N

HAL

open science

Infinite determinantal measures
Alexander I. Bufetov

» To cite this version:

Alexander I. Bufetov. Infinite determinantal measures. Electronic Research Announcements in Math-

ematical Sciences, 2013, 10.3934/era.2013.20.12 . hal-01256164

HAL Id: hal-01256164
https://hal.science/hal-01256164

Submitted on 14 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01256164
https://hal.archives-ouvertes.fr

arXiv:1207.6793v2 [math.PR] 24 Oct 2012

INFINITE DETERMINANTAL MEASURES

ALEXANDER I. BUFETOV

ABSTRACT. Infinite determinantal measures introduced in this note ar
inductive limits of determinantal measures on an exhaggamily of
subsets of the phase space. Alternatively, an infinite oétemtal mea-
sure can be described as a product of a determinantal paio¢gs and
a convergent, but not integrable, multiplicative functibn

Theorem 2, the main result announced in this note, gives plicéx
description for the ergodic decomposition of infinite Pelkmeasures
on the spaces of infinite complex matrices in terms of infidid&ermi-
nantal measures obtained by finite-rank perturbations ss&epoint
processes.

1. INTRODUCTION

1.1. Outline of the main results. In this section, our aim is to construct
sigma-finite analogues of determinantal measures on sphaeshfigura-
tions. In Theoreni]2 of Section 4, infinite determinantal niees will
be seen to arise in the ergodic decomposition of infiniteanitytinvariant
measures on spaces of infinite complex matrices.

Informally, a configuration on the phase spdcas an unordered col-
lection of points (callegarticleg of F, possibly with multiplicities; the
main assumption is that a bounded subsel afontain only finitely many
particles of a given configuration.

To a functiong on £ assign itanultiplicative functionall’, on the space
of configurations: the functional, is obtained by multiplying the values
of g over all particles of a configuration (sée (5)). A probapiiiteasure on
the space of configurations dii is uniquely characterized by prescribing
the expectations of multiplicative functionals; fibeterminantaprobability
measures these expectations are given by special Fredleénrdnants,
see e.g.[[30]; the definition is also recalledlih (8) below.

Given a subset’ C E, consider the subsétonf(FE, £’) of those con-
figurations whose all particles lie iB’; in Propositior 2 below, we shall
see that under some additional asumptions the restrictiameterminantal
point process ont@onf(E, £') is again determinantal.

Our main example, the measuBé®) of (24), is defined on the space

of configurations on(0, +occ). Almost every configuration is infinite and
1
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bounded according tB(); the particles accumulate at zero. If one takes
R > 0 and requires all particles to lie if®, R), then the induced measure
of B®) on the resulting subset of configurations is finite, and,rafta-
malization, determinantal. AB goes to infinity, the measure of the subset
Conf((0,+00); (0, R)) grows, and the measure of the space of all configu-
rations is infinite.

Our general construction will similarly exhauktby subsetd”, in such
a way that the weight o€onf(F£; E,,) is positive and finite, and the nor-
malized restriction of our infinite determinantal measun¢oathe subset
Conf(E; E,) is determinantal. A simple example is given by “infinite or-
thogonal polynomial ensembles”, séé (3) below. The mediirés a scal-
ing limit of such ensembles. We proceed to precise fornmuati

1.2. Construction of infinite determinantal measures. Let £’ be a locally
compact complete metric space, andJehf(E) be the space of configura-
tions onE endowed with the natural Borel structure (see, €.gl, [BO)D[

Given a Borel subset’ C E, we letConf(E, E') be the subspace of
configurations all whose particles lie .

Given a measurB on a setX and a measurable subdétC X such that
0 < B(Y) < 400, we letB |y stand for the restriction of the measuke
onto the subseét’.

An infinite determinantal measuigac-finite Borel measur® on Conf(E)
admitting a filtration of the spacE by Borel subset#,,, n € N:

EFiCcEC...CE,C..., UEn:E
n=1

such that for any: € N we have

(1) 0 < B(Conf(E, E,)) < +0o0;
(2) the normalized restriction

B }Conf(E,En)
B (Conf(FE, E,))

is a determinantal measure;
(3) B (Conf(E)\ U (Conf(E, En)) =0.
n=1

Let 1 be ao-finite Borel measure of'. By the Macchi-Soshnikov Theo-
rem, under some additional assumptions, a determinantsume can be
assigned to an operator of orthogonal projection, or, irelothiords, to
a closed subspace @ (E, ). In a similar way, an infinite determinan-
tal measure will be assigned to a subspéatcef locally square-integrable
functions. For example, for infinite analogues of orthodgaynomial
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ensemblest is the subspace of weighted polynomials, see Subsection 1.3
below.

Let Ly 0. (E, 1) be the space of measurable functionghhocally square
integrable with respect to, let .#, (E, 1) be the space of trace-class opera-
tors in Ly (E, 1) and let.# 1..(E, 1) be the space of operators @p(E, )
that are locally of trace class (precise definitions arelled# Section 2).

