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Linear rigidity of stationary stochastic
processes

Alexander |. Bufetov ~ Yoann Dabrowski  Yangi Qiu?

Abstract

We consider stationary stochastic proces&gs n € Z such thatX|
lies in the closed linear span &f,,, n # 0; following Ghosh and Peres, we
call such processes linearly rigid. Using a criterion ofidogorov, we show
that it suffices, for a stationary stochastic process todid,rihat the spectral
density vanish at zero and belong to the Zygmund clag$). We next give
sufficient condition for stationary determinantal poinbgesses o and on
R to be rigid. Finally, we show that the determinantal poirdqass oriR?
induced by a tensor square of Dyson sine-kernefoidinearly rigid.

1 Introduction

This paper is devoted to rigidity of stationary determimpbint processes.
Recall that stationary determinantal point processesteyegly chaotic: they
have the Kolmogorov property (LyonS]) and the Bernoulli property (Lyons and
Steif [10]); and they satisfy the Central Limit Theorem (Costin andawitz [2],
Soshnikov] 3]). On the other hand, Ghosh|[and Ghosh-Pere$] proved, for the
determinantal point processes such as Dyson sine proceéssiaibre point pro-
cess, that number of particles in a finite window is measeraiith respect to the
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completion of the sigma-algebra describing the configanatioutside that finite
window. Their argument is spectral: they construct, for amalls, a compactly
supported smooth functiop., such thatp. equalsl in a fixed finite window and
the linear statistic corresponding¢o has variance smaller than

In the same spirit, we consider general stationary stochpsbcesses (in
broad senseX,,, n € Z such thatXj, lies in the closed linear span &f,, n # 0;
following Ghosh and Peres, we call such processes linegity. rUsing a crite-
rion of Kolmogorov, we show that it suffices, for a stationatgchastic process
to be rigid, that the spectral density vanish at zero andrgeto the Zygmund
classA.(1). We next give sufficient condition for stationary deternmitz point
processes o# and onR to be rigid. Finally, we show that the determinantal point
process orR? induced by a tensor square of Dyson sine-kernelsoidinearly
rigid.

We now turn to more precise statements. Ket= {X,, : n € Z} be a multi-
dimensional time stationary stochastic process of relalecarandom variables
defined on a probability spac€, P). Let H(X) C L*(2,P) denote the closed
subspace linearly spanned By, : n € Z¢} and letH,(X) denote the one
linearly spanned by .X,, : n € Z4\ {0}}.

Definition 1.1. The stochastic process is said to be linearly rigid if
X, € Hy(X). (1)

Let Conf(RR?) be the set of configurations d&f'. For a bounded Borel subset
B c R4, we denoteVp : Conf(R?) — N U {0} the function defined by

Ngp(X) := the cardinality ofB N X .

The spac&onf(R?) is equipped with the Boret-algebra which is the smallest
algebra making alNz’s measurable. Recall that a point process with phase space
R? is, by definition, a Borel probability measure on the spdoef(R?). For the
background on point process, the reader is referred to Raldwere-Jones’ book
[3].

Given a stationary point process BA and\ > 0, we introduce the stationary
stochastic proces§ ™ = (NV),,cz« by the formula
NM(X) == the cardinality oftC N (n\ + [-A/2, A/2)7). (2)

n



Definition 1.2. A stationary point proces on R is calledlinearly rigid , if for
any \ > 0, the stationary stochastic proces§") = (N,(f))nezd is linearly rigid,
ie.,

N € Hy(N™).

The above definition is motivated by the definition due to Gharsd Peres of
rigidity of point processes oR?, see f] and [6]. Given a Borel subsef’ C R?,
we will denote

Fo=0({Np: B C C, Bbounded Borgl)

the o-algebra generated by all random variables of the fafpwwhereB C C
ranges over all bounded Borel subset§ofLet P be a point process dR, i.e.,P
is a Borel probability orConf(R¢), and denot&%, for the P-completion ofF¢.

Definition 1.3 (Ghosh p], Ghosh-Peresq]). A point proces® onR? is called
rigid, if for any bounded Borel seB c R¢ with Lebesgue-negligible boundary

0B, the random variablé&/z is rJ“]_Qtlgd\B-measurable.

Remarkl.1 Of course, in the above definition, it suffices to take Boré&d geof
the form[—~,~)? for v > 0, cf. [6].

