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ENTROPY AND THE SHANNON-MCMILLAN-BREIMAN THEOREM

FOR BETA RANDOM MATRIX ENSEMBLES

ALEXANDER BUFETOV, SEVAK MKRTCHYAN, MARIA SHCHERBINA,
AND ALEXANDER SOSHNIKOV

Abstract. We show that beta ensembles in Random Matrix Theory with generic real
analytic potential have the asymptotic equipartition property. In addition, we prove a
Central Limit Theorem for the density of the eigenvalues of these ensembles.

1. Introduction

In this paper we study asymptotic properties of the density functions of certain mea-
sures known as beta ensembles that arise in Random Matrix Theory. Namely, we consider
probability distributions in R

N of the form

P β
N(λ1, λ2, . . . , λN) =

1

ZN(β)

∏

i<j

|λi − λj|β
N∏

i=1

e−βNV (λi)/2,(1)

where the potential V is a real analytic function satisfying the growth condition

(2) V (λ) ≥ 2(1 + ε) log(1 + |λ|)
for all sufficiently large λ.

Beta ensembles have attracted significant interest in recent years (see e.g. [9], [10], [13],
[14], [15], [18], [29], [30], [32], [33], [34], [35], [37], and references therein). Below, we briefly
mention four classical beta ensembles, namely the Hermite (Gaussian) beta ensemble, the
Circular beta ensemble, the Laguerre (Wishart) beta ensemble, and the Jacobi (MANOVA)
beta ensemble.

• Hermite beta ensemble: Let λ1, . . . , λN ∈ R be random variables with joint density
function with respect to the Lebesgue measure given by

PHer,β
N (λ1, λ2, . . . , λN) =

1

ZHer
N (β)

∏

i<j

|λi − λj|β
N∏

i=1

e−
βN

4
λ2
i .(3)

For β = 1, 2, and 4, the distribution (3) is known as the joint distribution of the eigen-
values of a random matrix from the Gaussian Orthogonal Ensemble (GOE), Gaussian
Unitary Ensemble (GUE), and Gaussian Symplectic Ensemble (GSE) respectively.
Dumitriu and Edelman (see [13], [3]) introduced tridiagonal real symmetric random
matrices with i.i.d. centered Gaussian random variables on the diagonal and χ dis-
tributed independent random variables on the upper and lower sub-diagonals such
that the joint distribution of the eigenvalues is given by (3) for arbitrary β > 0.
The next three classical ensembles do not formally belong to the class (1) since the

particles are distributed, respectively, on the unit circle, positive half-line, and the
interval [−1, 1].

1

http://arxiv.org/abs/1301.0342v3


2 A. BUFETOV, S. MKRTCHYAN, M. SHCHERBINA, AND A. SOSHNIKOV

• Circular beta ensemble: Let λ1, . . . , λN ∈ [0, 2π] be random variables with the joint
density function with respect to the Lebesgue measure given by

PCir,β
N (λ1, λ2, . . . , λN) =

1

ZCir
N (β)

∏

k<j

|eiλk − eiλj |β.(4)

• Laguerre ensemble: Let λ1, . . . , λN ∈ [0,∞) be random variables with the joint
density function with respect to the Lebesgue measure given by

PLag,β
N (λ1, λ2, . . . , λN) =

1

ZLag
N (β)

∏

i<j

|λi − λj|β
N∏

j=1

λα−1
j e−βNλj ,(5)

where α > 0.
• Jacobi ensemble: Let λ1, . . . , λN ∈ [−1, 1] be random variables with the joint density
function with respect to the Lebesgue measure given by

P Jac,β
N (λ1, λ2, . . . , λN) =

1

ZJac
N (β)

∏

i<j

|λi − λj|β
N∏

j=1

(1− λj)
µ−1(1 + λj)

ν−1,(6)

where µ, ν > 0.

