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Linear rigidity of stationary stochastic
processes

Alexander I. Bufetov∗ Yoann Dabrowski† Yanqi Qiu‡

Abstract

We consider stationary stochastic processesXn, n ∈ Z such thatX0

lies in the closed linear span ofXn, n 6= 0; following Ghosh and Peres, we
call such processes linearly rigid. Using a criterion of Kolmogorov, we show
that it suffices, for a stationary stochastic process to be rigid, that the spectral
density vanish at zero and belong to the Zygmund classΛ∗(1). We next give
sufficient condition for stationary determinantal point processes onZ and on
R to be rigid. Finally, we show that the determinantal point process onR2

induced by a tensor square of Dyson sine-kernels isnot linearly rigid.

1 Introduction

This paper is devoted to rigidity of stationary determinantal point processes.
Recall that stationary determinantal point processes are strongly chaotic: they

have the Kolmogorov property (Lyons [9]) and the Bernoulli property (Lyons and
Steif [10]); and they satisfy the Central Limit Theorem (Costin and Lebowitz [2],
Soshnikov[13]). On the other hand, Ghosh [5] and Ghosh-Peres [6] proved, for the
determinantal point processes such as Dyson sine process and Ginibre point pro-
cess, that number of particles in a finite window is measurable with respect to the
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39 Rue F. Joliot Curie 13453, Marseille cedex, France.

1

http://arxiv.org/abs/1507.00670v1


completion of the sigma-algebra describing the configurations outside that finite
window. Their argument is spectral: they construct, for anysmallε, a compactly
supported smooth functionϕε, such thatϕε equals1 in a fixed finite window and
the linear statistic corresponding toϕε has variance smaller thanε.

In the same spirit, we consider general stationary stochastic processes (in
broad sense)Xn, n ∈ Z such thatX0 lies in the closed linear span ofXn, n 6= 0;
following Ghosh and Peres, we call such processes linearly rigid. Using a crite-
rion of Kolmogorov, we show that it suffices, for a stationarystochastic process
to be rigid, that the spectral density vanish at zero and belong to the Zygmund
classΛ∗(1). We next give sufficient condition for stationary determinantal point
processes onZ and onR to be rigid. Finally, we show that the determinantal point
process onR2 induced by a tensor square of Dyson sine-kernels isnot linearly
rigid.

We now turn to more precise statements. LetX = {Xn : n ∈ Zd} be a multi-
dimensional time stationary stochastic process of real-valued random variables
defined on a probability space(Ω,P). Let H(X) ⊂ L2(Ω,P) denote the closed
subspace linearly spanned by{Xn : n ∈ Zd} and letȞ0(X) denote the one
linearly spanned by{Xn : n ∈ Zd \ {0}}.

Definition 1.1. The stochastic processX is said to be linearly rigid if

X0 ∈ Ȟ0(X). (1)

Let Conf(Rd) be the set of configurations onRd. For a bounded Borel subset
B ⊂ Rd, we denoteNB : Conf(Rd) → N ∪ {0} the function defined by

NB(X) := the cardinality ofB ∩ X .

The spaceConf(Rd) is equipped with the Borelσ-algebra which is the smallestσ-
algebra making allNB ’s measurable. Recall that a point process with phase space
Rd is, by definition, a Borel probability measure on the spaceConf(Rd). For the
background on point process, the reader is referred to Daleyand Vere-Jones’ book
[3].

Given a stationary point process onRd andλ > 0, we introduce the stationary
stochastic processN (λ) = (N

(λ)
n )n∈Zd by the formula

N (λ)
n (X) := the cardinality ofX ∩

(
nλ+ [−λ/2, λ/2)d

)
. (2)
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Definition 1.2. A stationary point processP onRd is calledlinearly rigid , if for
anyλ > 0, the stationary stochastic processN (λ) = (N

(λ)
n )n∈Zd is linearly rigid,

i.e.,
N

(λ)
0 ∈ Ȟ0(N

(λ)).

The above definition is motivated by the definition due to Ghosh and Peres of
rigidity of point processes onRd, see [5] and [6]. Given a Borel subsetC ⊂ Rd,
we will denote

FC = σ({NB : B ⊂ C,B bounded Borel})

theσ-algebra generated by all random variables of the formNB whereB ⊂ C
ranges over all bounded Borel subsets ofC. LetP be a point process onR, i.e.,P
is a Borel probability onConf(Rd), and denoteFP

C for theP-completion ofFC .

