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INFINITE DETERMINANTAL MEASURES

ALEXANDER I. BUFETOV

ABSTRACT. Infinite determinantal measures introduced in this note are
inductive limits of determinantal measures on an exhausting family of
subsets of the phase space. Alternatively, an infinite determinantal mea-
sure can be described as a product of a determinantal point process and
a convergent, but not integrable, multiplicative functional.

Theorem 2, the main result announced in this note, gives an explicit
description for the ergodic decomposition of infinite Pickrell measures
on the spaces of infinite complex matrices in terms of infinitedetermi-
nantal measures obtained by finite-rank perturbations of Bessel point
processes.

1. INTRODUCTION

1.1. Outline of the main results. In this section, our aim is to construct
sigma-finite analogues of determinantal measures on spacesof configura-
tions. In Theorem 2 of Section 4, infinite determinantal measures will
be seen to arise in the ergodic decomposition of infinite unitarily-invariant
measures on spaces of infinite complex matrices.

Informally, a configuration on the phase spaceE is an unordered col-
lection of points (calledparticles) of E, possibly with multiplicities; the
main assumption is that a bounded subset ofE contain only finitely many
particles of a given configuration.

To a functiong onE assign itsmultiplicative functionalΨg on the space
of configurations: the functionalΨg is obtained by multiplying the values
of g over all particles of a configuration (see (5)). A probability measure on
the space of configurations onE is uniquely characterized by prescribing
the expectations of multiplicative functionals; fordeterminantalprobability
measures these expectations are given by special Fredholm determinants,
see e.g. [30]; the definition is also recalled in (8) below.

Given a subsetE ′ ⊂ E, consider the subsetConf(E,E ′) of those con-
figurations whose all particles lie inE ′; in Proposition 2 below, we shall
see that under some additional asumptions the restriction of a determinantal
point process ontoConf(E,E ′) is again determinantal.

Our main example, the measureB(s) of (24), is defined on the space
of configurations on(0,+∞). Almost every configuration is infinite and
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bounded according toB(s); the particles accumulate at zero. If one takes
R > 0 and requires all particles to lie in(0, R), then the induced measure
of B(s) on the resulting subset of configurations is finite, and, after nor-
malization, determinantal. AsR goes to infinity, the measure of the subset
Conf((0,+∞); (0, R)) grows, and the measure of the space of all configu-
rations is infinite.

Our general construction will similarly exhaustE by subsetsEn in such
a way that the weight ofConf(E;En) is positive and finite, and the nor-
malized restriction of our infinite determinantal measure onto the subset
Conf(E;En) is determinantal. A simple example is given by “infinite or-
thogonal polynomial ensembles”, see (3) below. The measureB(s) is a scal-
ing limit of such ensembles. We proceed to precise formulations.

1.2. Construction of infinite determinantal measures. LetE be a locally
compact complete metric space, and letConf(E) be the space of configura-
tions onE endowed with the natural Borel structure (see, e.g., [11], [30]).

Given a Borel subsetE ′ ⊂ E, we letConf(E,E ′) be the subspace of
configurations all whose particles lie inE ′.

Given a measureB on a setX and a measurable subsetY ⊂ X such that
0 < B(Y ) < +∞, we letB |Y stand for the restriction of the measureB
onto the subsetY .

An infinite determinantal measureis aσ-finite Borel measureB onConf(E)
admitting a filtration of the spaceE by Borel subsetsEn, n ∈ N:

E1 ⊂ E2 ⊂ . . . ⊂ En ⊂ . . . ,
∞⋃

n=1

En = E

such that for anyn ∈ N we have

(1) 0 < B (Conf(E,En)) < +∞;
(2) the normalized restriction

B
∣∣
Conf(E,En)

B (Conf(E,En))

is a determinantal measure;

(3) B

(
Conf(E)\

∞⋃
n=1

(Conf(E,En)

)
= 0 .

Let µ be aσ-finite Borel measure onE. By the Macchı̀-Soshnikov Theo-
rem, under some additional assumptions, a determinantal measure can be
assigned to an operator of orthogonal projection, or, in other words, to
a closed subspace ofL2(E, µ). In a similar way, an infinite determinan-
tal measure will be assigned to a subspaceH of locally square-integrable
functions. For example, for infinite analogues of orthogonal polynomial



INFINITE DETERMINANTAL MEASURES 3

ensembles,H is the subspace of weighted polynomials, see Subsection 1.3
below.

LetL2,loc(E, µ) be the space of measurable functions onE, locally square
integrable with respect toµ, let I1(E, µ) be the space of trace-class opera-
tors inL2(E, µ) and letI1,loc(E, µ) be the space of operators onL2(E, µ)
that are locally of trace class (precise definitions are recalled in Section 2).

Let H ⊂ L2,loc(E, µ) be a linear subspace. IfE ′ ⊂ E is a Borel subset
such thatχE′H is a closed subspace ofL2(E, µ), then we denote byΠE′

the
operator of orthogonal projection onto the subspaceχE′H ⊂ L2(E, µ). We
now fix a Borel subsetE0 ⊂ E; informally,E0 is the set where the particles
accumulate. We impose the following assumption onE0 andH.

Assumption 1. (1) For any bounded Borel setB ⊂ E, the spaceχE0∪BH
is a closed subspace ofL2(E, µ);

(2) For any bounded Borel setB ⊂ E \ E0, we have

(1) ΠE0∪B ∈ I1,loc(E, µ), χBΠ
E0∪BχB ∈ I1(E, µ);

(3) If ϕ ∈ H satisfiesχE0ϕ = 0, thenϕ = 0.

Theorem 1. LetE be a locally compact complete metric space, and letµ
be aσ-finite Borel measure onE. If a subspaceH ⊂ L2,loc(E, µ) and a
Borel subsetE0 ⊂ E satisfy Assumption1, then there exists aσ-finite Borel
measureB onConf(E) such that

(1) B-almost every configuration has at most finitely many particles
outside ofE0;

(2) for any bounded Borel (possibly empty) subsetB ⊂ E \E0 we have
0 < B(Conf(E;E0 ∪B)) < +∞ and

B|Conf(E;E0∪B)

B(Conf(E;E0 ∪ B))
= PΠE0∪B .