As in the Hermite case, the values β = 1, 2, and 4 (with α = β
2
(n − m + 1) − 1 in the

Laguerre case and µ = β
2
(n1 − m + 1) − 1, µ = β

2
(n2 − m + 1) − 1 in the Jacobi case),

correspond to classical ensembles of random matrices (see e.g. [25], [13]). In the Laguerre
case, the random matrix ensemble for arbitrary positive β was constructed in [13]. For Jacobi
and Circular beta ensembles, three- and five-diagonal matrix models were derived by Killip
and Nenciu in [24].

It is well known (see [8], [23], [12]) that if the potential V in (1) is sufficiently smooth
(e.g. when V ′ is Hölder continuous), then there exists an equilibrium measure µV which is
absolutely continuous with respect to the Lebesgue measure and has compact support. Let
us denote its density by ρV . The equilibrium measure maximizes the functional

(7) EV (µ) :=
∫ ∫

log |x− y|dµ(x)dµ(y)−
∫
V (x)dµ(x)

over the space of the probability measures on R. Note that EV (µ), up to a factor of −1,
coincides with the energy functional. We denote by E [V ] := EV (µV ) the maximum value of
the functional attained at the equilibrium measure µV . The marginal density of the ensemble
(1),

ρ
(N)
1,β (λ) =

∫

RN−1

P β
N(λ, λ2, . . . , λN)dλ2 . . . dλN ,

weakly converges to the equilibrium density ρV . In addition, the support of µV and the
density ρV are uniquely determined by the Euler-Lagrange variational equations

2

∫
log |x− y|dµV (y)− V (x) ≤ l, x ∈ R,(8)

2

∫
log |x− y|dµV (y)− V (x) = l, x : ρV (x) > 0.(9)

In the Hermite case (V (x) = x2/2), the equilibrium measure is the Wigner semicircular
distribution µsc(dx) =

1
2π

√
4− x21[−2,2](x)dx.
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In addition to (2), we assume throughout this paper that the potential V is real analytic
and generic (see Theorem 2.1 for details). In particular, the support of the equilibrium
measure consists of finitely many intervals (see e.g. [2]). We prove that the logarithm of
the density, after appropriate normalization, converges to a constant almost surely. This
is called the asymptotic equipartition property. The precise statement is given in Theorem
2.1. By analogy with the Shannon–McMillan-Breiman theorem, the limiting constant can
be interpreted as the entropy of the corresponding measure. A corollary of this result states
that in the limit when the size of the considered matrices goes to infinity, there is a set of
measure almost 1 such that at all the points of this set the density is almost the same.

Analogous results for the Plancherel measure were conjectured to be true by Vershik and
Kerov [36] and proved in [11]. For a one parameter deformation of the Plancherel measure,
called the Schur–Weyl measures, equivalent results were obtained in [26, 27]. Note, that in
the case of the Plancherel and Schur-Weyl measures it is only known that the normalized
logarithm of the density converges to a constant in probability. The question of almost sure
convergence for those measures is still open.

In addition to the asymptotic equipartition property we prove the Central Limit Theorem
for the logarithm of the density (see Theorem 2.3). For general random matrix models
Borodin and Serfaty have studied asymptotic properties of a similar statistic, which they
call “renormalized energy” [7]. They explicitly calculate the limit of the expectation of the
“renormalized energy” in the case of β-sine processes for β = 1, 2, 4 and some 2-dimensional
point processes. The result of Theorem 2.3 in the special case of the circular beta ensemble
appears in [7]. The Central Limit Theorem for random variables of the form

∑
i g(λi), where

λi are the eigenvalues and g is a bounded continuous function, was obtained by Johansson
for the circular ensemble [22] and later for ensembles with more general potentials [23] (see
also [28] for results on non-Gaussian limiting fluctuation of linear statistics in the multi-cut
case). A large deviation principle for spectral measures of certain classes of beta ensembles
of random matrices was established in [6] (see also recent results by Forrester for the classical
beta ensembles in [20] and [21]).

