LIMIT THEOREMS FOR HOROCYCLE FLOWS
Résumé
The main results of this paper are limit theorems for horocycle flows on compact surfaces of constant negative curvature. One of the main objects of the paper is a special family of horocycle-invariant finitely additive Hölder measures on rectifiable arcs. An asymptotic formula for ergodic integrals for horocycle flows is obtained in terms of the finitely-additive measures, and limit theorems follow as a corollary of the asymptotic formula. The objects and results of this paper are similar to those in [15], [16], [4] and [5] for translation flows on flat surfaces. The arguments are based on the classification of invariant distributions for horocycle flows established in [12].
Domaines
Systèmes dynamiques [math.DS]Origine | Fichiers produits par l'(les) auteur(s) |
---|