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Cesaro convergence of spherical averages
for measure-preserving actions
of Markov semigroups and groups

Alexander Bufetov? Mikhail Khristoforov! Alexey Klimenko?

Abstract

Cesaro convergence of spherical averages is proven for measure-
preserving actions of Markov semigroups and groups. Convergence in
the mean is established for functions in LP, 1 < p < oo, and pointwise
convergence for functions in L. In particular, for measure-preserving
actions of word hyperbolic groups (in the sense of Gromov) we obtain
Cesaro convergence of spherical averages with respect to any symmet-
ric set of generators.

1 Introduction

1.1 Formulation of the main results

Let T" be a finitely generated semigroup. Choice of a finite set of gener-
ators O endows I' with a norm |-|p: for ¢ € I' the number |g|o is the
length of the shortest word over the alphabet O representing g. Denote
So(n) = {g: lglo = n}.

Assume that the semigroup I' acts on a probability space (X,v)
by measure-preserving transformations, and for g € I' let T, be the corre-
sponding map. Now take ¢ € L'(X,v) and consider the sequence of its
spherical averages
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(here and everywhere # stands for the cardinality of a finite set; if Sp(n) = @,
then we set s,(¢) = 0). Next, consider the Cesaro averages of the spherical
averages:

ex() =%Zs ().

The main result of this paper establishes mean convergence of the av-
erages cy(p) for ¢ € L'Y(X,v) and pointwise convergence of cy(¢p)
for ¢ € L>®(X,v) in the case when I' is a Markov semigroup with re-
spect to the generating set O.

Recall the definition of Markov semigroups. As before, let I be a semi-
group with a finite generating set 0. For a finite directed graph G with
the set of arcs £(G), a labelling on G is a map £: £(G) — O. Let vy be
a vertex of G and let P(G,vg) be the set of all finite paths in G starting
at vg. To each path p =e;...¢e, € P(G,vy) we assign an element £(p) € I'
by the formula

§(p) = &(er) - Elen)-

The semigroup I' is called Markov with respect to a finite generating set O
if there exists a finite directed graph G, a vertex vy of G, and a labelling
¢: £(G) — O such that the lifted map &: P(G,vg) — I is a bijection, and,
furthermore, for a path p € P(G,vg) of length n we have |{(p)|o = n.

For example, a theorem by Gromov [15] states that a word hyper-
bolic group is Markov with respect to any symmetric set of generators
(for cocompact groups of isometries of Lobachevsky spaces, the Markov
property had been established earlier by Cannon [9]; a detailed exposition
of the proof of Gromov’s theorem can be found in the book of Ghys and
de la Harpe [11]).

We are now ready to formulate the main result of the paper.

Theorem 1. Let I' be a Markov semigroup with respect to a finite generat-
ing set O. Assume that I acts by measure-preserving transformations on a
probability space (X,v). Then for any p, 1 < p < oo, and any ¢ € LP(X,v)
the sequence of Cesaro averages of its spherical averages

converges in LP(X,v) as N — oo. If, additionally, ¢ € L>*(X,v), then
the sequence cn(p) converges v-almost everywhere as N — 0.



Corollary 1. Let I be an infinite word hyperbolic group (in the sense of Gro-
mov), and let O be a finite symmetric generating set for I'. Assume that
[ acts by measure-preserving transformations on a probability space (X,v).
Then for any p, 1 < p < oo, and any ¢ € LP(X,v) the sequence of Cesdro
averages of its spherical averages
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converges in LP(X,v) as N — oo. If, additionally, ¢ € L>*(X,v), then
the sequence cn(p) converges v-almost everywhere as N — 0.

Under additional assumption of exponential mixing of the action,
pointwise Cesaro convergence for spherical averages of functions from L2
for measure-preserving actions of word hyperbolic groups was obtained by
Fujiwara and Nevo [10]. L. Bowen [2] proved convergence of spherical aver-
ages for actions of word hyperbolic groups on finite spaces. Both Fujiwara
and Nevo [10] and L. Bowen [2] also proved that in their setting the limit is
invariant under the action.

Our result applies to all measure-preserving actions of all finitely-
generated infinite word hyperbolic groups. Our argument, however, does not
give any information about the limit.

Question. In Theorem 1, when is it true that the limit is I'-invariant?

We conjecture that it always is in Corollary 1.

1.2 History

First ergodic theorems for measure-preserving actions of arbitrary countable
groups were obtained by Oseledets in 1965 [21]. Oseledets endows a countable
group I' with a probability distribution u satisfying p(g) = u(g™!), g € T,
and establishes pointwise convergence of the sequence of operators

SE =" 1 ()T,

gerl

as n — oo (here u®) stands for the k-th convolution of the measure p).
To prove pointwise convergence Oseledets uses the martingale theorem
in the space of trajectories of the Markov chain corresponding to the self-
adjoint Markov operator S%“ ); the argument of Oseledets is thus a precursor,
in the self-adjoint case, of Rota’s “Alternierende Verfahren” argument [22].
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For uniform spherical averages corresponding to measure-preserving ac-
tions of free groups convergence in the mean was established by Y. Guivarc’h
[16], who used earlier work of Arnold and Krylov [1] on equidistribution of two
rotations of the sphere.

In 1986, R.I. Grigorchuk [12] (see also [13], [14]) obtained pointwise con-
vergence of Cesaro averages of uniform spherical averages of L!-functions
for measure-preserving actions of free groups. The limit is invariant under
the action of the group.

For functions in L?, pointwise convergence of uniform spherical averages
themselves was established in 1994 by Nevo [17], and for functions in P,
p > 1, by Nevo and Stein [19]. The limit was proven to be invariant under
the subgroup of elements of even length. Whether convergence of uniform
spherical averages holds for functions in L' remains an open problem (re-
call that, as Ornstein showed [20], powers of a self-adjoint Markov operator
applied to a function in L' need not converge almost surely).

In [7], pointwise convergence of uniform spherical averages is obtained
by applying Rota’s “Alternierende Verfahren” Theorem to a special Markov
operator assigned to the action. This approach also yields pointwise conver-
gence of non-uniform spherical averages corresponding to Markovian weights
satisfying a symmetry condition [7].