The requirements (1) and (2) determine the measureB uniquely up to mul-
tiplication by a positive constant.

We denoteB(H,E0) the one-dimensional cone of nonzero infinite deter-
minantal measures induced byH andE0, and, slightly abusing notation, we
writeB = B(H,E0) for a representative of the cone.

Remark. If B is a bounded set, then, by definition, we have

B(H,E0) = B(H,E0 ∪ B).

Remark. If E ′ ⊂ E is a Borel subset such thatχE0∪E′ is a closed sub-
space inL2(E, µ) and the operatorΠE0∪E′

of orthogonal projection onto
the subspaceχE0∪E′H satisfies

(2) ΠE0∪E′ ∈ I1,loc(E, µ), χE′ΠE0∪E′

χE′ ∈ I1(E, µ),
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then, exhaustingE ′ by bounded sets, from Theorem 1 one easily obtains
0 < B(Conf(E;E0 ∪ E ′)) < +∞ and

B|Conf(E;E0∪E′)

B(Conf(E;E0 ∪ E ′))
= PΠE0∪E′ .

1.3. Infinite orthogonal polynomial ensembles.Take an interval[a, b) in
R, let Leb = dx on [a, b) be the Lebesgue measure on[a, b), let ρ be a
positive continuous function on[a, b), and assume

∫ b

a
ρ(x)dx = +∞. Take

n ∈ N and endow the set[a, b]N with the measure

(3)
∏

16i,j6N

(xi − xj)
2

N∏

i=1

ρ(xi)dxi,

an infinite analogue of an orthogonal polynomial ensemble.
For anyb1 ∈ [a, b), the induced measure

(4)
∏

16i<j6N

(xi − xj)
2

N∏

i=1

ρ(xi)χ[a,b1](xi)dxi

is finite and, after normalization, can be represented in determinantal form

1

N !
detKρ,b1

N (xi, xj)
N∏

i=1

ρ(xi)χ[a,b1](xi)dxi,

whereKρ,b1
N is theN-th Christoffel-Darboux kernel formed by orthonormal

polynomials corresponding to the “induced” weightρ(x)χ[a,b1](x).
The infinite measure (3) is thus an infinite determinantal measure corre-

sponding to the subspaceH ⊂ L2,loc([a, b),Leb) spanned by the functions
xk
√
ρ(x), k = 0, . . . , N − 1, and the subsetE0 = [a, b1) for an arbitrary

b1 ∈ (a, b). In the problem of ergodic decomposition of infinite Pickrell
measures we shall be especially interested in studying scaling limits of such
“infinite orthogonal polynomial ensembles”.

1.4. Organization of the paper. In the next subsection it is shown that, un-
der certain additional assumptions, an infinite determinantal measure times
a multiplicative functional yields after normalization a determinantal point
process; for determinantal probability measures this has been established in
[8]. We then proceed to our main example of infinite determinantal mea-
sures, namely, those obtained as finite-rank perturbationsof determinantal
point processes. The ergodic decomposition measures of infinite Pickrell
measures will be seen to be of this type. In the following subsection it
is established that induced processes of an infinite determinantal measure
obtained by finite rank perturbation, converge to the unperturbed process.



INFINITE DETERMINANTAL MEASURES 5

In Section 2 we recall the definition of determinantal point processes,
study the properties of multiplicative functionals of these processes, thus
extending the results of [8], and give a sketch of the proof ofTheorem 1.

In Section 3 we recall the construction, due to Pickrell [21], [22], [23]
in the finite case (see also Neretin [16]) and to Borodin and Olshanski [4]
in the infinite case, of Pickrell measures on the space of infinite matrices.
We then recall the Olshanski-Vershik approach (see [33], [20]) to the Pick-
rell classification of finite ergodic unitarily-invariant measures on spaces of
infinite matrices as well as the result of [7] that implies that the ergodic
components of infinite Pickrell measures are almost surely finite; only the
decomposing measure is infinite.

In Section 4 we start by considering finite Pickrell mesures,for which the
ergodic decomposition is given, up to a change of variable, by the Bessel
point process of Tracy and Widom [32]. The main result of the paper, The-
orem 2 , then says that the ergodic decomposition of infinite Pickrell mea-
sures is induced by infinite determinantal measures obtained as an explicitly
given finite-rank perturbation of the Bessel point processes occurring in the
ergodic decomposition of finite Pickrell measures. The scaling limit argu-
ment sketched at the end of the section uses precisely the representation,
developed in Section 1, of infinite determinantal measures as products of
finite determinantal measures and multiplicative functionals.

1.5. Multiplicative functionals. Let g be a non-negative measurable func-
tion onE, and introduce themultiplicative functionalΨg : Conf(E) → R

by the formula

(5) Ψg(X) =
∏

x∈X
g(x).

If the infinite product
∏
x∈X

g(x) absolutely converges to0 or to∞, then we

set, respectively,Ψg(X) = 0 or Ψg(X) = ∞. If the product in the right-
hand side fails to converge absolutely, then the multiplicative functional is
not defined.

We start with an auxiliary proposition.

Proposition 1. Let a subspaceH ⊂ L2,loc(E, µ) and a Borel subsetE0 ⊂
E satisfy Assumption1. Let g be a positive bounded measurable function
onE such that

(1) for any bounded subsetB ⊂ E there existsε0 = ε0(B) > 0 such
thatg(x) > ε0 for all x ∈ E0 ∪B;

(2) we have
√
gH ⊂ L2(E, µ).

Then
√
gH is a closed subspace inL2(E, µ).
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Under the assumptions of Proposition 1, letΠg be the operator of orthog-
onal projection onto the closed subspace

√
gH.