Let H C Lyoo(E, 1) be alinear subspace. B’ C E is a Borel subset
such thaty - H is a closed subspace bf(E, 1), then we denote bj ' the
operator of orthogonal projection onto the subspagd! C Lo(F, i1). We
now fix a Borel subsek, C F; informally, E, is the set where the particles
accumulate. We impose the following assumptionigrand H .

Assumption 1. (1) Forany bounded Borel sét C F, the space g,usH
is a closed subspace &k (F, u);
(2) For any bounded Borel sét C E'\ E,, we have

(1) 7Y% € A 100(B, p),  xsI™YPxp € A(E, p);
(3) If p € H satisfiesyg,¢ = 0, theny = 0.

Theorem 1. Let E be a locally compact complete metric space, and:let
be ac-finite Borel measure o. If a subspace? C Lg..(E, 1) and a
Borel subset; C E satisfy Assumptidfi, then there exists a-finite Borel
measuréB on Conf(F) such that

(1) B-almost every configuration has at most finitely many paesicl
outside offy;

(2) for any bounded Borel (possibly empty) subBet £\ E, we have
0 < B(Conf(E; Ey U B)) < +o0 and

IB|Conf(E;E'0UB)
B(Conf(F; Ey U B))

The requirements (1) and (2) determine the meaBuwaiquely up to mul-
tiplication by a positive constant.

- PHEOUB .

We denotdB(H, Ey) the one-dimensional cone of nonzero infinite deter-
minantal measures induced ByandE,, and, slightly abusing notation, we
write B = B(H, Ey) for a representative of the cone.

Remark. If B is a bounded set, then, by definition, we have

B(H, Ey) = B(H, E, U B).

Remark. If £ C E is a Borel subset such thgis, s is a closed sub-
space inLy(E, 1) and the operatofl®“*" of orthogonal projection onto
the subspacg g, H satisfies

(2) TEVE € 7 10o(By ), xe TPV xw € A(B, p),



4 ALEXANDER I. BUFETOV

then, exhausting?’ by bounded sets, from Theordm 1 one easily obtains
0 < B(Conf(FE; Ey U E")) < +o00 and

]B|Conf(E;EQUE’)
B(Conf(E; Ey U £

)) - ]PHEOUE’ .

1.3. Infinite orthogonal polynomial ensembles. Take an intervala, b) in
R, let Leb = dz on [a,b) be the Lebesgue measure fanb), let p be a

positive continuous function ofa, b), and assumg”; p(x)dx = +oo. Take
n € N and endow the sét, b)"¥ with the measure

N

3) H (zi — xj)z H pla;)d;,

1<i,j <N i=1

an infinite analogue of an orthogonal polynomial ensemble.
For anyb; € [a,b), the induced measure

N
(4) H (i — 2;)° H (@) Xja,br] (%) dz;

1<i<j<N i=1
is finite and, after normalization, can be represented iardghantal form
1 N
b
I det K™ (x, ) H P(Z3) Xjapr) (24) das,

i=1

where/ %" is the N-th Christoffel-Darboux kernel formed by orthonormal
polynomials corresponding to the “induced” weight) x (4,5, ().

The infinite measuré {3) is thus an infinite determinantalsueacorre-
sponding to the subspaéé C L, ..([a,b), Leb) spanned by the functions
28\/p(z), k = 0,...,N — 1, and the subse, = [a, b;) for an arbitrary
by € (a,b). Inthe problem of ergodic decomposition of infinite Pickrel
measures we shall be especially interested in studyinghgdahits of such
“infinite orthogonal polynomial ensembles”.

1.4. Organization of the paper. In the next subsection itis shown that, un-
der certain additional assumptions, an infinite deterntadaneasure times
a multiplicative functional yields after normalization atdrminantal point
process; for determinantal probability measures this kas lestablished in
[8]. We then proceed to our main example of infinite determiabmea-
sures, namely, those obtained as finite-rank perturbatibdsterminantal
point processes. The ergodic decomposition measures oitenRickrell
measures will be seen to be of this type. In the following saben it

is established that induced processes of an infinite detamtal measure
obtained by finite rank perturbation, converge to the unplked process.
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In Section 2 we recall the definition of determinantal poinmgesses,
study the properties of multiplicative functionals of tagwocesses, thus
extending the results of|[8], and give a sketch of the prodftaforen1L.

In Section 3 we recall the construction, due to Pickrell [J2P], [23]
in the finite case (see also Neretin [16]) and to Borodin arsh@ski[4]
in the infinite case, of Pickrell measures on the space ofiiafmatrices.
We then recall the Olshanski-Vershik approach (see [38)) @ the Pick-
rell classification of finite ergodic unitarily-invarianteasures on spaces of
infinite matrices as well as the result of [7] that impliestttiee ergodic
components of infinite Pickrell measures are almost sursiiefionly the
decomposing measure is infinite.

