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LIMIT THEOREMS FOR SELF-SIMILAR TILINGS

ALEXANDER I. BUFETOV AND BORIS SOLOMYAK

Abstract. We study deviation of ergodic averages for dynamical systems

given by self-similar tilings on the plane and in higher dimensions. The main

object of our paper is a special family of finitely-additive measures for our

systems. An asymptotic formula is given for ergodic integrals in terms of these

finitely-additive measures, and, as a corollary, limit theorems are obtained for

dynamical systems given by self-similar tilings.

1. Introduction

We study the deviation of ergodic averages for certain tiling dynamical systems,

namely, translation Rd-actions associated with self-similar tilings. For d = 1

asymptotic formulas and limit laws for such deviations were obtained in [10].

The main novelty of the d ≥ 2 case is the appearance of “boundary effects” which

result in some new phenomena.

We assume that the tilings have translationally finite local complexity, are ape-

riodic, and repetitive. Self-similarity means that there is an expanding similarity

map φ : Rd → Rd, such that every “inflated” tile can be subdivided into tiles

of the original tiling, basically, a Markov property. Given a self-similar tiling,

we consider its orbit under translations and its closure in the natural “local”

topology. This is a compact metric space, on which Rd acts by translations. The

resulting dynamical system is known to be minimal and uniquely ergodic. See

the next section for precise definitions and statements.

Let S be the substitution matrix, which is primitive, and let θ1, . . . , θm be

its eigenvalues, ordered by their absolute values: θ1 > |θ2| ≥ · · · ≥ |θm|. In
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order to describe our results, we make a simplifying assumption that there are no

Jordan blocks associated with eigenvalues of absolute value |θ2|. The most basic

class of functions for which we consider the deviation of ergodic averages is the

collection of characteristic functions for “cylinder sets” of tiles. Averaging can

be done over balls or cubes of diameter R, or more general increasing families

of Lipschitz domains. A question arises: how can we estimate from above the

deviation of the ergodic average from the mean? The answer depends on the

relation between |θ2| and θ
d−1
d

1 , see Corollary 4.5. If |θ2| < θ
d−1
d

1 , then the deviation

term is bounded above by CRd−1, which means that the main contribution comes

from the boundary of the domain. On the other hand, if |θ2| > θ
d−1
d

1 , then the

deviation term is bounded above by CRα, where α = d log |θ2|
log θ1

∈ (d − 1, d) (if

|θ2| = θ
d−1
d

1 , then there is a logarithmic correction). These deviation bounds are

sharp, at least, in the general case. There are related recent results by Solomon

[32, 33] and Aliste-Prieto, Coronel, Gambaudo [2, 3], who obtained estimates for

the rate of convergence to frequency of the number of prototiles per volume for a

class of domains. They were motivated by questions on bi-Lipschitz equivalence

and bounded displacement of separated nets, arising from self-similar tilings, to

the lattice. The reader is referred to remarks at the end of Section 4 for a more

detailed discussion of these results and how they compare to ours.

Our goal is a finer analysis of the deviation from the ergodic average, which we

can perform in the case |θ2| > θ
d−1
d

1 . The main tool here is a family of finitely-

additive measures associated with the system. It is known that the right and left

eigenvectors of S corresponding to the dominant eigenvalue θ1 give rise to the

unique invariant probability measure for the tiling dynamical system. The tiling

space is locally a product of the “Euclidean leaf” — an open set in Rd — and

the transversal, which is a Cantor set with the structure of a topological Markov

chain. The invariant measure is locally the product of the Lebesgue measure on Rd

and a Markov measure. It turns out that for each eigenvalue θ of S, that is larger

than θ
d−1
d

1 in absolute value, one can associate two finitely-additive complex (or

real signed) measures: one defined on an algebra of sets in Rd including Lipschitz

domains, and another one defined on the transversal. The latter one yields an

invariant finitely-additive measure for the dynamical system, if we take a product

(locally) with the Lebesgue measure.
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Tilings can be viewed as multi-dimensional analogues of substitution dynamical

systems. By the Vershik-Livshits theorem [37, 38], primitive substitution dynam-

ical systems can be equivalently realized as Vershik’s automorphisms correspond-

ing to Bratteli diagrams. Upper bounds for the deviation of ergodic averages for

substitution dynamical systems have been obtained by Adamczewski [1]; in the

related context of interval exchange transformations and translation flows on flat

surfaces, such upper bounds are due to Zorich [39] and Forni [16]. An asymp-

totic formula for ergodic integrals for translation flows has been obtained in [11],

relying on the construction of a special family of finitely-additive invariant mea-

sures. In particular, G. Forni’s invariant distributions are expressed through the

finitely-additive measures. Limit theorems for translation flows follow as a corol-

lary of the asymptotic formula. We should mention that related objects (minimal

cocycles with a scaling property) for 1-dimensional symbolic substitutions have

been studied by Kamae and collaborators [14, 21].

As we said above, the main difficulty of the multi-dimensional case is due to

the more complicated behavior at the boundary. In the one-dimensional case,

finitely-additive measures are directly constructed on “Markovian” arcs and then

extended to general arcs by exhaustion. In the multi-dimensional case, finitely-

additive measures are first constructed on tiles, and then the question arises of

their extension to rectangles, discs and so forth. Note, however, that while the

boundary of an interval consists of two points, the boundary of a rectangle consists

of several arcs, and their contribution need not be negligible!

Our first main result (see Theorem 4.3) is an asymptotic formula for the devi-

ation of the ergodic average in terms of the finitely-additive measures up to an

error term, generically of order Rd−1. Under the additional assumptions that the

tiles are polyhedral, the similarity map φ is a pure dilation, and the second eigen-

value θ2 is real, simple, and satisfies θ2 > |θ3|, we prove that the deviations of

ergodic averages obey a limit law: more precisely, averages on cubes of side rλn,

appropriately normalized, converge in distribution to a non-degenerate random

variable (see Theorem 6.1).

2. Preliminaries

We begin with tiling preliminaries, following [36], see also [24, 28, 30]. We

emphasize that our tilings are translationally finite, thus excluding the pinwheel

tiling [27] and its relatives.
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2.1. Tilings. Fix a set of types (or colors) labeled by {1, . . . ,m}. A tile in Rd is

defined as a pair T = (A, i) where A = supp(T ) (the support of T ) is a compact

set in Rd which is the closure of its interior, and i = ℓ(T ) ∈ {1, . . . ,m} is the

type of T . (The tiles are not assumed to be homeomorphic to the ball or even

connected. They may have fractal boundary.) A tiling of Rd is a set T of tiles

such that Rd =
⋃{supp(T ) : T ∈ T } and distinct tiles (or rather, their supports)

have disjoint interiors.

A patch P is a finite set of tiles with disjoint interiors. The support of a patch

P is defined by supp(P ) =
⋃{supp(T ) : T ∈ P}. The diameter of a patch P is

diam(P ) = diam(supp(P )). The translate of a tile T = (A, i) by a vector y ∈ Rd

is T + y = (A+ y, i). The translate of a patch P is P + y = {T + y : T ∈ P}. We

say that two patches P1, P2 are translationally equivalent if P2 = P1 + y for some

g ∈ Rd. Finite subsets of T are called T -patches. For a set Ω ⊂ Rd we denote by

T |Ω = ∪{T ∈ T : supp(T ) ⊂ Ω}

the patch of T -tiles whose supports are contained in Ω.

Definition 2.1. A tiling T has (translational) finite local complexity (FLC) if

for any R > 0 there are finitely many T -patches of diameter less than R up to

translation equivalence.

Definition 2.2. A tiling T is called repetitive if for any patch P ⊂ T there is

R > 0 such that for any x ∈ Rd there is a T -patch P ′ such that supp(P ′) ⊂ BR(x)

and P ′ is a translate of P .

2.2. Tile-substitutions, self-affine tilings. We study perfect (geometric) sub-

stitutions, in which a tile is “blown up” by an expanding linear map and then

subdivided. A linear map φ : Rd → Rd is expansive if all its eigenvalues lie outside

the unit circle.

Definition 2.3. Let A = {T1, . . . , Tm} be a finite set of tiles in Rd such that

Ti = (Ai, i); we will call them prototiles. Denote by PA the set of patches made

of tiles each of which is a translate of one of Ti’s. A map ω : A → PA is called a

tile-substitution with expansion φ if

(1) supp(ω(Tj)) = φAj for j ≤ m.

In plain language, every expanded prototile φTj can be decomposed into a union

of tiles (which are all translates of the prototiles) with disjoint interiors.
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The substitution ω is extended to all translates of prototiles by ω(y + Tj) =

φy + ω(Tj), and to patches by ω(P ) = ∪{ω(T ) : T ∈ P}. This is well-defined

due to (1). The substitution ω also acts on the space of tilings whose tiles are

translates of those in A.

To the substitution ω we associate its m ×m substitution matrix S, with Sij

being the number of tiles of type i in the patch ω(Tj). The substitution ω is called

primitive if the substitution matrix is primitive, that is, if there exists k ∈ N such

that Sk has only positive entries.

