 1-(|α 1 |+|β 1 |+|α 2 |+|β 2 |) , while for (x , ξ ) / ∈ F we have (3.10) ˛∂α 1 x ∂ β 1 ξ (c -1 (x , ξ ))∂ α 2 x ∂ β 2 ξ c(x , ξ ) ˛≤ C α 1 ,β 1 ,α 2 ,β 2 |Im z| -1-(|α 1 |+|β 1 |)
. Consider the operator Op h (c -1 )Op h (c) -I. Following Section 7 in [START_REF] Dimassi | Spectral asymptotics in semi-classical limits[END_REF], the symbol of this operator is given by

N X j=1 (ih) j j! X |α|=j D α ξ (c -1 )(x , ξ )D α y c(y , η ) ˛x =y ,ξ =η + bN (x , ξ ) = b N (x , ξ ) + bN (x , ξ ), where |∂ α x bN (x , ξ )| ≤ Cαh N (1-2δ)-s d -|α|/2 . Applying (2.2), one deduces for N large enough Op h ( bN ) L 2 (Γ)→L 2 (Γ) ≤ Ch.
On the other hand, the estimates (3.9), (3.10) yield

|∂ α x b N (x , ξ )| ≤ Cα h |Im z| 2 h -δ|α| .
Thus, applying once more (2.2), one gets

Op h (c -1 )Op h (c)f -f L 2 (Γ) ≤ C 6 h |Im z| 2 f L 2 (Γ) .
A combination of the above estimates implies

(3.11) f L 2 (Γ) ≤ C 7 " h 1-2δ + h 1-3 2 δ " f L 2 (Γ) . Since δ = 1/2 -, 0 < 1, for 0 < h ≤ h 0 ( ) small enough (3.8) yields f = 0. Going back to λ = i √ z h , we have Re λ = - Im √ z h , Im λ = Re √ z h . Suppose that z ∈ Z 1 . Then |Re λ| ≥ C(h -1 ) 1-δ , |Im λ| ≤ C 1 h -1 ≤ C 2 |Re λ| 1 1-δ . So if |Reλ| ≥ C 3 |Imλ| 1-δ , Reλ ≤ -C 4 < 0 there are no eigenvalues λ = i √ z h of G. For z ∈ Z 2 ∪Z 3 there are no eigenvalues λ too if |λ| ≥ R 0 .
This shows that in the case (A) for every 0 < 1 the eigenvalues of G must lie in the region Λ defined in Theorem 1.1.

4.

Eigenvalues-free region in the case (B). In this section we deal with the case (B). The analysis of Section 3 works only for

z ∈ Z 1 ∪ Z 3 . Indeed for z ∈ Z 1 we have Re ((1 -γ 2 ) -r 0 ) ≤ (1 -γ 2 ) < -η 0 < 0.
The symbol g introduced in the previous section satisfies the estimates (3.5) and c ∈ S 0,1 δ , c -1 ∈ S 0,-1 δ . For z ∈ Z 3 we apply the same argument. Thus for z ∈ Z 1 ∪ Z 3 we obtain that the

eigenvalues λ = i √ z h of G must lie in Λ . For z ∈ Z 2 the argument exploited in the case (A) breaks down since for Re z = -1, Im z = 0 the symbol i[1 + r 0 (x , ξ ) -γ(x )]
is not elliptic and it may vanish for some (x 0 , ξ 0 ).

In the following we suppose that z ∈ Z 2 . Therefore Proposition 2.1 yields a better approximation

(4.1) Next(z, h)(f ) -T (z, h)f H 1 (Γ) ≤ C N h -s d +N f L 2 (Γ) , ∀N ∈ N.
If f = 0 is the trace of an eigenfunction of G, from the equality (1.4) we obtain

|Re T (z, h)f -γ √ zf, f L 2 (Γ) | ≤ C N h -s d +N f L 2 (Γ) .
There exists t with 0 < t < 1 such that

Re " T (z, h) -γ √ z " f, f L 2 (Γ) = Re T (-1, h)f, f L 2 (Γ) -Im zIm h " ∂T ∂z (zt, h) -γ 1 2 √ zt " f, f L 2 (Γ) i (4.2) with zt = -1 + itIm z ∈ Z 2 .
The next Lemma is an analogue of Lemma 3.9 in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF]. 

= i √ z h . Then (4.3) ' ' ' dT dz (z, h)f -Op h " dρ dz (z) " f ' ' ' L 2 (Γ) ≤ Ch f H -1 h (Γ)
with a constant C > 0 independent of z, h and f . Moreover,

(4.4) |Re T (-1, h)f, f L 2 (Γ) | ≤ C N h -s d +N f L 2 (Γ) , ∀N ∈ N.
Proof. The proof of (4.3) is the same as in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] since for z ∈ Z 2 we get

N -1 X j=0 h j da 1,j dz ∈ S 0,-1 0 .
To establish (4.4), we apply Green's formula in the unbounded domain Ω. By using the notation of Section 2, set ũ = P J j=1 ũψ . Then -ih∂ν ũ| Γ = T (z, h)f and for R 1 the function ũ vanishes for |x| ≥ R. Thus one obtains

i ∆ũ, ũ L 2 (Ω) = -i Z Ω |∇ũ| 2 dx -i ∂ν ũ, ũ L 2 (Γ) .
Multiplying the above equality by h and taking the real part, we deduce

-Im h ∆ũ, ũ L 2 (Ω) = Re T (z, h)f, f L 2 (Γ) . Therefore, Re T (-1, h)f, f L 2 (Γ) . = -Im h (∆ -h -2 )ũ, ũ L 2 (Ω) = -Im h -1 P(-1, h)ũ, ũ L 2 (Ω) and |Re T (-1, h)f, f L 2 (Γ) | ≤ h -1 P(-1, h)ũ L 2 (Ω) ũ L 2 (Ω) .
It is easy to see that ũ L 2 (Ω) ≤ Ch -s d f L 2 (Ω) and combining this with (2.5) for z ∈ Z 2 , we obtain (4.4).

Proof of Theorem 1.1, case (B). From (4.2), (4.4) and Im z = 0 we have

(4.5) |Im " ∂T ∂z (zt, h) - γ 2 √ zt " f, f L 2 (Γ) | ≤ C N h -s d +N |Im z| f L 2 (Γ) .
Consider the operator

L := Op h ( dρ dz (zt)) -γ 2 √ z t
and notice that

(4.6) ˛Im " ∂T ∂z (zt, h) - γ 2 √ zt " f, f L 2 (Γ) -Im Lf, f L 2 (Γ) ˛≤ Ch f L 2 (Γ) .
On the other hand,

Im Lf, f L 2 (Γ) = 1 2i (L -L * )f, f L 2 (Γ)
and the principal symbol of 1 2i (L -L * ) has the form

s(x , ξ ; z) := 1 2 Im h 1 √ -1 + itIm z -r 0 - γ √ -1 + itIm z i . Let zt = ye i(π-ϕ) , y = q 1 + t 2 |Im z| 2 , |ϕ| ≤ π/4.
Here and below we omit the dependence of y on t. Then 1 ≤ y ≤ √ 2 and

√ zt = √ y sin ϕ/2 + i √ y cos ϕ/2, Im 1 √ zt = - cos ϕ/2 √ y .
In the same setting

