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INFINITE DETERMINANTAL MEASURES

Infinite determinantal measures introduced in this note are inductive limits of determinantal measures on an exhausting family of subsets of the phase space. Alternatively, an infinite determinantal measure can be described as a product of a determinantal point process and a convergent, but not integrable, multiplicative functional.

Theorem 2, the main result announced in this note, gives an explicit description for the ergodic decomposition of infinite Pickrell measures on the spaces of infinite complex matrices in terms of infinite determinantal measures obtained by finite-rank perturbations of Bessel point processes.

INTRODUCTION

1.1. Outline of the main results. In this section, our aim is to construct sigma-finite analogues of determinantal measures on spaces of configurations. In Theorem 2 of Section 4, infinite determinantal measures will be seen to arise in the ergodic decomposition of infinite unitarily-invariant measures on spaces of infinite complex matrices.

Informally, a configuration on the phase space E is an unordered collection of points (called particles) of E, possibly with multiplicities; the main assumption is that a bounded subset of E contain only finitely many particles of a given configuration.

To a function g on E assign its multiplicative functional Ψ g on the space of configurations: the functional Ψ g is obtained by multiplying the values of g over all particles of a configuration (see [START_REF] Borodin | Eynard-Mehta theorem, Schur process, and their pfaffian analogs[END_REF]). A probability measure on the space of configurations on E is uniquely characterized by prescribing the expectations of multiplicative functionals; for determinantal probability measures these expectations are given by special Fredholm determinants, see e.g. [START_REF] Soshnikov | Determinantal random point fields. (Russian)[END_REF]; the definition is also recalled in [START_REF] Bufetov | Multiplicative functionals of determinantal processes[END_REF] below.

Given a subset E ′ ⊂ E, consider the subset Conf(E, E ′ ) of those configurations whose all particles lie in E ′ ; in Proposition 2 below, we shall see that under some additional asumptions the restriction of a determinantal point process onto Conf(E, E ′ ) is again determinantal.

Our main example, the measure B (s) of [START_REF] Rabaoui | Asymptotic harmonic analysis on the space of square complex matrices[END_REF], is defined on the space of configurations on (0, +∞). Almost every configuration is infinite and 1 bounded according to B (s) ; the particles accumulate at zero. If one takes R > 0 and requires all particles to lie in (0, R), then the induced measure of B (s) on the resulting subset of configurations is finite, and, after normalization, determinantal. As R goes to infinity, the measure of the subset Conf((0, +∞); (0, R)) grows, and the measure of the space of all configurations is infinite.

Our general construction will similarly exhaust E by subsets E n in such a way that the weight of Conf(E; E n ) is positive and finite, and the normalized restriction of our infinite determinantal measure onto the subset Conf(E; E n ) is determinantal. A simple example is given by "infinite orthogonal polynomial ensembles", see [START_REF] Borodin | Asymptotics of Plancherel measures for symmetric groups[END_REF] below. The measure B (s) is a scaling limit of such ensembles. We proceed to precise formulations. 1.2. Construction of infinite determinantal measures. Let E be a locally compact complete metric space, and let Conf(E) be the space of configurations on E endowed with the natural Borel structure (see, e.g., [START_REF] Lenard | States of classical statistical mechanical systems of infinitely many particles[END_REF], [START_REF] Soshnikov | Determinantal random point fields. (Russian)[END_REF]).

Given a Borel subset E ′ ⊂ E, we let Conf(E, E ′ ) be the subspace of configurations all whose particles lie in E ′ .

Given a measure B on a set X and a measurable subset Y ⊂ X such that 0 < B(Y ) < +∞, we let B | Y stand for the restriction of the measure B onto the subset Y .

An infinite determinantal measure is a σ-finite Borel measure B on Conf(E) admitting a filtration of the space E by Borel subsets E n , n ∈ N:

E 1 ⊂ E 2 ⊂ . . . ⊂ E n ⊂ . . . , ∞ n=1 E n = E
such that for any n ∈ N we have (1) 0 < B (Conf(E, E n )) < +∞;

(2) the normalized restriction

B Conf(E,En) B (Conf(E, E n )) is a determinantal measure; (3) B Conf(E)\ ∞ n=1 (Conf(E, E n ) = 0 .
Let µ be a σ-finite Borel measure on E. By the Macchì-Soshnikov Theorem, under some additional assumptions, a determinantal measure can be assigned to an operator of orthogonal projection, or, in other words, to a closed subspace of L 2 (E, µ). In a similar way, an infinite determinantal measure will be assigned to a subspace H of locally square-integrable functions. For example, for infinite analogues of orthogonal polynomial ensembles, H is the subspace of weighted polynomials, see Subsection 1.3 below.

Let L 2,loc (E, µ) be the space of measurable functions on E, locally square integrable with respect to µ, let I 1 (E, µ) be the space of trace-class operators in L 2 (E, µ) and let I 1,loc (E, µ) be the space of operators on L 2 (E, µ) that are locally of trace class (precise definitions are recalled in Section 2).

Let

H ⊂ L 2,loc (E, µ) be a linear subspace. If E ′ ⊂ E is a Borel subset such that χ E ′ H is a closed subspace of L 2 (E, µ
), then we denote by Π E ′ the operator of orthogonal projection onto the subspace χ E ′ H ⊂ L 2 (E, µ). We now fix a Borel subset E 0 ⊂ E; informally, E 0 is the set where the particles accumulate. We impose the following assumption on E 0 and H.

Assumption 1.

(1) For any bounded Borel set B ⊂ E, the space 

χ E 0 ∪B H is a closed subspace of L 2 (E, µ); (2) For any bounded Borel set B ⊂ E \ E 0 , we have (1) Π E 0 ∪B ∈ I 1,loc (E, µ), χ B Π E 0 ∪B χ B ∈ I 1 (E, µ); (3) If ϕ ∈ H satisfies χ E 0 ϕ = 0, then ϕ = 0.
B| Conf(E;E 0 ∪B) B(Conf(E; E 0 ∪ B)) = P Π E 0 ∪B .
The requirements ( 1) and (2) determine the measure B uniquely up to multiplication by a positive constant.

We denote B(H, E 0 ) the one-dimensional cone of nonzero infinite determinantal measures induced by H and E 0 , and, slightly abusing notation, we write B = B(H, E 0 ) for a representative of the cone.