Convergence of Cesaro averages on non-uniform spherical averages for ac-
tions of free groups and free semigroups holds for general Markovian (and,
in fact, for general stationary) weights [4], [5], [6]. The motivation behind
considering such Markovian weights is precisely to establish ergodic theorems
for actions of Markov groups, in particular, of word hyperbolic groups.

The results of [6], however, can only be applied to groups that are coded
by admissible words in an #rreducible Markov chain; in fact, to prove invari-
ance of the limit function, even a stronger condition is needed, which is called
strict irreducibility in [6] and is equivalent to the triviality of the symmetric
o-algebra of the corresponding Markov chain with finitely many states.

For some groups, a Markov coding is known explicitly: for instance,
for Fuchsian groups such a coding has been constructed by Series [23].
The Series coding does in fact have the strict irreducibility property, and
pointwise convergence of Cesaro averages of uniform spherical averages
for measure-preserving actions of Fuchsian groups and for functions in L' is
established in [8], extending the earlier theorem of Fujiwara and Nevo [10]
for functions in L2

For general word hyperbolic groups, however, it is not clear whether
the Markov coding is irreducible. The main result of this paper is that
convergence of Cesaro averages of spherical averages still holds without the
irreducibility assumption.
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2 Paths and operators

Let us introduce some notation regarding a directed graph from the definition
of Markov groups. Consider a finite directed graph G (loops and multiple
edges are permitted). The sets of vertices and edges (arcs) of G are denoted
as V(G) and £(G) respectively. For an edge e, I(e) and F(e) are its initial
(tail) and terminal (head) vertices. Denote

E(G,u,v)={e€&(Q)|I(e) =u,F(e) =v}.
Then, let P(G) be the set of finite paths in G, that is,
P(G) = {l = €163 ...€L ‘ [(6]') = F(ej,l)}.

Denote by [I| the length of a path I.
Let (X,v) be a probability space. Assume that to every arc e € £(QG)
a measure-preserving transformation 7, of (X, v) is assigned. In this case
we say that G is labelled by measure-preserving transformations of (X, v).
The map e — T, is naturally extended onto P(G) by formula

Teyon =Te, ... T,

cLeg-

The action of 7}, I € P(G), induces a standard action on the space LP(X, v):
Ti(p) = @ o T;. For any finite subset L C P(G) introduce an operator s(L)
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on LP(X,v) acting by the formula

T
leL
if L # &; we set s(&) = 0.
In particular, denote

Ly ={l€P(G) [ I(I) = u, F(I) = v, |I| = n},

that is, LS, is the set of all paths from u to v of length n. Define s$,, =

u,v,n

s(LS,,,) and let ¢§ v be their Cesaro averages:

u,v,n
N-1
G _ i G
Cu,v,N N Su,v,n'
0

Analogously, denote LS

e = Uvev(G) Luvn and define
N-1
G G 1 G

U,*,v/7

sS,  =s(L

U,*,n

Cu,*,N - N Su,*m'

n=0
Theorem 2. Let G be a finite directed graph labelled by measure-preserving
transformations of a probability space (X,v). Then for operators cqu’N and
CUGM,N defined above, the following statements hold.
la. For any p € LP(X,v), p € [1,00), the sequence {c$, y(p)}¥=, converges
in LP(X,v).
1b. For any ¢ € L™(X,v) the sequence {c, y(©)}¥=1 converges v-almost
everywhere.
2a. Forany ¢ € LP(X,v), p € [1,00), the sequence {c§ , x(0)}N=1 converges
in LP(X,v).
2b. For any ¢ € L™(X,v) the sequence {c5 , \(p)}=, converges v-almost
everywhere.

Statements 2a-b of Theorem 2 immediately imply Theorem 1. Indeed, if
we assign the map Tg() to an edge e, then

8”(90) = SUGO,*,n<()0) .

Now we proceed to the proof of Theorem 2. Define a square matrix M (G)
of order #V(G) with entries being operators on L!'(X,v) by the formula

M<G>u,v = Z 7.

ec&(G,u,v)



Denote also M°(G),, = #E(G,u,v). Note that if 1 is the function that
equals 1 everywhere, then 7.1 = 1 for any e € £(G). Define the following
class of operators.

Definition 1. A class BT of operators on L'(X,v) is a set of all operators
A: LN X,v) — LY(X,v) such that

1. there exists A(A) € R such that A(1) = A(A4) - 1,

2. if f > 0 (that is, f(x) > 0 for almost all x € X)) then Af > 0,
3. A(LP(X,v)) C LP(X,v) for all p € [1, o0],

4 [ Aflly < Al for any p € [1,0c], f € LP(X,0).

It is clear that this class is a convex cone, that is, it is closed under linear
combinations with nonnegative coefficients. Since all 7,’s belong to this class,
the same is true for M(G),,,, and

)‘(M(G)u,v> = Z MT.) = Z 1= MO<G)u,v

ec&(G,u,v) e€€(G,u,v)

Then, consider an n-th power of the graph G, that is, a graph G’ = G",
where V(G') = V(G), £(G') = {l € P(G),|l| = n}, and I(l) = I(ey),
F(l)=F(e,) forl=¢e;...e, € E(G).

By definition, M(G"),, ZleLG . It is also clear that (M(G))" =
M(G™), and -

MM(G)")uw) = (M*(G)")up = # Ly -

Now if we define an operation P on the class B" as P(T) = T/\(T) if T # 0,
P(0) = 0, then we have

Con = PG s), oy = Z P(M(G"))u)

Similarly,

sg,*,nzp(z<M<Gn»m,v), zp(z Gn»m).

vEV(G) veV(G)



3 The Main Lemma

The proof of statements la—b of Theorem 2 is obtained through a decom-
position of the graph G into smaller blocks. The basic (non-decomposable)
situation is the case of a strongly connected graph (that is, a graph such
that for any its vertices u,v there exists a path from u to v) and in this
case the theorem is proven in [6]. A step of the procedure starts with a
decomposition of the set V(G) into two disjoint nonempty sets Vi, Vo with
no arcs from V, to V;. Then we apply Theorem 2 to the induced subgraphs
with these sets of vertices (that is, a graphs Gy, i = 1,2, with V(G;) = V;
and £(G;) ={e € £(G;) : I(e), F(e) € V;}), and use Lemma 1 (see below),
which is the main technical statement of the paper. The statements 2a—b of
Theorem 2 are deduced from the statements la—b using the same lemma.