-1 + itIm z -r 0 = qe i(π-ψ) , q = q (1 + r 0 ) 2 + t 2 (Im z) 2 , |ψ| ≤ π/4,
we see that

Im 1 √ -1 + itIm z -r 0 = - cos ψ/2 √ q . Therefore s = 1 2 √ yq " γ √ q cos ϕ/2 - √ y cos ψ/2 " = γ 2 q cos 2 ϕ/2 -y cos 2 ψ/2 2 √ yq(γ √ q cos ϕ/2 + √ y cos ψ/2) .
To prove that s is elliptic, it is sufficient to show that

γ 2 q(1 + cos ϕ) -y(1 + cos ψ) = γ 2 q " 1 + 1 y " -y " 1 + 1 + r 0 q " = 1 yq h γ 2 q 2 (1 + y) -y 2 (1 + q + r 0 ) i is elliptic. Consider the function F (r 0 ) = γ 2 " (1 + r 0 ) 2 + t 2 Im 2 z " (1 + y) -y 2 " 1 + q (1 + r 0 ) 2 + t 2 Im 2 z + r 0 " .
Clearly,

F (0) = (γ 2 -1)(1 + y)y 2 ≥ η 1 > 0, since in the case (B) we have γ 2 -1 ≥ η 0 > 0. Next, for γ ≥ 1, r 0 ≥ 0 we have ∂F ∂r 0 = 2γ 2 (1 + y)(1 + r 0 ) -y 2 " 1 + 1 + r 0 p (1 + r 0 ) 2 + t 2 Im 2 z " ≥ 2 " γ 2 (1 + y)(1 + r 0 ) -y 2 " ≥ 2(1 + y -y 2 ).
On the other hand, it is clear that 1+y-y 2 > 0 for 0 ≤ y < 1+ √ 5

2 . In our case 1

≤ y ≤ √ 2 < 1+ √ 5 2
and we deduce ∂F ∂r 0

(r 0 ) > 0 for r 0 ≥ 0, 1 ≤ y ≤ √ 2. This implies F (r 0 ) > 0 for r 0 ≥ 0 and s is elliptic. Consequently,

Im Lf, f L 2 (Γ) ≥ (η 2 -Ch) f L 2 (Γ) , η 2 > 0
and for small h and f L 2 (Γ) = 0, Im z = 0, we deduce from (4.5) and (4.6)

|Im z| ≤ C N h -s d +N ≤ B N h N , ∀N ∈ N. Going back to λ = i √ z h , we have Re √ z = µ 1/2 sin ϕ/2, Im √ z = µ 1/2 cos ϕ/2, µ = q 1 + (Im z) 2 ≤ √ 2
and 0 ≤ sin ϕ ≤ B N h N . This implies for h small enough the estimate

|Im λ| = ˛Re √ z h ˛≤ 2 1/4 B N (h -1 ) -N +1 ≤ C N |Re λ| -N .
Thus for z ∈ Z 2 and every N ∈ N the eigenvalues λ = i √ z h of G lie in R N and this completes the proof of Theorem 1.1.

The eigenvalues of G could have accumulation points on iR. For odd dimension d Lax and Phillips [START_REF] Lax | Scattering theory for dissipative systems[END_REF] proved that the scattering matrix S(z) is invertible for z = 0. This leads easily to the following Proposition 4.1. Assume d odd. The operator G has no a sequence of eigenvalues λ j , Re λ j < 0 such that lim j→∞ λ j = iz 0 , z 0 ∈ R.

The proof is the same as that of Proposition 4.11 in [START_REF] Colombini | Spectral problems for non elliptic symmetric systems with dissipative boundary conditions[END_REF]. The above proposition does not exclude the possibility to have eigenvalues λ j with |Im λ j | → +∞. On the other hand, Theorem 1.2, established in the next section, implies that for strictly convex obstacles and γ(x) > 1 the imaginary part of all eigenvalues of G is bounded by a constant R 0 > 0 and for d odd we can apply Proposition 4.1.

5.

Eigenvalue-free region for strictly convex obstacles in the case (B). In this section we study the eigenvalues-free regions when K is a strictly convex obstacle. Let 0 < 1/2 be a small number. Set

χ 1 (x , ξ ) = φ " 1 -r 0 (x , ξ ) h /2
" , where φ is the function introduced in Section 2. Notice that on the support of 1 -χ 1 we have

|1 -r 0 (x , ξ )| ≥ h /2
. By a modification of the construction in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] (see also [START_REF] Petkov | Asymptotics of the number of the interior transmission eigenvalues[END_REF]) we can construct a semi-classical parametrix ũψ having the form (2.4), where ψf is replaced by Op h (1 -χ 1 )ψf.

Then for |1 -r 0 (x , ξ )| ≥ h /2 we have |ρ| 2 ≥ h /2 and we can improve the estimate (2.5) obtaining (5.1)

P(z, h)ũ ψ H s (Ω) ≤ C N h -ls " h h /2 |Im z| " N f L 2 (Γ) , |Im z| ≥ h 1-.
To do this, one repeats without changes the argument in Section 3 of [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] replacing the lower bound |ρ| 2 ≥ |Im z| by |ρ| 2 ≥ h /2 . Consequently, the right hand side of (5.1) is estimated by

O N (h -ls+N /2
) and this yields a semi-classical parametrix

P(z, h)w 1 = O N (h N ), w 1 | x∈Γ = Op h (1 -χ 1 )ψf.
Consider a partition of unity χ - δ + χ 0 δ + χ + δ = 1 on T * (Γ), where the functions χ - δ , χ 0 δ , χ + δ ∈ S 0 δ,0 are with values in R + and such that supp

χ - δ ⊂ {r 0 -1 ≤ -h δ }, supp χ + δ ⊂ {r 0 -1 ≥ h δ }, supp χ 0 δ ⊂ {|r 0 -1| ≤ 2h δ }, χ 0 δ = 1 on {|r 0 -1| ≤ h δ }.
Then, as in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF], [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF], we obtain the following Theorem 5.1 (Theorem 2.1, [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF]). For every 0 < 1 there exists h 0 ( ) > 0 such that for 0 < h ≤ h 0 ( ), |Im z| ≥ h 1-, we have

(5.2) Next(z, h)Op h (χ - /2 ) -Op h (ρχ - /2 ) L 2 (Γ)→L 2 (Γ) ≤ Ch 1/2
and for |Im z| ≤ h we have the estimate

(5.3) Next(z, h)Op h (χ + /2 ) -Op h (ρχ + /2 ) L 2 (Γ)→L 2 (Γ) ≤ Ch 1/2 .
Thus the problem is to get an estimate for Next(z, h)Op h (χ 0 /2 ) L 2 (Γ)→L 2 (Γ) . We will prove the following Theorem 5.2. For h 2/3 ≤ Im z ≤ h we have the estimate

(5.4) Next(z, h)Op h (χ 0 /2 ) L 2 (Γ)→L 2 (Γ) ≤ Ch /2 .
Remark 1. By the analysis in [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF] we may cover the region h 1-≤ Im z ≤ h but the above result is sufficient for our analysis since the region 0 < Im z ≤ h 2/3 is examined in Chapter 9 and 10 in [START_REF] Sjöstrand | Weyl law for semi-classical resonances with randomly perturbed potentials[END_REF], where a parametrix for the exterior Dirichlet problem is constructed with a precise estimate of the symbol of Next in small neighbourhood of the glancing set (see (10.31) in [START_REF] Sjöstrand | Weyl law for semi-classical resonances with randomly perturbed potentials[END_REF]).