Definition 1.3 (Ghosh [5], Ghosh-Peres [6]). A point processP on Rd is called
rigid , if for any bounded Borel setB ⊂ Rd with Lebesgue-negligible boundary
∂B, the random variableNB isFP

Rd\B-measurable.

Remark1.1. Of course, in the above definition, it suffices to take Borel setsB of
the form[−γ, γ)d for γ > 0, cf. [6].

A linear rigid stationary point process onRd is of course rigid in the sense
of Ghosh and Peres. Observe that proofs for rigidity in [5], [6] and [1] in fact
establish linear rigidity. We would like also to mention a notion of insertion-
deletion tolerance studied by Holroyd and Soo in [7], which is in contrast to the
notion of rigidity property.

2 The Kolmogorov criterion for linear rigidity

In this note, the Fourier transform of a functionf : Rd → C is defined as

f̂(ξ) =

∫

Rd

f(x)e−i2πx·ξdx.

Denote byTd = R
d/Zd thed-dimensional torus. In what follows, we identifyTd

with [−1/2, 1/2)d. The Fourier coefficients of a measureµ onTd are given, for
anyk ∈ Zd, by the formula

µ̂(k) =

∫

Td

e−i2πk·θdµX(θ), wherek · θ := k1θ1 + · · ·+ kdθd.
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Denote byµX the spectral measure ofX, i.e.,

∀k ∈ Z
d, E(X0Xk) = E(XnXn+k) =

∫

Td

e−i2πk·θdµX(θ) = µ̂X(k). (3)

Recall that we have the following natural isometric isomorphism

H(X) ≃ L2(Td, µX), (4)

by assigning toXn ∈ H(X) the functionθ 7→ ei2πn·θ ∈ L2(Td, µX).
Let µX = µa + µs be the Lebesgue decomposition ofµX with respect to the

normalized Lebesgue measurem(dθ) = dθ1 · · · dθd onTd, i.e.,µa is absolutely
continuous with respect tom andµs is singular tom. Set

ωX(θ) :=
dµa

dm
(θ).

Lemma 2.1(The Kolmogorov Criterion). We have

dist(X0, Ȟ0(X)) =

(∫

Td

ω−1
X dm

)−1/2

.

The right side is to be interpreted as zero if
∫
Td ω

−1
X dm = ∞.

When the measureµ is assumed to be absolutely continuous with respect to
m, Lemma2.1 is a result of Kolmogorov, see Remark 5.17 in Lyons-Steif [10].

Corollary 2.2. The stationary stochastic processX = (Xn)n∈Zd is linearly rigid
if and only if ∫

Td

ω−1
X dm = ∞.

Proof of Lemma2.1. We follow the argument of Lyons-Steif [10]. By the Lebesgue
decomposition ofµ, we may take a subsetA ⊂ Td of full Lebesgue measure
m(A) = 1, such thatµa(A) = 1 andµs(A) = 0.

Denote
L0 = spanL2(Td,µX)[ei2πn·θ : n 6= 0].

By the isometric isomorphism (4), it suffices to show that

dist(1, L0) =

(∫

Td

ω−1
X dm

)−1/2

, (5)
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where1 is the constant function taking value1. Write

1 = p+ h, such thatp ⊥ L0, h ∈ L0.

Modifying, if necessary, the values ofp andh on aµ-negligible subset, we may
assume that

1 = p(θ) + h(θ) for all θ ∈ T
d.

Sincep ⊥ L0, we have

0 = 〈p, ei2πn·θ〉L2(dµ) =

∫

Td

p(θ)e−i2πn·θdµ(θ), for anyn ∈ Z
d \ 0. (6)

Therefore, the complex measurep · dµ is a multiple of Lebesgue measure, i.e.,
there existsξ ∈ C, such that

p · dµ = ξdm.

It follows thatp must vanish almost everywhere with respect to the singular com-
ponentµs of µ, andp(θ)ωX(θ) = ξ for m-almost everyθ ∈ T

d. Thus we have

‖p‖L2(dµ) = ‖p‖L2(dµa), (7)

and

h(θ) = 1− ξωX(θ)
−1 for m-almost everyθ ∈ T

d. (8)

Case 1:
∫
Td ω

−1
X dm < ∞.