Our next aim is to give sufficient conditions for integrability of multi-
plicative functionals with respect to infinite determinantal measures. We
restrict ourselves to the case when the functiong only takes values in(0, 1].

Proposition 2. Let a subspaceH ⊂ L2,loc(E, µ) and a Borel subsetE0 ⊂
E satisfy Assumption1, and letg : E → (0, 1] be a measurable function
such that:

(1) for any bounded subsetB ⊂ E there existsε0 = ε0(B) > 0 such
thatg(x) > ε0 for all x ∈ E0 ∪B;

(2)
√
gH ⊂ L2(E, µ);

(3)
√
1− gχE0Π

gχE0

√
1− g ∈ I1(E, µ);

(4) Πg ∈ I1,loc(E, µ);
(5) χE\E0Π

gχE\E0 ∈ I1(E, µ).

Then the multiplicative functionalΨg is B(H,E0)-almost surely positive,
and we have

(1)
Ψg ∈ L1(Conf(E),B);

(2)
ΨgB∫

Conf(E)

Ψg dB
= PΠg .

We can therefore writeB = C · Ψ1/g · PΠg , whereC is a positive con-
stant. Our infinite determinantal measure is thus represented as a product of
a determinantal probability measure and a convergent non-integrable mul-
tiplicative functional.

1.6. Infinite determinantal measures obtained as finite-rank pertur-
bations of determinantal probability measures. We now consider infi-
nite determinantal measures induced by subspacesH obtained by adding a
finite-dimensional subspaceV to a closed subspaceL ⊂ L2(E, µ).

Let, therefore,Q ∈ I1,loc(E, µ) be the operator of orthogonal projection
onto a closed subspaceL ⊂ L2(E, µ), let V be a finite-dimensional sub-
space ofL2,loc(E, µ), and setH = L + V . LetE0 ⊂ E be a Borel subset.
We shall need the following assumption onL, V andE0.

Assumption 2. (1) χE\E0QχE\E0 ∈ I1(E, µ);
(2) χE0V ⊂ L2(E, µ);
(3) if ϕ ∈ V satisfiesχE0ϕ ∈ χE0L, thenϕ = 0;
(4) if ϕ ∈ L satisfiesχE0ϕ = 0, thenϕ = 0.
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Proposition 3. If L, V andE0 satisfy Assumption2 then the subspaceH =
L+ V andE0 satisfy Assumption1.

In particular, for any bounded Borel subsetB, the subspaceχE0∪BL is
closed, as one sees by takingE ′ = E0 ∪ B in the following clear

Proposition 4. Let Q ∈ I1,loc(E, µ) be the operator of orthogonal pro-
jection onto a closed subspaceL ∈ L2(E, µ). Let E ′ ⊂ E be a Borel
subset such thatχE′QχE′ ∈ I1(E, µ) and that for any functionϕ ∈ L, the
equalityχE′ϕ = 0 impliesϕ = 0. Then the subspaceχE′L is closed in
L2(E, µ).

The subspaceH and the Borel subsetE0 therefore define an infinite de-
terminantal measureB = B(H,E0). We now adapt the formulation of
Proposition 2 to this particular case.

Proposition 5. Let L, V , andE0 satisfy Assumption2, let B be the cor-
responding infinite determinantal measure, and letg : E → (0, 1] be a
positive measurable function. If

√
1− gQ

√
1− g ∈ I1(E, µ), then the

multiplicative functionalΨg is B-almost surely well-defined and positive.
If, additionally, we assume

(1)
√
gV ⊂ L2(E, µ);

(2) for any bounded subsetB ⊂ E there existsε0 = ε0(B) > 0 such
thatg(x) > ε0 for all x ∈ E0 ∪B,

then

(1)
Ψg ∈ L1(Conf(E),B);

(2)
ΨgB∫

Conf(E)

Ψg dB

= PΠg ,

where, as before,Πg is the operator of orthogonal projection onto the closed
subspace

√
gH.

Remark. The subspace
√
gH is closed by Proposition 1.

1.7. Convergence of approximating kernels.Our next aim is to show
that, under certain additional assumptions, if a sequencegn of measurable
functions converges to1, then the operatorsΠgn considered in Proposition
5 converge toQ in I1,loc(E, µ).

Given two closed subspacesH1, H2 in L2(E, µ), let α(H1, H2) be the
angle betweenH1 andH2, defined as the infimum of angles between all
nonzero vectors inH1 andH2; recall that if one of the subspaces has finite
dimension, then the infimum is achieved.
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Proposition 6. Let L, V , andE0 satisfy Assumption2, and assume addi-
tionally that we haveV ∩ L2(E, µ) = 0. Let gn : E → (0, 1] be a sequence
of positive measurable functions such that

(1) for all n ∈ N we have
√
1− gnQ

√
1− gn ∈ I1(E, µ);

(2) for all n ∈ N we have
√
gnV ⊂ L2(E, µ);

(3) there existsα0 > 0 such that for alln we have

α(
√
gnH,

√
gnV ) ≥ α0;

(4) for any boundedB ⊂ E we have

inf
n∈N,x∈E0∪B

gn(x) > 0;

lim
n→∞

sup
x∈E0∪B

|gn(x)− 1| = 0.

Then, asn → ∞, we have

Πgn → Q in I1,loc(E, µ).

Using the second remark after Theorem 1, one can extend Proposition
6 also to nonnegative functions that admit zero values. Herewe restrict
ourselves to characteristic functions of the formχE0∪B with B bounded, in
which case we have the following

Corollary 1. LetBn be an increasing sequence of bounded Borel sets ex-
haustingE \ E0. If there existsα0 > 0 such that for alln we have

α(χE0∪Bn
H,χE0∪Bn

V ) ≥ α0,

then
ΠE0∪Bn → Q in I1,loc(E, µ).

Informally, Corollary 1 means that, asn grows, the induced processes of
our determinantal measure on subsetsConf(E;E0 ∪ Bn) converge to the
“unperturbed” determinantal point processPQ.