Set for simplicity of notation µ = Imz. We will follow closely the construction of a semi-classical parametrix in Sections 5, 6 in [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF]. The only difference is that we deal with an unbounded domain and the local form of P slightly changes. For the convenience of the reader we are going to recall the result in [START_REF] Popov | Resonances near the real axis for transparent obstacles[END_REF]. Let Ω δ = {x ∈ Ω : dist(x, Γ) < δ}. Since K is strictly convex, in local normal geodesic coordinates (x, ξ) ∈ T * (Ω δ ), considered in Section 2, the principal symbol of P becomes

p(x, ξ) = ξ 2 1 + r 0 (x , ξ ) + x 1 q 1 (x , ξ ) -1 -iµ + O(x 2 1 r 0 ) with 0 < C 1 ≤ q 1 (x , ξ ) ≤ C 2 .
Here locally in the interior of K we have x 1 > 0, while in the exterior of K we have x 1 < 0. Following [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF], denote by R the set of functions a ∈ C ∞ (T * (Ω δ )) satisfying with all derivatives the estimates [START_REF] Popov | Resonances near the real axis for transparent obstacles[END_REF] that there exists an exact symplectic map χ : T * (Ω δ ) → T * (Ω δ ) so that χ(x, ξ) = (y(x, ξ), η(x, ξ)) satisfies

a = O(x ∞ 1 ) + O(ξ ∞ 1 ) + O((1 -r 0 ) ∞ ) in a neighbourhood of K := {(x, ξ) : x 1 = ξ 1 = 1 -r 0 = 0}. It was shown in Theorem 3.1 in
y 1 = x 1 q 1 (x , ξ ) -1/3 + O(x 2 1 ) + O(x 1 (1 -r 0 )), η 1 = ξ 1 q 1 (x , ξ ) 1/3 + O(x 1 ) + O(ξ 1 (1 -r 0 )), (y , η ) = (x , ξ ) + O(x 1 ), (p • χ(x, ξ)) = " q 1 (x , ξ ) 2/3 + O(x 1 ) " (ξ 2 1 + x 1 -ζ(x , ξ )), (mod R) in a neighbourhood of K with ζ(x , ξ ) = " q 1 (x , ξ ) -2/3 + O(1 -r 0 ) " (1 + iµ -r 0 (x , ξ )).
Let U ⊂ T * (Ω δ ) be a small neighbourhood of K. By using a h-Fourier integral operator on Ω δ associated to the canonical relation

Λ = {(y, η, x, ξ) ∈ T * (Ω δ ) × T * (Ω δ ) : (y, η) = χ(x, ξ), (x, ξ) ∈ U },
one transforms P into an operator P 0 which in the new coordinates denoted again by (x, ξ) has the form

P 0 = D 2 x 1 + x 1 -L 1 (x , D x ; h) -iµL 2 (x , D x ; h), where L j (x , ξ ; h) = P ∞ k=0 h k L (k) j (x , ξ ), j = 1, 2, with L (0) 1 (x , ξ ) = " q 1 (x , ξ ) -2/3 + O(1 -r 0 ) " (1 -r 0 (x , ξ )), L (0) 
2 (x , ξ ) = q 1 (x , ξ ) -2/3 + O(1 -r 0 ). By a simple change of variable t = -x 1 , we pass to the situation when the exterior of K is presented by t > 0. Next one applies a new symplectic transformation of the tangential variables [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF]). Therefore the operator P 0 is transformed into

(x # , ξ # ) = χ # (x , ξ ) ∈ T * (Γ) so that ξ # d = -L (0) 1 (x , ξ ) (see Section 2 in
(5.5) P0 = D 2 t -t + D x # d -iµq(x # , D x # ) + Q(x # , D x # ; µ, h),
where q(x # , ξ # ) > 0, q ∈ S 0 0 in a neighbourhood of ξ # d = 0 and

Q = ∞ X k=1 h k Q k (x # , ξ # ; µ).
The only difference with [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF] is the sign (-) in front of t in the form of P0 .

For simplicity of the notations we denote the coordinates (x # , ξ # ) by (y, η) and consider the operator P 0 = D 2 t -t + Dy d -iµq(y, Dy) + hq(y, Dy; µ, h) with 0 < C 1 ≤ q(y, η) ≤ C 2 , q ∈ S 0 0 , q ∈ S 0 0 . Notice that we have the term -iµq(y, η) with µ > 0, while in [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF] the model operator involves iµq(y, η) since the sign of µ is not important for the argument in Sections 5, 6 of [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF].

First we will treat the situation examined in Section 6 in [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF] when µ > 0 and η d satisfy the conditions (5.6)

µ p µ + |η d | ≥ h 1-, (5.7) µ + |η d | ≤ O(h ).
Clearly, if h 2/3-≤ µ ≤ h , the condition (5.6) holds. The same is true also if

h 2/3 ≤ µ ≤ h 2/3- and |η d | ≥ h 1/2-. Introduce the function Φ 1 (η d ) = ( φ( η d h ), if µ ≥ h 2/3-, " 1 -φ( η d h 1/2-) " φ( η d h ), if h 2/3 ≤ µ < h 2/3-,
where φ is the function introduced in Section 2. Let ρ be the solution of the equation

ρ 2 + η d -iµq(y, η) = 0
with Im ρ > 0. With a minor modifications of the argument in Section 6 in [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF] we may construct a parametrix ũ1 = Op h (A(t))f , where

A(t) = φ " t δ 1 |ρ| 2
" a(t, y, η; µ, h)e iϕ(t,y,η:µ) h

and δ 1 > 0 is small enough. We take ϕ and a in the form

ϕ = M X k=1 t k ϕ k , a = X 0≤k+ν≤M h k t ν a k,ν ,
where M 1 and ϕ k and a k,ν do not depend on t. We choose a 0,0 = Φ 1 (η d ), a k,0 = 0 for k ≥ 1. We have the identity

e -iϕ/h (D 2 t -t + η d -µq(y, η) -ih∂y d )(e iϕ/h a) = -2ih∂tϕ∂ta -h 2 ∂ 2 t a -ih∂y d a + ((∂tϕ) 2 + ∂y d ϕ -t -ρ 2 )a = -2ih X 0≤k+ν≤2M -2 h k t ν ν X j=0 (j + 1)(ν + 1 -j)ϕ ν+1-j a k,j+1 -h X 0≤k+ν≤M -1 (ν + 1)(ν + 2)h k t ν a k-1,ν+2 -ih X 0≤k+ν≤M h k t ν ∂y d a k,ν + ((∂tϕ) 2 + ∂y d ϕ -t -ρ 2 )a.
The phase ϕ satisfies the eikonal equation

(∂tϕ) 2 + ∂y d ϕ -t -ρ 2 -iµ M X |α|=1 (∂ α η q)gα(ϕ) = R M (t), with gα(ϕ) = 1 |α| Q n-1 j=1 (∂y j ϕ) α j and R M (t) = O(t M
). We choose ϕ 1 = ρ and one determines ϕ k , k ≥ 2, from the equation

X k+j=K (k + 1)(j + 1)ϕ k+1 ϕ j+1 + ∂y d ϕ K + K = F (ϕ 1 , ..., ϕ K )
with 1 = -1, K = 0 for K ≥ 2 and F (ϕ 1 , ..., ϕ K ) given by the equality (6.6) in [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF]. Next the functions a k,ν are determined form the equations 2i