Define a functionf : Td → C by f = ω−1
X χA. Thenf ∈ L2(dµ)⊖L0. Indeed,

‖f‖2L2(dµ) =

∫

Td

ω−2
X χAdµ =

∫

Td

ω−2
X dµa =

∫

Td

ω−1
X dm < ∞.

And, for alln ∈ Zd \ 0,

〈f, ei2πn·θ〉L2(dµ) =

∫

Td

ωX(θ)
−1χA(θ)e

−i2πn·θdµ(θ) =

∫

Td

e−i2πn·θdm(θ) = 0.

It follows thatf ⊥ h, i.e.,

0 = 〈h, f〉L2(dµ) =

∫

Td

hω−1
X χAdµ =

∫

Td

hdm.
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By (8), we get ∫

Td

(1− ξω−1
X )dm = 0,

and hence

ξ = (

∫

Td

ω−1
X dm)−1.

It follows that

dist(1, L0)
2 = ‖p‖2L2(dµ) = ‖p‖2L2(dµa)

= ξ2
∫

Td

ω−2
X ωXdm = ξ.

This shows the desired equality (5).

Case 2:
∫
Td ω

−1
X dm = ∞.

We claim thatξ = 0. If the claim were verified, then we would get the desired
identity in this case

dist(1, L0) = 0.

So let us turn to the proof of the claim. We argue by contradiction. If ξ 6= 0, then
p 6= 0 and

‖p‖2L2(dµ) = ‖p‖2L2(dµa)
= ξ2‖ω−1

X ‖2L2(dµa)
= ξ2

∫

Td

ω−1
X dm = ∞.

This contradicts the fact thatp ∈ L2(dµ).

Remark2.1. The same argument shows that, in the case of one-dimensionaltime,
the following assertions are equivalent:

•
∑n

k=−nXk ∈ span{Xj : |j| ≥ n+ 1};

• for anyα1, · · · , αn ∈ (−1/2, 1/2) \ {0}, we have

∫

T

∏n
j=1 |e

i2πθ − ei2παj |2|ei2πθ − e−i2παj |2

ωX(θ)
dm(θ) = ∞.

It would be interesting to find a similar characterization for multi-dimensional
time as well.
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Denote byCov(U, V ) the covariance between two random variablesU andV :
Cov(U, V ) = E(UV )− E(U)E(V ).

If X = (Xn)n∈Zd is a stochastic process such that
∑

n∈Zd

|Cov(X0, Xn)| < ∞, (9)

then we may define a continuous function onTd by the formula

ωX(θ) :=
∑

n∈Zd

Cov(X0, Xn)e
i2πn·θ. (10)

Lemma 2.3. Let X = (Xn)n∈Zd be a stationary stochastic process satisfying
condition (9). Then we have the following explicit Lebesgue decomposition of
µX :

µX = (EX0)
2 · δ0 + ωX ·m, (11)

whereδ0 is the Dirac measure on the point0 ∈ Td andωX is the function onTd

defined by(10).

Proof. Note that, under the assumption (9), the functionωX(θ) is well-defined and
continuous onTd. For proving the decomposition (11), it suffices to show that the
Fourier coefficients ofµX coincide with those ofνX := (EX0)

2 · δ0+ωX ·m. But
if n ∈ Zd, then

ν̂X(n) = (EX0)
2 + Cov(X0, Xn) = E(X0Xn) = µ̂X(n).

The lemma is completely proved.

3 A sufficient condition for linear rigidity

Theorem 3.1.LetX = (Xn)n∈Z be a stationary stochastic process. If

sup
N≥1


N

∑

|n|≥N

|Cov(X0, Xn)|


 < ∞, (12)

and
∑

n∈Z

Cov(X0, Xn) = 0. (13)

ThenX is linearly rigid.
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Remark3.1. The condition (12) is a sufficient condition such that the spectral
densityωX is a function in the Zygmund classΛ∗(1), see below for definition.
The condition (13) implies in particular thatωX vanishes at the point0 ∈ T.

We shall apply a result of F. Móricz [12, Thm. 3] on absolutely convergent
Fourier series and Zygmund class functions. Recall that a continuous1-periodic
functionϕ defined onR is said to be in theZygmund classΛ∗(1), if there exists a
constantC such that

|ϕ(x+ h)− 2ϕ(x) + ϕ(x− h)| ≤ Ch (14)

for all x ∈ R and for allh > 0.

Theorem 3.2(Móricz, [12]). If {cn}n∈Z ∈ C is such that

sup
N≥1


N

∑

|n|≥N

|cn|


 < ∞, (15)

then the functionϕ(θ) =
∑

n∈Z cne
i2πnθ is in the Zygmund classΛ∗(1).