Remark. If B is a bounded set, then, by definition, we have

B(H, E 0 ) = B(H, E 0 ∪ B). Remark. If E ′ ⊂ E is a Borel subset such that χ E 0 ∪E ′ is a closed sub- space in L 2 (E, µ) and the operator Π E 0 ∪E ′ of orthogonal projection onto the subspace χ E 0 ∪E ′ H satisfies (2) Π E 0 ∪E ′ ∈ I 1,loc (E, µ), χ E ′ Π E 0 ∪E ′ χ E ′ ∈ I 1 (E, µ),
then, exhausting E ′ by bounded sets, from Theorem 1 one easily obtains 

0 < B(Conf(E; E 0 ∪ E ′ )) < +∞ and B| Conf(E;E 0 ∪E ′ ) B(Conf(E; E 0 ∪ E ′ )) = P Π E 0 ∪E ′ .
1 i,j N (x i -x j ) 2 N i=1 ρ(x i )dx i ,
an infinite analogue of an orthogonal polynomial ensemble.

For any b 1 ∈ [a, b), the induced measure (4)

1 i<j N (x i -x j ) 2 N i=1 ρ(x i )χ [a,b 1 ] (x i )dx i
is finite and, after normalization, can be represented in determinantal form

1 N! det K ρ,b 1 N (x i , x j ) N i=1 ρ(x i )χ [a,b 1 ] (x i )dx i ,
where K ρ,b 1 N is the N-th Christoffel-Darboux kernel formed by orthonormal polynomials corresponding to the "induced" weight ρ(x)χ [a,b 1 ] (x).

The infinite measure (3) is thus an infinite determinantal measure corresponding to the subspace H ⊂ L 2,loc ([a, b), Leb) spanned by the functions x k ρ(x), k = 0, . . . , N -1, and the subset E 0 = [a, b 1 ) for an arbitrary b 1 ∈ (a, b). In the problem of ergodic decomposition of infinite Pickrell measures we shall be especially interested in studying scaling limits of such "infinite orthogonal polynomial ensembles". 1.4. Organization of the paper. In the next subsection it is shown that, under certain additional assumptions, an infinite determinantal measure times a multiplicative functional yields after normalization a determinantal point process; for determinantal probability measures this has been established in [START_REF] Bufetov | Multiplicative functionals of determinantal processes[END_REF]. We then proceed to our main example of infinite determinantal measures, namely, those obtained as finite-rank perturbations of determinantal point processes. The ergodic decomposition measures of infinite Pickrell measures will be seen to be of this type. In the following subsection it is established that induced processes of an infinite determinantal measure obtained by finite rank perturbation, converge to the unperturbed process.

In Section 2 we recall the definition of determinantal point processes, study the properties of multiplicative functionals of these processes, thus extending the results of [START_REF] Bufetov | Multiplicative functionals of determinantal processes[END_REF], and give a sketch of the proof of Theorem 1.

In Section 3 we recall the construction, due to Pickrell [START_REF] Pickrell | Mackey analysis of infinite classical motion groups[END_REF], [START_REF] Pickrell | Separable representations of automorphism groups of infinite symmetric spaces[END_REF], [START_REF] Pickrell | Measures on infinite-dimensional Grassmann manifolds[END_REF] in the finite case (see also Neretin [START_REF] Yu | Hua-type integrals over unitary groups and over projective limits of unitary groups[END_REF]) and to Borodin and Olshanski [START_REF] Borodin | Infinite random matrices and ergodic measures[END_REF] in the infinite case, of Pickrell measures on the space of infinite matrices. We then recall the Olshanski-Vershik approach (see [START_REF] Vershik | A description of invariant measures for actions of certain infinitedimensional groups[END_REF], [START_REF] Olshanski | Ergodic unitarily invariant measures on the space of infinite Hermitian matrices[END_REF]) to the Pickrell classification of finite ergodic unitarily-invariant measures on spaces of infinite matrices as well as the result of [START_REF] Bufetov | Finiteness of Ergodic Unitarily Invariant Measures on Spaces of Infinite Matrices[END_REF] that implies that the ergodic components of infinite Pickrell measures are almost surely finite; only the decomposing measure is infinite.

In Section 4 we start by considering finite Pickrell mesures, for which the ergodic decomposition is given, up to a change of variable, by the Bessel point process of Tracy and Widom [START_REF] Tracy | Level spacing distributions and the Bessel kernel[END_REF]. The main result of the paper, Theorem 2 , then says that the ergodic decomposition of infinite Pickrell measures is induced by infinite determinantal measures obtained as an explicitly given finite-rank perturbation of the Bessel point processes occurring in the ergodic decomposition of finite Pickrell measures. The scaling limit argument sketched at the end of the section uses precisely the representation, developed in Section 1, of infinite determinantal measures as products of finite determinantal measures and multiplicative functionals.

1.5. Multiplicative functionals. Let g be a non-negative measurable function on E, and introduce the multiplicative functional

Ψ g : Conf(E) → R by the formula (5) Ψ g (X) = x∈X g(x).
If the infinite product x∈X g(x) absolutely converges to 0 or to ∞, then we set, respectively, Ψ g (X) = 0 or Ψ g (X) = ∞. If the product in the righthand side fails to converge absolutely, then the multiplicative functional is not defined. We start with an auxiliary proposition. 

= ε 0 (B) > 0 such that g(x) > ε 0 for all x ∈ E 0 ∪ B; (2) we have √ gH ⊂ L 2 (E, µ). Then √ gH is a closed subspace in L 2 (E, µ).
Under the assumptions of Proposition 1, let Π g be the operator of orthogonal projection onto the closed subspace √ gH.