For the classical beta ensembles (Hermite, Circular, Laguerre, and Jacobi beta ensembles)
our results follow from the Selberg Integral [31] since it allows us to obtain explicit formulas
for the Laplace transform of the normalized logarithm of our density. We obtain the point-
wise convergence and the Central Limit Theorem from the asymptotics of the exponential
moment. In the general case, we use recent results [32], [8], [33] about the asymptotic ex-
pansion of the partition function of (1). We note that the use of the Selberg integral for
deriving fluctuation formulas for linear statistics in the classical beta ensembles was first
done by Baker and Forrester in [4].
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Sciences, by the RFBR-CNRS grant 10-01-93115-NTsNIL and by the RFBR grant 11-01-
00654.

M. Shcherbina has been supported in part by the project ”Ukrainian branch of the French-
Russian Poncelet laboratory” - ”Probability problems on groups and spectral theory”.



4 A. BUFETOV, S. MKRTCHYAN, M. SHCHERBINA, AND A. SOSHNIKOV

A. Soshnikov has been supported in part by the NSF grant DMS-1007558.

2. Main results

2.1. Asymptotic equipartition property. Consider a probability measure on R
N with

the density function P β
N defined in (1). Consider the (infinite) product of these probability

spaces and denote by P
β the corresponding probability measure on Ω := R

1 × R
2 × · · · ×

R
N × · · · . Define random variables XN on Ω by

XN(λ) := − lnP β
N (λ̄)

N
:= − lnP β

N(λ̄N)

N
,

where λ̄ = {λ̄1, λ̄2, . . . } ∈ Ω.

Theorem 2.1 (Asymptotic equipartition property). Let V be a real analytic function grow-
ing faster than log(1 + λ2), as |λ| → ∞ whose equilibrium density ρV has q-interval support
σ (q ≥ 1). Assume also that ρV is generic, which means that ρV 6= 0 in the internal points
of σ, ρV behaves like square root near the edges of σ, and the function

v(λ) := 2

∫
log |µ− λ|ρV (µ)dµ− V (λ)

attains its maximum only if λ belongs to σ. Then for any β > 0 the random variables XN

converge P
β-almost surely to some constant Eβ(V ).

Remark

In the Hermite case,

(10) EHer
β = ln(2π)− ln Γ

(
1 +

β

2

)
+
β

2
ψ

(
1 +

β

2

)
− β

2
− 1

2
.

The results of this theorem and Theorem 2.3 below also hold for the Circular, Laguerre, and
Jacobi beta ensembles. In particular,

ECir
β = ln(2π)− ln Γ

(
1 +

β

2

)
+
β

2
ψ

(
1 +

β

2

)
− β

2
,

ELag
β = ln(2π)− ln Γ

(
1 +

β

2

)
+
β

2
ψ

(
1 +

β

2

)
− β

2
+ α ln

β2

2
− α− β ln β,

EJac
β = ln(2π)− ln Γ

(
1 +

β

2

)
+
β

2
ψ

(
1 +

β

2

)
− β

2
− (µ+ ν) ln 2,

where ψ is the digamma function,

(11) ψ(x) =
d

dx
log Γ(x).

For a general potential V, the constant Eβ(V ) is defined in (27), (10), and (26).
The fact that for the classical beta ensembles the mean energy and the specific heat can

be computed from the Selberg integral is well known in the physics community. For the
calculation of the specific heat for the circular beta ensemble we refer to [16], [17].

The following is an immediate corollary of Theorem 2.1.
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Corollary 2.2. For any β > 0 and any ε > 0, there exists Nε,β > 0 such that for any

N > Nε,β, there exists Sβ
N (ε) ⊂ supp(P β

N) such that for any λ̄ ∈ Sβ
N(ε) we have

e−(Eβ+ε)N < P β
N(λ̄) < e−(Eβ−ε)N

and

lim
N→∞

∫

λ̄∈Sβ
N
(ε)

P β
N(λ̄)dλ̄ = 1.