ν X j=0 (j + 1)(ν + 1 -j)ϕ ν+1-j a k,j+1 + (ν + 1)(ν + 2)a k-1,ν+2 + i∂y d a k,ν = M X |α|=0 k X k =0 ν X ν =0 b α,k ,ν,ν ∂ α y a k ,ν .
Therefore Lemma 6.1, 6.2, 6.3, 6.4 in [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF] hold without any change since the sign before t in the form of P 0 is not involved. Thus, as in Section 6 of [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF], for a neighbourhood Y of a point in R d-1 we obtain the following Proposition 5.1. Assume (5.6) and (5.7) fulfilled for η ∈ supp Φ 1 . Then for all s ≥ 0 we have the estimates

P 0 ũ1 H s (R + ×Y ) ≤ C s,M h M /2 f L 2 (Y ) , (5.8) Dt ũ1 | t=0 L 2 (Y ) ≤ Ch f L 2 (Y ) . (5.9)
To cover the region h 2/3 ≤ µ ≤ h , it remains to study the case when h 2/3 ≤ µ < h 2/3-and |η d | ≤ h 1/2-. For these values of µ and η d the condition (5.10) µ(µ

+ |η d |) ≤ h 1+
is satisfied. We will construct a parametrix for the problem (5.11)

( P 0 u = 0 in R + × Y, u = f 2 on Y with f 2 = Op h " φ( η d h 1/2-) " f + O(h ∞ )f, f ∈ L 2 (Y ).
For the construction we need some estimates for the Airy function A(z) = Ai(e i2π/3 z). Here Ai(z) is the Airy function defined for s ∈ R by

Ai(s) = 1 2π Z ∞ -∞
e i(st+t 3 /3) dt.

In the following the branch -π < arg z < π will be used and z 1/2 = |z| 1/2 e i arg z/2 . Notice also that

Re √ z ≥ |Im z| 2|z| 1/2 , Im √ z = Im z 2Re √ z .
The function A(z) satisfies the equalities

(5.12) (∂ 2 z -z)A (k) (z) = kA (k-1) (z), k ∈ N,
where

A (k) (z) = d k A(z) dz k .
It is well known (see [START_REF] Olver | Asymptotics and Special Functions[END_REF], [START_REF] Melrose | Boundary problems for wave equations with glancing and gliding rays[END_REF]) that A(z) has for

| arg z -π 3 | ≥ δ > 0 the representation A(z) = Ξ(ωz) exp " 2 3 i(-z) 3/2 " ,
where ω = e 2πi/3 and

Ξ(z) ∼ z -1/4 ∞ X j=0 a j z -3j/2 , a 0 = 1 4 π -3/4 , |z| → ∞.
In the same domain in C one has also an asymptotic expansion for the derivatives of A(z) by taking in the above expansion differentiation term by term (see [START_REF] Olver | Asymptotics and Special Functions[END_REF]). Introduce the function

F (z) = A (z) A(z) .
Then for | arg z -π/3| ≥ δ > 0 we have 

F (z) = z 1/2 ∞ X k=0 b k z -k , |z| 1 
|F (z) ≤ C 0 (|z| + 1) 1/2 , Im z < 0.
For the derivatives [START_REF] Melrose | Boundary problems for wave equations with glancing and gliding rays[END_REF]) we get the following Lemma 5.3. For Im z < 0 and every integer k ≥ 0 we have the estimate

F (k) (z) = ∂ k F ∂z k (z) (see Chapter 5 in
(5.13) |F (k) (z)| ≤ C k (|z| + 1) 1/2-k . Given an integer k ≥ 0, set Φ 0 (z) = 1, Φ k (z) := A(z)∂ k z (A(z) -1 ) = ∂zΦ k-1 (z) -F (z)Φ k-1 (z), k ≥ 1.
Taking the derivatives in the above equality and using (5.13), by induction in k one obtains Lemma 5.4. For Im z < 0 and all integers k ≥ 1, l ≥ 0, we have the bound

(5.14) |∂ l z Φ k (z)| ≤ C k,l " |z| + 1 " k 2 -l .
For t ≥ 0 and Im z < 0, set

Ψ k (t, z) := A (k) (-t + z) A(z) , Ψ (l) k (t, z) := ∂zΨ k (t, z).
The next Lemma is an analogue of Lemma 3.3 in [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF].

Lemma 5.5. For Im z < 0 and all integers k ≥ 0, l ≥ 0, we have the estimate

(5.15) |Ψ (l) k (0, z)| ≤ C k |Im z| -l " |z| 1/2 + 1 " k .
For 0 < t ≤ |z|, Im z < 0 and all integers k ≥ 0, l ≥ 0, we have

(5.16) |Ψ (l) k (t, z)| ≤ C k,l |Im z| -l (|z| 1/2 + |Im z| -1 ) " |z| 1/2 + 1 " k ,
while for |t| ≥ |z| one obtains

(5.17)

|Ψ (l) k (t, z)| ≤ C k,l |Im z| -l (|z| 1/2 + |Im z| -1 ) " t 1/2 + |Im z| -1 " k e -t 1/2 |Im z|/4 .
Proof. Since Ψ(t, z) is analytic for Im z < 0, it is sufficient to establish the above estimates for l = 0 and to apply Cauchy formula for the derivatives (see Section 3 in [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF]). Taking into account (5.12), (5.13), by induction in k one deduces

|A (k) (z)| ≤ C k " |z| 1/2 + 1 " k |A(z)| hence (5.18) |Ψ k (t, z)| ≤ C k " t 1/2 + |z| 1/2 + 1 " k |Ψ 0 (t, z)|.
Thus it is sufficient to estimate |Ψ 0 (t, z)|. The representation of A(z) with phase exp

" ( 2 3 i(-z) 3/2
" mentioned above holds for Im z < 0. Hence

˛A(-t + z) A(z) ˛≤ ˛Ξ(ω(-t + z)) Ξ(ωz) ˛exp " -Im 2 3 " (t -z) 3/2 -(-z) 3/2 "" = ˛Ξ(ω(-t + z)) Ξ(ωz) ˛e-ϕ . It clear that |Ξ(ω(-t + z))| ≤ c 0 . For |z| ≤ C, C 1 we have ˛"Ξ(ωz) " -1˛≤ C 1 ≤ C 2 |Im z| -1 ,
while for |z| ≥ C we have

˛"Ξ(ωz) " -1˛≤ C 3 |z| 1/4 ≤ C 3 |z| 1/2 . Thus | Ξ(ω(-t+z)) Ξ(ωz) | ≤ C(|z| 1/2 + |Im z| -1 ). Next, we get ϕ = 2 3 Im (t -z) 3/2 - 2 3 Im (-z) 3/2 = Z t 0 Im (τ -z) 1/2 dτ. = - Z t 0 Im z 2Re ((τ -z) 1/2 ) dτ ≥ t|Im z| 2(t 1/2 + |z| 1/2 )
and this shows that for t > 0 we have ϕ > 0. For |t| ≤ |z| the estimate (5.18) implies (5.16). For |t| ≥ |z| we have t|Im z|

2(t 1/2 + |z| 1/2 ) ≥ t 1/2 |Im z| 4 and (5.19) t k/2 e -t 1/2 |Im z|/4 ≤ C k |Im z| -k . If |Im z| ≤ 1 we have 1 ≤ |Im z| -1 , while if |Im z| > 1, we get t ≥ |z| > 1.
Hence from (5.19) and (5.18) we deduce (5.17).