2. MULTIPLICATIVE FUNCTIONALS OF DETERMINANTAL POINT

PROCESSES

2.1. Locally integrable functions and locally trace class operators. Re-
call thatL2,loc(E, µ) is the space of all measurable functionsf : E → C

such that for any bounded subsetB ⊂ E we have

(6)
∫

B

|f |2dµ < +∞.

Choosing an exhausting familyBn of bounded sets (for instance, balls
of radius tending to infinity) and using (6) withB = Bn, we endow the
spaceL2,loc(E, µ) with a countable family of seminorms which turns it into



INFINITE DETERMINANTAL MEASURES 9

a complete separable metric space; the topology thus defineddoes not, of
course, depend on the specific choice of the exhausting family.

LetI1(E, µ) be the ideal of trace class operatorsK̃ : L2(E, µ) → L2(E, µ)

(see volume 1 of [26] for the precise definition); the symbol||K̃||I1 will
stand for theI1-norm of the operator̃K. Let I2(E, µ) be the ideal of
Hilbert-Schmidt operators̃K : L2(E, µ) → L2(E, µ); the symbol||K̃||I2

will stand for theI2-norm of the operator̃K.
LetI1,loc(E, µ) be the space of operatorsK : L2(E, µ) → L2(E, µ) such

that for any bounded Borel subsetB ⊂ E we have

χBKχB ∈ I1(E, µ).

Again, we endow the spaceI1,loc(E, µ) with a countable family of semi-
norms

(7) ||χBKχB||I1

where, as before,B runs through an exhausting familyBn of bounded sets.

2.2. Determinantal Point Processes.A Borel probability measureP on
Conf(E) is calleddeterminantalif there exists an operatorK ∈ I1,loc(E, µ)
such that for any bounded measurable functiong, for which g − 1 is sup-
ported in a bounded setB, we have

(8) EPΨg = det

(
1 + (g − 1)KχB

)
.

The Fredholm determinant in (8) is well-defined sinceK ∈ I1,loc(E, µ).
The equation (8) determines the measureP uniquely. If, for a bounded Borel
setB ⊂ E, we let#B : Conf(E) → N∪{0} be the function that to a config-
uration assigns the number of its particles belonging toB, then, for any pair-
wise disjoint bounded Borel setsB1, . . . , Bl ⊂ E and anyz1, . . . , zl ∈ C

from (8) we haveEPz
#B1
1 · · · z#Bl

l = det

(
1 +

l∑
j=1

(zj − 1)χBj
Kχ⊔iBi

)
.

For further results and background on determinantal point processes, see
e.g. [2], [9], [12], [13], [14], [27], [28], [29], [30].

In what follows we suppose thatK belongs toI1,loc(E, µ), and denote
the corresponding determinantal measure byPK . Note thatPK is uniquely
defined byK, but different operators may yield the same measure. By the
Macchı̀—Soshnikov theorem [15], [30], any Hermitian positive contraction
that belongs to the classI1,loc(E, µ) defines a determinantal point process.

2.3. Multiplicative functionals. At the centre of the construction of in-
finite determinantal measures lies the result of [8] that caninformally be
summarized as follows: a determinantal measure times a multiplicative
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functional is again a determinantal measure. In other words, if PK is a de-
terminantal measure onConf(E) induced by the operatorK onL2(E, µ),
then, under certain additional assumptions, it is shown in [8] that the mea-
sureΨgPK after normalization yields a determinantal measure.

It is required in [8] that the operator(g − 1)K be of trace class; this
assumption is too restrictive for our purposes, and in Propositions 7 and 10
we shall now formulate two more convenient versions of Proposition 1 in
[8].

As before, letg be a non-negative measurable function onE. If the oper-
ator1 + (g − 1)K is invertible, then we set

B(g,K) = gK(1+(g − 1)K)−1, B̃(g,K) =
√
gK(1+(g − 1)K)−1√g.

By definition,B(g,K), B̃(g,K) ∈ I1,loc(E, µ) sinceK ∈ I1,loc(E, µ),
and, ifK is self-adjoint, then so is̃B(g,K).

In the case whenK is self-adjoint, the following proposition generalizes
Proposition 1 in [8].

Proposition 7. LetK ∈ I1,loc(E, µ) be a self-adjoint positive contraction,
and letPK be the corresponding determinantal measure onConf(E). Let
g be a nonnegative bounded measurable function onE such that

(9)
√

g − 1K
√

g − 1 ∈ I1(E, µ)

and that the operator1 + (g − 1)K is invertible. Then

(1) we haveΨg ∈ L1(Conf(E),PK) and
∫

Ψg dPK = det
(
1 +

√
g − 1K

√
g − 1

)
> 0;

(2) the operatorsB(g,K), B̃(g,K) induce onConf(E) a determinan-
tal measurePB(g,K) = PB̃(g,K) satisfying

(10) PB(g,K) =
ΨgPK∫

Conf(E)

Ψg dPK

.

Remark. Since (9) holds andK is self-adjoint, the operator1+(g − 1)K
is invertible if and only if the operator1 +

√
g − 1K

√
g − 1 is invertible.

If Q is a projection operator, then the operatorB̃(g,Q) admits the fol-
lowing description.

Proposition 8. Let L ⊂ L2(E, µ) be a closed subspace, and letQ be the
operator of orthogonal projection ontoL. Let g be a bounded measurable
function such that the operator1+(g−1)Q is invertible. Then the operator
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B̃(g,Q) is the operator of orthogonal projection onto the closure ofthe
subspace

√
gL.

We now consider the particular case wheng is a characteristic function of
a Borel subset. In much the same way as before, ifE ′ ⊂ E is a Borel subset
such that the subspaceχE′L is closed (recall that a sufficient condition for
that is provided in Proposition 4), then we setQE′

to be the operator of
orthogonal projection onto the closed subspaceχE′L.