Definition 2.4. Given a primitive tile-substitution ω, let Xω be the set of all

tilings whose every patch is a translate of a subpatch of ωn(Tj) for some j ≤ m

and n ∈ N. (Of course, one can use a specific j by primitivity.) The set Xω is

called the tiling space corresponding to the substitution.

Definition 2.5. A repetitive tiling T , such that ω(T ) = T for a primitive tile-

substitution ω, is called a self-affine tiling. The self-affine tiling is self-similar if

the expansion map of ω is a similitude, that is, for some λ > 1 we have

|φ(x)| = λ|x|, for all x ∈ Rd.

The number λ is called the real expansion constant, or linear dilatation, of the

map φ.

We say that a tile-substitution ω has FLC if for any R > 0 there are finitely

many subpatches of ωn(Tj) for all j ≤ m, n ∈ N, of diameter less than R, up

to translation. This obviously implies that all tilings in Xω have FLC, and is

equivalent to it if the tile-substitution is primitive.

Remark. A primitive substitution tiling space is not necessarily of finite local

complexity, see [22, p.244] and [13]. Thus we have to assume FLC explicitly.

Recently, tiling systems without FLC were studied in [17, 18].

Lemma 2.6. [26, Prop. 1.2] Let ω be a primitive tile-substitution of finite local

complexity. Then every tiling S ∈ Xω is repetitive.

2.3. Tile boundaries. For a tiling T denote by

∂T =
⋃

T∈T

∂(supp(T ))

the union of the boundaries of all tile supports.
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By the definition of a tiling, ∂T is nowhere dense in Rd. For self-affine tilings,

the boundary has zero Lebesgue measure.

Lemma 2.7. [26, Prop. 1.1] Let T be a self-affine tiling of Rd. Then Ld(∂T ) = 0.

There is also a kind of “geometric rigidity”: if T is self-affine and ∂T is piece-

wise smooth (even piecewise Lipschitz), then it has to be polyhedral. This follows

from the fact that ∂T is invariant under the expanding linear map.

2.4. Tiling topology and tiling dynamical system. We use a tiling metric

on Xω, which is based on a simple idea: two tilings are close if after a small

translation they agree on a large ball around the origin. There is more than one

way to make this precise, and our formal definition is as follows: For T1,T2 ∈ Xω

let

d̃(T1,T2) := inf{r ∈ (0, 2−1/2) : ∃ y, |y| ≤ r, supp((T1 − y) ∩ T2) ⊃ B1/r(0)}.

Then d(T1,T2) = min{2−1/2, d̃(T1,T2)} is a metric on Xω.

Theorem 2.8. [29] (see also [28]). (Xω, d) is a complete metric space. It is

compact, whenever the space has finite local complexity. The action of Rd by

translations on Xω, given by S 7→ S − y, y ∈ Rd, is continuous.

This continuous translation action (Xω,R
d) is called the (topological) tiling

dynamical system associated with the tile-substitution.

Theorem 2.9. If ω is a primitive tiling substitution with FLC, then the dynamical

system (Xω,R
d) is minimal, that is, for every S ∈ Xω, the orbit {S −y : y ∈ Rd}

is dense in Xω.

This follows from Lemma 2.6 and Gottschalk’s Theorem [20], see [28, Sec. 5]

for details.

Recall that a topological dynamical system is said to be uniquely ergodic if it

has a unique invariant Borel probability measure.

Theorem 2.10. If ω is a primitive tiling substitution with FLC, then the dynam-

ical system (Xω,R
d) is uniquely ergodic.

This result has appeared in the literature in several slightly different versions.

We refer to [24, Theorem 4.1] and [28] for the proof.

Let µ be the unique invariant measure from Theorem 2.10. The measure-

preserving tiling dynamical system is denoted by (Xω,R
d, µ).
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Lemma 2.11. (see [28, Th. 5.10]) If ω is a primitive tiling substitution with FLC,

then there exists k ∈ N and T ∈ Xω such that ωk(T ) = T .

Combining this with Lemma 2.7, we obtain that Ld(∂S) = 0 for all S ∈ Xω.

2.5. Substitution action. The substitution ω acts on the entire space Xω, and

it is easy to see from the definition of Xω that ω : Xω → Xω is surjective. We

will address the question of its invertibility, but first record the obvious relation:

(2) ω(T − y) = ω(T )− φy.

Lemma 2.12. If ω is a primitive substitution with FLC, and µ is the unique in-

variant probability measure for the translation action (Xω,R
d), then µ is invariant

under the substitution action ω (in general, non-invertible).

Proof. Consider the probability measure ω∗µ = µ ◦ ω−1 on Xω. It is immediate

from (2) that this measure is invariant under the translation action, hence µ = ω∗µ

by unique ergodicity. �

Definition 2.13. A primitive tile-substitution ω is called non-periodic if all T ∈
Xω are non-periodic, that is, T − y = T implies y = 0. If at least one T ∈ Xω is

non-periodic, then ω is non-periodic by minimality.

Theorem 2.14 ([35]). The map ω : Xω → Xω is injective if and only if ω is a

non-periodic substitution.

We assume that ω is non-periodic for the rest of the paper.

For non-periodic substitutions we have the Z-action generated by ω, along with

the translation Rd-action. It is useful to note that this Z-action is, in some sense,

hyperbolic, with the orbit of T under the Rd-action playing the role of the unstable

set of T (clear from (2)), and the the transversal containing T playing the role of

the stable set, see [4] for details. (The transversal is defined here as the set of all

tilings which agree with T exactly on some patch, possibly one tile, containing

the origin in its interior; see Section 4 for precise definitions.)

The substitution ω can be extended to “super-tiles” and “sub-tiles” of all or-

ders. More precisely, for any k ∈ Z let

φkA := {φk(Ti)}mi=1, (φkω)(φkTi) = φk(ω(Ti)).
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This defines a bi-infinite sequence of tile-substitutions and the corresponding

tiling spaces {Xφkω}k∈Z. The subdivision map

(3) Υk : Xφkω → Xφk−1ω

acts by subdividing each tile according to the rule implicit in the substitution.

The inverse of the subdivision map is the composition map, which is well-defined

if and only if the substitution is non-periodic, by Theorem 2.14. For T ∈ Xω

denote T (0) := T , and

T (k) =

{
Υ−1

k · · ·Υ−1
1 (T ), if k > 0,

Υk+1 · · ·Υ0(T ), if k < 0;
T (k) ∈ Xφkω.

Note that T (k) is always defined for k < 0, and if ω is non-periodic, then for k > 0

as well.

2.6. Some geometric measure theory. Denote byHα the α-dimensional Haus-

dorff measure (see e.g. [25] for definitions and basic properties) and by Ld

the Lebesgue measure in Rd. A set H ⊂ Rd is said to be m-rectifiable for

m ∈ N, m < d, if Hm(H) > 0 and there exist Lipschitz maps hi : Rm → Rd,

i ∈ N, such that

(4) Hm

(
H \

∞⋃

i=1

hi(R
m)

)
= 0.

See e.g. [25, p.204].

We will say that an open bounded set Ω ⊂ Rd is a Lipschitz domain if there

exist finitely many Lipschitz maps hi : R
d−1 → Rd, i ≤ N , such that

(5) Hd−1

(
∂Ω \

∞⋃

i=1

hi(R
d−1)

)
= 0.

Thus, the boundary of a Lipschitz domain is (d − 1)-rectifiable. For A ⊂ Rd

denote

U(A, r) = {x ∈ Rd : dist(x,A) ≤ r}.
The α-dimensional upper Minkowski content of A is defined by

M∗α(A) = lim sup
r→0

(2r)d−αLd(U(A, r)).

It is known [15] that M∗m(A) = Hm(A) for an m-rectifiable set A. It follows

that for any (d− 1)-rectifiable set A and b > 0 there exists C(A, b) such that

(6) Ld(U(A, r)) ≤ C(A, b)r, for all r ∈ (0, b].
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Indeed, we have M∗(d−1)(A) > 0, hence (6) holds for some b = b0, and then we

can simply take

C(A, b) = max

{
C(A, b0),

Ld(U(A, b))

b0Ld(U(A, b0))

}
for b > b0.

2.7. Linear algebra. We will need the following well-known result.

Lemma 2.15. Let J be a Jordan cell of size s with diagonal entries θ, |θ| > 1.

Then

‖Jk‖ ≤
{
sks−1|θ|k for k > 0;

s|k|s−1|θ|k+s for k < 0,

where ‖ · ‖ is the operator matrix norm induced by the Euclidean norm.

3. Finitely-additive measures on Lipschitz domains.

Recall that we have the prototiles Ti, i = 1, . . . ,m, with supp(Ti) = Ai. By

the definition of self-similar tiling and the substitution matrix, we have

(7) Aj =
m⋃

i=1

(φ−1Ai + φ−1Dij), j = 1, . . . ,m,

where the union is almost disjoint (up to the boundaries), and Dij are finite sets,

with Sij = #Dij . Then we obtain, using Lemma 2.7, that

m∑

i=1

SijLd(Ai) = Ld(supp(ω(Tj)) = Ld(λAj) = λdLd(Aj), j = 1, . . . ,m,

where λ is the linear dilatation of φ. It follows that (Ld(Aj))
m
j=1 is the Perron-

Frobenius eigenvector for St, with the eigenvalue λd, hence the dominant eigen-

value of St is

(8) θ1 = λd.