For h 2/3 ≤ µ ≤ h 2/3-we will construct a parametrix for (5.11) repeating without any change the construction in Section 5 of [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF]. The parametrix has the form ũ2 = φ(t/h )Op h (A(t))g, where g ∈ L 2 (Y ) can be determined as in Section 5, [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF]. Here

A(t) = M X k=0 a k (y, η; h, µ)ψ k (t, y; h, µ), ψ k = h k/3 Ψ k " -th -2/3 , (η d -iµq(y, η))h -2/3 " , M 1 is an arbitrary integer, a 0 = φ( η d h 1/2-).
Next a k , k ≥ 1, are independent on t and they can be determined from the equality

(k + 1)a k+1 = -i∂y d a k + µh -2/3 ∂y d qF (η d -iµq(y, η)h -2/3 )a k -µh -1 ∂y d a k-1 + k X l=0 k X |α|=0 " b (1) 
k,l,α + b (2) k,l,α " ∂ α y a k .
We have

P 0 Op h (A(t)) = Op h " (D 2 t -t + η d -iµq(y, η) -ih∂y d )A(t)
" -iµq(y, Dy)Op h (A(t)) + iµOp h (qA(t)) + hq(y, Dy)Op h (A(t)). On the other hand, (5.12) implies the equality

(D 2 t -t + η d -iµq(y, η))Ψ k " -th -2/3 , (η d -iµq(y, η))h -2/3 " = -kh -2/3 Ψ k-1 " -th -2/3 , (η d -iµq(y, η))h -2/3 " and (D 2 t -t + η d -iµq(y, η))A(t) = -h M -1 X k=0 (k + 1)a k+1 ψ k .
Next the construction of the parametrix goes without any changes as in Section 5 in [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF] applying Lemmas 5.3, 5.4 and 5.5 instead of Lemmas 3.1, 3.2 and 3.3 in [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF]. Thus as an analogue of Theorem 5.7 in [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF] we get the following Proposition 5.2. For all s ≥ 0, we have the bounds

P 0 ũ2 H s (R + ×Y ) ≤ C s,M h M /2 f L 2 (Y ) , (5.20) ũ2 | t=0 -Op h " φ(η d µ/h 1+ ) " f L 2 (Y ) ≤ O(h ∞ ) f L 2 (Y ) , (5.21) Dt ũ2 | t=0 L 2 (Y ) ≤ Ch f L 2 (Y ) . (5.22) 
Combining Proposition 5.1 and Proposition 5.2, we obtain, as in [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF], Theorem 5.2.

After this preparation we pass to the analysis of an eigenvalues-free region when

Re z = 1, h 2/3 ≤ Im z ≤ h , 0 < 1. Let ρ = √ 1 -r 0 + iIm z.
As in the previous section, we examine the equation

Next(z, h)(f ) - √ zγf = 0.
Consider the partition of the unity χ + /2 + χ 0 /2 + χ - /2 = 1 on T * (Γ) introduced in the beginning of this section. Applying Theorem 5.2, we have

Next(z, h)(1 -Op h (χ 0 /2 ))f - √ zγf L 2 (Γ) ≤ Ch /2 f L 2 (Γ) .
Taking into account Theorem 5.1 for the operators N (z, h)Op h (χ ± /2 ), one deduces

(5.23) Op h " ρ(χ + /2 + χ - /2 ) - √ zγ " f L 2 (Γ) ≤ C 1 h /2 f L 2 (Γ) .
We write

g 1 := ρ(χ + /2 + χ - /2 ) - √ zγ = ρ 2 h (χ + /2 ) 2 + (χ - /2 ) 2 i -zγ 2 ρ(χ + /2 + χ - /2 ) + √ zγ . Clearly, Re " ρ 2 h (χ + /2 ) 2 + (χ - /2 ) 2 i -zγ 2 " = (1 -r 0 ) h (χ + /2 ) 2 + (χ - /2 ) 2 i -γ 2 ≤ -η 0 < 0 since 1 -r 0 ≤ 1, supp χ + /2 ∩ supp χ - /2 = ∅ and 1 -γ 2 ≤ -η 0 . Thus for bounded |ξ | we have |g 1 | ≥ η 2 > 0, while for |ξ | 1 we get |g 1 | ∼ |ξ |. To estimate g -1 1 , it is necessary to estimate only ρ(χ + /2 + χ - /2 ) + √ zγ and one deduces |∂ α x ∂ β ξ (g -1 1 )| ≤ C α,β h -2 (1/2+|α|+β|) (1 + |ξ |) 1-|β| .
The same estimates holds for g 1 , hence

g 1 ∈ S /4,1 /2 , g -1 1 ∈ S /4,-1 /2 and (Op h (g -1 1 )Op h (g 1 ) -I)f L 2 (Γ) ≤ Ch 1-f L 2 (Γ) .
Combining this with (5.23), for small h we conclude as in Section 4, that f = 0.

It remains to study the case

z ∈ D = {z ∈ C : z = 1 + iIm z, 0 < Im z ≤ h 2/3 }.
The Dirichlet problem for -h 2 ∆ -z with z = 1 + iIm h 2/3 w, |w| ≤ C 0 , has been investigated by Sjöstrand in Chapters 9 and 10 in [START_REF] Sjöstrand | Weyl law for semi-classical resonances with randomly perturbed potentials[END_REF] (see also [START_REF] Cardoso | Asymptotic of the number of resonances in the transmission problem[END_REF]). For 0 ≤ w ≤ 1 this covers the region D.

In [START_REF] Sjöstrand | Weyl law for semi-classical resonances with randomly perturbed potentials[END_REF] the exterior Dirichlet-to-Neumann map Next(z, h) is defined with respect to the outgoing solution 1 of the problem (1.5). Notice that for Im z > 0 the outgoing solutions are in H 2 h (Ω), so the exterior Dirichlet-to-Neumann map in [START_REF] Sjöstrand | Weyl law for semi-classical resonances with randomly perturbed potentials[END_REF] coincides with that defined in Section 2. We need to recall some results in Chapter 10 of [START_REF] Sjöstrand | Weyl law for semi-classical resonances with randomly perturbed potentials[END_REF]. The operator Next(z, h) is a h-pseudo-differential operator with symbol next(x , ξ , h). Introduce the glancing set

G = {(x , ξ ) ∈ T * (Γ) : r 0 (x , ξ ) = 1}.
We have γ(x) ≥ 1 + η 3 > 1, ∀x ∈ Γ. Choose a small number δ 0 , 0 < δ 0 < η 3 /2. Then for |r 0 (x , ξ ) -1| ≥ δ 0 the symbol next satisfies the estimates (5.24)

|∂ α x ∂ β ξ next(x , ξ , h)| ≤ C α,β ξ 1-|β|
, ∀α, ∀β, while for |r 0 (x , ξ ) -1| ≤ 2δ 0 we have the estimates

(5.25) |∂ α x ∂ β ξ next(x , ξ , h)| ≤ C α,β (h 2/3 + |r 0 -1|) 1 2 -β d , ∀α, ∀β if r 0 (x , ξ
) -1 is transformed into ξ d by a tangential Fourier integral operator as it was mentioned in the beginning of this section. From the estimates near G it follows that for small 0 < h ≤ h 0 (δ 0 ) we have a bound