Propositions 10, 7 now yield the following

Corollary 2. LetQ ∈ I1,loc(E, µ) be the operator of orthogonal projection
onto a closed subspaceL ∈ L2(E, µ). LetE ′ ⊂ E be a Borel subset such
thatχE′QχE′ ∈ I1(E, µ). Then

PQ(Conf(E,E ′)) = det(1− χE\E′QχE\E′).

Assume, additionally, that for any functionϕ ∈ L, the equalityχE′ϕ = 0
impliesϕ = 0. Then the subspaceχE′L is closed, and we have

PQ(Conf(E,E ′)) > 0, QE′ ∈ I1,loc(E, µ),

and
PQ|Conf(E,E′)

PQ(Conf(E,E ′))
= PQE′ .

The induced measure of a determinantal measure onto the subset of con-
figurations all whose particles lie inE ′ is thus again a determinantal mea-
sure. In the case of a discrete phase space, related induced processes were
considered by Lyons [12] and by Borodin and Rains [5].

Corollary 2 implies Theorem 1.

2.4. The spaceIξ. To prove Proposition 7, we consider a slightly more
general algebra of operatorsK for which the tracetrK and the Fredholm
determinantdet(1+K) can be defined and shown to have the usual proper-
ties. The spaceIξ(E, µ) is a modification of the spaceL1|2(H) introduced
by Borodin, Okounkov and Olshanski [3] and used also by Olshanski in
[17]. We proceed to precise formulations.

Take a countable partitionξ of our spaceE into disjoint bounded mea-
surable setsEn, n ∈ N. Introduce the sets

(11) {ξ > n} =

∞⋃

k=n+1

Ek; {ξ < n} =

n−1⋃

k=1

Ek.

Informally, ξ is considered as a random variable taking integer values.
The subspace

Iξ(E, µ) ⊂ I1,loc(E, µ)
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is now defined as follows: an operatorK ∈ I1,loc(E, µ) belongs toIξ(E, µ)
if

(1) K ∈ I2(E, µ);

(2)
∞∑
n=1

||χEn
KχEn

||I1 < +∞.

The spaceIξ(E, µ) is normed by the formula

||K||Iξ
= ||K||I2 +

∞∑

n=1

||χEn
KχEn

||I1.

By definition, the spaceIξ(E, µ) is an algebra. ForK ∈ Iξ(E, µ), the
Fredholm determinantdet(1 +K) is defined by the formula

(12) det(1 +K) = det ((1 +K) exp(−K)) exp

( ∞∑

n=1

tr(χEn
KχEn

)

)
.

The right-hand side of (12) is well-defined since(1+K) exp(−K) ∈ I1

for anyK ∈ I2.
ForK1, K2 ∈ Iξ, we clearly have

det((1 +K1)(1 +K2)) = det(1 +K1) det(1 +K2).

From the definitions we now immediately obtain

Proposition 9. If (g − 1)K ∈ Iξ(E, µ), thenΨg ∈ L1(Conf(E),PK) and

EPK
Ψg = det(1 + (g − 1)K).

The following Proposition is a generalization of Proposition 1 in [8].

Proposition 10. Assume that an operatorK ∈ I1,loc(E, µ) induces a de-
terminantal measurePK on Conf(E). Let ξ be a countable measurable
partition of E and let g be a nonnegative bounded measurable function
onE such that(g − 1)K ∈ Iξ(E, µ) and that the operator1 + (g − 1)K

is invertible. Then the operatorsB(g,K), B̃(g,K) induce onConf(E) a
determinantal measurePB(g,K) = PB̃(g,K) satisfying

(13) PB(g,K) =
ΨgPK∫

Conf(E)

ΨgdPK

.

Indeed, take a bounded measurable functionf onE such that

(f − 1)K ∈ Iξ(E, µ).

We then immediately have

EPK
ΨfΨg

EPK
Ψg

= det(1 + (f − 1)B(g,K)) = det(1 + (f − 1)B̃(g,K)),
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and the proposition follows.
Observe now that to a nonnegative functiong such that (9) holds, one

can easily assign a countable partitionξ such that(g − 1)K ∈ Iξ(E, µ).
Proposition 7 is therefore clear from Proposition 10.

3. UNITARILY -INVARIANT MEASURES ONSPACES OFINFINITE

MATRICES

3.1. Pickrell Measures. LetMat(n,C) be the space ofn×n matrices with
complex entries:

Mat(n,C) = {z = (zij), i = 1, . . . , n; j = 1, . . . , n}
Let Leb = dz be the Lebesgue measure onMat(n,C).

Following Pickrell [21], takes ∈ R and introduce a measurẽµ(s)
n on

Mat(n,C) by the formula

µ̃(s)
n = det(1 + z∗z)−2n−sdz.

The measurẽµ(s)
n is finite if and only ifs > −1.

Forn1 < n, let

πn
n1

: Mat(n,C) → Mat(n1,C)

be the natural projection map that to a matrixz = (zij), i, j = 1, . . . , n,
assigns its upper left corner, the matrixπn

n1
(z) = (zij), i, j = 1, . . . , n1.

The measures̃µ(s)
n have the property of consistency with respect to the

projectionsπn
n1

. More precisely, following Borodin and Olshanski [4],

p.116, observe that even if the measureµ̃
(s)
n is infinite, the fibres of the

projectionπn
n−1 have finite conditional measure as long asn + s > 0. The

push-forward(πn
n−1)∗µ̃

(s)
n is consequently well-defined, and for anys ∈ R

andn > −s we have

(14) (πn
n−1)∗µ̃

(s)
n =

π2n−1(Γ(n+ s))2

Γ(2n+ s) · Γ(2n− 1 + s)
µ̃
(s)
n−1.

Now let Mat(N,C) be the space of infinite matrices whose rows and
columns are indexed by natural numbers and whose entries arecomplex:

Mat(N,C) = {z = (zij), i, j ∈ N, zij ∈ C}.
Let π∞

n : Mat(N,C) → Mat(n,C) be the natural projection map that to
an infinite matrixz ∈ Mat(N,C) assigns its upper leftn× n-“corner”, the
matrix (zij), i, j = 1, . . . , n.