Definition 2. A sequence {z,}%,, x, > 0, is called regular if there exists
a number ¢ € N such that for each r = 0,...,¢ — 1 one of the following
statements holds:

(a) Zgryr = 0 for all but finite number of k£ > 0,

: Tgk4r
= > 1.
(b) kh_)Igo bk 1 for some a >0,be N, c>1

Definition 3. A sequence {T},},, T,, € B*, is called pre-convergent if
1. the sequence {A(T,)}, is regular;

=

-1

P(Tn)(go)} converges

==

2. for any ¢ € LP(X,v) the sequence {

i
o

in LP(X,v) as N — o0;

=

-1

P(Tn)(go)} converges

==

3. for any ¢ € L*>®(X,v) the sequence {

3
Il
o

almost everywhere as N — co.
In these terms, Theorem 2 can be reformulated as follows.

Proposition 1. Under conditions of Theorem 2 the following statements
hold.

1. For any induced subgraph G’ of the graph G the sequence {(M(G")" )y }tn
is pre-convergent for any u,v € V(G').

2. The sequence
{ ¥ e

veEV(G) n

is pre-convergent for any vy € V(Q).



The first statement of Proposition 1 is equivalent to the statements 1a—b
of Theorem 2 for all induced subgraphs of G. This is convenient for our
inductive argument. The basis for the induction is the following theorem.

Theorem 3 ([6]). If a graph G is strongly connected, then the sequence
{(M(G)™)yw}n is pre-convergent for any u,v € V(G).

Remark. 1. Regularity of the sequence {A((M(G)™)uw)}n = {(M°(G)")uw}n
in the case of strongly connected graph follows from the Perron—Frobenius
theorem.

2. Convergence of ¢Z,  in L'(X,v) and almost everywhere (for functions
in L'(X,v)) is shown in [6] (see Theorems 1, 2; note that strong connectiv-
ity of G is called irreducibility of A = M°(G) in [6]). LP-convergence for
functions in LP(X, v) follows immediately.

The step of the inductive procedure relies on the following lemma.

Lemma 1. If sequences {F,,} and {G,} of operators from the class BT are
pre-convergent, then the following ones are also pre-convergent:

1. {Hﬁl)}n, qY = E, forn >ne, HY € B*;
2. {HT(LZ) = Foinmtn for any M € Z;
3. {HP = AF,},,, {HP™ = F,A},, where A € B*;

5. {HY = iimen FiGn b
We now derive Proposition 1 from Lemma 1.

Proof of Proposition 1. 1. The proof of the first statement is by induction
on the number of vertices in G'.

(a) Any graph G’ with #V(G’) = 1 is strongly connected, thus we can
apply Theorem 3.

(b) Take any induced subgraph G’ with k vertices and suppose that
the statement holds for any induced subgraph of G with less than k ver-
tices. Then there are two cases: (1) G’ is strongly connected; (2) G’ can be
decomposed as follows: V(G') = V3 U Vs, Vi, # @, and there are no arcs
from V5 to Vj.

In the first case we may apply Theorem 3. In the second case consider
graphs G2 that are induced subgraphs with V(G;) = V;. Since Gy have
less that k vertices, the theorem holds for them.



Now consider CS’;N. If u,v € V;, i = 1,2, a path from u to v can’t

leave G;, so (M(G')")y0 = (M(G;)™)uw, hence cfj;’N = CS;N, and the state-
ment is reduced to the one for G;. The case u € Vo, v € V] is even simpler:
there are no paths from u to v, so cuv y =0 forall V.

The only nontrivial case is u € Vi, v € V5. Here

(M(G,)n)u,v = Z (M(Gl)k)U,U’M(G,)U’,v’(M(GQ)m)v’,v
SV ey

and the statement follows from Lemma 1. Indeed, by assumption, the se-
quence {(M(G1)")uw In is pre-convergent, hence, by item 3b of this lemma,
the sequence {(M(G1)")uwM(G')w v }n is. Then, as {(M(G2)")y v }n i pre-
convergent by assumption, item 5 gives us that

{A =3 (M(G1) ) MG (M(G2) " )or 0},

k+m=n

is also pre-convergent. Now {A““*"'}, is pre-convergent by item 2, and,
finally the sequence

{a@yu = 3 A

v'eViu' eVa

n

is pre-convergent by item 4 of Lemma 1.
2. The second statement follows immediately from item 4 of Lemma 1.
O

4 Proof of Lemma 1

The rest of the paper is devoted to the proof of Lemma 1. The proof will
often use the following proposition.

Proposition 2. Let A € BY, ¢, € L¥(X,v), [[¢nlleoc < C, ©n(z) — p(z)
for almost all x € X. Then (Ap,)(z) = (Ap)(x) for almost all x € X.

Proof. Clearly, it is sufficient to prove this only for ¢ = 0.

Further, decompose ¢, as ¢, = ¢ — ¢, where <pn = max(0, £¢,),
loE ]l < ||<pn||OO < C. Therefore, if we prove that Apr 2 0, then Ay, =
Apt — Ap; 25 0. So we can assume that ¢, > 0.

Now, take ¥, (x) = sup{pr(z) | & > n}. Then ¢, (x) is monotonically
nonincreasing and tends to zero for almost all x € X. Since 0 < ¢,, < 9,
the same is true for their images: 0 < Agp, < Avy, and therefore, it is
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sufficient to prove that A, ——» 0. But as At,(r) is nonnegative and
nonincreasing, there is a limit 6(z) = lim, o A¥,(z), and, by monotone
convergence theorem,

| A, — 0], = /X Ao () — 0() dv(x) = 0

Therefore, A, — 0 in L'(X,v). But A is a bounded operator in L'(X,v)
and ||¢,]l1 — 0 (also due to monotone convergence theorem), so A, — 0
in L'(X,v). Thus 6(x) = 0 almost everywhere. O

Proof of Lemma 1. The plan of the proof is the following. After some prepa-
rations, we’ll prove the first condition in Definition 3 for all sequences { H, 1(1*)}n
(here and below the asterisk * denotes one of the symbols 1, 2, 3a, 3b, 4, 5),
and then we’ll prove the second and the third condtions of that Definition
simultaneously.