A linear rigid stationary point process @t is of course rigid in the sense
of Ghosh and Peres. Observe that proofs for rigiditySj [6] and [1] in fact
establish linear rigidity. We would like also to mention atioa of insertion-
deletion tolerance studied by Holroyd and Sooh {vhich is in contrast to the
notion of rigidity property.

2 The Kolmogorov criterion for linear rigidity

In this note, the Fourier transform of a functign R? — C is defined as

-~

oy = [ r@e=tds.

R4
Denote byT? = R?/Z? the d-dimensional torus. In what follows, we identif
with [—1/2,1/2)¢. The Fourier coefficients of a measyreon T? are given, for

anyk ¢ Z%, by the formula

(k) = / ) e 001 (0), wherek - 0 == k0 + - - - + kqby.
T
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Denote byu x the spectral measure of, i.e.,
Vk € 2%, E(XoXi) = E(XpXnik) = / e ™ dux (0) = fix (k). (3)
Td

Recall that we have the following natural isometric isoniosm
H(X) ~ L*(T% px), (4)

by assigning toX,, € H(X) the functiond s ¢2™% € L2(T? ux).

Let ux = pq + s be the Lebesgue decompositionof with respect to the
normalized Lebesgue measurgdf) = dbf, - - -df, onT¢, i.e., i, is absolutely
continuous with respect ta andy is singular tom. Set

wx(8) 1= Pa gy,

dm

Lemma 2.1(The Kolmogorov Criterion) We have
-1/2
w)_(ldm) )

The right side is to be interpreted as zerd/jf wy'dm = oo.

dist(Xo, Hy(X)) = (/T

d

When the measurg is assumed to be absolutely continuous with respect to
m, Lemma2.1is a result of Kolmogorov, see Remark 5.17 in Lyons-St&il |

Corollary 2.2. The stationary stochastic proce&s= (X, ),,cz« is linearly rigid

if and only if
/ w)_(ldm = 00.
Td

Proof of Lemma&.1 We follow the argument of Lyons-Steif{)]. By the Lebesgue
decomposition of:, we may take a subset C T? of full Lebesgue measure
m(A) =1, such thaf,(A) = 1 andus(A) = 0.
Denote
Lo = span? (T #x)[e2m00 .y £ ().,

By the isometric isomorphisndlj, it suffices to show that

~1/2
dist(1, Lg) = </11‘d w)}ldm) ) (5)



wherel is the constant function taking valde Write
1=p-+h, suchthatp 1 Ly, h € Ly.

Modifying, if necessary, the values pfand’ on au-negligible subset, we may
assume that
1 =p(6) + h(0) forall § € T

Sincep L Ly, we have

0= (p,e”™ [2(quy = / p(0)e ™04 (0), foranyn € Z*\ 0.  (6)
Td
Therefore, the complex measuyse du is a multiple of Lebesgue measure, i.e.,

there existg € C, such that
p-dp = Edm.

It follows thatp must vanish almost everywhere with respect to the singoliar-c
ponenty, of 1, andp(#)wx (§) = £ for m-almost every € T¢. Thus we have

1PNl 22w = 1Pl 22(dpa) (7)

and

h(f) =1 — Ewx ()™ for m-almost every) € T (8)

Case 1: [, wy'dm < oco.
Define a functionf : T? — C by f = wy'xa. Thenf € L?(du)© Ly. Indeed,

s = [ oxtadn= [ wiidua= [ wildm < oo
Td Td Td
And, for alln € Z%\ 0,
(f, ™) L2 (ay) = / wx (0) "' xa(0)e ™0 du(9) = / e~ %dm(9) = 0.
Td Td
It follows that f L A, i.e.,

0=<(h, f)ro@n = /Td hwilx,qd,u = /Td hdm.



By (8), we get
/ (1= éwil)dm = 0,
']Td
and hence

£ = </]1‘d wytdm)™.

It follows that
st (1, Lo)? = a0y = [Py = € | itoxdm =&

This shows the desired equality)(

Case 2: [, wy'dm = oco.
We claim thatt = 0. If the claim were verified, then we would get the desired
identity in this case
dlSt(l, L(]) =0.

So let us turn to the proof of the claim. We argue by contraafictlf ¢ # 0, then
p # 0 and

||P||%2(du) = ||P||%2(dua) = 52“%}1”%2(@@) =& /Td Wildm = 0.