Takes ∈ R andn0 ∈ N, n0 > −s. The relation (14) and the Kolmogorov
Existence Theorem [10] imply (for a detailed presentation,see p. 116 in
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Borodin and Olshanski [4]) that for anyλ > 0 there exists a unique measure
µ(s,λ) onMat(N,C) such that for anyn > n0 we have

(15) (π∞
n )∗µ

(s,λ) = λ

(
n∏

l=n0

π−2nΓ(2l + s)Γ(2l − 1 + s)

(Γ(l + s))2

)
µ̃(s).

If s > −1, the measuresµ(s,λ) are finite, and we letµ(s) be the probability
measure in the familyµ(s,λ).

In this case, (14) implies the relation

(π∞
n )∗µ

(s) = π−n2
n∏

l=1

Γ(2l + s)Γ(2l − 1 + s)

(Γ(l + s))2
µ̃(s)
n .

If s 6 −1, the measuresµ(s,λ) are all infinite. In this case, slightly abus-
ing notation, we shall omit the super-scriptλ and writeµ(s) for a measure
defined up to a multiplicative constant.

Proposition 11. For any s1, s2 ∈ R, s1 6= s2, the Pickrell measuresµ(s1)

andµ(s2) are mutually singular.

Proposition 11 is obtained from Kakutani’s Theorem in the spirit of [4],
see also [16].

Let U(∞) be the infinite unitary group: an infinite matrixu = (uij)i,j∈N
belongs toU(∞) if there exists a natural numbern0 such that the matrix

(uij), i, j ∈ [1, n0]

is unitary, whileuii = 1 if i > n0 anduij = 0 if i 6= j, max(i, j) > n0.
The groupU(∞)× U(∞) acts onMat(N,C) by multiplication on both

sides:

T(u1,u2)z = u1zu
−1
2 .

The Pickrell measuresµ(s) are by definitionU(∞) × U(∞)-invariant.
For the rôle of Pickrell and related mesures in the representation theory of
U(∞), see [18], [19], [20].

Theorem 1 and Corollary 1 in [6] imply that the measuresµ(s) admit
an ergodic decomposition. Furthermore, Theorem 1 in [7] implies that for
any s ∈ R the ergodic components of the measureµ(s) are almost surely
finite. The main result of this note is an explicit description of the ergodic
decomposition of the measuresµ(s) for s 6= −1 − 2k, k ∈ N; in particular,
for s < −1 we shall see that the ergodic decomposition is given by an
explicitly computed infinite determinantal measure.
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3.2. Classification of ergodic measures.First, we recall the classification
of ergodic probabilityU(∞) × U(∞)-invariant measures onMat(N,C).
This classification has been obtained by Pickrell [21], [22]; Vershik [33]
and Olshanski and Vershik [20] proposed a different approach to this clas-
sification in the case of unitarily-invariant measures on the space of infinite
Hermitian matrices, and Rabaoui [24], [25] adapted the Olshanski-Vershik
approach to the initial problem of Pickrell. In this note, the Olshanski-
Vershik approach is followed as well.

Takez ∈ Mat(N,C), denotez(n) = π∞
n z, and let

(16) λ
(n)
1 > . . . > λ(n)

n > 0

be the eigenvalues of the matrix
(
z(n)
)∗

z(n),

counted with multiplicities, arranged in non-increasing order. To stress de-
pendence onz, we writeλ(n)

i = λ
(n)
i (z).

Theorem. (1) Letη be an ergodic BorelU(∞)×U(∞)-invariant prob-
ability measure onMat(N,C). Then there exist non-negative real
numbers

γ > 0, x1 > x2 > . . . > xn > . . . > 0 ,

satisfyingγ >

∞∑

i=1

xi, such that forη-almost everyz ∈ Mat(N,C)

and anyi ∈ N we have:

(17) xi = lim
n→∞

λ
(n)
i (z)

n2
, γ = lim

n→∞

tr
(
z(n)
)∗

z(n)

n2
.

(2) Conversely, given non-negative real numbersγ > 0, x1 > x2 >

. . . > xn > . . . > 0 such that

γ >

∞∑

i=1

xi ,

there exists a uniqueU(∞)×U(∞)-invariant ergodic Borel proba-
bility measureη onMat(N,C) such that the relations (17) hold for
η-almost allz ∈ Mat(N,C).

Introduce thePickrell setΩP ⊂ R+ × RN

+ by the formula

ΩP =

{
ω = (γ, x) : x = (xn), n ∈ N, xn > xn+1 > 0, γ >

∞∑

i=1

xi

}
.

The setΩP is, by definition, a closed subset ofR+ × RN

+ endowed with the
Tychonoff topology.
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By Proposition 3 in [6], the subset of ergodicU(∞) × U(∞)-invariant
measures is a Borel subset of the space of all Borel probability measures on
Mat(N,C) endowed with the natural Borel structure (see, e.g., [1]). Fur-
thermore, if one denotesηω the Borel ergodic probability measure corre-
sponding to a pointω ∈ ΩP , ω = (γ, x), then the correspondence

ω −→ ηω

is a Borel isomorphism of the Pickrell setΩP and the set ofU(∞)×U(∞)-
invariant ergodic probability measures onMat(N,C).

The Ergodic Decomposition Theorem (Theorem 1 and Corollary1 of [6])
implies that each Pickrell measureµ(s), s ∈ R, induces a unique decompos-
ing measureµ(s) onΩP such that we have

(18) µ(s) =

∫

ΩP

ηω dµ
(s)(ω) .

The integral is understood in the usual weak sense, see [6].
For s > −1, the measureµ(s) is a probability measure onΩP , while for

s 6 −1 the measureµ(s) is infinite.
Set

Ω0
P = {(γ, {xn}) ∈ ΩP : xn > 0 for all n, γ =

∞∑

n=1

xn}.

The subsetΩ0
P is of course not closed inΩP .