2.1.1. The Shannon-McMillan-Breiman Theorem. The interpretation of the constant Eβ(V )
as the entropy of the corresponding random matrix ensemble is by analogy with the Shannon-
McMillan-Breiman theorem. To illustrate the analogy, we briefly recall the Shannon-McMillan-
Breiman theorem in the case of the Bernoulli process.

Let W be the set of sequences of 0s and 1s, i.e. W = {0, 1}N. Given w ∈ W let
wn = (w1, . . . , wn) ∈ {0, 1}n be the first n elements of w, and let Swn

be the cyllinder
set corresponding to wn. Swn

is the set of all sequences in W the first n elements of which
coincide with wn. Given p ∈ (0, 1), let Pp be the Bernoulli measure onW, which to a cylinder
set Swn

assigns the probability

Pp(Swn
) = pk(1− p)n−k,

where k is the number of ones in wn. Let

H(p) = −p ln p− (1− p) ln(1− p)

be the entropy of the Bernoulli measure. The Shannon-McMillan-Breiman theorem states
that for any p ∈ (0, 1), we have

Pp

(
w ∈ W : lim

n→∞
− lnPp(Swn

)

n
= H(p)

)
= 1.

In other words, the theorem states that the random variables − lnPp(Swn)
n

converge to the
entropy H(p) almost surely.

2.2. Central Limit Theorem.

Theorem 2.3 (Central Limit Theorem). Under the assumptions of Theorem 2.1,

Y β
N := N−1/2(logP β

N(λ̄) +NEβ(V ))

converges in distribution as N → ∞ to the Gaussian random variable with expected value 0
and variance

β

2
− β2

4
ψ′
(
1 +

β

2

)
,

where ψ is defined in (11).

Remark

The results of Theorems 2.1 and 2.3 in the special case of the Hermite beta ensemble (3)
were first proven by Ionel Popescu in [29].

Remark

Let us write the probability density (1) as

P β
N(λ̄) =

e−βHN (λ̄)/2

ZN(β)
,
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where the potential energy term HN is given by

(12) HN(λ̄) = N
N∑

i=1

V (λi)−
∑

i 6=j

ln |λi − λj|.

Then the Central Limit Theorem result can be reformulated in terms of convergence in dis-
tribution of

WN (λ̄) =
HN(λ̄)− CN,β√

N

to the Gaussian limit N(0, 2
β
−ψ′ (1 + β

2

)
), where CN,β is an appropriate centering constant.

In particular, for the classical beta ensembles, one has

CHer
N,β =

3

8
N2 − 1

2
N lnN +

(
−1

2
ln
β

2
− 1

4
+

1

2
ψ

(
1 +

β

2

))
N,

CCir
N,β = −1

2
N lnN −

(
1

2
ln
β

2
− 1

2
ψ

(
1 +

β

2

))
N,

CLag
N,β =

(
3

4
+

ln 2

2

)
N2 − 1

2
N lnN − 1 + lnβ − ψ

(
1 + β

2

)

2
N,

CJac
N,β =

ln 2

2
(N − 2)N − 1

2
N lnN +

(
−1

2
ln
β

2
+

1

2
ψ

(
1 +

β

2

))
N.

Remark

It should be noted that both terms in the expression (12) for the potential energy, namely

N
∑N

i=1 V (λi) and
∑

1≤i<j≤N ln |λi − λj|, have fluctuations of order N, (see e.g. [23], [28]).
At the same time, the sum of these two terms fluctuates on a much smaller order, namely
N1/2. The cancellations take place because of the Euler-Lagrange variational equations (8-9)
for the equilibrium measure. As a result, the difference V (λi)− 2

∑
j:j 6=i log |λj − λi| is equal

(up to a negligible error term) to a constant independent of 1 ≤ i ≤ N.

