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FINITENESS OF ERGODIC UNITARILY INVARIANT
MEASURES ON SPACES OF INFINITE MATRICES

ALEXANDER I. BUFETOV

ABSTRACT. The main result of this note, Theorem 2, is the following: a
Borel measure on the space of infinite Hermitian matrices,ithinvari-
ant under the action of the infinite unitary group and that itslmell-
defined projections onto the quotient space of “corners” ritdisize,
must be finite. A similar result, Theorem 1, is also estaklisfor uni-
tarily invariant measures on the space of all infinite compiatrices.
These results, combined with the ergodic decompositioorére of [3],
imply that the infinite Hua-Pickrell measures of Borodin @ldhanski

[2] have finite ergodic components.

The proof is based on the approach of Olshanski and Vershik [6
First, it is shown that if the sequence of orbital measursgasd to al-
most every point is weakly precompact, then our ergodic omeasust
indeed be finite. The second step, which completes the phoiys that
if a unitarily-invariant measure admits well-defined patijens onto the
guotient space of finite corners, then for almost every pitiatcorre-
sponing sequence of orbital measures is indeed weakly pneact.

1. INTRODUCTION

1.1. Statement of the main results.

1.1.1. Unitarily invariant measures on spaces of infinite complextrioes.
Let Mat(N, C) be the space of all infinite matrices whose rows and columns
are indexed by natural numbers and whose entries are complex

Mat(N,C) = {Z = (Zij)i,jeNa Zij S C} .
Let U(oo) be the infinite unitary group: an infinite matrix= (w;;); jen
belongs ta/(oo) if there exists a natural numbeg such that the matrix
(wij)ijertnol

is unitary, whileu;; = 1if i > ng andu;; = 0if ¢ # j, max(, j) > no.
The groupU (oo) x U(oo) acts onMat (N, C) by multiplication on both
sides:

_ —1
Tl un)?2 = UrZUy .

Date 12 August 2011.


http://arxiv.org/abs/1108.2737v1

2 ALEXANDER I. BUFETOV

Recall that a/(c0) x U(co)-invariant measure ohlat(N, C), finite or
infinite, is calledergodicif any U (oo) x U (co)-invariant Borel set either has
measure zero or has complement of measure zero. Finiteiergésb) x
U(oo)-invariant measures ollat(N, C) have been classified by Pickrell
[7]. The first main result of this paper is that, under natasgumptions, an
ergodicU (co) x U(oo)-invariant measure oklat(N, C) must be finite.

Precisely, letn € N and let§(m; Mat(N, C)) denote the space of Borel
measures on Mat(N, C) such that for any? > 0 we have

v ({z € Mat(N,C) : max |2i5] < R}) < +o0.
,)m
Theorem 1. If a U(co) x U(oo)-invariant Borel measure from the class
§(m; Mat(N, C)) is ergodic then it is finite.

A measurer € F(m;Mat(N,C)) is automatically sigma-finite, clearly
satisfies all assumptions of the ergodic decompositionrémemf [3] and
therefore admits a decomposition into ergodic compondBysdefinition,
almost all ergodic components of a measure §(m; Mat(N, C)) must
themselves lie in the clagim; Mat(N, C)). Let M,,.,(Mat(N, C)) stand
for the set ofU (c0) x U(oo)-invariant ergodic Borel probability measures
on Mat(N, C); the setht,,,(Mat(N, C)) is a Borel subset of the space of
all Borel probability measures dviat(N, C) (see, e.g./[3], where the claim
is proved for all measurable Borel actions of inductivelyngact groups).
Theorenill and the ergodic decomposition theorem/of [3] noplies the
following

Corollary 1. ForanyU(oco) x U(oco)-invariant Borel measure
v € §F(m;Mat(N, C))

there exists a unique sigma-finite Borel measuren 9t.,,(Mat(N, C))
such that

1) v — / ndi(n).
Merg(Mat(N,C))

The integral in[(L) is understood in the usual weak senseVfery Borel
subsetd ¢ Mat(N, C) we have

V(A) = / n(A)d(n).
Merg(Mat(N,C))

1.1.2. Unitarily invariant measures on spaces of infinite Hermrmtiaatri-
ces. Now let H € Mat(N, C) be the space of infinite Hermitian matrices:

H = {h = (hij)i jen, hij = hji}.
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The groupU (o) naturally acts on the spadé by conjugation. Finite er-
godicU (oo)-invariant measures ol have also been classified by Pickrell
[7] (see also Olshanski and Vershik [6]). An analogue of Teedl holds
in this case as well.