1. First of all, it is sufficient to prove that this lemma holds for the
sequences {A(F,)} and {\(G,,)} satisfying Definition 2 with ¢ = 1 (and that
in this case the sequence {)\(HT(L*))} is also regular with ¢ = 1).

Indeed, in general case we take ¢ to be the least common multiple of ¢p
and ¢ (i. e., ¢’s from Definition 2 for the sequences {F,}, and {G,},).
For % #£ 5, it is clear that for a given r = 0, ..., ¢—1 the sequence {Hé:lr}s de-
pends in the same fashion on one of { Fi sy, }s and {Gysi }s with some 7/, r”.

Now consider * = 5. Let k =qu+71", m=qu+7r" (u,v >0,0 <7 1" <
g — 1) and decompose the sum

> ne.
k+m=qs+r
into ¢ sums corresponding to all possible pairs (r’,r”) (there are only ¢ pos-

sibilities, since ' 4+ 7" =1 (mod q)):

g

_ 7,,/ 7,,//
qgs+r — § Ss ’ )

r’+r""=r (mod q)

where
7,./77,.// o o
Ss = E Fqu+r’ qu+r” - E FqUJrT/GqUJrT”?
u,v>0 u,v>0
(qutr")+(qu+r")=gs+r utv=gt = ="
q

that is, the sequence {S7""}, is the convolution of the sequences {Fys . }s
and {G s, }s shifted by # e {-1,0}.

11



2. Let us prove that the sequences {)\(HT(L*))}” are regular. For x =
1,2, 3a, 3b this is clear from the definitions. Let x = 4. If {\(F,,)} or {\(G,,)}
contains only finitely many nonzero elements, this is clear. Otherwise, let
(ap,br,cr) and (ag, b, cg) be the constants given in Definition 2 for these
sequences.

If (1) cg < Cp Or (2) cg = Cf, ba < bF, then

MG
lim M =0,
koo apkbrck,
" Fy + G
lim ACEL + Gi) —1
k—oo  apkbrck,
The symmetric cases (1) c¢r < cg; (2') cp = ¢, br < b are similar. The
only remaining case is cp = c¢g = ¢, bp = bg = b. Here
MEy,+ G
im A(EL A+ Gr) -1
k—o0 (CI,F + ag)kbCk

Now let * = 5. The case of finitely many nonzeros is again clear, otherwise

we can assume that cp > c¢g. There are two cases, cp > c¢g and cp = cg.

Suppose that cp > cg. Then
k+m=n o Z )\ (Fn m)
ap(n+ 1)brcl, ap(n+1)brct )
Let us prove that this sum tends to >~ M(Gp,)cp™.
Denote!

_ M) g, = MGm)

~ap(n4 1)y’ Tt om
and fix € > 0. Note that the series Y~ A (Gp)cp™ = > °_, B, converges
absolutely, so there is mg such that Zm>m0 Bm < €. Let A be an upper
bound for all a,,, n > 1 (it exists since a,, — 1). Then

Zﬁman m(n—m+1) Zﬁm
[anm(l_ |
3 huonen1- )" |+

m=mo-+1

> Bl

m=mgo+1

'We write (n + 1)® in the denominator instead of n® to have well-defined . Never-
theless, «,, tends to 1.

12



The last term is less than e, the second one is less than Ae and, if n is
sufficiently large, the first term is less than ¢, hence the whole difference is
less than (2 4+ A)e for sufficiently large n. Thus, {)\(H,(f)} is regular with

ag = arp Z )\(Gm)C;m, bH = bF, Cg = Cp.
m=0

Now let ¢r = ¢ = c¢. In this case we have

St MEONC)
apag(n + 1)brtbeticn

1 zn: A(F) MGy <k + 1>bF (1 k >bG
n+l k=0 ap(k + 1)bFC%JflG(n—k+1)chg_k n—+1 n41

/ \\ J/
-~ -~ -~

675 Brn—k Tn,k

and denote ay, 3, and 7, as it is shown here. Let us show that

1 — R
lim L Bn—k Yk — —— ke = 0.
n_>oon+1§ k03 kEVn.k n+1§7,k

Indeed, by Definition 2, the sequences {ay} {5k} tends to 1, hence there are
A, B such that ap < A, B < B for all k. Take any € < 1 and find p such
that |ag, — 1] < e, |Br — 1| < e for all £ > p. Then

n

1 1 <
An: n—k'Ink — o nk —
n+1zo"“6 Knk n+1zk:07”“

k=0
1 p—1 n—p n
n+1<z+ .S )<akﬁn_k-1m.
7Y

k=0 k= k=n—p+1

Since 0 < 7,5 < 1, any term of the first and the last sums is bounded
by AB + 1 and any term of the middle sum is bounded by 2¢ + 2 < 3e.
Therefore, we have

2p(AB + 1)+ 3e(n+ 1 —2p) <34+ 2(AB+1)p

A, <
- n-+1 n+1

If n is large enough then the last term is less than e, hence A,, < 4e.
It remains to find the limit




We have

L N IV R TR R
n—l—l%f%k (n+1) <n+2;<n+2>( n -+ 2

The first multiplier tends to 1. The second one equals the Riemann sum
of the function f(x) = 2°7 (1 — x)*¢ over the unit interval with the partition

Z' }n+2 41
= f = 2
{Z n—+2Ji=o’ {t: tJi=07

hence it tends to fol f(z)dz = B(bp+1,bg +1). Thus, in this case {A\(H"}
is regular with the constants

aH:aFaGB(bp+1,bG+1), bH:bF+bg—|—1, Cyg = C.

3. We proceed to the proof of the second and the third conditions in Def-
inition 3.
For x« = 1,2 the difference between Cesaro sums satisfies the relations

1N—l 1N—l 1n071

— Y PHWD) - =) P(F,)=— P(HV) - P(F,

ano(n) ano() anzo((") (Fn)),
1Nfl 1Nfl 1Mfl

— Y PHP) - =) P(F,)=— P(Fx4n) — P(F,

Nn:0 ( n) Nn:O ( ) Nn0(<N+) ( ))7

whence it tends to zero even in operator norm in any LP(X,v), p € [1, o0].
For x = 3a, 3b the conditions follows from the identities

N-1 N-1

1 1
— ) PHP) =P = P(F,
7 2 P =P (5 P ).
| Nl | Nl
— ) PHP) = (=) P(E,) |PA).
v X P = (5 X PR JP(a)
The only remaining cases are * = 4,5. Let us show that we can

make “approximate” normalisations of operators instead of “precise” ones
(that is, P(-)) in the second and the third conditions in Definition 3.
Speaking formally, the following holds.