It is also important to note that while the fluctuation of the linear statistic
∑N

i=1 V (λi) is
(asymptotically) Gaussian in the one-cut case, it is non-Gaussian, in general, in the multi-
cut case (see [28]).

For the Hermite beta ensemble, the potential energy HN(λ̄) attains its (unique) minimum
at the configuration given by the zeroes of the (rescaled) Hermite polynomial of order N ,

namely hN(
√

N
2
x), where

hN(x) = N !

[N/2]∑

m=0

(−1)m(2x)N−2m

m!(N − 2m)!

(see e.g. [25, A.6]). The minimum value of HN is equal to

(13)
N(N − 1)

4
(logN + 1)− 1

2

N∑

j=1

j log j =
3

8
N2 − 1

2
N logN − 1

4
N + o(N).

Note that the inequality ψ(1 + x) ≥ log x implies that

CHer
N,β ≥ 3

8
N2 − 1

2
N logN − 1

4
N.
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Thus, for a typical configuration the difference between the potential energy and its minimal
value is proportional to N.

Similar explicit computations could be done for the other classical beta ensembles. In
particular, for the Circular beta ensemble, the ground state is unique up to a rotation and
is given by the vertices of a regular N−gon, and the minimum of the potential energy is
equal to −1

2
N logN. For Laguerre and Jacobi beta ensembles, the ground state is unique

and is given by the zeroes of the corresponding (rescaled) orthogonal polynomial of degree
N. Since the computations are very similar to the ones in [25, A.6]), we leave the details to
the reader.

3. Proof of Theorem 2.3

We first give the proof in the case of the Hermite beta ensemble. Then we quickly extend
it to analytic potentials V in both one-cut and multi-cut cases.

We start with the Selberg type integral corresponding to the Hermite orthogonal polyno-
mials [25, 17.6.7]

ZHer
N (β) = (2π)

N
2

(
Nβ

2

)−N
2
((N−1)β/2+1) N∏

j=1

Γ(1 + jβ/2)

Γ(1 + β/2)
,(14)

which can be rewritten as

logZ
(b)
N (β) =

N

2
log 2π −

(βN2

4
+
N

2

(
1− β

2

))
log

βN

2
−N log Γ(1 + β/2)

+

N∑

j=1

log Γ(1 + βj/2).

Let us represent
∑N

j=1 log Γ(1 + βj/2) in terms of the Barnes G-function defined in [5] (see

also [19] formula (4.181)). It satisfies the functional equation

G(1 + z) = Γ(z)G(z), G(1) = 1,

and so at the integer points G can be represented as G(1 + N) =
∏N−1

j=1 Γ(1 + j). The

asymptotic expansion for logG is known (see [19] formula (4.184)):

(15) logG(1 + z) =
z2

2
log z − 3

4
z2 +

z

2
log 2π − 1

12
log z + ζ ′(−1) + o(1), z → ∞.

To obtain the representation for
∑N

j=1 log Γ(1+βj/2) we use the Stirling formula in the form

(16) log Γ(1 + z) =
(
z +

1

2

)
log z − z +

1

2
log 2π +

1

12z
+ r(z) |r(z)| ≤ Cz−2,
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where the bound for r(z) is uniform for any interval (δ,∞) with δ > 0. Then

N∑

j=1

log Γ(1 + βj/2) =
N∑

j=1

((βj
2

+
1

2

)
log

βj

2
− βj

2
+

1

2
log 2π +

1

6βj
+O((βj)−2)

)

=

N∑

j=1

((β
2

(
j +

1

2

)
log j − βj

2
+
β

4
log 2π +

β

12j

)
+ r(βj)

+
1

2

(
1− β

2

)
log j +

(βj
2

+
1

2

)
log

β

2
+

1

2

(
1− β

2

)
log 2π − 1

12j

(β
2
− 2

β

)
)