Denote by E+ the linear span of the Jordan cells of the transpose of the substi-

tution matrix St corresponding to eigenvalues greater than 1. Our goal is to define

finitely-additive (complex) measures Φ+
v,T for v ∈ E+ and T ∈ Xω, analogous to

those from [9, 10, 11], which corresponds to d = 1.

Recall that for each T ∈ Xω we have a sequence {T (k)}k∈Z of “sub-tilings” (for

k < 0) and “super-tilings” (for k > 0), together with T (0) = T , such that T (k−1)

is obtained from T (k) by the process of subdivision. They are uniquely defined

by the assumption of non-periodicity, see Subsection 2.5.
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Initially, Φ+
v,T is defined on the following ring of subsets of Rd:

C+
T :=

⋃

k∈Z

{F = (supp(P ) \N1) ∪N2 : P ⊂ T (k), N1, N2 ⊂ ∂T (k)}.

(Recall that a ring of sets is closed under finite unions and intersections, but not

necessarily under complements.) In other words, this is the ring generated by

sub-tiles and super-tiles of T of all orders (referred to as “tiles of order k” for

k ∈ Z) and arbitrary subsets of their boundaries. The finitely-additive measure

Φ+
v,T is defined on tiles of order k ∈ Z by

(9) Φ+
v,T (supp(T )) = ((St)kv)j , if ∃ k ∈ Z, y ∈ Rd : T = φk(Tj)− y ∈ T (k),

and

Φ+
v,T (N) = 0 if N ⊂ ∂T (k).

Then this set function is extended to finite disjoint unions by additivity. We

need to show that this definition is consistent; then we get a finitely-additive set

function on the ring C+
T . Clearly, it suffices to verify finite additivity for a tile

and its decomposition into sub-tiles. We have

Φ+
v,T (Aj − y) = vj , where Tj − y ∈ T ,

and hence (7) implies

m∑

i=1

∑

x∈Dij

Φ+
v,T (φ

−1Ai + x− y) =

m∑

i=1

(St)ji((S
t)−1v)i = vj ,

as desired. Note that (St)−1v is well-defined because v is in the expanding sub-

space for St. We showed finite additivity when subdividing a T -tile into T (−1)-

tiles; the general case follows.

Observe that v 7→ Φ+
v,T is linear, so we can restrict ourselves to v from a basis

of E+; specifically, to a basis of eigenvectors and root vectors of St, associated to

the canonical Jordan form of St.

Definition 3.1. Define the rapidly expanding subspace of E++ of St to be

the linear span of Jordan cells of eigenvalues satisfying the inequality

|θ| > θ
d−1
d

1 = λd−1,

where λ is the linear dilatation of φ, see (8).



LIMIT THEOREMS FOR SELF-SIMILAR TILINGS 11

The space E++ yields finitely-additive measures for which the main contribu-

tion is in the interior of the set, rather than at the boundary. Heuristically, the

main contribution of the eigenvalues with absolute values in (1, λd−1) will, on the

contrary, be concentrated at the boundary. At any rate, it will turn out that the

contribution of the latter eigenvalues to the deviation of the ergodic average on,

say, a ball of radius R is bounded above by CRd−1, see (52) below. This effect

was not present in the one-dimensional case, since for d = 1 we have E++ = E+.

Let γ > 0 be the average of λd−1 and the smallest absolute value of an eigen-

value of St|E++. Then γ > λd−1, and we have

(10) ‖(St)kv‖ ≤ const · γk‖v‖, k < 0, ∀ v ∈ E++,

where the constant depends only on the matrix S.

Denote by Q the ring of sets generated by Lipschitz domains in Rd and subsets

of their boundaries for a fixed d (recall that Lipschitz domains are assumed to

be bounded by definition). We will show that for v ∈ E++ the finitely-additive

measure Φ+
v,T can be defined in a natural way on Q. If the tile supports belong to

Q (in which case they have to be polyhedral, see Subsection 2.3), then this is an

extension of the corresponding finitely-additive measure defined on C+
T . But we

also allow “fractal” boundaries, in which case it is not clear whether the finitely-

additive measure can be extended to the ring generated by C+
T ∪ Q.

Lemma 3.2. For any v ∈ E++, there exist finitely-additive measures Φ+
v,T defined

on the ring Q. Moreover, they satisfy the following “cocycle” conditions for any

Ω ∈ Q:

(11) Φ+
v,T −y(Ω) = Φ+

v,T (Ω + y) for all T ∈ Xω, y ∈ Rd,

(12) Φ+
Stv,T (Ω) = Φ+

v,ω(T )(φ(Ω)).

In particular, for an eigenvector v, with Stv = θv, we get

(13) Φ+
v,ω(T )(φ(Ω)) = Φ+

θv,T (Ω) = θΦ+
v,T (Ω).

Before the proof, we introduce a construction which will be used throughout

the paper. It is an efficient hierarchical “packing” of a Lipschitz domain by tiles

of varying orders. Analogous constructions have been used in [32, 33, 2, 3, 31].

Fix a tiling T ∈ Xω and a Lipschitz domain Ω. Recall that T (k)|Ω denotes the

collection of T (k)-tiles whose supports lie in Ω. Observe that supp(T (k)|Ω) ∈ C+
T
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and supp(T (k+1)|Ω) ⊂ supp(T (k)|Ω). Further, let

(14) R(k)(Ω) := {T ∈ T (k)|Ω : supp(T ) 6⊂ supp(T (k+1)|Ω)}.

In words, R(k)(Ω) consists of those tiles of order k in Ω which belong to tiles of

order k + 1 that do not lie in Ω, hence these tiles of order k + 1 must intersect

the boundary ∂Ω. Let dmax, dmin be the largest and the smallest diameter of a

T -tile respectively. Since the largest diameter of a T (k+1)-tile equals dmaxλ
k+1,

it follows that

supp(R(k)(Ω)) ⊂ U(∂Ω, dmaxλ
k+1).

Denote by amin = minj≤mLd(Aj) the smallest volume of a prototile. Then the

volume of an order k tile is at least aminλ
dk, and we obtain

(15) #R(k)(Ω) ≤ Ld(U(∂Ω, dmaxλ
k+1))a−1

minλ
−dk.

Proof of Lemma 3.2. We define for a Lipschitz domain Ω:

(16) Φ+
v,T (Ω) := lim

k→−∞
Φ+
v,T (supp(T (k)|Ω)).

Let us show that the limit exists (note that we cannot use monotonicity, since

the values of Φ+
v,T need not be positive or even real). By (15) and (6),

#R(k)(Ω) ≤ C(∂Ω, 1)dmaxλa
−1
minλ

−(d−1)k = const · λ−(d−1)k

for k ∈ Z such that dmaxλ
k+1 ≤ 1, that is, for

k ≤ − log dmax − log λ− 1.

Now, by finite additivity of Φ+
v,T on C+

T , in view of (9),

|Φ+
v,T (supp(T (k)|Ω))− Φ+

v,T (supp(T (k+1)|Ω))| = |Φ+
v,T (supp(R(k)(Ω))|

≤
∑

T∈R(k)(Ω)

|Φ+
v,T (supp(T ))|

≤ #R(k)(Ω) · ‖(St)kv)‖

≤ const · λ−(d−1)kγk‖v‖,

for k < min{0,− log dmax − log λ − 1}, where we used (10) in the last step. By

assumption, |γ| > λd−1, hence the last expression tends to zero exponentially fast

as k → −∞, and the existence of the limit in (16) is verified. We then define

Φ+
v,T (Ω ∪N) = Φ+

v,T (Ω) for N ⊂ ∂Ω.
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Now let us check finite additivity. If Ω1 and Ω2 are Lipschitz domains with

disjoint interiors such that

Ω = Ω1 ∪ Ω2

for another Lipschitz domain Ω, then

T (k)|Ω \ (T (k)
Ω1

∪ T (k)
Ω2

) ⊂ R(k)(Ω1) ∩R(k)(Ω2),

since the former consists of those T (k)-tiles which intersect ∂Ω1 ∩ ∂Ω2. The

estimate above shows that the Φ+
v,T -measure of the support of the latter patch

tends to zero as k → −∞. The definition (16) then shows

Φ+
v,T (Ω) = Φ+

v,T (Ω1) + Φ+
v,T (Ω2).

Thus we can define Φ+
v,T on a finite union of disjoint Lipschitz domains and subsets

of their boundaries consistently, and finite additivity follows.

Formulas (11) and (12) are easily verified: they hold on the ring C+
T by defi-

nition, hence they hold for Lipschitz domains by (16), and therefore for all the

elements of the ring Q. �

In the next lemma, we estimate the growth of our finitely-additive measures

on dilations of a given Lipschitz domain.

We will often use constants which depend only on the tiling substitution ω

(which includes all the data for the tiling space Xω), and on the domain Ω. This

will be often written as C = C(ω,Ω) for short.