14



Claim 1. Suppose that the sequence {T,},, T,, € B, satisfies the condition

T,
lim <b ):
n—oo qnlc’

with some a >0, b €N, and ¢ > 1. Let

~ T,
T, =———.
a(n + 1)ben

Then for any ¢ € LP(X,v) the sequences

=

-1
1 ~
ot ) = 1 L T(e)

S
iMM7
v

i™M

converge (in LP or a. e.) simultaneously and their limits coincide.

Proof. It X(T},) = 4, 7 — 1, then we have

N— N—
ICN — Cxllp = Z Z W1 =7)| <
n= P n=0 P
1 1
<% IRl 117l < 5 311 =),
n=0 n=0
and the latter is the Cesaro sum of z,, = |1 — ~,|, which tends to zero. Thus
the difference Cy — C tends to zero in operator norm in any LP(X,v),
p € [1,00]. O

Now let % = 4. If one of the sequences {F},}, {G,} has only finitely many
nonzero terms, we can use the lemma’s statement for { Hy (M }n. Otherwise take
the constants ap,br,cr, ag,bq, cg same as before and introduce operators
E,, G, I in the same way as in Claim 1.

From the previous section of the proof one can see that Y is either

ar o4 _4c_(r (if cp = cg and bp = bg), or E, + ,G,, with £, — 0

arp+tag aptag
(if cg < cp, or if cg = cp and bg < bp), or e b+ G, (in symmetric cases).

The convergence of Cesaro sums of ﬁ,(;l) in the first case is obvious, in the
two latter cases the term ¢, F,, (or £,G},) tends to zero in operator norm:

lenFull < enlllFullfapn®™ i) =01,

and so does the sequence of its Cesaro averages.

15



Finally, suppose * = 5. As usual, the proof is clear if {F,} or {G,}
contains finitely many nonzero terms, otherwise let ar ¢ g, brc o, cra,a be
the coefﬁcients in the regularity condition respectively for {\(F,)}, {\(Gn)},

{\(Hn )} Similarly to the case x = 4, we’ll prove convergence for the se-
quence
| N2
(5
{N Z r(L )(90)} N°
n=0

There are three cases, cp > cq, ¢p < ¢, and cp = cg. Suppose the first
one. Then ¢y = cp, by = bp, and for any ¢ € LP(X,v) we have

1 . 1 ap ~ (G k+1 \br
CN(<P)=Nn:0 n‘r’)(w):NHZwéF’“( c;p))'(k;jthrl) -
=1 ap Ak(Gm(sO)) ( k+1 )bF,
m:ONk<N7 aH C? k+m+1
S () i

Let A be chosen in such a way that ||F},|| < A for all k. Then we have

1

arp . ~
1Smx (@l < 5 D =Bl = el
k<N-—-m H

1 a MG Aa ANGn
amg Cp ag Cp

AGm)

b
k+1 >F<
k+m-+1 -

k<N-—m

Since > 0 A(Gm)cp™ < 00, we can choose mg such that

Qp
E AMGp)ep™ <e- : (3)
2 arllell

m>mo

Then we have
D Sma(e
m>mo
Further, let us find the limit of S,, y(¢) as N — oco. Denote
ap Gm ¥
wm = ( >7

ag Cg

< Ae. (4)

16



then

Sue) = 2 (5 X Bl -

_Nim > Fk(zﬁm)[l_(%)bw)' (5)

k<N-—m

Due to regularity of the sequence {Fj}, the first term in parentheses tends
in L? or a. e. to a function, which will be denoted as F°(1),,). Note also that
the equality

£
i

1
FO6) = lim — S"P(F)(6) = lim
n—oo N ‘ n—oo —

i
2|~

defines a linear operator F° € B*, with \(F") = 1.
The second term in parentheses in (5) is the Cesaro average for the se-
quence
~ k—+1 br
= ioni- (4]
which tends to zero in LP(X,v), p € [1,00], as k — oo. Thus S, v — F2(¢y,)
in L? or a. e. In particular, there exists NV, such that for any N > N,, we have

(6)

£
m0+1

1Smn () = FO ()l <

Similarly, for ¢ € L*(X,v), for almost all = there exists N,,(x) such that
for any N > N,,(x) we have

3

S () (@) = FWm) (@)] < .

(6)

Note also that (3) yields

>

m>mo

ar )\(Gm)
< Y el T <

p m>mg

whence, noting that || F°||, < 1, we obtain

iFo(wm) - FO(Z_Z ; Gmy))

Cp

< e. (7)

p

17



Now we can see that

Cn(p) —F°<Z—22GZ;@) = D Smn(p)+

%Osm,w) — F(n)) +
(mmz FO(n) - F(—z mfj G’Z;“”))),

and, if N > max(Ny,..., Np,), the estimates (4), (6), (7) give us the in-

equality
ap ~= G,
\ch)—FO(—FZ 2 2)
F

an m=0
Similarly, if N > max(Ny(z),..., Ny, (z)) for ¢ € L>®(X,v) then (4), (6),
and (7) imply

‘CN@)(:U) - FO(“—F i Gm(‘p)) (x)‘ < (24 Ae.

amg cr

< (24 A)e.

m=0

The second case cp < c¢¢ is treated similarly. Namely, the sum for Cn(p)
is decomposed into the sums

Senle) = 26 F, (% >, Gm(w)(HmTHH)bG). (8)

ay c
e m<N—k

The estimate of its norm for k£ > kg is the same, and the only difference is
in the proof of convergence of Si y(¢) as N — oo: the argument of F, in (8)
tends to G°(¢), so Sk tends (in LP or a. e.) to

CL_GFk<GO(<P))
ay Clé

I

with Proposition 2 being used in case ¢ € L>®(X,v).
Now consider the third case ¢ = ¢g = ¢. Here

N ap(k 4+ m)brtbc+l ck cm
n=0 k+m<N H< + )

and the lemma follows from Proposition 3 for X,, = F,c™, Y, = G,c". O

18



Proposition 3. Let X,,,Y,, € Bt be such that
1. the sequences {\(X,)/(n+ 1)} and {\(Y,)/(n+ 1)"} are bounded,

N-1

1 Xn
2. for any p € LP(X,v), p € [1,00), the sequences {NZ ﬁ}

and {N ; ﬁ} converge in LP(X,v) as N — oo,

1 N-1

Xou(p)
N nZ:O (n+ 1)“} and

e, Ya(o)
{N nZ:O ﬁ} converge almost everywhere as N — oo.