Our next aim is to give sufficient conditions for integrability of multiplicative functionals with respect to infinite determinantal measures. We restrict ourselves to the case when the function g only takes values in (0, 1]. Proposition 2. Let a subspace H ⊂ L 2,loc (E, µ) and a Borel subset E 0 ⊂ E satisfy Assumption 1, and let g : E → (0, 1] be a measurable function such that:

(1) for any bounded subset B ⊂ E there exists

ε 0 = ε 0 (B) > 0 such that g(x) > ε 0 for all x ∈ E 0 ∪ B; (2) √ gH ⊂ L 2 (E, µ); (3) √ 1 -gχ E 0 Π g χ E 0 √ 1 -g ∈ I 1 (E, µ); (4) Π g ∈ I 1,loc (E, µ); (5) χ E\E 0 Π g χ E\E 0 ∈ I 1 (E, µ). Then the multiplicative functional Ψ g is B(H, E 0 )-

almost surely positive, and we have

(1)

Ψ g ∈ L 1 (Conf(E), B); (2) Ψ g B Conf(E) Ψ g dB = P Π g .
We can therefore write B = C • Ψ 1/g • P Π g , where C is a positive constant. Our infinite determinantal measure is thus represented as a product of a determinantal probability measure and a convergent non-integrable multiplicative functional.

1.6. Infinite determinantal measures obtained as finite-rank perturbations of determinantal probability measures. We now consider infinite determinantal measures induced by subspaces H obtained by adding a finite-dimensional subspace V to a closed subspace L ⊂ L 2 (E, µ).

Let, therefore, Q ∈ I 1,loc (E, µ) be the operator of orthogonal projection onto a closed subspace L ⊂ L 2 (E, µ), let V be a finite-dimensional subspace of L 2,loc (E, µ), and set H = L + V . Let E 0 ⊂ E be a Borel subset. We shall need the following assumption on L, V and E 0 .

Assumption 2.

(1) In particular, for any bounded Borel subset B, the subspace χ E 0 ∪B L is closed, as one sees by taking

χ E\E 0 Qχ E\E 0 ∈ I 1 (E, µ); (2) χ E 0 V ⊂ L 2 (E, µ); (3) if ϕ ∈ V satisfies χ E 0 ϕ ∈ χ E 0 L, then ϕ = 0; (4) if ϕ ∈ L satisfies χ E 0 ϕ = 0, then ϕ = 0.
E ′ = E 0 ∪ B in the following clear Proposition 4. Let Q ∈ I 1,loc (E, µ) be the operator of orthogonal pro- jection onto a closed subspace L ∈ L 2 (E, µ). Let E ′ ⊂ E be a Borel subset such that χ E ′ Qχ E ′ ∈ I 1 (E, µ) and that for any function ϕ ∈ L, the equality χ E ′ ϕ = 0 implies ϕ = 0. Then the subspace χ E ′ L is closed in L 2 (E, µ).
The subspace H and the Borel subset E 0 therefore define an infinite determinantal measure B = B(H, E 0 ). We now adapt the formulation of Proposition 2 to this particular case. Proposition 5. Let L, V , and E 0 satisfy Assumption 2, let B be the corresponding infinite determinantal measure, and let g : 

E → (0, 1] be a positive measurable function. If √ 1 -gQ √ 1 -g ∈ I 1 (E, µ),
√ gV ⊂ L 2 (E, µ);
(2) for any bounded subset B ⊂ E there exists

ε 0 = ε 0 (B) > 0 such that g(x) > ε 0 for all x ∈ E 0 ∪ B, then (1) Ψ g ∈ L 1 (Conf(E), B); (2) Ψ g B Conf(E) Ψ g dB = P Π g ,
where, as before, Π g is the operator of orthogonal projection onto the closed subspace √ gH.

Remark. The subspace √ gH is closed by Proposition 1.

1.7. Convergence of approximating kernels. Our next aim is to show that, under certain additional assumptions, if a sequence g n of measurable functions converges to 1, then the operators Π gn considered in Proposition 5 converge to

Q in I 1,loc (E, µ). Given two closed subspaces H 1 , H 2 in L 2 (E, µ), let α(H 1 , H 2 )
be the angle between H 1 and H 2 , defined as the infimum of angles between all nonzero vectors in H 1 and H 2 ; recall that if one of the subspaces has finite dimension, then the infimum is achieved. Proposition 6. Let L, V , and E 0 satisfy Assumption 2, and assume additionally that we have V ∩ L 2 (E, µ) = 0. Let g n : E → (0, 1] be a sequence of positive measurable functions such that

(1) for all n ∈ N we have

√ 1 -g n Q √ 1 -g n ∈ I 1 (E, µ);
(2) for all n ∈ N we have √ g n V ⊂ L 2 (E, µ);

(3) there exists α 0 > 0 such that for all n we have

α( √ g n H, √ g n V ) ≥ α 0 ; (4) for any bounded B ⊂ E we have inf n∈N,x∈E 0 ∪B g n (x) > 0; lim n→∞ sup x∈E 0 ∪B |g n (x) -1| = 0.
Then, as n → ∞, we have

Π gn → Q in I 1,loc (E, µ).
Using the second remark after Theorem 1, one can extend Proposition 6 also to nonnegative functions that admit zero values. Here we restrict ourselves to characteristic functions of the form χ E 0 ∪B with B bounded, in which case we have the following Corollary 1. Let B n be an increasing sequence of bounded Borel sets exhausting E \ E 0 . If there exists α 0 > 0 such that for all n we have

α(χ E 0 ∪Bn H, χ E 0 ∪Bn V ) ≥ α 0 , then Π E 0 ∪Bn → Q in I 1,loc (E, µ).
Informally, Corollary 1 means that, as n grows, the induced processes of our determinantal measure on subsets Conf(E; E 0 ∪ B n ) converge to the "unperturbed" determinantal point process P Q . Choosing an exhausting family B n of bounded sets (for instance, balls of radius tending to infinity) and using [START_REF] Bufetov | Ergodic decomposition for measures quasi-invariant under Borel actions of inductively compact groups[END_REF] with B = B n , we endow the space L 2,loc (E, µ) with a countable family of seminorms which turns it into a complete separable metric space; the topology thus defined does not, of course, depend on the specific choice of the exhausting family.

MULTIPLICATIVE FUNCTIONALS

Let I 1 (E, µ) be the ideal of trace class operators K : L 2 (E, µ) → L 2 (E, µ) (see volume 1 of [START_REF] Reed | Methods of modern mathematical physics[END_REF] for the precise definition); the symbol || K|| I 1 will stand for the I 1 -norm of the operator K. Let I 2 (E, µ) be the ideal of Hilbert-Schmidt operators K : L 2 (E, µ) → L 2 (E, µ); the symbol || K|| I 2 will stand for the I 2 -norm of the operator K.