Proof of Theorem3.1. First, in view of (10), our assumption (13) implies

ωX(0) = 0.

Next, by Theorem3.2, under the assumption (12), we have

ωX ∈ Λ∗(1).

Since all Fourier coefficients ofωX are real, we have

ωX(θ) = ωX(−θ).

Consequently, there existsC > 0, such that

ωX(θ) =
ωX(θ) + ωX(−θ)

2
=

ωX(θ) + ωX(−θ)− 2ωX(0)

2
≤ C|θ|,

whence ∫

T

ω−1
X dm = ∞,

and the stochastic processX = (Xn)n∈Z is linearly rigid by the Kolmogorov
criterion.
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4 Applications to stationary determinantal point pro-
cesses

In this section, we first give a sufficient condition for linear rigidity of stationary
determinantal point processes onR and then give an example of a very simple
stationary, but not linearly rigid, determinantal point process onR2. We briefly
recall the main definitions. LetB ⊂ Rd be a bounded Borel subset. LetKB :
L2(Rd) → L2(Rd) be the operator of convolution with the Fourier transform̂χB

of the indicator functionχB. In other words, the kernel ofKB is

KB(x, y) = χ̂B(x− y). (16)

In particular, ifd = 1 andB = (−1/2, 1/2), then we find the well-known Dyson
sine kernel

Ksine(x, y) =
sin(π(x− y))

π(x− y)
.

Note that we always haveKB(x, x) = KB(0, 0).
Denote byPKB

the determinantal point process induced byKB. For the back-
ground on the determinantal point processes, the reader is referred to [8], [9], [11],
[13].

Proposition 4.1. Let PKB
be the stationary determinantal point process onRd

induced by the kernelKB in (16). For anyλ > 0, denote byN (λ) = (N
(λ)
n )n∈Zd

the stationary stochastic process associated toPKB
as in(2). Then

∑

n∈Zd

|Cov(N
(λ)
0 , N (λ)

n )| < ∞ (17)

and
∑

n∈Zd

Cov(N
(λ)
0 , N (λ)

n ) = 0. (18)

Proof. Fix a numberλ > 0, for simplifying the notation, let us denoteN (λ)
n by

Nn. Denote for anyn ∈ Zd,

Qn = nλ + [−λ/2, λ/2)d.

By definition of a determinantal point process, we have

E(Nn) = E(N0) =

∫

Q0

KB(x, x)dx = λdKB(0, 0).
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If n 6= 0, we have

E(N0Nn) =

∫∫
χQ0(x)χQn

(y)

∣∣∣∣
KB(x, x) KB(x, y)
KB(y, x) KB(y, y)

∣∣∣∣ dxdy

= λ2dKB(0, 0)
2 −

∫∫

Q0×Qn

|KB(x, y)|
2dxdy,

whence

Cov(N0, Nn) = −

∫∫

Q0×Qn

|KB(x, y)|
2dxdy. (19)

We also have

E(N2
0 ) = E

[∑

x,y∈X

χQ0(x)χQ0(y)

]

= E

[∑

x∈X

χQ0(x)

]
+ E

[ ∑

x,y∈X,x 6=y

χQ0(x)χQ0(y)

]

=

∫

Q0

KB(x, x)dx+

∫∫
χQ0(x)χQ0(y)

∣∣∣∣
KB(x, x) KB(x, y)
KB(y, x) KB(y, y)

∣∣∣∣ dxdy

= λdKB(0, 0) + λ2dKB(0, 0)
2 −

∫∫

Q0×Q0

|KB(x, y)|
2dxdy,

whence

Cov(N0, N0) = Var(N0) = λdKB(0, 0)−

∫∫

Q0×Q0

|KB(x, y)|
2dxdy. (20)

Now recall thatKB is an orthogonal projection. Thus we have

KB(0, 0) = KB(x, x) =

∫
|KB(x, y)|

2dy =
∑

n∈Zd

∫

Qn

|KB(x, y)|
2dy. (21)

The identities (19), (20) and (21) imply that

∑

n∈Zd

Cov(N0, Nn) = λdKB(0, 0)−

∫

Q0

dx
∑

n∈Zd

∫

Qn

|KB(x, y)|
2dy

= λdKB(0, 0)− λdKB(0, 0) = 0.