3. for any ¢ € L>®(X,v) the sequences {

Let Zy =3 iimen XiYm, w =u+v+ 1. Then

N-1

1 Zn
1. for any ¢ € LP(X,v), p € [1,00), the sequence { ju(f }
(n
n=0
converges in LP(X,v),
N-1
1 Zn
2. for any ¢ € L®(X,v) the sequence {Nno ﬁ} converges
almost everywhere.
Proof. 1. Let
N-1
L1 Xn(¥)
X)) = lim — Y 2 Y%p) = lim — 9
2 N N & (0t )% NEEONZ n+ ©)

These operators belong to BT. Indeed, the first two conditions are obvious,
and, to check the remaining two, one can see that

N—
0 [AXn)ellp 1 A(Xn)
| X (¢ )||p<hmsup Z CFSIL <11Jr\£1_§01<1) N;( 1y ellp,
Xop(@) S
X0 < limsu |7 < limsu 00
X°(p)(a)] N%opzv; 1) < limsup 5 Z ol

and note that the sequence

{i NZ MX,) }
N (n+1)* )y
is bounded by the same bound as the sequence {\(X,)/(n + 1)"},.
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2. Now introduce

X=X, (n+1)"X° Y =Y, (n+1)"Y°
These operators are bounded in any LP(X,v), p € [1,00], and the norms
| XN/ (n+ )%, |Y],/(n 4+ 1)" are bounded uniformly on p € [1, 00| and n
(indeed, these bounds are simply twice the bounds for ||X,|,/(n + 1)* =
AMX)/(n+ 1), ||Yallp/(n+ 1) = A(Y,)/(n + 1)¥). This is an analogue
of the first condition of the proposition; one can see that the second and
the third conditions hold for X, Y* in place of X,,, Y,,.
Furthermore,

Zn(p) Z X Ym(p)
(

() G 17

_ X*Y;L(SO) (m + 1)UX* .
_Em - (;m) (V) —

o 3 BN s G

(k+m+ 1) (k+m+1)w

(10)

k+m=n k+m=n

To prove Proposition 3, it is sufficient to prove (LP- and a. e.-) convergence
of Cesaro averages for each term in (10).

3. For the last term in (10) the proof is simple:

3 ) () (L () (- 52))

k+m=n j=1

Here the first multiplier tends to 1 and the second one is the Riemann sum
of f(z) = z“(1 — z)" with a partition of [0, 1] into n + 2 equal intervals, so
it tends to the Euler integral B(u+ 1,v+ 1). Therefore, the last term tends
to B(u+1,v+ 1)X°Y%(¢) and so do its Cesaro averages.

4. To prove convergence of the second and the third terms in (10), it is
sufficient to prove that Cesaro averages of

S DN oy BV

(k+m+1)v (k+m+1)w

k+m=n k+m=n

converge to zero in LP(X,v) for any ¢ € LP(X,v), p € [1,00), and a. e. for
any ¢ € L°(X,v). Indeed, for the second term we denote ¢ = Y?() and
for the third one we use either boundedness of the operator X° in LP(X,v)
or Proposition 2.

20



The expressions in (11) transform to another one when we swap X < Y,
u <> v, and k <> m, so we may deal only with the first of them.

Denote .

3

1
— = A, ().
=
By construction, ¢, tends to 0 in Lp(X, v) for ¢ € LP(X,r) and almost
everywhere for ¢ € L>(X,v). Further,

X:L = (n + 1)u(<n + 1)An+1 - nAn)a

thus

1 (m+1)"Xi(p)
CN:NX_: %:n (k+m+1w

1 (m+1)°(k + 1)*
N 2 (k+m+ 1)

((k + 1) 41 — lﬂpk),
k4+m<N

and, rearranging the sum, we have

Nkl

k (m+1)%k" ) (k+ 1)
- (S - e o

k=1 m=0 =0

Now we’ll use the following statement.
Claim 2. Let ayi € R, & € Z, where Z is a normed space. Suppose that

1. & — 0 as k — oo,
2. for any fized N, there are only finitely many k’s with oy # 0,
3. for any fired k, oy — 0 as N — oo,
4. there is such C that _,|ank| < C for any N.
Then Y, an &k — 0 as N — oo.

Proof of Claim 2. Let ||| < R for any k. Take any ¢ > 0 and choose kqy
in such a way that ||| < e for k > ko. Since

Z‘O{N7k| —0 as N — oo,
k<kg
we can choose Ny such that for any N > N

D lansl <e.

k<ko
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Therefore, for any N > N, we have

|5 awate]| < Dlawallicah = Y lawallignll + D lanalléell < =R+ Ce,
k k k<ko k>ko

and the claim is established. 0

We apply Claim 2 to (12) either with & = ¢, = = LP(X,v)
(if ¢ € LP(X,v)) or with & = ¢r(z), = = R (if ¢ € L>®(X,v)). Ob-
viously, &, — 0, and we need to check conditions on ay , where

k[(N — k+1 NE! 2 (k+ 1)
ANE =N -+ P (m +1)° <m+k)w_(m+k+1)w)}
(13)
for £ = 1,..., N, otherwise any; = 0. The value in round brackets is

of the form f(k) — f(k+ 1) for f(z) = 2" /(z +m)", so we apply the mean
value theorem to it.
There are two cases: u > 0 and v = 0. In the first case,