Let I 1,loc (E, µ) be the space of operators K : L 2 (E, µ) → L 2 (E, µ) such that for any bounded Borel subset B ⊂ E we have

χ B Kχ B ∈ I 1 (E, µ).
Again, we endow the space I 1,loc (E, µ) with a countable family of seminorms [START_REF] Bufetov | Finiteness of Ergodic Unitarily Invariant Measures on Spaces of Infinite Matrices[END_REF] ||χ

B Kχ B || I 1
where, as before, B runs through an exhausting family B n of bounded sets.

Determinantal Point Processes.

A Borel probability measure P on Conf(E) is called determinantal if there exists an operator K ∈ I 1,loc (E, µ) such that for any bounded measurable function g, for which g -1 is supported in a bounded set B, we have (8)

E P Ψ g = det 1 + (g -1)Kχ B .
The Fredholm determinant in ( 8) is well-defined since K ∈ I 1,loc (E, µ).

The equation ( 8) determines the measure P uniquely. If, for a bounded Borel set B ⊂ E, we let # B : Conf(E) → N∪{0} be the function that to a configuration assigns the number of its particles belonging to B, then, for any pairwise disjoint bounded Borel sets B 1 , . . . , B l ⊂ E and any z 1 , . . . , z l ∈ C from [START_REF] Bufetov | Multiplicative functionals of determinantal processes[END_REF] we have E P z

# B 1 1 • • • z # B l l = det 1 + l j=1 (z j -1)χ B j Kχ ⊔ i B i .
For further results and background on determinantal point processes, see e.g. [START_REF] Borodin | Determinantal point processes[END_REF], [START_REF] Hough | Determinantal processes and independence[END_REF], [START_REF] Lyons | Determinantal probability measures[END_REF], [START_REF] Lyons | Stationary determinantal processes: phase multiplicity, Bernoullicity, entropy, and domination[END_REF], [START_REF] Lytvynov | Fermion and boson random point processes as particle distributions of infinite free Fermi and Bose gases of finite density[END_REF], [START_REF] Shirai | Random point fields associated with fermion, boson and other statistics[END_REF], [START_REF] Shirai | Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes[END_REF], [START_REF] Shirai | Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties[END_REF], [START_REF] Soshnikov | Determinantal random point fields. (Russian)[END_REF].

In what follows we suppose that K belongs to I 1,loc (E, µ), and denote the corresponding determinantal measure by P K . Note that P K is uniquely defined by K, but different operators may yield the same measure. By the Macchì-Soshnikov theorem [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF], [START_REF] Soshnikov | Determinantal random point fields. (Russian)[END_REF], any Hermitian positive contraction that belongs to the class I 1,loc (E, µ) defines a determinantal point process.

Multiplicative functionals.

At the centre of the construction of infinite determinantal measures lies the result of [START_REF] Bufetov | Multiplicative functionals of determinantal processes[END_REF] that can informally be summarized as follows: a determinantal measure times a multiplicative functional is again a determinantal measure. In other words, if P K is a determinantal measure on Conf(E) induced by the operator K on L 2 (E, µ), then, under certain additional assumptions, it is shown in [START_REF] Bufetov | Multiplicative functionals of determinantal processes[END_REF] that the measure Ψ g P K after normalization yields a determinantal measure.

It is required in [START_REF] Bufetov | Multiplicative functionals of determinantal processes[END_REF] that the operator (g -1)K be of trace class; this assumption is too restrictive for our purposes, and in Propositions 7 and 10 we shall now formulate two more convenient versions of Proposition 1 in [START_REF] Bufetov | Multiplicative functionals of determinantal processes[END_REF].

As before, let g be a non-negative measurable function on E. If the operator 1 + (g -1)K is invertible, then we set

B(g, K) = gK(1+(g -1)K) -1 , B(g, K) = √ gK(1+(g -1)K) -1 √ g.
By definition, B(g, K), B(g, K) ∈ I 1,loc (E, µ) since K ∈ I 1,loc (E, µ), and, if K is self-adjoint, then so is B(g, K).

In the case when K is self-adjoint, the following proposition generalizes Proposition 1 in [START_REF] Bufetov | Multiplicative functionals of determinantal processes[END_REF]. Proposition 7. Let K ∈ I 1,loc (E, µ) be a self-adjoint positive contraction, and let P K be the corresponding determinantal measure on Conf(E). Let g be a nonnegative bounded measurable function on E such that [START_REF] Hough | Determinantal processes and independence[END_REF] g -1K g -1 ∈ I 1 (E, µ)

and that the operator 1 + (g -1)K is invertible. Then (1) we have Ψ g ∈ L 1 (Conf(E), P K ) and

Ψ g dP K = det 1 + g -1K g -1 > 0;
(2) the operators B(g, K), B(g, K) induce on Conf(E) a determinantal measure P B(g,K) = P B(g,K) satisfying

(10) P B(g,K) = Ψ g P K Conf(E) Ψ g dP K .
Remark. Since (9) holds and K is self-adjoint, the operator 1+(g -1)K is invertible if and only if the operator

1 + √ g -1K √ g -1 is invertible.
If Q is a projection operator, then the operator B(g, Q) admits the following description. Proposition 8. Let L ⊂ L 2 (E, µ) be a closed subspace, and let Q be the operator of orthogonal projection onto L. Let g be a bounded measurable function such that the operator 1 + (g -1)Q is invertible. Then the operator B(g, Q) is the operator of orthogonal projection onto the closure of the subspace √ gL.

We now consider the particular case when g is a characteristic function of a Borel subset. In much the same way as before, if E ′ ⊂ E is a Borel subset such that the subspace χ E ′ L is closed (recall that a sufficient condition for that is provided in Proposition 4), then we set Q E ′ to be the operator of orthogonal projection onto the closed subspace χ E ′ L.