Lemma 3.3. Suppose that v ∈ E++, with ‖v‖ = 1, belongs to the St-invariant

subspace corresponding to a Jordan block of size s ≥ 1, with an eigenvalue θ (v is

an eigenvector if s = 1). Then for a Lipschitz domain Ω and ΩR = RΩ, we have

for R ≥ 2:

(17) |Φ+
v,T (ΩR)| ≤ C1(logR)

s−1Rα, where α =
log |θ|
log λ

,

for a constant C1 = C1(ω,Ω).

Proof. Fix a tiling T ∈ Xω. For k ∈ Z we consider patches R(k)(Ω) introduced

in (14). If we fix Ω and let ΩR = RΩ, then we obtain by (15),

#R(k)(ΩR) ≤ Ld(U(∂ΩR, dmaxλ
k+1))a−1

minλ
−dk

= RdLd(U(∂Ω, dmaxλ
k+1R−1))a−1

minλ
−dk.(18)
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Denote

kR = max{k ∈ Z : R(k)(ΩR) 6= ∅}.
It is clear that dminλ

kR ≤ diam(ΩR) = R diam(Ω), so

(19) λkR ≤ R diam(Ω)/dmin.

Thus, in (18) we have dmaxλ
k+1R−1 ≤ λdiam(Ω)dmax/dmin := b, hence

(20) #R(k)(ΩR) ≤ C ′ ·Rd−1λ−(d−1)k, with C ′ = C(∂Ω, b)dmaxλa
−1
min.

where we used (6). Note that the constant b, and hence C ′, depends only on ω

and Ω. We have by (16):

(21) Φ+
v,T (ΩR) =

kR∑

k=−∞

∑

T∈R(k)(ΩR)

Φ+
v,T (supp(T )).

Therefore,

|Φ+
v,T (ΩR)| ≤ C ′ ·Rd−1

kR∑

k=−∞

‖(St)kv)‖
λ(d−1)k

(22)

≤ C ′′ ·Rd−1

(
−1∑

k=−∞

|k|s−1|θ|k+s

λ(d−1)k
+ 1 +

kR∑

k=1

|k|s−1|θ|k
λ(d−1)k

)
(23)

≤ C ′′′ ·Rd−1 |kR|s−1|θ|kR
λ(d−1)kR

.(24)

We used (20) and (9) in (22), Lemma 2.15 in (23), and the assumption |θ| > λd−1

in (24). Note that the constants C ′′, C ′′′ depend only on ω and Ω (they depend on

the substitution matrix, which is encoded in ω). We also assumed that kR > 0,

but this does not lead to loss of generality since it is enough to establish (17) for

R sufficiently large. In view of (19), we have

|θ|kR
λ(d−1)kR

≤ const · R
log(|θ|/λd−1)

log λ = const ·R
log |θ|
log λ

−(d−1),

hence the inequality (24) implies

|Φ+
v,T (ΩR)| ≤ C1(logR)

s−1Rlog |θ|/ log λ,

with C1 = C1(ω,Ω), as desired. �

We record the following fact, which easily follows from the proof of Lemma 3.3,

for future use. The notation T |ΩR
, used in the lemma below, means the collection

of all T tiles contained in ΩR.
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Lemma 3.4. For a Lipschitz domain Ω there exists a constant C2 = C2(ω,Ω) > 0

such that for all v ∈ E++, with ‖v‖ = 1, and for all T ∈ Xω, we have for

ΩR = RΩ:

(25) |Φ+
v,T (ΩR)− Φ+

v,T (supp(T |ΩR
)| ≤ C2R

d−1, for all R ≥ 1.

Proof. We have

Φ+
v,T (supp(T |ΩR

)) =

kR∑

k=0

∑

T∈R(k)(ΩR)

Φ+
v,T (supp(T )).

Comparing with (21) and using (20) we obtain, similarly to (24):

|Φ+
v,T (ΩR)−Φ+

v,T (supp(T |ΩR
)| ≤

∣∣∣∣∣∣

−1∑

k=−∞

∑

T∈R(k)(ΩR)

Φ+
v,T (supp(T ))

∣∣∣∣∣∣

≤ C ′Rd−1
−1∑

k=−∞

‖(St)kv)‖
λ(d−1)k

≤ C ′Rd−1 · C ′′
−1∑

k=−∞

γkR

λ(d−1)kR

≤ C2R
d−1,

where γ > λd−1 is from (10). �

3.1. Hölder estimates. Next we establish a Hölder estimate for our finitely-

additive measures. Although more general Lipschitz domains could be handled,

we restrict ourselves to cubes, for simplicity and because the limit law in Section 6

below is obtained in this setting. We do not need this result until Section 6.

Denote

Qr := [−r/2, r/2]d and Ar1,r2 := Qr2 \ int(Qr1) for 0 ≤ r1 < r2.

Thus, Ar1,r2 is the closed “annulus” between two concentric cubes.

Lemma 3.5. Suppose that v ∈ E++, with ‖v‖ = 1, satisfies Stv = θv (so that

θ > λd−1 by the definition of the rapidly expanding subspace E++). Then there

exists a constant C3 = C3(ω,Ω) > 0 such that for any T ∈ Xω and any 0 ≤ r1 <

r2 we have

(26) |Φ+
v,T (Qr2)− Φ+

v,T (Qr1)| ≤ C3r
d−1
2 (r2 − r1)

α−(d−1), where α =
log |θ|
log λ

.
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Remark. Taking r1 = 0 we obtain the upper bound C3r
α
2 , which agrees with

(17), since s = 1 for the eigenvector v.

Proof. We have by finite additivity:

Φ+
v,T (Qr2)− Φ+

v,T (Qr1) = Φ+
v,T (Ar1,r2).

Consider R(k)(Ar1,r2) as defined in (14); recall that

#R(k)(Ar1,r2) ≤ Ld(U(∂Ar1,r2 , dmaxλ
k+1))a−1

minλ
−dk

by (15). Clearly, ∂Ar1,r2 = ∂Qr1 ∪ ∂Qr2 . The following claim is elementary.

Claim. For any r > 0 and t ∈ (0, r),

(27) Ld(U(∂Qr, t/2)) < d 2dtrd−1.

Indeed, we have Ld(U(∂Qr, t/2)) < (r + t)d − (r − t)d whence (27) follows by a

simple calculus exercise.

Therefore, for all 0 ≤ r1 < r2,

Ld(U(∂Ar1,r2 , t/2)) ≤ Ld(U(∂Qr1 , t/2)) + Ld(U(∂Qr2 , t/2)) ≤ d 2d+1trd−1
2 .

Thus,

(28) #R(k)(Ar1,r2) ≤ C(d, ω)λ−(d−1)krd−1
2 , where C(d, ω) = d 2d+2dmaxλa

−1
min.

Let k0 = max{k ∈ Z : R(k)(Ar1,r2) 6= ∅}. We have

Φ+
v,T (Ar1,r2) =

k0∑

k=−∞

∑

T∈R(k)(Ar1,r2)

Φ+
v,T (supp(T )).

Then we obtain, using (28),

|Φ+
v,T (Ar1,r2)| ≤ C(d, ω)rd−1

2

k0∑

k=−∞

‖(St)kv‖
λ(d−1)k

= C(d, ω)rd−1
2

k0∑

k=−∞

|θ|k
λ(d−1)k

=
C(d, ω)rd−1

2

1− λd−1

|θ|

( |θ|
λd−1

)k0

.(29)

It remains to estimate k0. By definition, a tile of order k0 must be contained in

Ar1,r2 . Let η > 0 be such that every T prototile contains a ball of radius η in its
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interior. Then a ball of radius λk0η must be contained in Ar1,r2 . It is easy to see

(we do not attempt to get a sharp estimate here) that

λk0η ≤ r2 − r1,

since the center of the ball must have at least one coordinate in the interval

[r1, r2]. It follows that

( |θ|
λd−1

)k0

≤
(
r2 − r1
η

) log |θ|
log λ

−(d−1)

,

whence (29) yields

(30) |Φ+
v,T (Ar1,r2)| ≤ C3r

d−1
2 (r2 − r1)

log |θ|
log λ

−(d−1)
,

with the constant C3 depending only on the tiling substitution ω, as desired. �

4. Finitely-additive measures on transversals and statement of the

main theorem

Recall that the “Euclidean leaf,” or the translation orbit, of a tiling T ∈ Xω is

the unstable set for the substitution map ω. The stable leaf is a transversal, which

we now define, and which is topologically a Cantor set for aperiodic tilings. We

then proceed to the construction of finitely-additive measures on the transversals.

This construction is naturally dual to the one in the previous section.

Definition 4.1. For an admissible patch P of tiles in the space Xω the set

Γω,P := {T ∈ Xω : P ⊂ T }

is called the transversal associated with the patch P .

The tiling space Xω has a local product structure:

Xω ≈
( m⋃

j=1

(Aj × Γω,Tj)
)
/ ∼ ,

where ≈ is a natural homeomorphism, Tj are the prototiles, Aj = supp(Tj), and

the quotient ∼ corresponds to a certain “gluing” along the boundaries of tiles,

see [4] for details. In fact, Xω can be considered as a translation surface or

Rd-solenoid [6, 19].

If a patch P ⊂ T is such that supp(P ) contains the origin in its interior, then

Γω,P is a stable set of T for ω, in the sense that

d(ωk(T ′), ωk(T )) ≤ cλ−k for all T ′ ∈ Γω,P , k ∈ N,
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by the definition of the tiling metric d.