Introduce a map

conf : ΩP → Conf((0,+∞))

that to a pointω ∈ ΩP , ω = (γ, {xn}) assigns the configuration

conf(ω) = (x1, . . . , xn, . . .) ∈ Conf((0,+∞)).

The mapω → conf(ω) is bijective in restriction to the subsetΩ0
P .

Remark. In the definition of the mapconf, the “asymptotic eigenvalues”
xn are counted with multiplicities, while, ifxn0 = 0 for somen0, thenxn0

and all subsequent terms are discarded, and the resulting configuration is
finite. We shall see, however, that the complementΩP\Ω0

P isµ(s)-negligible
for all s 6= −1 − 2k, k ∈ N, and, consequently, that,µ(s)-almost surely, all
configurations are infinite. It will also develop that,µ(s)-almost surely, all
multiplicities are equal to one.

We proceed to the formulation of the main result of this note,an explicit
description of the measuresµ(s) for s 6= −1− 2k, k ∈ N.
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4. ERGODIC DECOMPOSITION OF INFINITEPICKRELL MEASURES

4.1. The Bessel point process and finite Pickrell measures.Consider the
half-line (0,+∞) endowed with the standard Lebesgue measureLeb. Take
s > −1 and consider the standard Bessel kernel

(19) Js(x, y) =

√
xJs+1(

√
x)Js(

√
y)−√

yJs+1(
√
y)Js(

√
x)

2(x− y)

(see, e.g., page 295 in Tracy and Widom [32]). The kernelJs induces on
L2((0,+∞),Leb) the operator of orthogonal projection onto the subspace
of functions whose Hankel transform is supported in[0, 1] (see [32]). Set-
ting x1 = 4/x, x2 = 4/y yields a kernelK(s) given by the formula

(20)

K(s)(x1, x2) =
Js

(
2√
x1

)
1√
x2
Js+1

(
2√
x2

)
− Js

(
2√
x2

)
1√
x1
Js+1

(
2√
x1

)

x1 − x2

,

x1 > 0, x2 > 0 .

(recall here that a change of variablesu1 = ρ(v1), u2 = ρ(v2) transforms a
kernelK(u1, u2) to a kernel of the formK(ρ(v1), ρ(v2))(

√
ρ′(v1)ρ′(v2))).

The kernelK(s) induces on the spaceL2((0,+∞),Leb) a locally trace
class operator of orthogonal projection, for which, slightly abusing notation,
we keep the symbolK(s); by the Macchı̀-Soshnikov Theorem, the opera-
tor K(s) induces a determinantal measurePK(s) on Conf((0,+∞)). The
determinantal measurePK(s) is precisely the decomposing measure for the
Pickrell measureµ(s), as is shown by the following

Proposition 12. Let s > −1. Thenµ(s)(Ω0
P ) = 1 and theµ(s)-almost sure

bijectionω → conf(ω) identifies the measureµ(s) with the determinantal
measurePK(s).

Sketch of proof of Proposition 12. Takes > −1 and letP (s)
n (u) be the

standard Jacobi orthogonal polynomials on the interval[−1, 1], correspond-
ing to the weight(1− u)s.

Following Pickrell, to a matrixz ∈ Mat(n,C) assign the collection
(λ1(z), . . . , λn(z)) of the eigenvalues of the matrixz∗z arranged in non-
increasing order ( cf. (16)). Theradial part r(n,s) of the Pickrell measure
µ
(s)
n is now defined as the push-forward of the measureµ

(s)
n under the map

z → (λ1(z), . . . , λn(z)) .

The radial part of the Pickrell measure has determinantal form:

dr(n,s)(λ) =
1

n!
detK(s)

n (λi, λj)

n∏

i=1

dλi, λi > 0 .
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where

(21) K(s)
n (λ1, λ2) =

n(n + s)

(2n + s)(1 + λ1)s/2(1 + λ2)s/2
×

×
P

(s)
n

(
λ1−1
λ1+1

)
P

(s)
n−1

(
λ2−1
λ2+1

)
− P

(s)
n

(
λ2−1
λ2+1

)
P

(s)
n−1

(
λ1−1
λ1+1

)

λ1 − λ2
.

The change of variablesui =
λi − 1

λi + 1
, i = 1, . . . , n, reducesK(s)

n to the

Christoffel-Darboux kernel for the Jacobi orthogonal ensemble with weight
(1− u)s.

Introducing the scalingλi = n2xi, takingn → ∞ and using the classical
asymptotics for Jacobi orthogonal polynomials (see, e.g.,Szegö [31]), one
finds

lim
n→∞

n2K(s)
n

(
n2x1, n

2x2

)
= K(s)(x1, x2) ,

convergence being uniform on compact subsets of(0,+∞). To prove that
µ(s)(Ω0

P ) = 1, the method of Section 7 in Borodin and Olshanski [4] is
adapted to our situation.

4.2. A recurrence relation for Bessel point proceses.The following ob-
servation motivates the construction of the next subsection. Given a finite
family of functionsf1, . . . , fN on the real line, letspan(f1, . . . , fN) stand
for the vector space these functions span. For anys ∈ R, N ∈ N we clearly
have

(22) span
(
(1− u)s/2, . . . , (1− u)s/2uN

)
= R(1− u)s/2⊕

⊕ span
(
(1− u)(s+2)/2, . . . , (1− u)(s+2)/2uN−1

)
.

If s > −1, then the informal meaning of (22) is that the space of the first
N + 1 normalized Jacobi polynomials with weight(1 − u)s is a rank one
perturbation of the space of the firstN normalized Jacobi polynomials with
weight(1− u)s+2.

A similar statement holds true for the Bessel kernel: using the recurrence
relationJs+1(x) =

2s
x
Js(x) − Js−1(x) for Bessel functions, one easily ob-

tains the recurrence relation

(23) Js(x, y) = Js+2(x, y) +
s+ 1√
xy

Js+1(
√
x)Js+1(

√
y)

for the Bessel kernels: the Bessel kernel with parameters is thus a rank one
perturbation of the Bessel kernel with parameters+ 2.