Propositions 10, 7 now yield the following

Corollary 2. Let Q ∈ I 1,loc (E, µ) be the operator of orthogonal projection onto a closed subspace L ∈ L 2 (E, µ). Let E ′ ⊂ E be a Borel subset such that χ E ′ Qχ E ′ ∈ I 1 (E, µ). Then P Q (Conf(E, E ′ )) = det(1 -χ E\E ′ Qχ E\E ′ ).
Assume, additionally, that for any function ϕ ∈ L, the equality χ E ′ ϕ = 0 implies ϕ = 0. Then the subspace χ E ′ L is closed, and we have

P Q (Conf(E, E ′ )) > 0, Q E ′ ∈ I 1,loc (E, µ), and 
P Q | Conf(E,E ′ ) P Q (Conf(E, E ′ )) = P Q E ′ .
The induced measure of a determinantal measure onto the subset of configurations all whose particles lie in E ′ is thus again a determinantal measure. In the case of a discrete phase space, related induced processes were considered by Lyons [START_REF] Lyons | Determinantal probability measures[END_REF] and by Borodin and Rains [START_REF] Borodin | Eynard-Mehta theorem, Schur process, and their pfaffian analogs[END_REF].

Corollary 2 implies Theorem 1.

2.4.

The space I ξ . To prove Proposition 7, we consider a slightly more general algebra of operators K for which the trace tr K and the Fredholm determinant det(1 + K) can be defined and shown to have the usual properties. The space I ξ (E, µ) is a modification of the space L 1|2 (H) introduced by Borodin, Okounkov and Olshanski [START_REF] Borodin | Asymptotics of Plancherel measures for symmetric groups[END_REF] and used also by Olshanski in [START_REF] Olshanski | The quasi-invariance property for the Gamma kernel determinantal measure[END_REF]. We proceed to precise formulations. Take a countable partition ξ of our space E into disjoint bounded measurable sets E n , n ∈ N. Introduce the sets [START_REF] Lenard | States of classical statistical mechanical systems of infinitely many particles[END_REF] {ξ

> n} = ∞ k=n+1 E k ; {ξ < n} = n-1 k=1 E k .
Informally, ξ is considered as a random variable taking integer values.

The subspace

I ξ (E, µ) ⊂ I 1,loc (E, µ)
is now defined as follows: an operator K ∈ I 1,loc (E, µ) belongs to

I ξ (E, µ) if (1) K ∈ I 2 (E, µ); (2) 
∞ n=1 ||χ En Kχ En || I 1 < +∞.
The space I ξ (E, µ) is normed by the formula

||K|| I ξ = ||K|| I 2 + ∞ n=1 ||χ En Kχ En || I 1 .
By definition, the space I ξ (E, µ) is an algebra. For K ∈ I ξ (E, µ), the Fredholm determinant det(1 + K) is defined by the formula

(12) det(1 + K) = det ((1 + K) exp(-K)) exp ∞ n=1 tr(χ En Kχ En ) .
The right-hand side of ( 12) is well-defined since

(1 + K) exp(-K) ∈ I 1 for any K ∈ I 2 .
For K 1 , K 2 ∈ I ξ , we clearly have

det((1 + K 1 )(1 + K 2 )) = det(1 + K 1 ) det(1 + K 2 ).
From the definitions we now immediately obtain Proposition 9. If (g -1)K ∈ I ξ (E, µ), then Ψ g ∈ L 1 (Conf(E), P K ) and

E P K Ψ g = det(1 + (g -1)K).
The following Proposition is a generalization of Proposition 1 in [START_REF] Bufetov | Multiplicative functionals of determinantal processes[END_REF].

Proposition 10. Assume that an operator K ∈ I 1,loc (E, µ) induces a determinantal measure P K on Conf(E). Let ξ be a countable measurable partition of E and let g be a nonnegative bounded measurable function on E such that (g -1)K ∈ I ξ (E, µ) and that the operator 1 + (g -1)K is invertible. Then the operators B(g, K), B(g, K) induce on Conf(E) a determinantal measure P B(g,K) = P B(g,K) satisfying

(13) P B(g,K) = Ψ g P K Conf(E) Ψ g dP K .
Indeed, take a bounded measurable function f on E such that

(f -1)K ∈ I ξ (E, µ).
We then immediately have

E P K Ψ f Ψ g E P K Ψ g = det(1 + (f -1)B(g, K)) = det(1 + (f -1) B(g, K)),
and the proposition follows.

Observe now that to a nonnegative function g such that (9) holds, one can easily assign a countable partition ξ such that (g -1)K ∈ I ξ (E, µ). Proposition 7 is therefore clear from Proposition 10.

UNITARILY-INVARIANT MEASURES ON SPACES OF INFINITE MATRICES

3.1. Pickrell Measures. Let Mat(n, C) be the space of n×n matrices with complex entries:

Mat(n, C) = {z = (z ij ), i = 1, . . . , n; j = 1, . . .

, n}

Let Leb = dz be the Lebesgue measure on Mat(n, C).

Following Pickrell [START_REF] Pickrell | Mackey analysis of infinite classical motion groups[END_REF], take s ∈ R and introduce a measure µ

(s)
n on Mat(n, C) by the formula

µ (s) n = det(1 + z * z) -2n-s dz.
The measure µ (s)

n is finite if and only if s > -1. For n 1 < n, let π n n 1 : Mat(n, C) → Mat(n 1 , C
) be the natural projection map that to a matrix z = (z ij ), i, j = 1, . . . , n, assigns its upper left corner, the matrix π n n 1 (z) = (z ij ), i, j = 1, . . . , n 1 .

The measures µ (s)

n have the property of consistency with respect to the projections π n n 1 . More precisely, following Borodin and Olshanski [START_REF] Borodin | Infinite random matrices and ergodic measures[END_REF], p.116, observe that even if the measure µ (s) n is infinite, the fibres of the projection π n n-1 have finite conditional measure as long as n + s > 0. The push-forward

(π n n-1 ) * µ (s)
n is consequently well-defined, and for any s ∈ R and n > -s we have ( 14)

(π n n-1 ) * µ (s) n = π 2n-1 (Γ(n + s)) 2 Γ(2n + s) • Γ(2n -1 + s) µ (s) n-1 .
Now let Mat(N, C) be the space of infinite matrices whose rows and columns are indexed by natural numbers and whose entries are complex:

Mat(N, C) = {z = (z ij ), i, j ∈ N, z ij ∈ C}. Let π ∞ n : Mat(N, C) → Mat(n, C
) be the natural projection map that to an infinite matrix z ∈ Mat(N, C) assigns its upper left n × n-"corner", the matrix (z ij ), i, j = 1, . . . , n.