K (E+1" | . Cat Hum — (v 4 1)y
(m+k)w o (m+k+ l)w - ‘f ('Tm)| - (:L,m+m)w+1 =

(k+1)*tum+ (v+ 1)z, < (k+ 1)t

1
= m k) T +m = (m+k)w(u+v+ )
(here x,,, € [k, k + 1]). Thus we have
| |<kH%N k4 1) mﬁSilm+ +)
«
wet1.. N—k—1
< 1 N k(k+1) Z 1
N N 2 (m+ k)
The sum Y 22, j~ ) is estimated as
= 1 1 = 1
Zjqul = gl T Z jutl <
=k j=k+1

1 +/+Oo de 1 N 1 <(1+1>1
fout1 . putl _k;u-i—l ukv — w/ kv

22



Continue estimation for |ay |:

1
< —(1
|aN’k|_N( + U kv

1 w(l+u) k+1
—|1 .
N( N u (

k

w(l+u) k(k+ 1)u—1) _

) a(

. 2u—1) )

Hence ay i — 0 as N — oo for any fixed £ , and

Z|04N,k‘ <1+
%

w(l 4+ u) gu-1

u

Thus in the case v > 0 all conditions of Claim 2 hold.

Now let v = 0. Here

1 1 =l w
(m_|_k)w <m+k_|_1)w —(I'm—i—m)erl - (m_|_k)w+1’
and
N—k—1
1k (m+1)"
< - 4
|OéN,k|_N‘|—N mzo w(k+m)”+2_
1 kwN‘Zk“:‘l 1 1 kw2 1420
N'N & h+tmpP "N N 'k N

hence oy — 0as N — oo and ), Jan k| <1+ 2w.

5. It remains to consider the first term in (10). Denote

hence
Xy =(n+ 1)”((n + 1A — nAn),
Therefore, this term equals

N-1

2. 2.

n=0 k+m

XiYole)
< (k+m+1)» B

(k+1)“(m+1)"
(k+m+1)w

Cy =

2= ==

k+m<N-1

Yy =(n+1)"((n+1)Bui1 —nB,).

< ((k + 1) Agss — kA ((m + 1) Byss — mB)(9):
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Rearranging the terms we obtain?

L1 ktm®
Cv=% 2 (—[k+m§N+1]

o (k+m—1)»
—%[kijSN]—%[kijSN]

(k + 1)"(m + 1)°

GTmii)e [kerSN—l])kmAkBm(cp).

This sum Cy is decomposed as Cy = C’](\P + C’](\?), where

é(l) N 1 Z ( k*m" (k —+ 1)“m”
(

N o kE+m—1)v (k+m)v
k4+m<N
E*(m+1)"  (k+1)*(m+1)"
- kmALBn(y), (14
(k +m)» (k+m+1yw )0k (), (14a)
~ 1 k*m?
c? = — N kmALB,, (o)
V- T kmas)
k,m>1
k+m=N+1
k+ 1)~ 1)”
y ErDmy )kmAkBm(go)). (14D)
2, Gemer
kt+m=N—1

We'll prove that both C'](\}) and C'](\?) tend to zero in LP(X,v) for p € LP(X,v),
p € [1,00), or almost everywhere for ¢ € L (X, v).
Let us start with C'](\}) Denote g(z,y) = 2"y"/(z +y — 1)*, then the ex-

pression in round brackets in (14a) equals
(9(k,m) — gk +1,m)) — (9(k,m+1) — g(k +1,m + 1))
= —g,(k, ) + g,(k + 1, 1) = g, (5¢, 1),

where s € (k,k+ 1), p € (m,m +1). (We apply the mean value theorem
first to hi(y) = g(k,y) — g(k + 1,y) and then to hy(x) = g,(z,1).) One can

2Here we use Iverson bracket notation: for any statement A

1, Ais true
A — b b
A {0, A is false.
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see that

" (% ) o J{ufl,uvfl o %uuvfl
S PR TE | LR PR TS s
%u—lluv %uluv
— 1 .
= e T ) e

As >k >1, 1 >m>1, we have », u < 2+ pu— 1, so each fraction?® is not
more than 1/(3 + p — 1)3, thus

wv + vw + uw + w(w + 1)

"
<
g ] < I
uv+ovw +uw +w(w+1) Ouv (15)
- (k+m—1)3 C(k+m—1)3

Now we proceed to an estimation of Ay B, (p).

Claim 3. 1. Let M, = sup,,,—n||AxBn(@)|, for some ¢ € LP(X,v),
p € [1,00). Then M,, — 0.

2. Let My(x) = supppmen|(AcBm(p))(x)| for some ¢ € L*(X,v).
Then M, (z) — 0 for almost all x € X.

Proof. 1. Let ||Ag|l, < C for all k. Denote ¢, = B,,(¢). Since ||@nll, — 0,
for a given € > 0 one can choose my such that ||¢,,||, < € for all m > mx.
Then || Ap—mpmll, < Ce for m > my, so

M, < max(||Aneollp: [[An—101lps - - 5 [ An—mePmollp, Ce)-

Since ||Angmll, — 0 as n — oo for any fixed m, there are Ny, ..., Ny,
such that ||Ap—m(em)ll, < € for n > N, m = 0,...,mg. Therefore
if n > N =max(No, ..., Npy,), then M, < max(e,Ce).

2. Now let ¢ € L=(X,v). Since ¢, — 0, if we denote

Yr(z) = max|p, ()],

m>r

then 1, == 0. Note that 1, (z) is nonnegative and nonincreasing sequence
for any x € X.
The operators A; need not belong to B*. But if we denote

1 & X0
AZ_(Q) - N;ma

3We cannot use this estimate when exponent u — 1 (resp., v — 1) is negative, but then
u (resp., v) equals zero, and the estimate (15) is simply 0 < 0 for this term.
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then A € BF, and A/ (0) == X°(0) for any 6 € L®(X,v) (by definition of
X0 see (9)). It is also clear that Ay = A} — X°.
Now define the following “exceptional sets”:

r—00

E' = {z | X°(t)(z) — 0},

k—o0

B2 = {z| Aglpm) (@) =5 0},
B = {x | Ax(v) (@) 55 0,
Ef = {z | Aulpm)(z) 55 0},

Their measure is zero due to Proposition 2 (for E', E}) and since A;(6) == 0
(for E2,, E3). Denote £ = E'U (Um Efn) U <UT Eff’) U (Uk Eﬁ) and prove
that M, (z) — 0 for any x € X \ E.