In Section 4 we start by considering finite Pickrell mesui@swhich the
ergodic decomposition is given, up to a change of variabfehk Bessel
point process of Tracy and Widoin [32]. The main result of thpey, The-
orem[2 , then says that the ergodic decomposition of infiritkrBll mea-
sures is induced by infinite determinantal measures oltt@san explicitly
given finite-rank perturbation of the Bessel point process®urring in the
ergodic decomposition of finite Pickrell measures. Theisgdimit argu-
ment sketched at the end of the section uses precisely thesepation,
developed in Section 1, of infinite determinantal measusegraducts of
finite determinantal measures and multiplicative funaisn

1.5. Multiplicative functionals. Let g be a non-negative measurable func-
tion on £, and introduce thenultiplicative functionall, : Conf(E) — R
by the formula

(5) w,(X) =[] o).

zeX

If the infinite product[[ ¢(x) absolutely converges toor to oo, then we
zeX

set, respectivelyl,(X) = 0 or ¥ (X) = oo. If the product in the right-
hand side fails to converge absolutely, then the multigiresfunctional is
not defined.

We start with an auxiliary proposition.

Proposition 1. Let a subspacé! C Lo ..(E, ;1) and a Borel subsek;, C
E satisfy Assumptiofil Let g be a positive bounded measurable function
on F such that

(1) for any bounded subsét C E there existg, = ¢¢(B) > 0 such
thatg(z) > o forall x € Ey U B;
(2) we have,/gH C Ly(E, ).

Then,/gH is a closed subspace i, (E, 11).
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Under the assumptions of Propositidn 1,llétbe the operator of orthog-
onal projection onto the closed subspagel .

Our next aim is to give sufficient conditions for integratyilof multi-
plicative functionals with respect to infinite determira@nneasures. We
restrict ourselves to the case when the functi@mly takes values if0, 1].

Proposition 2. Let a subspacé! C Lo ,.(E, ;1) and a Borel subsek;, C
E satisfy Assumptiofl, and letg: £ — (0, 1] be a measurable function
such that:

(1) for any bounded subsét C E there existg, = ¢¢(B) > 0 such

thatg(z) > ¢¢ forall z € Ey U B,

(2) VgH C Ly(E, p);

(3) mXEngXEom S jl(Ev M)'

(4) Hg € Lﬁ1,10v3<E|7,u);

5) xe\e, 1xE\B, € A1(E, ).
Then the multiplicative functional, is B(H, E,)-almost surely positive,
and we have

1)

U, € Li(Conf(E),B);

(2)
v,B

/ v, dB

Conf(E)

== Png.

We can therefore writ® = C' - ¥, /, - Py, WwhereC' is a positive con-
stant. Our infinite determinantal measure is thus repredead a product of
a determinantal probability measure and a convergent migpiable mul-
tiplicative functional.

1.6. Infinite determinantal measures obtained as finite-rank petur-
bations of determinantal probability measures. We now consider infi-
nite determinantal measures induced by subspAcebtained by adding a
finite-dimensional subspadéto a closed subspadeC Ly (F, p).

Let, therefore) € .7 1,.(F, ) be the operator of orthogonal projection
onto a closed subspade C L.(FE, i), let V be a finite-dimensional sub-
space ofLo 1o.(F, 1), and setd = L + V. Let £, C E be a Borel subset.
We shall need the following assumption 6nV and £.

Assumption 2. (1) xm\g,QXE\E, € F1(E, 1);
(2) XEOV - LQ(EMu)'
(3) if ¢ € V satisfiesyg, v € xg, L, thenp = 0;
(4) if ¢ € L satisfiesyg, ¢ = 0, thenp = 0.
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Proposition 3. If L, V and E, satisfy Assumptid@ithen the subspacl =
L + V and E, satisfy Assumptidil

In particular, for any bounded Borel subgef the subspacg g, s L is
closed, as one sees by takiBg= £, U B in the following clear

Proposition 4. Let ) € .7 1,.(E, ) be the operator of orthogonal pro-
jection onto a closed subspade € Ly(F,u). Let B’ C E be a Borel
subset such thaty Qx g € #1(F, 1) and that for any functiorp € L, the
equality ygrp = 0 impliesy = 0. Then the subspaceg L is closed in
Lg(E, ,u)

The subspacé/ and the Borel subsef, therefore define an infinite de-
terminantal measur® = B(H, E,). We now adapt the formulation of
Proposition  to this particular case.

Proposition 5. Let L, V, and E, satisfy Assumptiol, let B be the cor-
responding infinite determinantal measure, anddetf — (0, 1] be a
positive measurable function. {f1 —gQ+/1—g € #(FE,n), then the
multiplicative functionall, is B-almost surely well-defined and positive.
If, additionally, we assume
(2) for any bounded subsél C F there exists, = £¢(B) > 0 such
thatg(x) > ¢¢ forall z € Ey U B,

then

1)
(@)

U, € L;(Conf(E),B);

v,B

/ U, dB

Conf(E)
where, as beford]? is the operator of orthogonal projection onto the closed
subspace/gH.

Remark. The subspacg/gH is closed by Propositidn 1.

= PHSH

1.7. Convergence of approximating kernels.Our next aim is to show
that, under certain additional assumptions, if a sequena# measurable
functions converges tb, then the operatord9 considered in Proposition
converge ta) in .7, 1.(E, 11).