=
N∑

j=1

β

2
log Γ(1 + j) +

1

2

(
1− β

2

)
log Γ(1 +N) +

(βN2

4
+
N

2

(
1 +

β

2

))
log

β

2

+
N

2

(
1− β

2

)
log 2π − 1

12

(β
2
− 2

β

)
logN + CN(β) + o(1)

=
β

2
logG(1 +N) +

1

2

(
1 +

β

2

)
log Γ(1 +N) +

(βN2

4
+
N

2

(
1 +

β

2

))
log

β

2

+
N

2

(
1− β

2

)
log 2π − 1

12

(β
2
− 2

β

)
logN + C(β) + o(1).(17)

Here

C(β) = lim
N→∞

CN(β),

CN(β) =
N∑

j=1

(
r(βj/2)− β

2
r(j)

)
− 1

12

(β
2
− 2

β

)
γ,

where γ denotes the Euler constant and r(z) is defined in (16).
This expansion combined with (15) and (16) implies

N∑

j=1

log Γ(1 + βj/2) =
βN2

4
log

βN

2
− 3

8
βN2 +

N

2

(
1 +

β

2

)
log

βN

2
− N

2

(
1 +

β

2

)

+
N

2
log 2π +R(β) logN + C̃(β) + o(1),

where

R(β) =
β

24
+

1

4
+

1

6β
,

C̃(β) = C(β) +
1

4
(1 +

β

2
) log 2π + ζ ′(−1).

Applying the Selberg formula (14), the above representation yields

logZHer
N (β) =

β

2
N2E0 +

βN

2
log

βN

2
+N

(
log 2π − log Γ(1 +

β

2
)− 1

2
(1 +

β

2
)
)

+R(β) logN + C̃(β) + o(1), E0 = −3

4
.(18)
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Consider now the random variable

Y Her,β
N = N−1/2(logPHer,β

N (λ̄) +NEHer
β ) = N−1/2

(
− β

2
HN(λ̄)− logZN(β) +NEHer

β

)
.

The Laplace transform of the distribution of Y Her,β
N ,

(19) Φ(t) =

∫
dλ̄e−tY Her,β

N PHer,β
N (λ̄),

can be written as

(20) Φ(t) = (ZHer
N (β))−1

∫
dλ̄ exp

{
− β

2
(1 +

t√
N
)HN(λ̄)−

t√
N

logZN(β) + t
√
NEHer

β

}
.

Thus,

log Φ(t) = logZN(β(1 +
t√
N
))− (1 +

t√
N
) logZN(β) + βt

√
NEHer

β .

Since according to (18)

logZHer
N (β) =

β

2
N2E0 +

βN

2
logN +Nf0(β) +R(β) logN + C̃(β) + o(1)(21)

with

f0(β) = log 2π − log Γ(1 +
β

2
) +

β

2
log

β

2
− 1

2
(1 +

β

2
),

one can see immediately that

logZN(β(1 +
t√
N
))− (1 +

t√
N
) logZN(β) = t

√
N(βf ′

0(β)− f0(β)) +
β2t2

2
f ′′(β) + o(1).

Hence, using that by definition of EHer
β in (10)

EHer
β = f0(β)− βf ′

0(β),

we get

Φ(t) = exp{β
2t2

2
f ′′(β) + o(1)}.

Thus, we have proved that Y Her,β
N converges in distribution to the Gaussian random variable

with zero mean and variance

β2f ′′(β) =
β

2
− β2

4
ψ′(1 +

β

2
).