Precisely, a Borel measureon H is said to belong to the claggm, H)
if for any R > 0 we have

v({h € H: max |h;| <R}) < o0.
i<m,j<m

Theorem 2. If a U(co)-invariant measure from the clag{m, H) is er-
godic, then it is finite.

As before, let.,,(H) stand for the set d/ (co)-invariant ergodic Borel
probability measures of; the sethi.,,(H) is a Borel subset of the space
of all Borel probability measures afi. Theoren 2 now implies

Corollary 2. For any U(oo)-invariant Borel measure € §(m, H) there
exists a unique sigma-finite Borel measuren 91.,.,(H) such that

) v= [ warto).

Merg (H)

The integral in[(R) is again understood in the weak sense.
One expects similar results to hold for all théseries of homogeneous
spaces (see, e,.d.} [4, 5)).

1.1.3. Infinite Hua-Pickrell measuresA natural example of measures ly-
ing in the class§(m, H) is given by infinite Hua-Pickrell measures intro-
duced by Borodin and Olshanski [2], Section 8, Subsectiafiriite mea-
sures”. In fact, for anyn € N, Borodin and Olshanski give explicit exam-
ples of measures lying in the clag&én, H) but notin the clas§(m—1, H).
Starting from the Pickrell measures [9], a similar conginrccan be carried
out to obtain infinitd/ (co) x U (oo)-invariant measures adviat(N, C) lying

in the class§(m, Mat(N, C)) but not in the clas§(m — 1, Mat(N, C)) for
anym € N. Corollarieg 1[ P show now that ergodic components of irginit
Hua-Pickrell measures are finite.

1.2. Outline of the proofs of Theorems(l], [2. Olshanski and Vershik [6]
gave a completely different proof for Pickrell's Classifioa Theorem of
U (o0)-invariant ergodic measures éf and their method has been adapted
to ergodicU(c0) x U(oo)-invariant measures ohlat(N, C) by Rabaoui
[10], [11]. The proof of Theoremd 1] 2 is based on the Olshiavistshik
approach.

First, following Vershik [12], to each infinite matrix we ags its se-
guence obrbital measuresbtained by averaging over exhausting sequences
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of compact subgroups in our infinite-dimensional unitargugrs. A simple
general argument shows that precompactness of the famdybdhl mea-
sures for almost all points implies finiteness of an ergodéasure. Using
the work of Olshanski and Vershik]|[6] and Rabaaduil[10],! [ME give a
sufficient condition, called “radial boundedness” of a nxafior weak pre-
compactness of its family of orbital measures: namely, shiswn that the
sequence of orbital measures is weakly precompact as scibre &a®rms
(and, in case of{, also the traces) of x n “corners” of our matrix do not
grow too fast as — oco. To complete the proof of Theordm 2, it remains to
show that with respect to any measure in the cfss, H ), almost all ma-
trices are indeed radially bounded (the same statemeihtiivgtsame proof,
also holds fof§(m; Mat(N, C))). This is done in two steps: first, it is shown
that if a measure from the clag$m, H) is U(co)-invariant, then its suit-
ably averaged conditional measures yieliinite U (co)-invariant measure
— with respect to which almost all points must then be ragiabunded;
second, applying a finite permutation of columns and rows, deduces
radial boundedness for the initial matrix and completegptioef.

1.3. Projections and conditional measures. Forn € N, letMat(n, C) be
the space of alh x n complex matrices.
Introduce a map

I}, : Mat(N, C) — Mat(n, C)
by the formula
H[l,n]z = (Zij)i,jzl 77777 ny, 2 € Mat(N,C).