Indeed, take any € > 0. Choose ry such that X°(s,,)(z) < € (here we
use that z ¢ E'). Note that since X° € B*, X°(¢,) > 0 for any r and
XOh,) < XOtb,,) < € for any r > 7.

Now choose ko such that |A(¢y,)(x)] < e for any k > ko (z ¢ E}).
Then all possible k’s are divided into three classes, each class is estimated
separately.

Case 1. Let £k =0,..., k. Then, since z ¢ E}, there exists N,gl) such that
|Ak(on—k)(z)] < € for any n > N,gl). Choose N = maX(Nél), . ..,N,ié)).
Then for any n > N

MY (z) = max [ABu(p)(2)]) < e.

k+m=n
k<kg

Case 2. Let k =ky+1,...,n —1ro. Then
| Ak (i) (@)] < AL (D) (@)] + [ X (pn-p) (@) <
< AL (W) (@) + XO () () < 2X° () (@) + [Aw(y ) ()] < 28 + € = 3e.

Thus,
M (z) = max |ApBn(p)(z)| < 3e.

k+m=n
ko<k<n—rg
Case 3. Let k = n— 1o+ 1,...,n. Then, since A,(¢n)(z) —= 0
for any m = 0,...,79 — 1 (we use that z ¢ E?), one can choose N such

that |A,—m(¢m)(2)| < € for any n > NP m=0,...,ro— 1. Thus, for any
n> NG = maX(NO(3), ce ngg)q)

M (z) = Jax [ApBu(p)()]) < e.
k>n;ﬁ
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Putting these estimates together, we obtain that
M, (x) = max(MW (z), M@ (z), M®) (z)) < 3¢
for n > N = max(N®W, N®). O

Combining (15) with Claim 3, we have

~ 1 k
[o9], < v 3 o,

_1)3
o) (k4+m—1)
k4+m<N
N N
1 e © M e
< = WY M, = Y N W M,
=N 2 k+m—1 "t NZ n—1 NZ
k,m>1 n=2 km>1 n=2
k+m<N k+m=n

and % ZnN:2 M, M2 0 as Cesaro averages of the sequence {M,}, which

converges to zero. For a. e.-convergence this proof also works after substitu-
tion of |CJ(\})(x)| for ||C'](\})|| and of M, (z) for M,,.
Now we estimate C’ﬁ)

N
~ 1 —m)¥m? 1
co_ L ( S O (N L] — ) Axst - Bin(9)

N-1
_ W:{%(N —1- m)AN_1_mBm(<P)> -
m=1
T, )
—m)¥mvt —m)*(m+1)"m
- [(NJrl m) _ (o)1) ]<N_ 1 —m)AN_1-mBm(p) +
m=1
N-1
1 (N + 1— m)umv+1
S — [(N +1=m)Ayn1-mBm(p)
N m=1 N
— (N =1 =m)Ay_1_mBu(0)] +
1
+ NBi(p)

(16)

Convergence of the last term is immediate. For the first term we apply
Claim 3. Indeed, the expression in square brackets is of the form

m(f(m) — f(m+1)),
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and the mean value theorem yields that (here u € [m, m + 1))

'(N+1—m)umv+1 (N =m)"(m+1)'m '
Nv N

m
= W}—U(N+1 — )" o(N 1= )t <
§m<u(N+1—u)“1u”+v(N+1—u)“,u”1) Lutv _utv

< Y
Nw Nw - N2 — N

whence LP-norm of the first term is bounded by

1 U+ v
~ (

N

N =1 =m)|[[Av_1-mBm(p)|| <

N-1
m=1

N—
1
NZ u+v MN 1<(U+U)MN 1

so it tends to zero. The same argument works for a.e.-convergence, with
LP-norm being replaced by absolute value of value at x and My_; being
replaced by My_1(z).

As for the second term in (16), the coefficient (N + 1 — m)“m?*!/Nv is
bounded by 1, and the expression in square brackets equals

(N+1=m)Ant1-mBm(p) = (N =1 =m)An_1-nBn(p) =

- ((N f ]?_—mm)“ - (N)—(EV; 1—_Zzw)<Bm<9">>' (a7)

Denote

Then the sequence

k=0
tends to 2X%p) = W% p) in LP(X,v) (for ¢ € LP(X,v)) or a. e.
(for ¢ € L*°(X,v)), hence (17) is equal to (Wx_,, — W)(B,.(¢)).

Claim 4. 1. If p € LP(X,v), then

S =3 W = WO (Bule))|

m=1

p

tends to zero.
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2. If p € L*(X,v), then

SEEDY D (Wi = W) (Ban() ()]

tends to zero almost everywhere.

The second term in (16) is estimated by Sy (in LP-norm) or by Sy(z)
(pointwise in absolute value). Hence it remains to prove this claim to com-
plete the proof of Proposition 3.

Proof of Claim 4. 1. Let C be a constant such that ||[W, — W?°||, < C for
all k. Then

N
1
NZHWN—m_WOHP' [Bm ()]l < —ZIIB My

the latter is the Cesaro average (multiplied by C) of the sequence || B, (¢)|/p,
which tends to zero.

2. As in Claim 3, denote ¢,, = Bn,(¢), ¥r(2) = max,<.|om(x)|. Let
constants C' and R be such that |W; — W?||,, < C for all k and ||@m |l < R
for all m. Define the following “exceptional sets”

T—00

= {z | W(¢,)(x) —— 0},
—{ )%Z (Wie = W) () () =55 0.
andletE:E1U<UrEf).

Fix any x € X \ E and take any € > 0. Choose 79 such that W°(1,,) < €
Then

<mz:1 Z)‘ (Wx—m = W) (pm)(2)] <

< T4 X W) @)+ W) @) <
< SR D) S (W) () + W) (@) <
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N

< TR0 L) S (W (W) ) + WO (1) <

=1

=

< CR(T‘O - 1) i
N

+2WO0 (¢, ) (z) + (Wi = W) (hr,) ().

il
o

Here the first term tends to zero as N — oo, the second one is less than 2¢,
and the last one also tends to zero (since z ¢ EZ ). Hence for sufficiently
large N one has Sy(x) < 3e. O

Therefore Proposition 3 is completely proven. This completes the proofs

of Lemma 1, Theorem 2, and Theorem 1. U
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