Consider now the case of general one-cut potential V . We write

HN(λ̄;V ) =−N

n∑

i=1

V (λi) +
∑

i 6=j

log |λi − λj|,(22)

P β
N(λ̄;V ) =(ZN(β;V ))

−1e−βHN (λ̄;V )/2,(23)

Z
(b)
N (β;V ) =

∫
e−βHN (λ̄;V )/2dλ̄.(24)
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We use the expansion for log(ZN(β;V )/N !) found in [32] (formulas (1.31)-(1.33)) in the
modified form of [33] (formulas (1.20), (1.21)). Note that Fβ(N) below differs from Fβ of
(1.21) by logN !. We have

logZN(β;V ) =
βN2

2
E [V ] + Fβ(N) +NS[ρV ]

(β
2
− 1
)
+ rβ [ρ

V ] +O(N−1),(25)

Fβ(N) = logZHer
N (β)− βN2

2
E0,

S[ρV ] =
(
(log ρV , ρV )− 1 + log 2π

)
,(26)

E [V ] =− (V, ρV ) + (LρV , ρV ), (Lf)(λ) =

∫
log |λ− µ|f(µ)dµ,

where ρV is the equilibrium density, rβ [ρ] is a smooth function of β defined by a contour
integral with the Stieltjes transform of ρV , and (f, g) :=

∫
f(x)g(x)dx. Since (25) is also

written in the form (21) with E0 replaced by E [V ], and f0, C̃(β) replaced by

fV (β) = f0(β) + S[ρV ]
(β
2
− 1
)
, C[V ] = C̃(β) + rβ[ρ

V ],

by the same argument we conclude that the CLT is valid for

Y β
N = N−1/2(logP β

N (λ̄;V ) +NEβ [V ]) = N−1/2
(
− β

2
HN(λ̄;V )− logZN(β;V ) +NEβ [V ]

)
,

where

(27) Eβ [V ] = EHer
β − S[ρV ],

and the variance is the same as in the Gaussian case.
We are left to consider the multi-cut case. Since the analog of (25) obtained in [33] in the

multi-cut case is more complicated, we first need some extra definitions.
Denote

(28) σ :=

q⋃

α=1

σα, σα = [aα, bα], µα :=

∫

σα

ρVα (λ)dλ, ρVα := 1σα
ρV .

Define the operators L, L̂ and L̃ by

(29) Lf := 1σL[f1σ], L̂αf := 1σα
L[f1σα

], L̂ := ⊕q
α=1L̂α, L̃ := L − L̂,

on the set of the functions

H = ⊕q
α=1L1[σα].

Note that the topology of H is not important below.
For each interval σα we also define the operator

Dα =
1

2
(Dα +D∗

α), Dαh(λ) =
1

π2

∫

σα

h′(µ)
√
(µ− aα)(bα − µ)dµ

(λ− µ)
√
(λ− aα)(bα − λ)

,(30)

and set

(31) D := ⊕q
α=1Dα.

Let Q be a positive definite q × q matrix of the form

(32) Q = {Qαα′}qα,α′=1, Qαα′ = −(Lψ(α), ψ(α′)),
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where the function ψ(α)(λ) is a unique solution of the system of equations

(33) − (Lψ(α))α′ = δαα′ , α′ = 1, . . . , q.

It is known that ψ(α) can be chosen in the form

ψ(α)(λ) = pα(λ)X
−1/2
σ (λ)1σ, X1/2

σ (λ) = ℑ
(∏

(z − aα)(z − bα)
)1/2∣∣∣

z=λ+i0
,

where pα is a polynomial of degree q − 1. Set

(34) I[h] = (I1[h], . . . , Iq[h]), Iα[h] :=
∑

α′

Q−1
αα′(h, ψ

(α′)),

and define a quasi-periodic in N function Θ(β; {Nµ̄}) by

Θ(β; {Nµ̄}) :=
∑

n1+···+nq=n0

exp
{
− β

2

(
Q−1∆n̄,∆n̄

)
+
(β
2
− 1
)
(∆n̄, I[log ρV ])

}
,(35)

{Nµ̄} = ({Nµ1}, . . . , {Nµq}), (∆n̄)α = nα − {Nµα}, n0 =

q∑

α=1

{Nµα},

with Q of (32), {µα}qα=1 of (28), I[h] of (34), and log ρ = (log ρ1, . . . , log ρq).
Using the above definitions we can write now the analog of (25) obtained in [33], formula