Given two closed subspacés,, H, in Ly(E, 1), let a(Hy, Hs) be the
angle betweert/; and H,, defined as the infimum of angles between all
nonzero vectors it/; and H,; recall that if one of the subspaces has finite
dimension, then the infimum is achieved.
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Proposition 6. Let L, V, and E, satisfy Assumptiod, and assume addi-
tionally that we havé’ N Ly(E, 1) = 0. Letg, : E — (0, 1] be a sequence
of positive measurable functions such that

(1) for all n € Nwe have/1 — ¢,Q\/1 — g, € A (E, u);

(2) forall n € N we have,/g,V C Lo(E, p);

(3) there existsy, > 0 such that for alln we have

a(VgnH, \/92V) = a;

(4) for any bounded3 C E we have

inf z) > 0;
nGN,xEEoUBgn( ) '

lim sup |gn(z)—1|=0.
Nn—00 xc FyUB
Then, asy — oo, we have

o — Q in ﬂl,loc(Ea ILL)

Using the second remark after Theorem 1, one can extend $itigpo
also to nonnegative functions that admit zero values. Mereestrict
ourselves to characteristic functions of the foym, s with B bounded, in
which case we have the following

Corollary 1. Let B,, be an increasing sequence of bounded Borel sets ex-
haustingE' \ Ej. If there existsy, > 0 such that for alln we have

a(xrus, H, XEuB, V) > 0,
then
HEOUB" — Q in ﬂl,loc(Ea ILL)

Informally, Corollaryl means that, asgrows, the induced processes of
our determinantal measure on subséts.f(F; £, U B,) converge to the
“unperturbed” determinantal point proce’s.

2. MULTIPLICATIVE FUNCTIONALS OF DETERMINANTAL POINT
PROCESSES

2.1. Locally integrable functions and locally trace class opertors. Re-
call that L. ,.(E, i) is the space of all measurable functiohs £ — C
such that for any bounded subget- £ we have

(6) [f[Pdp < +o0.
/

Choosing an exhausting famil,, of bounded sets (for instance, balls
of radius tending to infinity) and usin@l(6) witB = B,,, we endow the
spacels 1. (£, 1) with a countable family of seminorms which turns it into
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a complete separable metric space; the topology thus dedioesi not, of
course, depend on the specific choice of the exhaustingyfamil

Let.# (E, 1) be the ideal of trace class operatéfs L (E, ) — Lo(E, )
(see volume 1 of [26] for the precise definition); the sympél|| ,, will
stand for the.#;-norm of the operatofs. Let .%(E, 1) be the ideal of
Hilbert-Schmidt operator’: Ly(E, 1) — Ly(E, 1); the symbol|| K| ,,
will stand for the.%,-norm of the operatof(.

Let. .7 1.(E, 1) be the space of operatakS: Lo(E, i) — Lo(E, p) such
that for any bounded Borel subsgtC E we have

xsKxp € A(E, ).

Again, we endow the spacé j,.(E, ;1) with a countable family of semi-
norms

(7) IxsEXB[lA
where, as before? runs through an exhausting famify;, of bounded sets.

2.2. Determinantal Point ProcessesA Borel probability measur@ on
Conf(F) is calleddeterminantaif there exists an operaté¢ € .# j,.(E, ;1)
such that for any bounded measurable funcgofor whichg — 1 is sup-
ported in a bounded sét, we have

(8) Ep¥, = det(l + (g — 1)KXB).

The Fredholm determinant ial(8) is well-defined sin€ec .7 1..(E, p).
The equatior(8) determines the meastitmiquely. If, for a bounded Borel
setB C E,welet#5: Conf(E) — NU{0} be the function that to a config-
uration assigns the number of its particles belonging tthen, for any pair-
wise disjoint bounded Borel sef$;,..., B, C E and anyzy,...,z € C

l
from @) we hanE[piﬁBl . Zl#Bl =det| 1+ Z(Zj — 1)XBJ'KXL|Z'BZ') .
j=1

For further results and background on determinantal pootgsses, see
e.g. [2], [9], [12], [13], [14], [27], [28],129], [30].

In what follows we suppose thdf belongs to.# oc(E, 1), and denote
the corresponding determinantal measurély Note thatP, is uniquely
defined byK, but different operators may yield the same measure. By the
Macchi—Soshnikov theorern [15], [30], any Hermitian pivgitontraction
that belongs to the clas$, c(E, i) defines a determinantal point process.

2.3. Multiplicative functionals. At the centre of the construction of in-
finite determinantal measures lies the result_of [8] that icdormally be
summarized as follows: a determinantal measure times aipincdtive
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functional is again a determinantal measure. In other wordyy is a de-
terminantal measure ddionf(F) induced by the operatdk on Ly(E, ),
then, under certain additional assumptions, it is show@jnHat the mea-
sureV¥ P after normalization yields a determinantal measure.

It is required in [8] that the operatdy — 1)K be of trace class; this
assumption is too restrictive for our purposes, and in Psitioms 7 and 10
we shall now formulate two more convenient versions of Psdjmn 1 in
[8].

As before, lety be a non-negative measurable functionfanf the oper-
atorl + (¢ — 1)K is invertible, then we set

B(g, K) = gK(1+(g—1)K)™',  B(g, K) = VgK(1+(g — DK) /3.