If a measurer on Mat (N, C) is infinite, then the projectio(lH[W)* v may
fail to be well-defined. The clas$(m; Mat(N, C)) consists precisely of
those measures for which the projectior(H[Lm})* v (and, consequently,
all projections(H[W)* v forn > m) are indeed well-defined. Equivalently,
by Rohlin’s Theorem on existence of conditional measureseasure/
belongs to the clasg(m; Mat(N, C)) if and only if:

(1) there exists a measureon the spacélat(m, C) assigning finite
weight to every compact set;

(2) for 7-almost every:(™ ¢ Mat(m, C) there exists a Borel probabil-
ity measure, ., onMat (N, C) supported on the séﬂ[l,m})_l 2(m)
such that for every Borel subsdtC Mat(N, C) the map

Z(m) — I/Z('m) (A)



FINITENESS OF ERGODIC MEASURES 5

is 7-measurable and that we have a decomposition

3) v = / V,(m) dU (Z(m))

Mat(m,C)
again understood in the weak sense.

A similar description can be given for measures in the cfyss; H): a
Borel measures on H belongs to the clas§(m; H) if and only if there
exists a measureon the spacé/ (m) of m x m-Hermitian matrices which
assigns finite weight to every compact set and,zf@most everyh(™ ¢
H(m) there exists a Borel probability measwg.., such that

(4) V= / Vp,(m) dv (h(m)) ,
H(m)

where the decompositionl(4) is understood in the same wayeadecom-
position [3).
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Konstantin Tolmachov for helpful discussions. | am deepbteful to Lisa
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of the Russian Academy of Sciences, by the Programme 23R8/6f the
Russian Ministry of Education and Research, by the RFBR-ENjrant
10-01-93115, by the Edgar Odell Lovett Fund at Rice Univgind by the
National Science Foundation under grant DMS 0604386.

2. WEAK RECURRENCE

The proof is based on the following simple general obsewmatlLet X
be a complete metric space, anddebe an inductively compact group, in
other words,

G=|J K@), Kn)c K(n+1)
n=1
where the group#(n), n € N, are compact and metrizable. L&tbe a

continuous action ofr on X (continuity is here understood with respect to
the totality of the variables).
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Each groupi (n) is endowed with the Haar measuyrg ,,), and to each
pointz € X we assign, following Vershik[12], the corresponding setee
of orbital measuregu,,,) on.X given by the formula

/X F@) die@) = [ F () (),

K(n)
valid for any bounded continuous functighon X. Given a family2( of

Borel probability measures ok, we say that the familgl is weakly recur-
rentif for any positive bounded continuous functigron X we have

inf/fdl/>0.

ved

Proposition 1. Letv be an ergodict-invariant measure oX that assigns
finite weight to every ball and admits a 9&tv(B) > 0, such that for every
z € B the sequence of orbital measures,,, is weakly recurrent. Then
is finite.
Proof. Consider the spadg, (X, v); forn € N, let Ly(X, v)% ™ be the sub-
space ofi (n)-invariant functions, and leP, : Ly(X,v) — Lo(X,v)K™
be the corresponding orthogonal projection.

If the measure is ergodic and infinite, then

(5) ﬁ Ly(X, v)E™ =0,

Indeed, letL,(X,v)“ be the subspace @f-invariant square-integrable
functions. By definition, we have

(6) () La(X, )50 = Ly(X,v)“.
n=1

Now, if the measure is ergodic and assigns finite weight to every ball,
then, by results of [3], it is also indecomposable in the e¢hat any Borel
setA C X such that for any € G we haver(7T,AAA) = 0 must satisfy
eitherv(A) = 0 orv(X \ A) = 0. It follows that L, (X, »)¢ = 0, and [B) is
proved.

Foranyf € Lo(X,v) we thus havel,f — 01in Ly(X,v) asn — oo.
Along a subsequence we then also hayef — 0 almost surely with the
respect to the measure

If fis continuous and square-integrable, then the equality

P.f(z) = / FW) die ) (y)

holds forv-almost allz.
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Take, thereforef to be a positive, continuous, square-integrable function

on X (the existence of such a function follows from the fact thatmeasure
v assigns finite weight to balls: indeed, takimg € X, letting d be the
distance onX, and settingf(z) = ¥ (d(x,z)), whereyp : R — R is
positive, continuous, and decaying rapidly enough at ityfimie obtain the
desired function).