' ' 'Next(z, h)φ `1 -r 0 (x , ξ ) δ 0 ´' ' ' L 2 (Γ)→L 2 (Γ) ≤ C(h 1/3 + δ 1/2 0 )
with a constant C > 0 independent on h and δ 0 . Let f = 0 be the trace of u| Γ , where (u, v) is an eigenfunction of G. Consider the equality

-Re D Next(z, h) h 1 -φ `1 -r 0 (x , ξ ) δ 0 ´if, f E L 2 (Γ) + Re √ zγf, f L 2 (Γ) = Re Next(z, h)φ `1 -r 0 (x , ξ ) δ 0 ´f, f L 2 (Γ) . (5.26)
The above estimate shows that the right hand side in (5.26) is bounded by

C 1 (h 1/3 +δ 1/2 0 ) f 2 L 2 (Γ) . Introduce two functions ψ ± (σ) ∈ C ∞ (R : [0, 1]) such that ψ + (σ) = 0 for σ ≤ 1/2, ψ + (σ) = 1 for σ ≥ 1, ψ -(σ) = ψ + (-σ). We write Next(z, h) h 1 -φ `1 -r 0 (x , ξ ) δ 0 ´i = Next(z, h)χ + + Next(z, h)χ -,
where

χ ± (x , ξ ) = h 1 -φ `1 -r 0 (x , ξ ) δ 0 ´iψ ± " 1 -r 0 (x , ξ ) δ 0 " have support in {(x , ξ ) : 1 -r 0 (x , ξ ) ≥ δ 0 /2} and {(x , ξ ) : 1 -r 0 (x , ξ ) ≤ -δ 0 /2}, respectively.
The principal symbols n ± of Next(z, h)χ ± have the form

n ± = " p 1 -r 0 + iIm z " χ ± and Re Next(z, h)χ ± f, f L 2 (Γ) = Op h (Re (n ± ))f, f L 2 (Γ) + O(h) f 2 L 2 (Γ)
. On the other hand,

|Re n + | = χ + |Re p 1 -r 0 + iIm z| ≤ (1 + h 2/3 ) 1/2 .
In the same way for the principal symbol n -of Next(z, h)χ -we get

|Re n -| = χ -|Re p 1 -r 0 + iIm z| ≤ y 1/2 sin ψ 2 ,
1 the outgoing solutions in the sense of Lax-Phillips [START_REF] Lax | Scattering Theory[END_REF] are different from the outgoing ones in [START_REF] Sjöstrand | Weyl law for semi-classical resonances with randomly perturbed potentials[END_REF]. See Section 6 for more details.

where 1 -r 0 + iIm z = ye i(π-ψ) , y > 0, 0 < ψ 1. Next

y 1/2 sin ψ 2 = y 1/2 r 1 -cos ψ 2 = 1 √ 2 p y -(r 0 -1).
On the support of χ -we have 0 < r 0 -1 < y ≤ (r 0 -1) + h 2/3 , and this implies y 1/2 sin ψ 2 ≤ 1 √ 2 h 1/3 . Combining the above estimates, we conclude that

(5.27) -Re D Next(z, h) h 1 -φ `1 -r 0 (x , ξ ) δ 0 ´if, f E L 2 (Γ) ≥ -(1 + C 1 h 1/3 ) f 2 L 2 (Γ) . Let √ z = v + iw, v, w ∈ R. Then v 2 = 1 + w 2 ≥ 1 yields Re √ z = v ≥ 1. Consequently, Re √ zγf, f L 2 (Γ) ≥ (1 + η 3 ) f 2 L 2 (Γ)
. From this estimate and (5.27) one deduces that the left hand side of (5.26) is greater than

(η 3 -C 1 h 1/3 ) f 2 L 2 (Γ)
. For small h and small δ 0 (depending on η 3 ) we obtain a contradiction with the estimate of the right hand side of (5.26). Finally, if Re z = 1, 0 < Im z ≤ h 2/3 with 0 < h ≤ h 0 (η 3 ) there are no eigenvalues λ = i √ z h of G. Combining this with the result of Section 4, completes the proof of Theorem 1.2.

6. Discreteness of the spectrum and trace formula. In this section we will prove the discreteness of the spectrum of G in the left half plane using the Dirichlet-to-Neumann map and we establish a trace formula which can be useful for the study of the eigenvalues asymptotics. Before going to the proof of a trace formula for the counting function of the eigenvalues of G, we need to examine the properties of the Dirichlet-to-Neumann map N (λ) defined below. This map can be used to prove the discreteness of the spectrum of G in {z ∈ C : Re z < 0}. This result for d odd was established in [START_REF] Lax | Scattering theory for dissipative systems[END_REF] and the proof there exploits the fact that the scattering operator S(z) is invertible for z = 0. For even dimensions d this property of S(z) is not true. We present a proof of the discreteness of the spectrum of G based on the invertibility of an operator involving N (λ) -1 and it seems that for d even this result is new. Proposition 6.1. Let γ(x) = 1 for all x ∈ Γ. Then for d ≥ 2 the spectrum of the generator G in {z ∈ C : Re z < 0} is formed by isolated eigenvalues with finite multiplicities.

Proof. Consider for Re λ < 0 the map

N (λ) : H s (Γ) f -→ ∂ν u| Γ ∈ H s-1 (Γ),
where u is the solution of the problem (6.1)

( (∆ -λ 2 )u = 0 in Ω, u ∈ H 2 (Ω), u = f on Γ.
The condition u ∈ H 2 (Ω) implies that u is iλoutgoing which means that there exists R > ρ 0 and a function g

∈ L 2 comp (R d ) such that u(x) = (-∆ 0 + λ 2 ) -1 g, |x| ≥ R,
where R 0 (λ) = (-∆ 0 +λ 2 ) -1 is the outgoing resolvent of the free Laplacian in R d which is analytic for Re λ > 0. Recall that R 0 (λ) has kernel

(6.2) R 0 (λ, x -y) = - i 4 " -iλ 2π|x -y| " (n-2)/2 " H (1) n-2 2 (u) "˛u =-iλ|x-y|
, where H

ν (x) is the Hankel function of first kind and we have the asymptotic (see for example, Chapter 7 in [START_REF] Olver | Asymptotics and Special Functions[END_REF]) (6.3) H

(1)

ν (z) = " 2 πz " 1/2 e i(z-νπ 2 -π 4 ) + O(r -3/2 ), -π < Arg z < 2π, |z| = r → +∞.
Below we present some well known facts for the sake of completeness. The solution of the Dirichlet problem (6.1) with f ∈ H 3/2 (Γ) has the representation

u = e(f ) + (-∆ D + λ 2 ) -1 (∆ -λ 2 )(e(f )),
where e(f ) :

H 3/2 (Γ) f → e(f ) ∈ H 2 comp (Ω) is an extension operator and R D (λ) = (-∆ D + λ 2 ) -1 is the outgoing resolvent of the Dirichlet Laplacian ∆ D in Ω which is analytic for Re λ < 0. 2 Therefore N (λ)f = ∂ν (e(f )) + ∂ν h (-∆ D + λ 2 ) -1 (∆ -λ 2 )(e(f )) i
implies that N (λ) is analytic for Re λ < 0. The solution of (6.1) for Re λ < 0 can be written also as follows (see (2.4) in [START_REF] Melrose | Polynomial bound on the distribution of poles in scattering by an obstacle[END_REF])

u(x; λ) = Z ∂Ω h R 0 (λ, x -y)(N (λ)f )(y) - ∂R 0 (λ, x -y) ∂νy f (y)dy i .
Taking the trace on Γ, this implies