Take s ∈ R and n 0 ∈ N, n 0 > -s. The relation [START_REF] Lytvynov | Fermion and boson random point processes as particle distributions of infinite free Fermi and Bose gases of finite density[END_REF] and the Kolmogorov Existence Theorem [START_REF] Kolmogoroff | Grundbegriffe der Wahrscheinlichkeitsrechnung[END_REF] imply (for a detailed presentation, see p. 116 in Borodin and Olshanski [START_REF] Borodin | Infinite random matrices and ergodic measures[END_REF]) that for any λ > 0 there exists a unique measure µ (s,λ) on Mat(N, C) such that for any n > n 0 we have

(15) (π ∞ n ) * µ (s,λ) = λ n l=n 0 π -2n Γ(2l + s)Γ(2l -1 + s) (Γ(l + s)) 2 µ (s) .
If s > -1, the measures µ (s,λ) are finite, and we let µ (s) be the probability measure in the family µ (s,λ) .

In this case, ( 14) implies the relation

(π ∞ n ) * µ (s) = π -n 2 n l=1 Γ(2l + s)Γ(2l -1 + s) (Γ(l + s)) 2 µ (s) n .
If s -1, the measures µ (s,λ) are all infinite. In this case, slightly abusing notation, we shall omit the super-script λ and write µ (s) for a measure defined up to a multiplicative constant. Proposition 11. For any s 1 , s 2 ∈ R, s 1 = s 2 , the Pickrell measures µ (s 1 ) and µ (s 2 ) are mutually singular. Proposition 11 is obtained from Kakutani's Theorem in the spirit of [START_REF] Borodin | Infinite random matrices and ergodic measures[END_REF], see also [START_REF] Yu | Hua-type integrals over unitary groups and over projective limits of unitary groups[END_REF].

Let U(∞) be the infinite unitary group: an infinite matrix u = (u ij ) i,j∈N belongs to U(∞) if there exists a natural number n 0 such that the matrix

(u ij ), i, j ∈ [1, n 0 ] is unitary, while u ii = 1 if i > n 0 and u ij = 0 if i = j, max(i, j) > n 0 .
The group U(∞) × U(∞) acts on Mat(N, C) by multiplication on both sides:

T (u 1 ,u 2 ) z = u 1 zu -1 2 .
The Pickrell measures µ (s) are by definition U(∞) × U(∞)-invariant. For the rôle of Pickrell and related mesures in the representation theory of U(∞), see [START_REF] Olshanski | Unitary representations of infinite-dimensional pairs (G, K) and the formalism of R. Howe[END_REF], [START_REF] Olshanski | Unitary representations of infinite-dimensional classical groups (Russian)[END_REF], [START_REF] Olshanski | Ergodic unitarily invariant measures on the space of infinite Hermitian matrices[END_REF].

Theorem 1 and Corollary 1 in [START_REF] Bufetov | Ergodic decomposition for measures quasi-invariant under Borel actions of inductively compact groups[END_REF] imply that the measures µ (s) admit an ergodic decomposition. Furthermore, Theorem 1 in [START_REF] Bufetov | Finiteness of Ergodic Unitarily Invariant Measures on Spaces of Infinite Matrices[END_REF] implies that for any s ∈ R the ergodic components of the measure µ (s) are almost surely finite. The main result of this note is an explicit description of the ergodic decomposition of the measures µ (s) for s = -1 -2k, k ∈ N; in particular, for s < -1 we shall see that the ergodic decomposition is given by an explicitly computed infinite determinantal measure.

Classification of ergodic measures. First, we recall the classification of ergodic probability U(∞) × U(∞)-invariant measures on Mat(N, C).

This classification has been obtained by Pickrell [START_REF] Pickrell | Mackey analysis of infinite classical motion groups[END_REF], [START_REF] Pickrell | Separable representations of automorphism groups of infinite symmetric spaces[END_REF]; Vershik [START_REF] Vershik | A description of invariant measures for actions of certain infinitedimensional groups[END_REF] and Olshanski and Vershik [START_REF] Olshanski | Ergodic unitarily invariant measures on the space of infinite Hermitian matrices[END_REF] proposed a different approach to this classification in the case of unitarily-invariant measures on the space of infinite Hermitian matrices, and Rabaoui [START_REF] Rabaoui | Asymptotic harmonic analysis on the space of square complex matrices[END_REF], [START_REF] Rabaoui | A Bochner type theorem for inductive limits of Gelfand pairs[END_REF] adapted the Olshanski-Vershik approach to the initial problem of Pickrell. In this note, the Olshanski-Vershik approach is followed as well.

Take z ∈ Mat(N, C), denote z (n) = π ∞ n z, and let ( 16)

λ (n) 1 . . . λ (n) n 0
be the eigenvalues of the matrix

z (n) * z (n) ,
counted with multiplicities, arranged in non-increasing order. To stress dependence on z, we write λ

(n) i = λ (n) i (z). Theorem.
(1) Let η be an ergodic Borel U(∞)×U(∞)-invariant probability measure on Mat(N, C). Then there exist non-negative real numbers

γ 0, x 1 x 2 . . . x n . . . 0 , satisfying γ ∞ i=1
x i , such that for η-almost every z ∈ Mat(N, C) and any i ∈ N we have: [START_REF] Olshanski | The quasi-invariance property for the Gamma kernel determinantal measure[END_REF] x

i = lim n→∞ λ (n) i (z) n 2 , γ = lim n→∞ tr z (n) * z (n) n 2 .
(2) Conversely, given non-negative real numbers γ 0, x 1 x 2 . . . x n . . . 0 such that

γ ∞ i=1 x i ,
there exists a unique U(∞) × U(∞)-invariant ergodic Borel probability measure η on Mat(N, C) such that the relations [START_REF] Olshanski | The quasi-invariance property for the Gamma kernel determinantal measure[END_REF] hold for η-almost all z ∈ Mat(N, C).