If v is ergodic and infinite, then, from the above, for almostatl X we
have

lim /fd,uf((n) = 0.

n—o0

In particular, forv-almost allz € X, the sequence of orbital measures is not
weakly recurrent, which contradicts the assumptions optbposition. [

Remark. The argument above, combined with the ergodic decomposi-

tion theorem of[[3], yields a slightly stronger statemerita iZ-invariant
measure’ on X that assigns finite weight to every ball is such thatifer
almost every every € X the sequence of orbital measurgs,, is weakly
recurrent, then the ergodic components @fre almost surely finite.

It remains to derive Theorenis [, 2 from Proposifion 1. Wet stéth
Theoreni 2.

3. PROOF OFTHEOREM[Z

3.1. Radial boundedness. A matrixh € H will be calledradially bounded
in H if
| tr (Tnh) | tr (T h)”

sup ——————— < +00, sup

5 < —+o00.
neN n neN n

We shall now see that i € H is radially bounded ir, then the family
of orbital measureg”, n € N, is precompact in the weak topology &h
and, consequently, weakly recurrent.

Recall that if X is a complete separable metric spa®,.X ) the space
of Borel probability measures oii, then theweak topologyon 9t(X) is
defined as follows. Lef,...,fr : X — R be bounded continuous
functions onX, leteq, ..., e, > 0, lety, € 9MM(X) and consider the set

) {ueim(X): '/fidy—/fiduo <e, ¢:1,...,k}

Sets of the form[([7) form the basis of the weak topology®(X ). Our as-
sumptions onX imply that the spac®t(X) endowed with the weak topol-
ogy is itself metrizable and separable; for instance, #nytProhorov met-
ric or the Kantorovich-Rubinstein metric induce the weadiogy on.X
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(see, e.g.[]1], Section 8.3). The symbslwill denote weak convergence
in the spacé@n(X).

It is clear that weak precompactness of a family of probghitieasures
implies weak recurrence.

Proposition 2. If a matrix h € H is radially bounded then the sequence
{ MZ}%N of orbital measures corresponding kas weakly precompact.

This Proposition is an immediate Corollary of Theorem 4.0ishanski-
Vershik [6]. Indeed, let, € H be radially bounded, let

let
AV > >0 >0

be the nonnegative eigenvalues/df.) arranged in decreasing order, and
let

A <A < <A <o
be the negative eigenvalues/din) arranged in increasing order. Set

w_ M A
x = ) €T, B = )
n n
n  trh(n) W trh2(n)
L . 10
n n

Let / is radially bounded, and let positive constafts C; be such that for
alln € N we have

|t’f’ (H[l,n}h) ‘ < Cln, tr (H[Ln}h)Q < Cg’flz.
We clearly have
1< G 0< Y <O,
and, foralli =1,...,n, we have
2], 12"] < Cb.
Therefore, any infinite set of natural numbers contains aeglence:,
such that sequencaé"")ﬁém), as well as the sequence§7‘),§§"7‘) for
all i = 1,2,... converge to a finite limit a8 — oc. By the Olshanski-
Vershik Theorem (Theorem 4.1 inl[6]), in this case the seqeed} of
orbital measures weakly converges (in fact, to an ergbdis)-invariant
probability measure) as— oc. The Proposition is proved completely.
Remark. The converse claim (which, however, we do not need for our ar-
gument) also holds: if the sequence of orbital measuresratax h € H
is weakly pecompact, then the matfixs radially bounded. This immedi-
ately follows from claim (ii) of Theorem 4.1 of Olshanski axershik [€].
Note that, while claim (ii) in[[6] is only formulated for theifi sequence of
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orbital measures, the same result, with the identical prisofalid for any
infinite subsequence of orbital measures.

Observe that Theorem 4.1 in Olshanski-Vershik [6] as wetha€rgodic
Decomposition Theorem of Borodin-OlshanskKi [2] immediaimply the
following

Proposition 3. If v is a finite BorelU (co)-invariant measure orf, then
v-almost everyh € H is radially bounded.