C 00 (λ) + C 01 (λ)N (λ) = Id,
where

(C 00 (λ)f )(x) = f (x) 2 + Z Γ ∂R 0 ∂νy (λ, x -y)f (y)dy = f (x) 2 + (K(λ)f )(x), (C 01 (λ)f )(x) = - Z Γ R 0 (λ, x -y)f (y)dy
are the Calderon operators (see for example, [START_REF] Melrose | Polynomial bound on the distribution of poles in scattering by an obstacle[END_REF]) which are analytic operator-valued functions for λ ∈ C for d odd and on the logarithmic covering of C for d even. The operators K(λ), C 01 (λ) are pseudo-differential operators of order -1 Melrose proved ([10], Section 3) that there exists an entire family P D (λ) of pseudo-differential operators of order -1 on Γ so that (-∆ Γ + 1) 1/2 C 01 (λ) = Id + P D (λ), ∆ Γ being the Laplace Beltrami operator on Γ. For Re λ < 0 this implies

N (λ) = (Id + P D (λ)) -1 (-∆ Γ + 1) 1/2 ( Id 2 -K(λ)).
On the other hand, it is well known that the Neumann problem (6.4)

( (∆ -λ 2 )u = 0 in Ω, u ∈ H 2 (Ω)
, ∂ν u = 0 on Γ has no non trivial (iλ)-outgoing solutions for Re λ < 0. This implies that for Re λ < 0 the operator K(λ) has not 1/2 as an eigenvalues and since K(λ) is compact, we deduce that N (λ) -1 is analytic for Re λ < 0.

Going back to the problem (1.2), we write the boundary condition as follows

N (λ) " Id -λN (λ) -1 γ " f 1 = 0, Re λ < 0, x ∈ Γ.
The operator N (λ) -1 : L 2 (Γ) -→ H 1 (Γ) is compact and by Theorems 1.2 and Theorem 1.3 there are points λ 0 , Re λ 0 < 0, for which (Id -λ 0 N (λ 0 ) -1 γ) is invertible. Applying the analytic Fredholm theorem, one concludes that the spectrum of G in the open half-plane Reλ < 0 is formed by isolated eigenvalues with finite multiplicities.

Remark 2. The assumption γ(x) = 1, ∀x ∈ Γ, was used only to apply Theorems 1.2 and 1.3.

For odd dimensions d we can relax this assumption. Indeed, for d odd we have no resonances in a small neighbourhood of 0 for the Dirichlet and Neumann problems, so we may apply the above argument in a open domain including a small neighbourhood of 0. For d even this property does not hold. 3Now we pass to a trace formula involving the operator

C(λ) := N (λ) -λγ = N (λ) " Id -λN (λ) -1 γ " ,
which by the analysis above is an analytic operator-valued function in {z ∈ C : Re z < 0}, while C(λ) -1 is meromorphic in the same domain. Our purpose is to find a formula for the trace (6.5) tr 1 2πi

Z δ (λ -G) -1 dλ,
where ω ⊂ {Re z < 0} is a domain with boundary a positively oriented curve δ and (G

-λ) -1 is analytic on δ. Since (G -λ) -1 is meromorphic in ω, if λ 0 is a pole of (G -λ) -1 , the (algebraic) multiplicity of an eigenvalue λ 0 of G is given by mult (λ 0 ) = rank 1 2πi Z |λ-λ 0 |= 0 (λ -G) -1 dλ,
with 0 > 0 small enough and {λ ∈ C : |λ -λ 0 | = 0 } positively oriented. Therefore, (6.5) is just equal to the number of the eigenvalues of G in ω counted with their multiplicities. Let (u, w) = (G -λ) -1 (f, g). Then we have w = λu + f and setting q = u| Γ , we get

u = -R D (λ)(g + λf ) + K(λ)q.
Here R D (λ) = (-∆ D + λ 2 ) -1 is the outgoing resolvent introduced in the proof of Proposition 6.1 and

K(λ) satisfies ( (∆ -λ 2 )K(λ) = 0 in Ω, K(λ) = Id on Γ.
The boundary condition on Γ implies 

∂ν h -R D (λ)(g + λf ) + K(λ)q i -γλ h -R D (λ)(g + λf ) + q i -γf = 0,
q = C -1 (λ) " [∂ν R D (λ)(g + λf )] + γf " . Therefore u = h -λR D (λ) + λK(λ)C -1 (λ)∂ν R D (λ) + C -1 (λ)γ i f + Xg w = Y f + h λR D (λ) + λK(λ)C -1 (λ)∂ν R D (λ) i g,
where the form of the operators X and Y is not important for the calculus of the trace. Thus we have the equality tr

Z δ (λ -G) -1 dλ = -tr Z δ " 2λK(λ)C -1 (λ)∂ν R D (λ) + C -1 (λ)γ " dλ.
The operator C -1 (λ) is meromorphic with finite rank singularities near every pole. For the first term in the integral on the right hand side we apply Lemma 2.2 in [START_REF] Sjöstrand | Asymptotics of the number of Rayleigh resonances[END_REF] to permute the operators in the integrand combined with the equality In the Appendix we show that for the ball in R 3 and γ ≡ const > 1 we have infinite number real eigenvalues. We expect that in the case (B) there are infinite number eigenvalues of G lying in the domain R N and it would be interesting to apply Proposition 6.2 to obtain a Weyl formula for these eigenvalues following the approach in [START_REF] Sjöstrand | Asymptotics of the number of Rayleigh resonances[END_REF] and [START_REF] Petkov | Asymptotics of the number of the interior transmission eigenvalues[END_REF].

In fact this implies that all coefficients an,m vanish , so f = 0. Taking the derivative with respect to r, one obtains Notice that Re i μ |µ| 2 > 0 implies Re w > 0, so we wish to prove that C(n; µ, γ) = 0 for Re w > 0. The case n = 0 is trivial because iµ(1 -γ) -1 = 0. We know that Rn(w) has no roots in the half plane Re w ≥ 0. This implies that the roots of wRn(w) = 0 lie in the half plane Re w ≤ 0. By the classical Gauss-Lucas theorem the roots of d dw (wRn(w)) = 0 lie in the convex set of the roots of wRn(w) = 0 and one deduces that d dw (wRn(w)) = 0 for Re w > 0. Thus for γ = 1 we have no eigenvalues of G.

For 0 < γ < 1 we must examine the zeros of the function

gn(w) = 1 2w 2 (1 -γ) + 1 w + n X j=1 1 w -z j , n ≥ 1,
where z j , Re z j < 0, j = 1, ..., n, are the roots of Rn(w) = 0. If fact, if Rn(w 0 ) = 0, we have

H (1)
n+1/2 ( i 2w 0

) = 0 and this implies Re w 0 < 0. We obtain and we obtain that the eigenvalues of G belong to the domain (7.4).

Passing to the case γ > 1, we have the following Proposition 7.2. For γ > 1 all eigenvalues λ for which (7.3) has a non trivial solution are real and they lie in the interval (-∞, -1 γ-1 ]. Moreover, there is an infinite number of real eigenvalues of G.