This contradicts the fact thate L?(du). O

Remark2.1 The same argument shows that, in the case of one-dimensimeal
the following assertions are equivalent:

® D Xk €5PANLX; ¢ [j] = 4 1

e foranyay, - -, a, € (=1/2,1/2)\ {0}, we have

7?_ ei27r9 o ei27r04j 2 ei27r9 o e—i27rozj 2
[ i E @) o
T

(.UX(Q)

It would be interesting to find a similar characterizatiom foulti-dimensional
time as well.



Denote byCov (U, V') the covariance between two random varialblesndV:
Cov(U,V)=EUV)—-E(U)E(V).
If X = (X,).cze IS a stochastic process such that

> [Cov(Xo, X,,)| < o0, (9)
nezd
then we may define a continuous function®hby the formula
wx(0) =" Cov(Xy, X,,)e>™ . (10)
nezd

Lemma 2.3. Let X = (X,),cz« be a stationary stochastic process satisfying
condition(9). Then we have the following explicit Lebesgue decompasitio

Hx -
Ux = (EX0)2 00 + wx -m, (11)

whered, is the Dirac measure on the poifitc T¢ andwy is the function ori®
defined by(10).

Proof. Note that, under the assumptid@),(the functionvy () is well-defined and
continuous orT“. For proving the decomposition (), it suffices to show that the
Fourier coefficients ofix coincide with those ofx := (EX()?- dp +wx - m. But

if n € Z4, then

iy (n) = (EXo)? + Cov(Xo, Xn) = E(XoX,) = fix(n).

The lemma is completely proved. O

3 A sufficient condition for linear rigidity

Theorem 3.1.Let X = (X,,),cz be a stationary stochastic process. If

sup (N > Cov(Xo,Xn)) < 00, (12)

N2l In|>N
and

> Cov(Xo, X,) = 0. (13)

nez

ThenX is linearly rigid.



Remark3.1 The condition {2) is a sufficient condition such that the spectral
densitywy is a function in the Zygmund class. (1), see below for definition.
The condition {3) implies in particular thaby vanishes at the poiite T.

We shall apply a result of F. MoricZLp, Thm. 3] on absolutely convergent
Fourier series and Zygmund class functions. Recall thahéiramousl-periodic
functiony defined orR is said to be in th&@ygmund clasa.. (1), if there exists a
constant” such that

lo(x + h) = 2¢(x) + (x — h)| < Ch (14)
for all z € R and for allh > 0.

Theorem 3.2(Moricz, [12]). If {¢, }nez € Cis such that

sup (N Z cn) < 00, (15)

N2L\ o en

then the functiop(0) = >~ _, ¢,,e?™ is in the Zygmund class. (1).

nez
Proof of Theoren3.1 First, in view of (L0), our assumptionld) implies
wx(0) =0.
Next, by TheorenB.2, under the assumptiod?), we have
wx € A(1).
Since all Fourier coefficients ofy are real, we have
wx () = wx(—0).
Consequently, there exists > 0, such that

wX(Q) _ (UX(@) —|—2(A)X(—8) _ wX(G) +wx(2—8) — QWX(O) S C‘@‘,

-1 .
/wX dm = oo,
T

and the stochastic process = (X,,),cz is linearly rigid by the Kolmogorov
criterion. O

whence



4 Applications to stationary determinantal point pro-
cesses

In this section, we first give a sufficient condition for limegidity of stationary
determinantal point processes Bnand then give an example of a very simple
stationary, but not linearly rigid, determinantal poinbpess oriR?. We briefly
recall the main definitions. LeB C R? be a bounded Borel subset. LE&t; :
L*(R?) — L*(R?) be the operator of convolution with the Fourier transfogm

of the indicator functiony z. In other words, the kernel af 5 is

Kp(r,y) = x5(z —y). (16)

In particular, ifd = 1 andB = (—1/2,1/2), then we find the well-known Dyson
sine kernel
sin(m(x — y))

m@—y)
Note that we always hav& z(z,z) = K5(0,0).

Denote byPj, the determinantal point process inducediy. For the back-

ground on the determinantal point processes, the readsersed to §], [9], [11],
[13].