Now let us derive some properties of the transversals. It is clear that

(31) ω(Γω,P ) ⊂ Γω,ω(P ), Γω,y+P = y + Γω,P .

We don’t have equality in the inclusion above, however, we do have

(32) Υk(Γφkω,φkP ) = Γφk−1ω,φk−1P ,

where Υk is the subdivision map from (3). Then how can we describe ω(Γω,P )

precisely? This is the set of tilings T ∈ Xω whose “super-tiling” T (1) contains

the patch φP . Thus, we have

(33) Γω,Ti =

m⋃

j=1

⋃

x∈Dij

(ω(Γω,Tj )− x),

where Dij are from (7), and this is a disjoint union.

Before we define the finitely-additive measures on the transversals, it is worth-

while to recall the formula for the unique invariant measure µ. (We know that

primitive self-affine tiling dynamical systems with finite local complexity are

uniquely ergodic by Theorem 2.10.) For a patch P ⊂ T ∈ Xω and U ⊂ Rd,

define the set

XP,U := {S ∈ Xω : P − y ⊂ S for some y ∈ U}.

Let η > 0 be such that every prototile contains a ball of diameter η in its interior.

It is clear (see e.g. [34, Lemma 1.6]) that the sets XP,U , with diam(U) ≤ η and U

open, generate the topology on the tiling space Xω. It is proved in [34, Corollary

3.5] that the unique invariant measure µ satisfies

(34)

µ(XP,U ) = freq(P ) · Ld(U) for P ⊂ T ∈ Xω and U Borel, with diam(U) ≤ η,

where freq(P ) is the uniform frequency of the patch P in T . (The existence of

uniform frequencies is shown, e.g., in [24, Lemma A.6].) In particular, we have

(35) µ(XTj ,U) = freq(Tj) · Ld(U)

for a small enough U . It is well-known that

(36) u(1) := (freq(Tj))j≤m

is the Perron-Frobenius eigenvector of the substitution matrix S, normalized by

the condition 〈v(1), u(1)〉 = 1, where v(1) = (Ld(Aj))
m
j=1 is a Perron-Frobenius
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eigenvector of St. Here and for the rest of the paper we are using the bilinear

pairing in Cm:

(37) 〈v, u〉 =
m∑

j=1

vjuj .

We should also note that there is a notion of transverse measure on a transversal

Γ. It is a Borel measure ν on B(Γ) such that ν(A) = ν(A− y) for every A ∈ B(Γ)
and y ∈ Rd such that A− y ⊂ Γ. There is a 1-to-1 correspondence between finite

positive transverse measures and finite invariant measures for the tiling system,

see [5, Section 5]. In our case this is manifested by (34) and (35).

Next we proceed to define finitely-additive measures on the transversals Γω,Ti−x

for i ≤ m and x ∈ Rd. We can also define them on the transversals Γω,P for more

general patches P , but that will not be necessary.

For S we have the direct-sum decomposition

Cm = Ẽ+ ⊕ Ẽ−,

where Ẽ+ is spanned by Jordan cells of eigenvalues of S with absolute value

greater than 1. For u ∈ Ẽ+, j ≤ m, y ∈ Rd, and k ≥ 0 let

(38) Φ−
u (ω

k(Γω,Tj−y)) = (S−ku)j .

We have

ωk(Γω,Tj−y) ⊂ Γω,Ti−x ⇐⇒ Ti − x ∈ ωk(Tj − y).

We claim that for each u ∈ Ẽ+, (38) defines a finitely-additive measure on the

algebra of subsets of ΓTi−x generated by the sets ωk(Γω,Tj−y), with j ≤ m, k ≥ 0

and y ∈ Rd such that Ti − x ∈ ωk(Tj − y). It is enough to verify finite additivity

in (33), since the general case reduces to it easily. We have

Φ−
u (Γω,Ti) = ui =

m∑

j=1

Sij(S
−1u)j =

m∑

j=1

SijΦ
−
u (ω(Γω,Tj ))

=
m∑

j=1

∑

x∈Dij

Φ−
u (ω(Γω,Tj )− x),

as desired.

We are not going to discuss the extension of Φ−
u to a larger class of sets, but we

will need finitely-additive measures mΦ−
u
, defined locally as the product Φ−

u ×Ld,

on the tiling space Xω. In order to make this precise, we define the class of “test
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functions” which we will be dealing with, and we will define their integrals with

respect to mΦ−
u
.

Definition 4.2. A function f on Xω is called cylindrical if it is integrable with

respect to the unique invariant measure µ and depends only on the tile containing

the origin, that is,

∃ i ≤ m, x ∈ Rd, 0 ∈ supp(Ti)− x, Ti − x ∈ T ∩ T ′ =⇒ f(T ) = f(T ′).

A cylindrical function may be identified with a family of functions {ψi}i≤m,

where ψi : Ai = supp(Ti) → R, ψi ∈ L1(Ai) = L1(Ai,Ld) as follows:

f(T ) = ψi(x) if 0 ∈ Ai − x, Ti − x ∈ T .

The functions ψi are only defined Ld-a.e., which does not cause a problem since

we will integrate cylindrical functions with respect to Φ−
u × Ld. The simplest

cylindrical function is the characteristic function of a prototile Ti, which is defined

by ψi ≡ 1, ψj ≡ 0, j 6= i.

Now we define for any cylindrical f :

(39) mΦ−
u
(f) :=

m∑

i=1

Φ−
u (Γω,Ti)Ld(ψi) =

m∑

i=1

ui

∫

Ai

ψi(y) dy.

Remarks. 1. Finitely-additive measures mΦ−
u
, for u ∈ Ẽ+, are invariant under

the dynamics: this follows from (39) and the fact that

Φ−
u (y + Γω,P ) = Φ−

u (Γω,y+P ) = Φ−
u (Γω,P ).

2. Let u(1) ∈ Cm be the Perron-Frobenius eigenvector of the substitution

matrix S, normalized by the condition 〈v(1), u(1)〉 = 1. As already mentioned,

u
(1)
j is the uniform frequency of tiles of type j in the tilings T ∈ Xω. Thus, in

view of (35), mΦ−

u(1)
is exactly the invariant probability measure µ on the tiling

space. For a cylindrical function f we denote by ‖f‖1 its norm in L1(Xω, µ);

observe that

‖f‖1 =
m∑

i=1

u
(1)
i

∫

Ai

|ψi(y)| dy.

3. Cylindrical functions are not dense in L1(Xω, µ); however, it follows from

[34, Lemma 1.6] that the set of functions {f ◦ ω−k : f is cylindrical, k ∈ N}
is dense. Thus it is useful to compute mΦ−

u
(f ◦ ω−k) explicitly. If f is the

characteristic function of a tile Tj, then f ◦ ω−k is the characteristic function of
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the super-tile φkTj, that is, f ◦ ω−k(T ) = 1 if and only if T ∈ ωk(Γω,Tj ) − y for

some y ∈ φkAj . Thus, it follows from (38) that

mΦ−
u
(f ◦ ω−k) =

m∑

i=1

(S−ku)i

∫

φkAi

ψi ◦ φ−k(y) dy = λdk
m∑

i=1

(S−ku)i

∫

Ai

ψi(x) dx,

keeping in mind that |det(φ)| = λd. In particular, if Su = θu, then

(40) mΦ−
u
(f ◦ ω−k) = θ−kλdkmΦ−

u
(f).

Denote by Ẽ++ the rapidly expanding subspace for the matrix S, which is,

by definitions, the linear span of Jordan cells for S corresponding to eigenvalues

greater than θ
d−1
d

1 = λd−1. In our first main theorem, which we state below, only

the finitely-additive measures mΦ−
u
with u in the rapidly expanding subspace play

a role, since only their contribution dominates the “boundary effects.”

Choose a basis {v(i)}mi=1 for Cm, consisting of eigenvectors and root vectors of

St, according to the ordering of the eigenvalues

θ1 = λd > |θ2| ≥ ... ≥ |θm|

(the eigenvalues are counted with algebraic multiplicity). We set

v(1) = (Ld(Aj))
m
j=1,

as discussed above. Then consider the dual basis {u(j)}mj=1, so that 〈v(i) , u(j)〉 =
δij . This agrees with the definition of u(1) in (36). The vectors {u(j)}mj=1 are the

eigenvectors and root vectors of S, so that Su(j) = θu(j) if and only if Stv(j) = θv(j)

(note that we do not need to put complex conjugation, by our definition of the

pairing (37)). Let ℓ be the dimension of the rapidly expanding subspace E++,

that is,

|θℓ| > θ
d−1
d

1 and |θℓ+1| ≤ θ
d−1
d

1 .

Then {v(j)}ℓj=1 is a basis for E++ and {u(i)}ℓi=1 is a basis for Ẽ++. Denote

Φ+
j,T := Φ+

v(j),T
and Φ−

i := Φ−
u(i) .