Proof. To prove the existence of real eigenvalues, consider the polynomial

Fn(w) = h 1 2 (1 -γ) + w i Rn(w) + w 2 R n (w).
Clearly, Fn(0) < 0 and Fn(w) → +∞ as w → +∞, so Fn(w) = 0 has at least one root w 0 in R + and C(n; µ 0 , γ) = 0 for µ 0 = i 2w 0

. Now suppose that w 0 gn(w 0 ) = 0, n ≥ 1 with Re w 0 > 0, Im w 0 = 0. Then Im (w 0 gn(w 0 )) = 0 implies Hence we can write (7.10) as follows (7.11) Im

w 0 h γ -1 2|w 0 | 2 - n X j=1 Re z j |w 0 -z j | 2 + X Im z j >0 4Re w 0 (Im z j ) 2 |w 0 -z j | 2 |w 0 -zj | 2 i = 0.
The term in the brackets [...] is positive, and one concludes that Im w 0 = 0. The same argument works for γ = 1 since z j = 0. Thus for γ = 1 we may have only real roots and since wR n (w) = 0 for w > 0 we conclude that there are no roots of gn(w) = 0. This implies again the absence of eigenvalues for γ ≡ 1.

From Re gn(w 0 ) = 0 , one deduces for the real roots w 0 the inequality 2w 0 + (1 -γ) < 0 and this yields for the eigenvalues λ of G the estimate λ ≤ -1 γ -1 .

It remains to show that we have an infinite number of real eigenvalues. It is not excluded that for n = m the polynomials Fn(w) and Fm(w) have the same real positive root. If we assume that for Re w > 0 the sequence of polynomials {Fn(w)} ∞ n=0 has only a finite number of real roots w 1 , ..., w N , w j ∈ R + , then there exists an infinite number of polynomials Fn j (w) having the same root which implies that we have an eigenvalue of G with infinite multiplicity. This is a contradiction, and the number of real eigenvalues of G is infinite. 
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 1 Introduction. Let K ⊂ R d , d ≥ 2,be an open bounded domain and let Ω = R d \ K be connected. We suppose that the boundary Γ of Ω is C ∞ . Consider the boundary problem (

. 6 )

 6 holds with |Im z| replaced by 1.

Lemma 4 . 1 .

 41 Let z ∈ Z 2 and let f = u| Γ be the trace of an eigenfunction u of G with eigenvalue λ

  , b 0 = 0. For large |z| and Im z < 0 we have the estimate |F (z)| ≤ C|z| 1/2 , while for bounded |z| and Im z < 0 one obtains |F (z)| ≤ C 1 . Consequently,

  x ∈ Γ and the term γλ[R D (λ)(g + λf ) vanishes. Next N (λ) = ∂ν K(λ)| Γ is the Dirichlet-to-Neumann map, and assuming C -1 (λ) invertible, one gets

Finally, we obtain the following Proposition 6 . 2 .

 62 ˛Γ = -2λ∂ν R D (λ)K(λ). Assume γ(x) = 1, ∀x ∈ Γ. Let δ ⊂ {z ∈ C : Re λ < 0}be a closed positively oriented curve and let ω be the domain bounded by δ. Assume that C -1 (λ) is meromorphic in ω without poles on δ . Then

(7. 7 )

 7 C(n; µ, γ) = iµ(1 -γ)γ) + (Rn(w)) -1 d dw(wRn(w)).

(7. 9 )j=1

 9 Re gn(w) = (1 -γ)((Re w) 2 -(Im w) 2 ) + 2Re w|w| 2 2|w| 4 + n X Re w -Re z j |w -z j | 2 .If Re gn(w) = 0, we must have 2Re w|w| 2 + (1 -γ)((Re w) 2 -(Im w) 2 ) < 0. Setting w = -1 2λ , the last inequality implies |Re λ| < |Im λ|, Re λ > (1 -γ)((Re λ) 2 -(Im λ) 2 )

Re w 0 - 2 "

 02 Re z j |w 0 -z j | 2 = 0.On the other hand, if z j with Im z j = 0 is a root of Rn(w) = 0, then zj is also a root andIm z j |w 0 -z j | 2 -Im z j |w 0 -zj | 2 = Im z j |w 0 -z j | 2 |w 0 -zj | |w 0 -zj | 2 -|w 0 -z j | 2 " = 4Im w 0 (Im z j ) 2 |w 0 -z j | 2 |w 0 -zj | 2 .

Remark 3 . 1 )

 31 With small modifications Propositions 7.1 and 7.2 can be established for the ball {x ∈ R d : |x| ≤ 1} and d ≥ 5 odd, by using the modified Hankel functions H (n+d/2-1 (r) r d/2-1 and the eigenfunctions Yn,m(ω) of the Laplace-Beltrami operator -∆ S d-1 with eigenvalues n(n + d -2).

Notice that the definition of outgoing solutions in[START_REF] Lax | Scattering Theory[END_REF] is different from that given above and the outgoing solutions in our paper correspond to incoming ones in[START_REF] Lax | Scattering Theory[END_REF]. To avoid misunderstanding the precise form of R 0 (λ, x -y) is given in (6.2).

In[START_REF] Majda | The location of the spectrum for the dissipative acoustic operator[END_REF] one obtains eigenvalues-free regions in the case γ ≥ 1, but in this paper one applies the result of[START_REF] Lax | Scattering theory for dissipative systems[END_REF] for d odd.
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7.

Appendix. In this Appendix we assume that γ ≥ 0 is a constant and d odd. We examine the existence of the eigenvalues of G for the ball B 3 = {x ∈ R 3 : |x| ≤ 1}. Consider the Dirichlet problem for the Helmholtz equation in the exterior of B.

(7.1)

Setting λ = iµ, Im µ > 0, it is well known that the outgoing solution of (7.1) in polar coordinates (r, ω), r ∈ R + , ω ∈ S 2 is given by a series

n (µr) h

(1)

Yn,m(ω), |x| = r.

Here Yn,m(ω) are the spherical functions which are eigenfunctions of the Laplace-Beltrami operator -∆ S 2 with eigenvalues n(n + 1) and

n+1/2 (r) r 1/2 are the spherical (modified) Hankel functions of first kind. A classical result of Macdonald says that the zeros of the function H

(1) n+1/2 (z) lie in the half plane Im z < 0 (see Theorem 8.2 in [START_REF] Olver | Asymptotics and Special Functions[END_REF]). The boundary condition in (7.1) is satisfied choosing an,m so that

an,mYn,m(ω).

Now consider the boundary problem

We will prove the following Proposition 7.1. For γ = 1 and Re λ < 0 there are no non trivial solutions of (7.3). For 0 < γ < 1 the eigenvalues of G lie in the region

Proof. Introduce the Dirichlet-to-Neumann map N (λ)f = ∂ru| |x|=1 , where u is the solution of (7.1). Assume that (u, v) is an eigenfunction of G. Then u satisfies (7.3). Setting u| |x|=1 = f , λ = iµ, Im µ > 0, the boundary condition implies 

n (µr) h

(1)

It is well known (see [START_REF] Olver | Asymptotics and Special Functions[END_REF]) that the functions h

n (x) have the form The problem is reduced to show that C(n; µ, γ) = 0 for all n ∈ N, if γ = 1 or λ lies in the region (7.4) in the case 0 < γ < 1.