Introduce the Pickrell set

Ω P ⊂ R + × R N
+ by the formula

Ω P = ω = (γ, x) : x = (x n ), n ∈ N, x n x n+1 0, γ ∞ i=1 x i .
The set Ω P is, by definition, a closed subset of R + × R N + endowed with the Tychonoff topology. By Proposition 3 in [START_REF] Bufetov | Ergodic decomposition for measures quasi-invariant under Borel actions of inductively compact groups[END_REF], the subset of ergodic U(∞) × U(∞)-invariant measures is a Borel subset of the space of all Borel probability measures on Mat(N, C) endowed with the natural Borel structure (see, e.g., [START_REF] Bogachev | Measure theory[END_REF]). Furthermore, if one denotes η ω the Borel ergodic probability measure corresponding to a point ω ∈ Ω P , ω = (γ, x), then the correspondence ω -→ η ω is a Borel isomorphism of the Pickrell set Ω P and the set of U(∞) × U(∞)invariant ergodic probability measures on Mat(N, C).

The Ergodic Decomposition Theorem (Theorem 1 and Corollary 1 of [START_REF] Bufetov | Ergodic decomposition for measures quasi-invariant under Borel actions of inductively compact groups[END_REF]) implies that each Pickrell measure µ (s) , s ∈ R, induces a unique decomposing measure µ (s) on Ω P such that we have [START_REF] Olshanski | Unitary representations of infinite-dimensional pairs (G, K) and the formalism of R. Howe[END_REF] µ (s) =

Ω P η ω dµ (s) (ω) .
The integral is understood in the usual weak sense, see [START_REF] Bufetov | Ergodic decomposition for measures quasi-invariant under Borel actions of inductively compact groups[END_REF].

For s > -1, the measure µ (s) is a probability measure on Ω P , while for s -1 the measure µ (s) is infinite.

Set

Ω 0 P = {(γ, {x n }) ∈ Ω P : x n > 0 for all n, γ = ∞ n=1
x n }.

The subset Ω 0 P is of course not closed in Ω P . Introduce a map conf : Ω P → Conf((0, +∞)) that to a point ω ∈ Ω P , ω = (γ, {x n }) assigns the configuration conf(ω) = (x 1 , . . . , x n , . . .) ∈ Conf((0, +∞)).

The map ω → conf(ω) is bijective in restriction to the subset Ω 0 P . Remark. In the definition of the map conf, the "asymptotic eigenvalues" x n are counted with multiplicities, while, if x n 0 = 0 for some n 0 , then x n 0 and all subsequent terms are discarded, and the resulting configuration is finite. We shall see, however, that the complement Ω P \Ω 0 P is µ (s) -negligible for all s = -1 -2k, k ∈ N, and, consequently, that, µ (s) -almost surely, all configurations are infinite. It will also develop that, µ (s) -almost surely, all multiplicities are equal to one.

We proceed to the formulation of the main result of this note, an explicit description of the measures µ (s) for s = -1 -2k, k ∈ N. 

J s (x, y) = √ xJ s+1 ( √ x)J s ( √ y) - √ yJ s+1 ( √ y)J s ( √ x) 2(x -y)
(see, e.g., page 295 in Tracy and Widom [START_REF] Tracy | Level spacing distributions and the Bessel kernel[END_REF]). The kernel J s induces on L 2 ((0, +∞), Leb) the operator of orthogonal projection onto the subspace of functions whose Hankel transform is supported in [0, 1] (see [START_REF] Tracy | Level spacing distributions and the Bessel kernel[END_REF]). Setting x 1 = 4/x, x 2 = 4/y yields a kernel K (s) given by the formula (20)

K (s) (x 1 , x 2 ) = J s 2 √ x 1 1 √ x 2 J s+1 2 √ x 2 -J s 2 √ x 2 1 √ x 1 J s+1 2 √ x 1 x 1 -x 2 , x 1 > 0, x 2 > 0 .
(recall here that a change of variables

u 1 = ρ(v 1 ), u 2 = ρ(v 2 ) transforms a kernel K(u 1 , u 2 ) to a kernel of the form K(ρ(v 1 ), ρ(v 2 ))( ρ ′ (v 1 )ρ ′ (v 2 ))).
The kernel K (s) induces on the space L 2 ((0, +∞), Leb) a locally trace class operator of orthogonal projection, for which, slightly abusing notation, we keep the symbol K (s) ; by the Macchì-Soshnikov Theorem, the operator K (s) induces a determinantal measure P K (s) on Conf((0, +∞)). The determinantal measure P K (s) is precisely the decomposing measure for the Pickrell measure µ (s) , as is shown by the following Proposition 12. Let s > -1. Then µ (s) (Ω 0 P ) = 1 and the µ (s) -almost sure bijection ω → conf(ω) identifies the measure µ (s) with the determinantal measure P K (s) .

Sketch of proof of Proposition 12. Take s > -1 and let P (s) n (u) be the standard Jacobi orthogonal polynomials on the interval [-1, 1], corresponding to the weight (1 -u) s .

Following Pickrell, to a matrix z ∈ Mat(n, C) assign the collection (λ 1 (z), . . . , λ n (z)) of the eigenvalues of the matrix z * z arranged in nonincreasing order ( cf. ( 16)). The radial part r (n,s) of the Pickrell measure µ (s) n is now defined as the push-forward of the measure µ (s) n under the map z → (λ 1 (z), . . . , λ n (z)) .

The radial part of the Pickrell measure has determinantal form:

dr (n,s) (λ) = 1 n! det K (s) n (λ i , λ j ) n i=1 dλ i , λ i > 0 .
where

(21) K (s) n (λ 1 , λ 2 ) = n(n + s) (2n + s)(1 + λ 1 ) s/2 (1 + λ 2 ) s/2 × × P (s) n λ 1 -1 λ 1 +1 P (s) n-1 λ 2 -1 λ 2 +1 -P (s) n λ 2 -1 λ 2 +1 P (s) n-1 λ 1 -1 λ 1 +1 λ 1 -λ 2 .

The change of variables u

i = λ i -1 λ i + 1 , i = 1, . . . , n, reduces K (s)
n to the Christoffel-Darboux kernel for the Jacobi orthogonal ensemble with weight (1 -u) s .