For ergodic decomposition measures of infinite Pickrell measures we
shall now give a similar description in terms of infinite determinantal mea-
sures obtained as finite-rank perturbations of Bessel pointprocesses.
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4.3. Formulation of the main result. Now takes < −1, s 6= −1 − 2k,
k ∈ N. Letns be such that

s

2
+ ns ∈

(
−1

2
,
1

2

)
.

Introduce a finite-dimensional subspaceV (s) ⊂ L2,loc((0,+∞),Leb) by
the formula

V (s) = span
(
x−s/2−1, . . . , x−s/2−ns

)
.

For s′ > −1, let L(s′) ⊂ L2((0,+∞),Leb) be the range of the operator
Ks′, and fors < −1, s 6= −1 − 2k, k ∈ N, introduce a subspaceH(s) of
L2,loc((0,+∞),Leb) by the formula

H(s) = L(s+2ns) + V (s).

Using Proposition 3, one easily checks that ifR > 0 is big enough, then
the subspaceH(s) ⊂ L2((0,+∞),Leb) and the subsetE0 = (0, R) satisfy
Assumption 1. Let

(24) B
(s) = B(H(s), (0, R))

be the corresponding infinite determinantal measure (which, by definition,
does not depend on the specific choice of a big enoughR).

The ergodic decomposition of infinite Pickrell measures is now given by
the following

Theorem 2. Let s < −1, s 6= −1 − 2k, k ∈ N, and letµ(s) be the decom-
posing measure, defined by (18), of the Pickrell measureµ(s). Then

(1) µ(s)(ΩP\Ω0
P ) = 0;

(2) theµ(s)-almost sure bijectionω → conf(ω) identifiesµ(s) with the
infinite determinantal measureB(s).

TakeR > 0 and set

Ω0
P (R) = {ω ∈ Ω0

P : x1 ≤ R}.

SetL(s)
R = χ(0,R)H

(s); the subspaceL(s)
R is closed ifR > 0 is big enough,

and we letQ(s)
R be the corresponding operator of orthogonal projection.

By Proposition 6, we haveQ(s)
R → K(s+2ns) in I1,loc((0,+∞),Leb) as

R → ∞. Theorem 2 together with Theorem 1 implies

Corollary 3. If R is big enough, thenµ(s)(Ω0
P (R)) < +∞ and theµ(s)-

almost sure bijectionω → conf(ω) identifies the normalized restriction of
the measureµ(s) to the subsetΩ0

P (R) with the determinantal measureP
Q

(s)
R

.
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The proof of Theorem 2 starts, again, with the computation ofthe radial
part of the infinite Pickrell measure; changing variables bythe formula

ui =
λi − 1

λi + 1
, i = 1, . . . , n,

one arrives at an “infinite orthogonal polynomial ensemble”(cf. (3)) of the
form

(25)
∏

i<j

(ui − uj)
2
∏

i

(1− ui)
s.

By definition, the measure (25) is an infinite determinantal measure ob-
tained by perturbing the closed subspace

span
(
(1− u)(s+2ns)/2, . . . , (1− u)(s+2ns)/2uN−ns−1

)
⊂ L2([0, 1],Leb)

by the finite-dimensional subspace

span
(
(1− u)s/2, . . . , (1− u)(s+2ns−2)/2

)
⊂ L2,loc([0, 1],Leb).

The next step is to take the scaling limit of these infinite determinantal mea-
sures. This is achieved, with the use of Propositions 2 and 5,by taking
the product with a suitably chosen multiplicative functional and effecting
the scaling limit transition for the corresponding determinantal probability
measures. The detailed proof of Theorem 2 will be published in the sequel
to this note.
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Marseille, the Abdus Salam International Centre for Theoretical Physics in
Trieste, the Joint Institute for Nuclear Research in Dubna,the University
of Kyoto and the Chebyshev Laboratory in Saint-Petersburg.I am deeply
grateful to these institutions for their warm hospitality.



INFINITE DETERMINANTAL MEASURES 21

REFERENCES

[1] V.I. Bogachev, Measure theory. Vol. II. Springer Verlag, Berlin, 2007.
[2] A.M. Borodin, Determinantal point processes, in The Oxford Handbook of Random

Matrix Theory, Oxford University Press, 2011.
[3] A. Borodin, A. Okounkov; G. Olshanski, Asymptotics of Plancherel measures for sym-

metric groups, J. Amer. Math. Soc. 13 (2000), 481–515.
[4] A. Borodin, G. Olshanski, Infinite random matrices and ergodic measures. Comm.

Math. Phys. 223 (2001), no. 1, 87–123.
[5] A.M. Borodin, E.M. Rains, Eynard-Mehta theorem, Schur process, and their pfaffian

analogs. J. Stat. Phys. 121 (2005), 291–317.
[6] A.I. Bufetov, Ergodic decomposition for measures quasi-invariant under Borel actions

of inductively compact groups, arXiv:1105.0664, May 2011.
[7] A.I. Bufetov, Finiteness of Ergodic Unitarily Invariant Measures on Spaces of Infinite

Matrices, arXiv:1108.2737, August 2011, to appear in Annales de l’Institut Fourier.
[8] A.I. Bufetov, Multiplicative functionals of determinantal processes, Uspekhi Mat.

Nauk 67 (2012), no. 1 (403), 177–178; translation in RussianMath. Surveys 67 (2012),
no. 1, 181–182.

[9] J.B. Hough, M. Krishnapur, Y. Peres, B. Virág, Determinantal processes and indepen-
dence. Probab. Surv. 3 (2006), 206–229.

[10] A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer Verlag,
1933.

[11] A. Lenard, States of classical statistical mechanicalsystems of infinitely many parti-
cles. I. Arch. Rational Mech. Anal. 59 (1975), no. 3, 219–239.

[12] R. Lyons, Determinantal probability measures. Publ. Math. Inst. HauteśEtudes Sci.
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