By definition, B(g, K), B(g, K) € H110c(E, p) SinceK € S joc(E, 1),
and, if K is self-adjoint, then so i8(g, K).

In the case whelx is self-adjoint, the following proposition generalizes
Proposition 1 in[[8].

Proposition 7. Let K € . ,..(E, 1) be a self-adjoint positive contraction,
and letPy be the corresponding determinantal measureConf(E). Let
g be a nonnegative bounded measurable functioiw@uch that

) Vo—1K\/g—1¢€ A(E,p)
and that the operatot + (¢ — 1)K is invertible. Then
(1) we havel, € L;(Conf(E),Px) and

/‘I/ngP’K :det(1+ VI —1K+\/g— 1) > 0;

(2) the operatorsB(g, K), B(g, K) induce onConf(E) a determinan-
tal measurePp(, ) = Py, ) satisfying

0Py

/ U, dPy

Conf(FE)

(10) Ppg.x) =

Remark. Since[9) holds and is self-adjoint, the operatdr(g — 1)K
is invertible if and only if the operatar + /g — 1K+/g — 1 is invertible.

If @ is a projection operator, then the opera&(rg, () admits the fol-
lowing description.

Proposition 8. Let . C L,(F, 1) be a closed subspace, and tbe the
operator of orthogonal projection ontb. Let g be a bounded measurable
function such that the operatar+ (g — 1)@ is invertible. Then the operator



INFINITE DETERMINANTAL MEASURES 11

B(g, Q) is the operator of orthogonal projection onto the closuretiod
subspace/gL.

We now consider the particular case whs a characteristic function of
a Borel subset. In much the same way as befor®, if F is a Borel subset
such that the subspageg: L is closed (recall that a sufficient condition for
that is provided in Proposition 4), then we gt to be the operator of
orthogonal projection onto the closed subspagd..

Proposition$ 10,17 now yield the following

Corollary 2. LetQ € .#,..(E, u) be the operator of orthogonal projection
onto a closed subspadec L,(F,u). Let E' C E be a Borel subset such
that xpQxe € H1(F,1). Then

Po(Conf(E, E')) = det(l — xp\wQXE\E)-

Assume, additionally, that for any functigne L, the equalityyg ¢ = 0
impliesy = 0. Then the subspacg: L is closed, and we have

Po(Conf(E, E')) > 0, QF € A 10¢(E, ),

and
Pg |Conf(E,E’)
- IP)QE/ .
Pg(Conf(E, E'))

The induced measure of a determinantal measure onto thetsaflzon-
figurations all whose particles lie if’ is thus again a determinantal mea-
sure. In the case of a discrete phase space, related indussebpes were
considered by Lyons [12] and by Borodin and Rains [5].

Corollary(2 implies Theorem 1.

2.4. The space.#;. To prove Propositiof7, we consider a slightly more
general algebra of operatofs for which the tracer K and the Fredholm
determinantlet(1 + K') can be defined and shown to have the usual proper-
ties. The spaceZ; (L, ;1) is a modification of the spacg, () introduced
by Borodin, Okounkov and Olshanskil [3] and used also by Qiskiain
[17]. We proceed to precise formulations.

Take a countable partitiofyof our spaceF into disjoint bounded mea-
surable set#,,, n € N. Introduce the sets

(11) {£>n} = U Ey; {£<n}:OEk.
k=1

k=n+1
Informally, £ is considered as a random variable taking integer values.
The subspace
fg(E,,u) C ﬂl,lOC(EvU)
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is now defined as follows: an operatre .# ;,.(E, ;1) belongs toZ: (£, 1)
if

(1) K € A(E, p);

@) 21 X, K XE, |5 < +o0c.

The spaceZ(E, ;1) is normed by the formula

1511, = 1K1l + Y lIxe, KXz, |-

n=1
By definition, the spaceZ;(E, i) is an algebra. FoK € 7 (E, i), the
Fredholm determinantet(1 + K) is defined by the formula

n=1

(12) det(1+ K) =det ((1 4 K)exp(—K)) exp <Z tr(XEnKXEn)> .

The right-hand side of(12) is well-defined sindet+ K) exp(—K) € .%
forany K € .%.

For Ky, K, € ., we clearly have

From the definitions we now immediately obtain
Proposition 9. If (¢ — 1)K € %(E, n), then¥, € Li(Conf(E), Px) and

Ep, U, = det(1 + (g — 1)K).

The following Proposition is a generalization of Propasiti in [8].
Proposition 10. Assume that an operatdt € ., ;,.(E, i) induces a de-
terminantal measur@y on Conf(F). Let¢ be a countable measurable

partition of £ and letg be a nonnegative bounded measurable function
on E suchthat(g — 1)K € .%(E, ) and that the operatot + (g — 1)K

is invertible. Then the operatot8(g, K), B(g, K) induce onConf(F) a
determinantal measut®y, k) = Py, x satisfying

0Py

(13) Ppg,r) = :
U, dPg
Conf(E)
Indeed, take a bounded measurable funcfi@am £ such that
(f = DK € Je(E, p).
We then immediately have
EPK \I’f\yy

B~ et (/= DBlg, ) = det(L+ (f - 1)B(g, K)),
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and the proposition follows.