(1.34):

logZ
(b)
N [β, V ] =

N2β

2
E [V ] + Fβ(N) +N(

β

2
− 1)S[ρV ] + (q − 1)

(
R(β) logN + C̃(β)

)

+

q∑

α=1

(rβ[µ
−1
α ρα] +R(β) logµα)−

1

2
log det(1−DL̃)(36)

+
2

β

(β
2
− 1
)2(

L̃(1−DL̃)−1ν, ν
)
+ logΘ(β; {Nµ̄}) +O(N−κ), κ > 0,

where µα, ρα are defined in (28), rβ[µ
−1
α ρα] for each σα is the same as in (25), Fβ(N), R(β),

and C̃(β) are defined in (18) (note that R(β) corresponds to −cβ from (1.34) of [33], C̃(β)

corresponds to c
(1)
β and Fβ(N) differs from that of (1.34) by logN !), and det means the

Fredholm determinant of DL̃ on σ. The non positive measures (ν1, . . . , νq) =: ν have the
form

(να, h) :=
1

4
(h(bα) + h(aα))−

1

2π

∫

σ

h(λ)dλ√
(λ− aα)(bα − λ)

+
1

2
(Dα logPα, h).

with

Pα(λ) =
2πρVα (λ)√

(λ− aα)(bα − λ)
.
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It is easy to see that in the multi-cut case the expression (36) still can be written in the form

(21) with E0 replaced by E [V ], R(β) replaced by qR(β), and f0, C̃(β) replaced by

fV (β) =f0(β) + S[ρV ]
(β
2
− 1
)
,

Cq[V ] =qC̃(β) +

q∑

α=1

(rβ[µ
−1
α ρα] +R(β) logµα)−

1

2
log det(1−DL̃)

+
2

β

(β
2
− 1
)2(

L̃(1−DL̃)−1ν, ν
)
+ logΘ(β; {Nµ̄}).

Since the structure of Θ(β; {Nµ̄}) (see (35)) guarantees that
∣∣∣ logΘ

(
β; {Nµ̄}

)
− log Θ

(
β
(
1 +

t√
N

)
; {Nµ̄}

)∣∣∣ ≤ K(β)|t|√
N

,

by the same argument we conclude that the CLT is valid for

Y β
N = N−1/2(logP β

N(λ̄;V ) +NEβ[V ]) = N−1/2
(β
2
HN(λ̄;V )− logZN(β;V ) +NEβ [V ]

)
,

where

Eβ [V ] = EHer
β − S[ρV ],

and the variance is the same as in the Gaussian case.
The theorem is proven.
Remark

As we have mentioned above, the result of Theorem 2.3 also holds for Circular, Laguerre,
and Jacobi beta ensembles. The proofs are very similar to the one in the Hermite case. The
arguments are based on the explicit formulas for the partition functions given by the Selberg
integrals [25]:

ZCir
N (β) =(2π)N

Γ(1 +Nβ/2)

Γ(1 + β/2)N
,

ZLag
N (β) =(βN)−

N(N−1)
2

β−αN
N−1∏

j=0

Γ(1 + (j + 1)β/2)Γ(α+ jβ/2)

Γ(1 + β/2)
,

ZJac
N (β) =2

β

2
N(N−1)+N(µ+ν−1)

N−1∏

j=0

Γ(1 + (j + 1)β/2)Γ(µ+ jβ/2)Γ(ν + jβ/2)

Γ(1 + β/2)Γ(µ+ ν + (N + j − 1)β/2)
.

The details are left to the reader.
To prove Theorem 2.1 it suffices to observe that by the Chebyshev inequality we have

Prob{|Xβ
N + Eβ| > ε} = Prob{|Y β

N | >
√
Nε} ≤ (Φ(1) + Φ(−1))e−

√
Nε ≤ Ce−

√
Nε,

and apply the Borel-Cantelli lemma.
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