Proposition 4.1. Let P, be the stationary determinantal point process®h
induced by the kerngk s in (16). For any A > 0, denote byN® = (N\M), <z
the stationary stochastic process associateltg as in(2). Then

Ksine(xa y) =

> |Cov(NPY, NV)| < o0 (17)
nezd
and
> Cov(NY, NW) =o0. (18)
nezd

Proof. Fix a number\ > 0, for simplifying the notation, let us denots" by
N,.. Denote for any, € Z¢,

Qn =nX+[=)/2,1/2)%.

By definition of a determinantal point process, we have

E(N,) = E(Ny) = ; Kp(z,z)dr = A K3(0,0).



If n # 0, we have
Ko(e,2) Kole,y)
N,) = . dxd
0Nn) // Xao@Xan W) | fe( 0y Kop(yy) |5
A2EL(0,0)? / / K gz, y)Pdady,
QOXQn

whence

Cov(Ny, N, j(/] |Kp(z,y)|*dxdy. (29)
QOXQn

We also have

Z XQO XQO ]

=E Z XQo (l’) Z XQo (x>XQO (y)]
z,yeX,x#£y

zeX
B KB( ) KB(SC,y)
— o KB(a:,x)dx+// XQo (Z)Xqo (¥) Kp(y,z) Kg(y,y)

— A0, 0) + A*E5(0,0)° — / / K, ) Pdady,
QoxQo

dxdy

whence
Cov(No, o) = Var(No) = X'Kp(0.0) = [ |Kaeg)Pdsdy. (20
QoXQo
Now recall thatK 'z is an orthogonal projection. Thus we have

K5(0,0) = K, z) = / Kl g)fPdy = 3 / Ks(r,y)lPdy.  (21)

nezd

The identities 19), (20) and 1) imply that

COV NQ, )\ KB dx KB xZ, 2d
3 (0,0) - /Q Z/|<y>|y

neZd "

= M Kp5(0,0) — MK5(0,0) = 0.

Moreover, the above series converge absolutely. Propaositil is completely
proved. O
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Remark4.1 By LemmaZ2.3 and Propositiorl.1, we see that for any stationary
determinantal point process induced by a projection, tleetspl density of the
associated stochastic procegs always vanishes ék

4.1 Stationary determinantal point processes ofR

Theorem 4.2. Assume thaB C R satisfies

sup (R / \»@@Pdé) < . 22)
R>0 l¢|>R

Then the stationary determinantal point procéss, is linearly rigid.

Proof. By definition of linear rigidity, we need to show that for any> 0, the
stochastic process ) = (Nr(f))nez is linearly rigid. As in the proof of Proposi-
tion 4.1, we denoteV,") by N,. By Theorem3.], it suffices to show that

sup | N > [Cov(No, N,)| | < oo, (23)
N>1
[n|>N
and
> Cov(Ny, N,,) = 0. (24)
nez

By Proposition4.1, the identity @4) holds in general case. It remains to prove
(23). By (19), we have

sup [ N Z |Cov (N, N, supN// IXs(z — y)|Pdzdy
N>1 N>1 U On
In|>N In|>N
< sup AN [X5(6)[*d¢ < oo
N2 g v-na

where in the last inequality, we used our assumpti#).(Theoremd.2is proved
completely. O

Remarkd.2 WhenB is afinite union of finite intervals on the real line, the rigyd
of the stationary determinantal point proc&ss, is due to Ghoshd].

11



4.2 Tensor product of sine kernels
In higher dimension, the situation becomes quite differeat
S=1xI=(-1/2,1/2) x (-1/2,1/2) C R

Then the associate kerngls has a tensor formK g = K ® Kgne, that is, for
x = (71, 22) andy = (y1, y2) in R?, we have

Kile) = Koo, ) (5.) = S0 =)l )

Proposition 4.3. The determinantal point proce®s is not linearly rigid. More

precisely, letNV () = (N}L”)nep be the stationary stochastic process given as in
Definition1.2, then
NV ¢ Hy(NWD).

To prove the above result, we need to introduce some extagiont First, we
define the multiple Zygmund clags. as follows. A continuous functiog(x, y)
periodic in each variable with periotlis said to be in the multiple Zygmund
classA.(1,1) if for the double difference difference operatds , of second order
in each variable, applied tp, there exists a constant > 0, such that for all
x = (x1,29) € (—1/2,1/2) x (—=1/2,1/2) andhy, hy > 0, we have

|Ag20(w1, T2; by, ha)| < Chyhy, (25)
where
Ao op(w1, o5 by, ho) 1= (21 + ha, w2 + hy) + (21 — h1, 22 + ha)
+ @(x1 + hy, 22 — hg) + (21 — ha, w2 — ha) — 2¢(21 + hy, T2)
—2p(xy — hy,x9) — 2p(x1, T2 + he) — 2p(x1, T2 — he) + dp(21, T2).