Observe now that to a nonnegative functipisuch that[(P) holds, one
can easily assign a countable partitosuch that(g — 1)K € Z(E, p).
Proposition V is therefore clear from Proposition 10.

3. UNITARILY-INVARIANT MEASURES ONSPACES OFINFINITE
MATRICES

3.1. Pickrell Measures. Let Mat(n, C) be the space of x » matrices with
complex entries:

Mat(n,C) ={z = (25), i=1,...,n;j=1,...,n}

Let Leb = dz be the Lebesgue measureMat(n, C).

Following Pickrell [21], takes € R and introduce a measuﬁéf) on
Mat(n, C) by the formula

i) = det(1 + 2*2) "2 %dz.

The measurﬁﬁf) is finite if and only ifs > —1.
Forn, < n, let

m,, : Mat(n,C) — Mat(n,C)

be the natural projection map that to a mattix= (z;;),7,7 = 1,....n,
assigns its upper left corner, the matrik (2) = (2;).4,5 = 1,...,n1.

The measureﬁﬁf) have the property of consistency with respect to the
projectionsr,; . More precisely, following Borodin and Olshanski [4],

p.116, observe that even if the measﬁéﬁ is infinite, the fibres of the
projectionr’_, have finite conditional measure as longas s > 0. The
push-forward(wz_l)*ﬁﬁf) is consequently well-defined, and for any R

andn > —s we have

U (n+s))?
14 noy e o T 5
(14) (Trs)<ft I'2n+s)-I'2n—1+ s)'u"_l

Now let Mat(N, C) be the space of infinite matrices whose rows and
columns are indexed by natural numbers and whose entrieparglex:

Mat(N, C) = {Z = (Zij),i,j S N, Zij c (C}

Let 72° : Mat(N,C) — Mat(n,C) be the natural projection map that to
an infinite matrixz € Mat(N, C) assigns its upper left x n-“corner”, the
matrix (z;;),4,7 =1,...,n.

Takes € R andngy € N, ng > —s. The relation[(14) and the Kolmogorov
Existence Theorem [10] imply (for a detailed presentatsee p. 116 in
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Borodin and OlshanskKi [4]) that for any> 0 there exists a unique measure
©** on Mat (N, C) such that for any. > n, we have

(15) (W?)*M(s,)\) - <ﬁ W_gnr(Ql —I—(FSEZF_('_QZS)—); + S)) ﬁ(s).

l=ng

If s > —1, the measures®" are finite, and we lgt’*) be the probability
measure in the family >,
In this case [(14) implies the relation
e DL+ 8020 —1+s) -
0o (s) _ n? (s)

(m
=1

If s < —1, the measureg>" are all infinite. In this case, slightly abus-
ing notation, we shall omit the super-scripaand write.(*) for a measure
defined up to a multiplicative constant.

Proposition 11. For any s;, s, € R, 51 # s, the Pickrell measureg(**)
andx(*2) are mutually singular.

PropositiorL_1ll is obtained from Kakutani’s Theorem in thieitspf [4],
see also [16].

Let U(co) be the infinite unitary group: an infinite matrix= (u;;); jen
belongs taJ (c0) if there exists a natural numbeg such that the matrix

(uiz), 1, J € [1,ng)]

is unitary, whileu;; = 1if i > ng andu;; = 0if ¢ # j, max(i, j) > no.
The groupU(oo) x U(oo) acts onMat (N, C) by multiplication on both
sides:

1
T(ulm)z = UIRU, .

The Pickrell measureg'® are by definitionl/ (co) x U(co)-invariant.
For the rble of Pickrell and related mesures in the reptesen theory of
U(0), seel[18],[[19],[[20].

Theorem 1 and Corollary 1 in|[6] imply that the measurés admit
an ergodic decomposition. Furthermore, Theorem Llin [7]iesghat for
any s € R the ergodic components of the measufg are almost surely
finite. The main result of this note is an explicit descriptif the ergodic
decomposition of the measurg® for s # —1 — 2k, k € N; in particular,
for s < —1 we shall see that the ergodic decomposition is given by an
explicitly computed infinite determinantal measure.
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3.2. Classification of ergodic measuresFirst, we recall the classification
of ergodic probabilityl/ (co) x U(oo)-invariant measures ollat(N, C).
This classification has been obtained by Pickrell [21]) [2&rshik [33
and Olshanski and Vershik [20] proposed a different apgraachis clas-
sification in the case of unitarily-invariant measures andpace of infinite
Hermitian matrices, and Rabaoui [24], [25] adapted the &iski-Vershik
approach to the initial problem of Pickrell. In this noteg t®Ishanski-
Vershik approach is followed as well.