Introducing the scaling λ i = n 2 x i , taking n → ∞ and using the classical asymptotics for Jacobi orthogonal polynomials (see, e.g., Szegö [START_REF] Szegö | Orthogonal polynomials[END_REF]), one finds lim

n→∞ n 2 K (s) n n 2 x 1 , n 2 x 2 = K (s) (x 1 , x 2 ) ,
convergence being uniform on compact subsets of (0, +∞). To prove that µ (s) (Ω 0 P ) = 1, the method of Section 7 in Borodin and Olshanski [START_REF] Borodin | Infinite random matrices and ergodic measures[END_REF] is adapted to our situation.

A recurrence relation for Bessel point proceses.

The following observation motivates the construction of the next subsection. Given a finite family of functions f 1 , . . . , f N on the real line, let span(f 1 , . . . , f N ) stand for the vector space these functions span. For any s ∈ R, N ∈ N we clearly have [START_REF] Pickrell | Separable representations of automorphism groups of infinite symmetric spaces[END_REF] 

span (1 -u) s/2 , . . . , (1 -u) s/2 u N = R(1 -u) s/2 ⊕ ⊕ span (1 -u) (s+2)/2 , . . . , (1 -u) (s+2)/2 u N -1 .
If s > -1, then the informal meaning of ( 22) is that the space of the first N + 1 normalized Jacobi polynomials with weight (1 -u) s is a rank one perturbation of the space of the first N normalized Jacobi polynomials with weight (1 -u) s+2 .

A similar statement holds true for the Bessel kernel: using the recurrence relation J s+1 (x) = 2s

x J s (x) -J s-1 (x) for Bessel functions, one easily obtains the recurrence relation [START_REF] Pickrell | Measures on infinite-dimensional Grassmann manifolds[END_REF] J s (x, y) = J s+2 (x, y) + s + 1 √ xy J s+1 ( √ x)J s+1 ( √ y)

for the Bessel kernels: the Bessel kernel with parameter s is thus a rank one perturbation of the Bessel kernel with parameter s + 2.

For ergodic decomposition measures of infinite Pickrell measures we shall now give a similar description in terms of infinite determinantal measures obtained as finite-rank perturbations of Bessel point processes. 4.3. Formulation of the main result. Now take s < -1, s = -1 -2k, k ∈ N. Let n s be such that

s 2 + n s ∈ - 1 2 , 1 2 . 
Introduce a finite-dimensional subspace V (s) ⊂ L 2,loc ((0, +∞), Leb) by the formula V (s) = span x -s/ 2 -1 , . . . , x -s/ 2 -ns .

For s ′ > -1, let L (s ′ ) ⊂ L 2 ((0, +∞), Leb) be the range of the operator K s ′ , and for s < -1, s = -1 -2k, k ∈ N, introduce a subspace H (s) of L 2,loc ((0, +∞), Leb) by the formula

H (s) = L (s+2ns) + V (s) .
Using Proposition 3, one easily checks that if R > 0 is big enough, then the subspace H (s) ⊂ L 2 ((0, +∞), Leb) and the subset E 0 = (0, R) satisfy Assumption 1. Let [START_REF] Rabaoui | Asymptotic harmonic analysis on the space of square complex matrices[END_REF] B (s) = B(H (s) , (0, R))

be the corresponding infinite determinantal measure (which, by definition, does not depend on the specific choice of a big enough R).

The ergodic decomposition of infinite Pickrell measures is now given by the following Theorem 2. Let s < -1, s = -1 -2k, k ∈ N, and let µ (s) be the decomposing measure, defined by [START_REF] Olshanski | Unitary representations of infinite-dimensional pairs (G, K) and the formalism of R. Howe[END_REF], of the Pickrell measure µ (s) . Then (1) µ (s) (Ω P \Ω 0 P ) = 0; (2) the µ (s) -almost sure bijection ω → conf(ω) identifies µ (s) with the infinite determinantal measure B (s) .

Take R > 0 and set

Ω 0 P (R) = {ω ∈ Ω 0 P : x 1 ≤ R}. Set L (s) R = χ (0,R) H (s) ; the subspace L (s)
R is closed if R > 0 is big enough, and we let Q By definition, the measure ( 25) is an infinite determinantal measure obtained by perturbing the closed subspace span (1 -u) (s+2ns)/2 , . . . , (1 -u) (s+2ns)/2 u N -ns-1 ⊂ L 2 ([0, 1], Leb)

by the finite-dimensional subspace span (1 -u) s/2 , . . . , (1 -u) (s+2ns-2)/2 ⊂ L 2,loc ([0, 1], Leb).

The next step is to take the scaling limit of these infinite determinantal measures. This is achieved, with the use of Propositions 2 and 5, by taking the product with a suitably chosen multiplicative functional and effecting the scaling limit transition for the corresponding determinantal probability measures. The detailed proof of Theorem 2 will be published in the sequel to this note.

1. 3 .

 3 Infinite orthogonal polynomial ensembles. Take an interval [a, b) in R, let Leb = dx on [a, b) be the Lebesgue measure on [a, b), let ρ be a positive continuous function on [a, b), and assume b a ρ(x)dx = +∞. Take n ∈ N and endow the set [a, b] N with the measure (3)

Proposition 3 .

 3 If L, V and E 0 satisfy Assumption 2 then the subspace H = L + V and E 0 satisfy Assumption 1.
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 4 ERGODIC DECOMPOSITION OF INFINITE PICKRELL MEASURES 4.1. The Bessel point process and finite Pickrell measures. Consider the half-line (0, +∞) endowed with the standard Lebesgue measure Leb. Take s > -1 and consider the standard Bessel kernel (19)
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 321 be the corresponding operator of orthogonal projection. By Proposition 6, we haveQ (s) R → K (s+2ns) in I 1,loc ((0, +∞), Leb) as R → ∞. Theorem 2 together with Theorem 1 implies If R is big enough, then µ (s) (Ω 0 P (R))< +∞ and the µ (s)almost sure bijection ω → conf(ω) identifies the normalized restriction of the measure µ (s) to the subset Ω 0 P (R) with the determinantal measure P Q (s)RThe proof of Theorem 2 starts, again, with the computation of the radial part of the infinite Pickrell measure; changing variables by the formulau i = λ i -1 λ i + 1 , i = 1, . . . , n,one arrives at an "infinite orthogonal polynomial ensemble"(cf. (3)) of the form (25)i<j (u i -u j ) u i ) s .
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