The following result is due to Fulop and Moéricz [Thm 2.1 and Rem. 2.3]

Theorem 4.4(Fulop-Moricz) If {c;.};rez € Cis such that

sup MN Z lejk] | < oo, (26)

N21,M21 41> N, k[ > M

then the function
80(91792) — Z Cjk6i27r(j91+k?92)

J,kEZ
is in the Zygmund class, (1, 1).

12



Let us turn to the study of the density functiog.).

Lemma 4.5. There existg > 0, such that for any;, 6, € (—1/2,1/2), we have
wy (01, 02) = c(|01] +[62]).

Proof. To make notation lighter, in this proof we simply writefor w ).

DenoteS,, = S x (n+ S) wheren + S := (—=1/2+n4,1/2+ny) x (—1/2+
ns, 1/2 + ny). By the same argument as in the proof of Theore®) we obtain
that for anyn = (ny,ny) € Z*\ 0,

Bn) = — / Ks(z, y)Pdedy,
S7L

and

©(0) = Kg(0,0) — [ |Ks(z,y)|*dzdy.
So

The following properties can be easily checked.
® > cpnp(n)=0.
o W(einy, e9ng) = W(ny, no), Whereey, g5 € {£1}.
e there exist, C' > 0, such that

¢ < [B(n1, mo)| < ¢
L+n))1+n3) — S a1+ n3)

For instance) .. &(n) = 0 follows from Propositiord.1. These properties
combined with Theorem.4yield that

e w(0,0)=0.
o W(6191,€292) = w(@l, 92) for anye;,eq € {:l:l} and6’1, 0y € (—1/2, 1/2)
e the functionw (64, 67) is in the multiple Zygmund class. (1, 1).

Hence there exists' > 0, such that

|w(91,92) - W(Ql,O) - w(0,92)| S 0‘9182‘ (27)

13



Lemma 4.6. There exists > 0, such that
w(@l,O) > C|91| and UJ(O,HQ) > C|92|. (28)

Let us postpone the proof of Lemmat and proceed to the proof of Lemma
4.5, The inequalitiesZ7) and £8) imply that

w(91,92) Z C(|91| + |92|) — C|9192|

To prove the lower bound of type as in the lemma, it sufficesoogit when|6, |
and|f,| are small enough, for instanc,'|0, | < ¢, then we have

w(b,02) = 5 (|61] +[62]).

N o

Now let us turn to the

Proof of Lemmat.6. By symmetry, it suffices to prove that there exists- 0,
such thatv(6,,0) > |6,]. To this end, let us denote; () := w(6;,0). Then
w1(0) = 0 and there exists > 0 such that ift # 0, then

Su(k) < 0 and |G (k)| > ¢/(1 + k),

Indeed, we have

wi (b) = Z Z (K, ng)e™,

kEZ no€Z

if £ # 0, thenw(k, ny) < 0 and hence

/

@) =S @k o) = Y (Hn%;(HkQ) >

no€Z no€Z

Note also thatv; (0) = w(0,0) = 0, hence

14



It follows that

12mk61 + 6—i27rk91

= D DR = 3 G (k) (—— -1)
= > —0i(k)(1 - cos(2rkbr)) = > |@1(k)|(1 - cos(2mkb)))
kEZ k40 kEZk#0

v

c//Z ﬁ(l — cos(27r(2j — 1)91))-

Combining with the classical formulae

e 2
(21?7 87

o] =

1 2 X cos(2(25 — 1)7ra)
- - — , for —1/2,1/2);
1AL e ra e (12,172
we obtain that

2
)T
wl(ﬁl) 2 C/ 7“9”

Proof of Propositio.3. By Lemmaz2.1, it suffices to show that

/T Wik dm < oo. (29)

By Lemma4.5, the inequality 29) follows from the following elementary inequal-
ity

1
7d91d92 < Q.
/|91<1/2,92|<1/2 |01] + |02

15
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