Takez € Mat(N, C), denotez™ = 7>z, and let

(16) AW > > >0
be the eigenvalues of the matrix
()" 2™,

counted with multiplicities, arranged in non-increasimgey. To stress de-
pendence on, we write A" = A" ().
Theorem. (1) Letn be an ergodic Borel/ (o) x U (o0)-invariant prob-

ability measure oiMat(N, C). Then there exist non-negative real
numbers

Y20, mZa > 2w, > 20,

satisfyingy > le such that fom-almost every: € Mat(N, C)

i=1
and any; € N we have:

R tr (M) 2
a7 x; = lim — (z)) ~v = lim L
n—00 7’L2 n—00 n2

(2) Conversely, given non-negative real numbers 0, x; > xy >
...>=x, = ...>=0suchthat

00
72 inv
i=1

there exists a uniquE (co) x U(co)-invariant ergodic Borel proba-
bility measure on Mat(N, C) such that the relationgl{7) hold for
n-almost allz € Mat(N, C).

Introduce thePickrell setQp, C R, x RY by the formula

Qp = {wz (v,2): 2= (20), nEN, 2, 2 2041 20, v 2 Zx}
=1

The setQp is, by definition, a closed subset®f. x R} endowed with the
Tychonoff topology.
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By Proposition 3 in[[6], the subset of ergodifoc) x U(oo)-invariant
measures is a Borel subset of the space of all Borel probatigasures on
Mat(N, C) endowed with the natural Borel structure (see, €.g., [1Dr- F
thermore, if one denotesg, the Borel ergodic probability measure corre-
sponding to a point € Qp, w = (v, x), then the correspondence

W — Ny

is a Borel isomorphism of the Pickrell S8} and the set o/ (co) x U(c0)-
invariant ergodic probability measures bhat(N, C).

The Ergodic Decomposition Theorem (Theorem 1 and Corollar{6])
implies that each Pickrell measyi€’, s € R, induces a unique decompos-
ing measurg® onp such that we have

(18) W = [ i)

Qp

The integral is understood in the usual weak sense| see [6].

Fors > —1, the measur@®) is a probability measure dilp, while for
s < —1 the measurg® is infinite.

Set

QB ={(v,{z,}) €Qp:2, >0 foralln, y= an}

n=1

The subsef?, is of course not closed 1.
Introduce a map

conf: Qp — Conf((0,4+00))
that to a pointv € Qp,w = (v, {z,}) assigns the configuration
conf(w) = (x1,...,Zp,...) € Conf((0,+00)).

The mapu — conf(w) is bijective in restriction to the subs@f..

Remark. In the definition of the maponf, the “asymptotic eigenvalues”
x, are counted with multiplicities, while, if,,, = 0 for somen,, thenz,,
and all subsequent terms are discarded, and the resultinfgyetion is
finite. We shall see, however, that the complenigntQ?, is 1*)-negligible
forall s # —1 — 2k, k € N, and, consequently, thai{*)-almost surely, all
configurations are infinite. It will also develop that;)-almost surely, all
multiplicities are equal to one.

We proceed to the formulation of the main result of this nateexplicit
description of the measurg$® for s # —1 — 2k, k € N.
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4. ERGODIC DECOMPOSITION OF INFINITEPICKRELL MEASURES

4.1. The Bessel point process and finite Pickrell measure<Consider the
half-line (0, +0c0) endowed with the standard Lebesgue meakube Take
s > —1 and consider the standard Bessel kernel

_ Vs (V) Js(VY) — VT (V) Js (V)

2(z —y)
(see, e.g., page 295 in Tracy and Widom/ [32]). The kerhehduces on
Ly((0,4+00), Leb) the operator of orthogonal projection onto the subspace
of functions whose Hankel transform is supportedoin | (see[32]). Set-
tingx, = 4/, xo = 4/y yields a kernelk *) given by the formula

(20)

(19)  Ji(z,y)

2 1 2 2 1 2
© (&) gt (&) -~ 4 (&) & (&)
K ($1,1’2> = T T y
17— L2

l’1>0,l’2>0.

(recall here that a change of variabtes= p(v;), us = p(ve) transforms a
kernel K (uy, uy) to a kernel of the forn (p(vy), p(va))(v/ ¢/ (v1)p' (v2)))-

The kernelK ) induces on the spadg,((0, +o0), Leb) a locally trace
class operator of orthogonal projection, for which, slighabusing notation,
we keep the symbak®; by the Macchi-Soshnikov Theorem, the opera-
tor K® induces a determinantal meastg., on Conf((0, +o0)). The
determinantal measui®, ., is precisely the decomposing measure for the
Pickrell measure:*), as is shown by the following

Proposition 12. Lets > —1. Thenz®) (9%) = 1 and thep®)-almost sure
bijectionw — conf(w) identifies the measurg® with the determinantal
measureP ;).

Sketch of proof of Proposition 12. Take> —1 and letP{" (u) be the
standard Jacobi orthogonal polynomials on the intgrval 1], correspond-
ing to the weight1 — u)®.

Following Pickrell, to a matrix: € Mat(n,C) assign the collection
(M (2),...,Au(2)) of the eigenvalues of the matrixz arranged in non-
increasing order ( cf.[{16)). Thedial part ) of the Pickrell measure

u,(f) is now defined as the push-forward of the meamsr)eunder the map
2= (Mi(2), - An(2) -
The radial part of the Pickrell measure has determinantai:fo

1 n
de™)(\) = — det KD (A A) [T dv. x>0,

i=1
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where
n(n+s) "
(27’L + S)(l + )\1)3/2(1 + )\2)3/2
(8) (M= (8) [ A= (8) { da— (8) (A=
P (3) B () - () 2 (551
A — Ao ’

(21) K (A, he) =

n

X

. Ai—1 s
The change of variables; = yi=1,...,n, reducesk’” to the

A +1
Christoffel-Darboux kernel for the Jacobi orthogonal enkke with weight

(1 —u)s.