Theorem 4.3. Let (Xω,R
d) be a non-periodic self-similar tiling dynamical system

of finite local complexity, let µ be the unique invariant probability measure, and
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let Ω be a bounded Lipschitz domain in Rd. Then there exists a constant C =

C(ω,Ω) > 0, such that for any cylindrical function f and any T ∈ Xω:

∣∣∣∣∣

∫

ΩR

f(T − y) dy − Ld(ΩR)

∫

Xω

f dµ−
ℓ∑

n=2

Φ+
n,T (ΩR) ·mΦ−

n
(f)

∣∣∣∣∣(41)

≤ CRd−1(logR)s‖f‖1, for all R ≥ 2,

where s is the maximal size of the Jordan block corresponding to eigenvalues

satisfying |θ| = θ
d−1
d

1 (if there are no such eigenvalues, then s = 0).

Remarks. 1. The second term in (41) can be written in a way consistent with

the sum that follows: for a cylindrical f ,

∫

Xω

f dµ = mΦ−
1
(f) and Ld(ΩR) = Φ+

1,T (ΩR).

2. We can formally interpret (41) also in the case when |θ2| ≤ θ
d−1
d

1 ; then ℓ = 1

and the sum in the formula (41) is zero.

It is not hard to extend (41) to functions of the form f ◦ω−k, where k ∈ N and

f is cylindrical, which form a dense subset of L1(Xω, µ). In the next corollary,

for simplicity, we assume that S has no Jordan blocks in the rapidly expanding

subspace and either Ω is the ball centered at the origin, or φ is a pure dilation.

Corollary 4.4. Under the assumptions of Theorem 4.3, suppose, in addition,

that S has no Jordan blocks in Ẽ++, and the finitely-additive measures Φ+
n,T ,Φ

−
n

correspond to eigenvectors of St and S respectively, with eigenvalues θn, for n ≤ ℓ.

Moreover, assume that either Ω is the ball centered at the origin, or φ is a pure

dilation. Then we have for any cylindrical function f and k ∈ N:

∣∣∣∣
∫

ΩR

f ◦ ω−k(T − y) dy − Ld(ΩR)

∫

Xω

f ◦ ω−k dµ−(42)

−
ℓ∑

n=2

Φ+
n,T (ΩR) ·mΦ−

n
(f ◦ ω−k)

∣∣∣∣∣ ≤ CRd−1λk(log(λ−kR))s‖f ◦ ω−k‖1,

for all R ≥ 2λk, where C is the constant from Theorem 4.3.
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Proof. We have
∫

ΩR

f ◦ ω−k(T − y) dy =

∫

ΩR

f(ω−kT − φ−ky) dy

= λdk
∫

φ−kΩR

f(ω−kT − x) dx.(43)

Observe that

φ−kΩR = Ωλ−kR

by the assumption on Ω and φ, so we can apply (41), with T replaced by ω−kT
and R replaced by λ−kR. We have Ld(Ωλ−kR) = λ−dkLd(ΩR),

Φ+
n,ω−kT

(φ−kΩR) = θ−k
n Φ+

n,T (ΩR)

by (13), and

mΦ−
n
(f) = θknλ

−kdmΦ−
n
(f ◦ ω−k)

by (40). Since everything is multiplied by λdk from (43), all “extra” factors cancel

out. In the right-hand side of (41) we will get C(λ−kR)d−1(log(λ−kR))s‖f‖1,
which is also multiplied by λdk, and keeping in mind that µ is ω-invariant by

Lemma 2.12, we obtain (42). �

Next we deduce upper deviation bounds from Theorem 4.3.

Corollary 4.5. Let (Xω,R
d, µ) be a non-periodic self-similar tiling dynamical

system. Suppose that the substitution matrix S has eigenvalues θ1, . . . , θm (real

and complex), counted with multiplicities and ordered in such a way that θ1 >

|θ2| ≥ · · · ≥ |θm|. Further, let s be the size of the largest Jordan block associated

with the eigenvalues of absolute value |θ2|.
Given a bounded Lipschitz domain Ω, there exists a constant C̃ = C̃(ω,Ω) > 0

such that for any cylindrical function f , with ‖f‖1 = 1, any tiling T ∈ Xω, and

R ≥ 2 we have

∣∣∣∣
∫

ΩR

f(T − y) dy − Ld(ΩR)

∫

Xω

f dµ

∣∣∣∣ ≤





C̃Rd−1, if |θ2| < θ
d−1
d

1 ;

C̃Rd−1(logR)s, if |θ2| = θ
d−1
d

1 ;

C̃Rα(logR)s−1, if |θ2| > θ
d−1
d

1 ,

where α = d log |θ2|/ log θ1 ∈ (d− 1, d).

Proof. The first two cases are immediate from (41), since then ℓ = 1. The third

case also follows from (41), in view of Lemma 3.3. �
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It is possible to show that Corollary 4.5 is sharp, at least in the special case

when the tiles are polyhedral, in the sense that the powers of R in the right-hand

side in each case cannot be replaced by a smaller power.

Remarks. 1. There are a number of results related to Corollary 4.5 in the

literature. When f is assumed to be the characteristic function of a prototile,

the corollary reduces to estimates of the rate of convergence to frequency for

prototiles. In the case d = 1 this is essentially the same as estimating symbolic

discrepancy for substitutions, which was done by Adamczewski [1].

Solomon [32, 33] gives deviation estimates similar to ours for the number of

tiles in a “super-tile” of high order. The tiles are assumed to be bi-Lipschitz

equivalent to a ball, but the substitution need not be non-periodic. Under these

assumptions, the estimates are shown to be sharp.

Aliste-Prieto, Coronel and Gambaudo [2, 3] obtain analogous deviation esti-

mates. The paper [2], which deals with the d = 2 case, estimates the deviation of

average from the frequency for general Jordan domains and for very general sub-

stitution tilings, including non-FLC tilings, the “pinwheel-like” tilings and tiles

with fractal boundary. However, the extension to d > 2 in [3] handles only the

case of “small” θ2 under the stronger assumption |θ2| ≤ θ
1
d
1 .

Interest in such estimates was inspired by questions on bi-Lipschitz equivalence

and bounded displacement of separated nets (also called Delone sets) arising from

primitive substitutions, like the Penrose tiling, to the lattice in Rd, see [12].

2. Sadun [31] obtained deviation estimates for the number of patches per

volume in balls of large radius using rational Čech cohomology, with an error

term computable from the patterns that appear on the boundary.

5. Proof of Theorem 4.3.

We will use the following notation: for a set E ⊂ Rd, a tiling T , and a patch P ,

denote by NP (E,T ) the number of translated copies of P in the tiling T whose

support is contained in E. Since T is now fixed, we will just write NP (E) =

NP (E,T ).

Writing the cylindrical f as a sum over prototiles i ≤ m, we can assume without

loss of generality that ψj ≡ 0 for j 6= i, and let ψ := ψi. Denote

I :=

∫

ΩR

f(T − y) dy.
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It follows from the definition of f that if y belongs to a translate of Ti in T , that

is, y ∈ Ai − x and Ti − x ∈ T for some x ∈ Rd, then

f(T − y) = ψ(y + x),

and f(T − y) = 0 otherwise. Thus,

(44) I =
∑

x: (Ai−x)∩ΩR 6=∅

∫

(Ai−x)∩ΩR

ψ(y + x) dy,

where the sum is over x such that Ti − x ∈ T . Every translate of Ti which is

contained in ΩR contributes Ld(ψ) =
∫
Ai
ψ(y) dy to I, and every translate of Ti

which intersects the boundary of ΩR contributes at most ‖ψ‖1 = (u
(1)
i )−1‖f‖1.

Notice that the number of the translates intersecting the boundary does not

exceed Ld(U(∂ΩR, dmax))a
−1
min. We can write

Ld(U(∂ΩR, dmax)) = RdLd(U(∂Ω, dmax/R)) ≤ C(∂Ω, 1)dmaxR
d−1, for R > dmax,

by (6), hence

(45) I = NTi(ΩR)Ld(ψ) +O(Rd−1‖f‖1),

where the implied constant in O(·) depends only on Ω and ω. Thus it suffices to

prove the desired estimate for NTi(ΩR). (Note that |Ld(ψ)| ≤ (u
(1)
i )−1‖f‖1, so

we will get the factor of ‖f‖1 in the right-hand side of (41).)

By the definition of the substitution matrix S, we have

(46)

ωk(Tj)− y ∈ T ⇒ NTi(φ
k(Aj)− y) = S

k(i, j) = (St)k(j, i) = 〈(St)ke(i) , e(j)〉,

where e(i) is the standard i-th basis vector.

Recall that we have chosen a basis {v(n)}mn=1 for Cm, such that {v(n)}ℓn=1 is

a basis for the St-invariant subspace E++, and a dual basis {u(n)}mn=1. Then we

have

e(i) =

m∑

n=1

〈e(i) , u(n)〉 v(n) =
m∑

n=1

u
(n)
i v(n).

Therefore,

(47) 〈(St)ke(i) , e(j)〉 =
m∑

n=1

u
(n)
i ((St)kv(n))j .

Next we essentially repeat the construction of Lemma 3.2 and consider the set

R(k) = R(k)(ΩR) defined by (14). Further, let us write R(k) =
⋃m

j=1R
(k)
j , where
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R(k)
j is the set of tiles of order k in R(k) of type j. Let kR = max{k : R(k) 6= ∅}.