Moreover, the above series converge absolutely. Proposition 4.1 is completely
proved.
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Remark4.1. By Lemma2.3 and Proposition4.1, we see that for any stationary
determinantal point process induced by a projection, the spectral density of the
associated stochastic processN (λ) always vanishes at0.

4.1 Stationary determinantal point processes onR

Theorem 4.2.Assume thatB ⊂ R satisfies

sup
R>0

(
R

∫

|ξ|≥R

|χ̂B(ξ)|
2dξ

)
< ∞. (22)

Then the stationary determinantal point processPKB
is linearly rigid.

Proof. By definition of linear rigidity, we need to show that for anyλ > 0, the
stochastic processN (λ) = (N

(λ)
n )n∈Z is linearly rigid. As in the proof of Proposi-

tion 4.1, we denoteN (λ)
n by Nn. By Theorem3.1, it suffices to show that

sup
N≥1


N

∑

|n|≥N

|Cov(N0, Nn)|


 < ∞, (23)

and
∑

n∈Z

Cov(N0, Nn) = 0. (24)

By Proposition4.1, the identity (24) holds in general case. It remains to prove
(23). By (19), we have

sup
N≥1


N

∑

|n|≥N

|Cov(N0, Nn)|


 = sup

N≥1
N

∫∫
⋃

|n|≥N

Qn

|χ̂B(x− y)|2dxdy

≤ sup
N≥1

λN

∫

|ξ|≥(N−1)λ

|χ̂B(ξ)|
2dξ < ∞

where in the last inequality, we used our assumption (22). Theorem4.2 is proved
completely.

Remark4.2. WhenB is a finite union of finite intervals on the real line, the rigidity
of the stationary determinantal point processPKB

is due to Ghosh [5].
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4.2 Tensor product of sine kernels

In higher dimension, the situation becomes quite different. Let

S = I × I = (−1/2, 1/2)× (−1/2, 1/2) ⊂ R
2.

Then the associate kernelKS has a tensor form:KS = Ksine ⊗Ksine, that is, for
x = (x1, x2) andy = (y1, y2) in R2, we have

KS(x, y) = Ksine(x1, y1)Ksine(x2, y2) =
sin(π(x1 − y1))

π(x1 − y1)

sin(π(x2 − y2))

π(x2 − y2)
.

Proposition 4.3. The determinantal point processPKS
is not linearly rigid. More

precisely, letN (1) = (N
(1)
n )n∈Z2 be the stationary stochastic process given as in

Definition1.2, then
N

(1)
0 /∈ Ȟ0(N

(1)).

To prove the above result, we need to introduce some extra notation. First, we
define the multiple Zygmund classΛ∗ as follows. A continuous functionϕ(x, y)
periodic in each variable with period1 is said to be in the multiple Zygmund
classΛ∗(1, 1) if for the double difference difference operator∆2,2 of second order
in each variable, applied toϕ, there exists a constantC > 0, such that for all
x = (x1, x2) ∈ (−1/2, 1/2)× (−1/2, 1/2) andh1, h2 > 0, we have

|∆2,2ϕ(x1, x2; h1, h2)| ≤ Ch1h2, (25)

where

∆2,2ϕ(x1, x2; h1, h2) := ϕ(x1 + h1, x2 + h2) + ϕ(x1 − h1, x2 + h2)

+ ϕ(x1 + h1, x2 − h2) + ϕ(x1 − h1, x2 − h2)− 2ϕ(x1 + h1, x2)

− 2ϕ(x1 − h1, x2)− 2ϕ(x1, x2 + h2)− 2ϕ(x1, x2 − h2) + 4ϕ(x1, x2).

The following result is due to Fülöp and Móricz [4, Thm 2.1 and Rem. 2.3]

Theorem 4.4(Fülöp-Móricz). If {cjk}j,k∈Z ∈ C is such that

sup
N≥1,M≥1


MN

∑

|j|≥N,|k|≥M

|cjk|


 < ∞, (26)

then the function
ϕ(θ1, θ2) =

∑

j,k∈Z

cjke
i2π(jθ1+kθ2)

is in the Zygmund classΛ∗(1, 1).
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Let us turn to the study of the density functionωN(1).

Lemma 4.5. There existsc > 0, such that for anyθ1, θ2 ∈ (−1/2, 1/2), we have

ωN(1)(θ1, θ2) ≥ c(|θ1|+ |θ2|).