Introducing the scaling; = n%x;, takingn — oo and using the classical
asymptotics for Jacobi orthogonal polynomials (see, &zegol[31]), one
finds

lim n2K7(LS) (n2x1, n2x2) = K(S)(xl, Tg),
n—oo

convergence being uniform on compact subset$ ofocc). To prove that
(%) = 1, the method of Section 7 in Borodin and Olshanski [4] is
adapted to our situation.

4.2. A recurrence relation for Bessel point procesesThe following ob-
servation motivates the construction of the next subsect@ven a finite
family of functionsfi, ..., fy on the real line, letpan(fi, ..., fi) stand
for the vector space these functions span. ForsasyR, N € N we clearly
have

(22) span (1 —u)*?,..., (1 —u)**u") = R(1 — u)**®
@ span ((1 —u) /2 0 (1 —w) T2V

If s > —1, then the informal meaning df (P2) is that the space of the firs
N + 1 normalized Jacobi polynomials with weigfit — «)° is a rank one
perturbation of the space of the filStnormalized Jacobi polynomials with
weight (1 — u)**2.

A similar statement holds true for the Bessel kernel: udieyécurrence
relation.J,,(z) = 2J,(z) — J,_1(z) for Bessel functions, one easily ob-

tains the recurrence relation

1
@) ) = dealen) S L (VD (VD
for the Bessel kernels: the Bessel kernel with parameitethus a rank one
perturbation of the Bessel kernel with parameter 2.
For ergodic decomposition measures of infinite Pickrell sneas we
shall now give a similar description in terms of infinite detéantal mea-

sures obtained as finite-rank perturbations of Bessel poatesses.
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4.3. Formulation of the main result. Now takes < —1, s # —1 — 2k,
k € N. Letn, be such that

s+ c 11
S Uz T ava |
2 2°2

Introduce a finite-dimensional subspdc&) C Ly ,.((0, +00), Leb) by
the formula

V) = gpan (93_5/2_1, . ,x_s/Q_"s) )
Fors' > —1, let L) c Ly((0, +0o0), Leb) be the range of the operator

K*, andfors < —1,s # —1 — 2k, k € N, introduce a subspadé®®) of
L3 10c((0, +00), Leb) by the formula

HG) = s+2ns) 4 /()

Using Proposition I3, one easily checks thakif> 0 is big enough, then
the subspacél/*) C L,((0,4+00), Leb) and the subsel, = (0, R) satisfy
Assumptior ]L. Let

(24) B =B(H®, (0, R))

be the corresponding infinite determinantal measure (whugtdefinition,
does not depend on the specific choice of a big endtigh

The ergodic decomposition of infinite Pickrell measuresow given by
the following

Theorem 2. Lets < —1, s # —1 — 2k, k € N, and letz®) be the decom-
posing measure, defined @8], of the Pickrell measurg®). Then
(1) a9 (Qp\Qp) = 0;
(2) the i) -almost sure bijectiony — conf(w) identifiesi® with the
infinite determinantal measui@®).

TakeRR > 0 and set
Q%(R) ={we Q% cx1 < R}

SetL$ = xo.m H'®); the subspacé!; is closed ifR > 0 is big enough,
and we Ieth) be the corresponding operator of orthogonal projection.

By Propositior{ 6, we have)!;) — K +2m) in 7, ,,,((0, +00), Leb) as
R — co. Theoren R together with Theorém 1 implies

Corollary 3. If R is big enough, them®)(Q%(R)) < +oc and thep(®)-
almost sure bijectionn — conf(w) identifies the normalized restriction of
the measur@®® to the subse®’,( R) with the determinantal measuie, ).

R
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The proof of Theorernl2 starts, again, with the computatiothefradial
part of the infinite Pickrell measure; changing variablesh®/formula

Ai—1 1
= ——, 1 = Lo,

)\Z _'_ 17 ) ) )
one arrives at an “infinite orthogonal polynomial ensemfa”(3)) of the
form

(25) [T — ) TT( = w).

1<J 7
By definition, the measuré_(R5) is an infinite determinantaksure ob-
tained by perturbing the closed subspace

span ((1 — w) ez (1 — u)(5+2"5)/2uN_"5_1) C L»([0, 1], Leb)
by the finite-dimensional subspace
span (1 —u)*/2,. .., (1 —u)T2=2/2) € Ly,,.([0,1], Leb).

The next step is to take the scaling limit of these infiniteed@inantal mea-
sures. This is achieved, with the use of Propositidns 2[aray Saking

the product with a suitably chosen multiplicative functband effecting
the scaling limit transition for the corresponding detaramtal probability
measures. The detailed proof of Theotidm 2 will be publishetié sequel
to this note.
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