We have, in view of (46) and (47),

NTi(ΩR) =

kR∑

k=0

NTi(supp(R(k)))

=

kR∑

k=0

m∑

j=1

#R(k)
j

m∑

n=1

u
(n)
i ((St)kv(n))j

=

(
ℓ∑

n=1

+

m∑

n=ℓ+1

)
u
(n)
i

kR∑

k=0

m∑

j=1

#R(k)
j ((St)kv(n))j(48)

=: I1 + I2.

Recall that

Φ+
n,T (supp(T )) = ((St)kv(n))j for T ∈ T (k) of type j.

Using this and finite-additivity of Φ+
n,T , we can write

I1 =
ℓ∑

n=1

u
(n)
i Φ+

n,T (supp(T |ΩR
)).

By Lemma 3.4,

(49) Φ+
n,T (supp(T |ΩR

)) = Φ+
n,T (ΩR) +O(Rd−1) for n ≤ ℓ,

where the implied constant depends only on Ω and ω. Recall that u
(n)
i =

Φ−
n (Γω,Ti). Thus (49) yields

(50) NTi(ΩR)Ld(ψ) =
ℓ∑

n=1

Φ+
n,T (ΩR) ·mΦ−

n
(f) + I2 · Ld(ψ) +O(Rd−1),

with the implied constant that depends only on Ω and ω.

It remains to estimate I2. We have

|I2| ≤
m∑

n=ℓ+1

‖u(n)‖
kR∑

k=0

#R(k)‖(St)kv(n)‖.

Below we use the notation . to indicate inequality up to a multiplicative constant

that depends only on Ω and ω. We have

#R(k) = #R(k)(ΩR) . Rd−1λ−(d−1)k

by (20), and

(51) ‖(St)kv(n)‖ . ks−1λ(d−1)k for n ≥ ℓ+ 1, k > 0,
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by the assumption that v(n), with n ≥ ℓ + 1, is in the invariant subspace of St

corresponding to eigenvalues θ, |θ| ≤ λd−1, and s is the maximal size of the Jordan

block of an eigenvalue θ, |θ| = λd−1. It follows that

|I2| . Rd−1
kR∑

k=0

ks−1 . Rd−1ksR . Rd−1(logR)s,

where the last inequality follows from (19). This, together with (45) and (50),

completes the proof of (41) in the case when s ≥ 1. If s = 0, that is, all remaining

eigenvalues are less than λd−1 in absolute value, then we can replace the right-

hand side of (51) by γk for some γ < λd−1, and use that
∑kR

k=0 λ
−k(d−1)γk ≍ 1 to

obtain

(52) |I2| . Rd−1.

Now the theorem is proved completely. �

6. Limit laws for the deviation of ergodic averages

In order to obtain the limit law, we need to make the following additional

assumptions:

(A) the expansion map of the tiling substitution is a pure dilation: φ(x) =

λx, λ > 1;

(B) all the T -prototiles are polyhedral.

Denote by F the class of bounded cylindrical functions on Xω. For any f ∈ F
and T ∈ Xω, define a continuous function on [0, 1] by

(53) Sn[f,T ](r) =

∫

Qrλn

f(T − y) dy.

Recall that Qr = [−r/2, r/2]d. We consider r 7→ Sn[f,T ](r) as a random variable

on (Xω, µ) with the values in C[0, 1], endowed with the norm topology.

Theorem 6.1. Let (Xω,R
d, µ) be a non-periodic self-similar tiling dynamical

system satisfying the assumptions (A) and (B). Suppose that the substitution

matrix S has a simple positive real second eigenvalue θ2 > λd−1 = θ
d−1
d

1 , and all

other eigenvalues are less than θ2 in absolute value. Then there is a continuous

functional β : F → R and a compactly supported non-degenerate measure ν on
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C[0, 1] such that for any f ∈ F satisfying
∫
Xω

f dµ = 0 and β(f) 6= 0, the sequence

of random variables
Sn[f,T ]

β(f)θn2
converges in distribution to ν as n→ ∞.

Remarks. Nondegeneracy of the measure means that if ϕ ∈ C[0, 1] is distributed

according to ν, then for any r0 ∈ (0, 1] the distribution of the real-valued random

variable ϕ(r0) is not concentrated at a single point.

The measure ν and the functional β(f) naturally come from the 2-nd term in

the formula (41), with Ω = Q1, since the 1-st term in (41) is zero. In other words,

(54) ν = the distribution of r 7→ Φ+
2,T (Qr), r ∈ [0, 1],

as a random variable on (Xω, µ), and

(55) β(f) = mΦ−
2
(f).

Note that

|β(f)| ≤
m∑

i=1

|u(2)i | · Ld(Ai) · ‖f‖∞

by (39), so β is a continuous functional on F ⊂ L∞(Xω).

The theorem in the case d = 1 was established in [10], and the general scheme

of our proof is similar. However, it should be emphasized that there are many

complications because of the “boundary effects” for d ≥ 2. Note that the as-

sumptions (A) and (B) hold in the one-dimensional case (with connected tiles)

automatically.

Proof. We are going to use a basic result (see [7, Th.7.1] or [8]) which says that,

given a sequence of probability measures on C[0, 1], if their finite-dimensional dis-

tributions converge and the sequence is tight, then the measures converge weakly,

which is equivalent to saying that the random variables converge in distribution.

Recall that a family of probability measures on a separable metric space is tight

if for every ε > 0 there is a compact set such that its complement has measure

less than ε for every measure in the family.

In view of (41) and (17), we have for f ∈ F , with
∫
Xω

f dµ = 0, by the

assumptions on the substitution matrix:
∣∣∣∣
∫

QR

f(T − y) dy − Φ+
2,T (QR) ·mΦ−

2
(f)

∣∣∣∣ ≤ C(ω,Ω)Rα−δ‖f‖1, with α =
log θ2
log λ

,
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for some δ ∈ (0, α) and all R ≥ 2. Therefore, for f ∈ F with β(f) 6= 0, by (55),

(56)

∣∣∣∣∣
Sn[f,T ](r)

β(f)θn2
−

Φ+
2,T (Qrλn)

θn2

∣∣∣∣∣ ≤ C(ω,Ω)λ−δn, for all n ∈ N and r ∈ [0, 1].

Note the following important equality, which follows from (13) and the fact that

φ(Qr) = λQr = Qrλ by the assumption (A):

Φ+
2,ω(T )(Qrλ) = θ2Φ

+
2,T (Qr).

Thus,

Φ+
2,T (Qrλn)

θn2
= Φ+

2,ω−n(T )
(Qr).

Observe that r 7→ Φ+
2,ω−n(T )

(Qr) has the distribution of ν from (54) for all

n, since µ is ω−1-invariant by Lemma 2.12. Thus, it follows from (56) that

the k-dimensional distributions of 1
β(f)θn2

(Sn[f,T ](r1), . . . ,Sn[f,T ](rk)) converge

weakly to the k-dimensional distributions of (Φ+
2,T (Qr1), . . . ,Φ

+
2,T (Qrk)). Further,

(26) in Lemma 3.5 shows that the support of ν is compact in C[0, 1] by the Arzelà-

Ascoli Theorem. In order to complete the proof, we need to establish (i) tightness;

(ii) nondegeneracy of the limit measure ν.

6.1. Tightness. The following lemma will imply that the sequence of distribu-

tions of r 7→ θ−n
2 Sn[f,T ](r) is tight, again by Arzelà-Ascoli. In fact, all the

distributions are supported on a single compact set.

Lemma 6.2. There exists C(ω) and n0 ∈ N such that for all f ∈ F with
∫
f dµ =

0, for all T ∈ Xω, all n ≥ n0, and all r1, r2 ∈ [0, 1],

(57)
|Sn[f,T ](r2)−Sn[f,T ](r1)|

θn2
≤ C(Xω)‖f‖∞ · |r2 − r1|α−(d−1),

where α = log θ2
log λ .

Proof. Let r1 < r2. We have

Sn[f,T ](r2)−Sn[f,T ](r1) =

∫

Qλnr2
\Qλnr1

f(T − y) dy =: I.

By the definition of cylindrical functions, there exist ψi ∈ L∞(Ai), i ≤ m, such

that

f(T ) = ψi(x) iff 0 ∈ int(Ai − x), Ti − x ∈ T
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(we can, of course, ignore the case when x belongs to the boundary of a tile, since

the boundary has measure zero). Then we have, similarly to (44):

I =

m∑

i=1

∑

x: (Ai−x)∩(Qλnr2
\Qλnr1

)6=∅

∫

(Ai−x)∩(Qλnr2
\Qλnr1

)
ψi(y + x) dy,

where the inside sum is over x such that Ti−x ∈ T . For n ∈ N such that λn(r2−
r1) ≤ 1, we estimate I as follows, keeping in mind that ‖f‖∞ = maxi ‖ψi‖∞:

|I| ≤ Ld(Qλnr1 \Qλnr2) · ‖f‖∞ = [(λnr2)
d − (λnr1)

d] · ‖f‖∞
= λnd(rd2 − rd1) · ‖f‖∞
≤ dλnd(r2 − r1) · ‖f‖∞.(58)

Observe that (
λd

θ2

)n

= λn(d−
log θ2
logλ

) ≤ (r2 − r1)
α−d,

by the assumption λn ≤ (r2 − r1)
−1, keeping in mind that α = log θ2

log λ . Thus, by

(58),

|I|
θn2

≤ d‖f‖∞
(
λd

θ2

)n

(r2 − r1) ≤ d‖f‖∞(r2 − r1)
α−(d−1),

which yields (57) for such n.