Proof. To make notation lighter, in this proof we simply writeω for ωN(1).
DenoteSn = S× (n+S) wheren+S := (−1/2+n1, 1/2+n1)× (−1/2+

n2, 1/2 + n2). By the same argument as in the proof of Theorem4.2, we obtain
that for anyn = (n1, n2) ∈ Z

2 \ 0,

ω̂(n) = −

∫

Sn

|KS(x, y)|
2dxdy,

and

ω̂(0) = KS(0, 0)−

∫

S0

|KS(x, y)|
2dxdy.

The following properties can be easily checked.

•
∑

n∈Z2 ω̂(n) = 0.

• ω̂(ε1n1, ε2n2) = ω̂(n1, n2), whereε1, ε2 ∈ {±1}.

• there existc, C > 0, such that

c

(1 + n2
1)(1 + n2

2)
≤ |ω̂(n1, n2)| ≤

C

(1 + n2
1)(1 + n2

2)
.

For instance,
∑

n∈Z2 ω̂(n) = 0 follows from Proposition4.1. These properties
combined with Theorem4.4yield that

• ω(0, 0) = 0.

• ω(ε1θ1, ε2θ2) = ω(θ1, θ2) for anyε1, ε2 ∈ {±1} andθ1, θ2 ∈ (−1/2, 1/2).

• the functionω(θ1, θ2) is in the multiple Zygmund classΛ∗(1, 1).

Hence there existsC > 0, such that

|ω(θ1, θ2)− ω(θ1, 0)− ω(0, θ2)| ≤ C|θ1θ2|. (27)
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Lemma 4.6. There existsc > 0, such that

ω(θ1, 0) ≥ c|θ1| andω(0, θ2) ≥ c|θ2|. (28)

Let us postpone the proof of Lemma4.6 and proceed to the proof of Lemma
4.5. The inequalities (27) and (28) imply that

ω(θ1, θ2) ≥ c(|θ1|+ |θ2|)− C|θ1θ2|.

To prove the lower bound of type as in the lemma, it suffices to prove it when|θ1|
and|θ2| are small enough, for instance,2C|θ1| ≤ c, then we have

ω(θ1, θ2) ≥
c

2
(|θ1|+ |θ2|).

Now let us turn to the

Proof of Lemma4.6. By symmetry, it suffices to prove that there existsc > 0,
such thatω(θ1, 0) ≥ |θ1|. To this end, let us denoteω1(θ1) := ω(θ1, 0). Then
ω1(0) = 0 and there existsc > 0 such that ifk 6= 0, then

ω̂1(k) < 0 and |ω̂1(k)| ≥ c/(1 + k2),

Indeed, we have

ω1(θ1) =
∑

k∈Z

∑

n2∈Z

ω̂(k, n2)e
i2πkθ1 ,

if k 6= 0, thenω̂(k, n2) < 0 and hence

|ω̂1(k)| =
∑

n2∈Z

|ω̂(k, n2)| ≥
∑

n2∈Z

c

(1 + n2
2)(1 + k2)

≥
c′

1 + k2
.

Note also thatω1(0) = ω(0, 0) = 0, hence

∑

k∈Z

ω̂1(k) = 0.

14



It follows that

ω1(θ1) =
∑

k∈Z

ω̂1(k)e
i2πkθ1 =

∑

k∈Z

ω̂1(k)(
ei2πkθ1 + e−i2πkθ1

2
− 1)

=
∑

k∈Z,k 6=0

−ω̂1(k)(1− cos(2πkθ1)) =
∑

k∈Z,k 6=0

|ω̂1(k)|(1− cos(2πkθ1))

≥ c′′
∞∑

j=1

1

(2j − 1)2
(1− cos(2π(2j − 1)θ1)).

Combining with the classical formulae

∞∑

j=1

1

(2j − 1)2
=

π2

8
,

|α| =
1

4
−

2

π2

∞∑

j=1

cos(2(2j − 1)πα)

(2j − 1)2
, for α ∈ (−1/2, 1/2);

we obtain that

ω1(θ1) ≥ c′′
π2

2
|θ1|.

Proof of Proposition4.3. By Lemma2.1, it suffices to show that
∫

T2

ω−1
N(1)dm < ∞. (29)

By Lemma4.5, the inequality (29) follows from the following elementary inequal-
ity

∫

|θ1|<1/2,|θ2|<1/2

1

|θ1|+ |θ2|
dθ1dθ2 < ∞.
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