For n ∈ N such that λn(r2 − r1) > 1, we proceed similarly to the proof of

Theorem 4.3 and estimate
∣∣∣∣∣I −

m∑

i=1

NTi(Qλnr2 \Qλnr1) · Ld(ψi)

∣∣∣∣∣

≤ Ld(U(∂Qλnr1 ∪ ∂Qλnr2 , dmax)) · a−1
minamax‖f‖∞,

where amax is the maximal volume of a T prototile. By (27),

Ld(U(∂Qλnr1 ∪ ∂Qλnr2 , dmax)) ≤ d 2d+1dmax((λ
nr1)

d−1 + (λnr2)
d−1)

≤ d 2d+2dmaxλ
n(d−1).

We have (
λd−1

θ2

)n

= λ−n(α−(d−1)) < (r2 − r1)
α−(d−1)

by the assumption λn(r2 − r1) > 1. Therefore,

θ−n
2

∣∣∣∣∣I −
m∑

i=1

NTi(Qλnr2 \Qλnr1) · Ld(ψi)

∣∣∣∣∣ ≤ const · ‖f‖∞ · (r2 − r1)
α−(d−1),
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with the constant depending only on Xω, and it remains to estimate

θ−n
2

m∑

i=1

NTi(Qλnr2 \Qλnr1) · Ld(ψi).

This is done similarly to (parts of) the proof of Theorem 4.3, with some elements

from the proof of Lemma 3.5. We proceed to the formal estimate.

ConsiderR(k) = R(k)(Qλnr2\Qλnr1), and let k0 = max{k : R(k) 6= ∅}. Further,
let R(k)

j be the collection of tiles of type j in R(k). For i ≤ m, using (46) and

(47), we have, similarly to (48),

NTi(Qλnr2 \Qλnr1) =

k0∑

k=0

NTi(supp(R(k)))

=

k0∑

k=0

m∑

j=1

#R(k)
j

m∑

s=1

u
(s)
i ((St)kv(s))j

=

(
1∑

s=1

+
m∑

s=2

)
u
(s)
i

k0∑

k=0

m∑

j=1

#R(k)
j ((St)kv(s))j

=: I
(i)
1 + I

(i)
2 .

Now,

I
(i)
1 = u

(1)
i Ld(supp(T |Qλnr2

\Qλnr1
)),

hence
m∑

i=1

I
(i)
1 · Ld(ψi) = 0,

in view of
∫
f dµ =

∑m
i=1 u

(1)
i · Ld(ψi) = 0. Next,

|I(i)2 | ≤
m∑

s=2

‖u(s)‖
k0∑

k=0

#R(k)‖(St)kv(s)‖

≤ C4

k0∑

k=0

#R(k)θk2 ,

by the assumptions on the matrix St, where the constant C4 > 0 depends only

on the tiling space. We have

#R(k) ≤ C(d,Xω)(λ
nr2)

d−1λ−(d−1)k ≤ C(d,Xω)λ
(d−1)(n−k)
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by (28), hence

(59) θ−n
2

∣∣∣∣∣

m∑

i=1

I
(i)
2 · Ld(ψi)

∣∣∣∣∣ ≤ C5

(
θ2
λd−1

)k0−n

‖f‖∞,

with a constant C5 > 0 that depends only on the tiling space. Recall that

ηλk0 ≤ λn(r2 − r1), where η is the radius of a ball contained in every T prototile.

Thus λk0−n ≤ r2−r1
η , hence the right-hand side of (59) is bounded above by

C5

(
r2 − r1
η

)α−(d−1)

.

Now, combining everything together, we obtain the desired estimate. �

6.2. Nondegeneracy of the limiting measure. It remains to prove that ν is

non-trivial and non-degenerate for every r ∈ (0, 1]. Assume, to the contrary, that

for some r we have Φ+
2,T (Qr) = c for µ-a.e. T ∈ Xω. By Fubini, we can find

T ∈ Xω such that

(60) ∀x ∈ Qd, ∀n ∈ Z, Φ+
2,ω−n(T −rx)

(Qr) = c.

Here we use that µ is invariant under translations and under the action of ω−1.

By (11), we obtain that Φ+
2,T (Qr + x) = c for all x ∈ Zd, and then by finite

additivity,

Φ+
2,T (Qkr) = k2Φ+

2,T (Qr) = k2c for k ∈ N,

decomposing the larger cube into the union of disjoint translates of Qr. On the

other hand,

Φ+
2,T (Qλnr) = θn2Φ

+
2,ω−n(T )

(Qr) = θn2 c

by (13). Now take k = ⌊λn⌋ and observe that

|Φ+
2,T (Qλnr)− Φ+

2,T (Qkr)| ≤ const · λn(d−1)

by (26). This implies that c = 0; otherwise, we get a contradiction for n suffi-

ciently large, keeping in mind that λd−1 < θ2.

Now suppose c = 0. Then Φ+
2,T (Qk−1r − rx) = 0 for k ∈ N and x ∈ Qd by the

argument as above. Then we can approximate supports of the tiles of T by the

unions of such cubes to conclude that they also have zero Φ+
2,T -measure. But this

is a contradiction, since Φ+
2,T (Ai − y) = vi, the i-th component of the eigenvector

of St corresponding to θ2, if Ti − y ∈ T .

Let us explain this more carefully. It is only here that we are using the assump-

tion that the prototiles are polyhedral. Fix a tile Ti − y ∈ T and denote by Ωn



LIMIT THEOREMS FOR SELF-SIMILAR TILINGS 33

the union of “grid cubes” 2−n(Qr − rx), with x ∈ Zd, whose closure is contained

in the interior of Ai − y. Then Vn := (Ai − y) \ Ωn is a Lipschitz domain and

Φ+
2,T (Ωn) = 0 by the argument above. We essentially repeat the arguments from

Lemma 3.3 and Lemma 3.5 and start by writing

(61) Φ+
2,T (Vn) =

k0∑

k=−∞

∑

T∈R(k)(Vn)

Φ+
2,T (supp(T )),

where k0 = max{k : R(k)(Vn) 6= ∅}. Next,

(62) #R(k)(Vn) ≤ Ld(U(∂Vn, dmaxλ
k+1))a−1

minλ
−dk.

By construction, int(Ai − y) ⊂ U(Ωn, 2
−nr

√
d), hence

(63) λk0η ≤ 2−nr
√
d,

where η is the diameter of a ball contained in every T prototile, thus dmaxλ
k+1 ≤

b1 · 2−nr for k ≤ k0 for some b1 independent of n. An elementary argument (see

[23, Lemma 2.2]) shows that for any union F of lattice cubes in Zd we have

(64) Ld(U(∂F, t)) ≤ 2(1 + 2b1)
d−1tHd−1(∂F ), t ∈ (0, b1],

whereHd−1(∂F ) is just the surface area of the boundary. Indeed, for every face of

∂F (say, with the “vertical” normal), consider the “parallelepiped neighborhood”

of the face, with the vertical side length equal to 2t and the other (d − 1) sides

of length 1 + 2b1. Clearly, it contains the Euclidean neighborhood of the face of

radius t for all t ≤ b1, and the inequality (64) follows. Scaling by 2−nr, we obtain

Ld(U(∂Ωn, t)) ≤ 2(1 + 2b1)
d−1tHd−1(∂Ωn), t ∈ (0, b1 · 2−nr].

Therefore, for large n, such that dmaxλ
k0+1 ≤ 1, we have, in view of (6),

Ld(U(∂Vn, dmaxλ
k+1)) ≤ Ld(U(∂Ai, dmaxλ

k+1)) + Ld(U(∂Ωn, dmaxλ
k+1))

≤ C(∂Ai, 1)dmaxλ
k+1

+ 2(1 + 2b1)
d−1dmaxλ

k+1Hd−1(∂Ωn).

It is clear that Hd−1(∂Ωn) are uniformly bounded in n, since Ai−y is polyhedral,

and Ωn is its approximation by a union of 2−nr-grid cubes. It follows that

Ld(U(∂Vn, dmaxλ
k+1)) ≤ b2λ

k, ∀ k ∈ Z, k ≤ k0,

hence, by (62),

#R(k)(Vn) ≤ b3λ
−(d−1)k, ∀ k ∈ Z, k ≤ k0.
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Finally, by (61) and (63),

|Φ+
2,T (Vn)| ≤ b4

k0∑

k=−∞

λ−(d−1)kθk2

≤ b5

(
θ2
λd−1

)k0

≤ b5(2
−nr

√
d)α−(d−1).

Since the latter tends to zero as n→ ∞ we obtain that

Φ+
2,T (Ai − g) = Φ+

2,T (Vn) + Φ+
2,T (Ωn) = Φ+

2,T (Vn) = 0,

which is a contradiction. The theorem is proved completely. �
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