Proof. Indeed, ifv is an ergodic probability measure, then the claim is part
of the statement of the Olshanski-Vershik Theorem: in tlaise¢ forv-
almost allh € H, the sequence of orbital measuyrésweakly converges to

v. For a general finite measure, the result follows from theoBigDecom-
position Theorem of Borodin and OlshanskKi [2]. O

To complete the proof of Theorem 2, it remains to establish

Proposition 4. If a U (oo)-invariant measure belongs to the clasg(m; H)
for somem € N, thenv-almost every, € H is radially bounded.

3.2. Proof of Proposition[4. For a matrix € Mat(N, C), n € N, denote

H[”voo)z = (Zij)i,j:n,n—i—l,..n

We start by showing that, under the assumptions of the proposfor
v-almost everyh € H the matrixllj, ..,k is radially bounded.

Take a measure € §(m; H) and consider the corresponding canonical
decomposition(4) into conditional measures.

Proposition 5. Letv € §(m; H) be U(oco)-invariant. Then forr-almost
everyh(™ ¢ H(m) the probability measure
()., v
on H is alsoU (oo)-invariant.
Proof. Let U,,,(0c0) C U(oo) be the subgroup of matrices= (u;;) satisfy-
ing the conditions:
(1) if min(é, j) < m, i # j, thenu;; =0

It follows from the definitions that ifi € U,,(oc0), thenll}, «yu € U(oco),
and that the map

H[m,oo) : Um(oo) — U(OO)
is a group isomorphism.
Foru € U(co) lett, : H — H be given by the formula

t.(h) = u thu.
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Let U/ (c0) C U,,(o0) be a countable subgroup such that any Borel prob-
ability measure;) on H satisfying(t,).n = n for all u € U] (co) must be
invariant under the whole group,, (o).

Unigueness of Rohlin’s system of conditional measuresigsphat for
v-almost every,™ € H(m) and everyu € U! (oo) we have

(8) Vpomy = () sVpm).

By definition of the subgroupy’ (o), the equality[(5) also holds for all
u € U, (00). Now let A be a measurable subset/éf and let

Apey = {h € H: Ty pyh = B0, T iyh € A}
Letu € U(co) and letu € U,,(co) be defined by the formula
oyt = u.
From the definitions it follows:
ta(Ayem) = {h € H: Hpuh = b, My ooh € ,(A).}

Since N _
Vpom (Apom ) = Vyom (G (Apom)),
we have
(Mpm,oc)), Vi (A) = (Hpm,oc) ), Vi (8a(A))
and the proposition is proved. O

Corollary 3. If v € F(m; H) is U(oo)-invariant, then forv-almost every
h € H the the matrixlj, ) (h) is radially bounded.

We proceed with the proof of Propositibh 4. Letc U(oo) be defined
as follows:

(9) ai,m—i—i = ﬂm_i_m =1 1= 1, o.M
(10) Uzmti2myi = 1 1€N
(12) Uy =0 otherwise

Proposition 6. Leth € H. If IIj,, o) (h) and Iy, «) (@ 'ha) are radially
bounded, then is also radially bounded.

Proof. If IIj,, «)(h) is radially bounded, then

tr (I (I, 0or P
Sup| ([1,1([7>))|<+OO’
neN n

and, since for, > m we have
tr (M (R) = tr (M) (Mm,eph)) + tr (Tjm (h)) |
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it follows that

tr (Il h
sup —| ( (L.} ) | < +o0.
neN n

It remains to show that

2
sup tr (H[l,n]h)

Sup 2 < +00.

Let 7 be a permutation dN defined as follows:

m4i 1=1,...,m;
m(i)=qit—m i=m+1,...,2m;
1 1> 2m.

By definition, for anyh € H we have
(@ hit)i; = Pa(iyn(s)-
Consequently, for anyv € N we have

N N N

2m
STl < >0 gl >0 @ hay + Y kgl

ij=1 i,j=m+1 i,j=m+1 1,j=1

U

Propositio % is now immediate from Corolldry 3 and Propos#(5/[6.
Theoreni2 is proved completely.

4. PROOF OFTHEOREMIL.

The proof is similar (and simpler) in this case. Again, a matr €
Mat(N, C) will be calledradially boundedf

wp ! (HMZ): (M102)
neN n

< +00

(here, as usual, the symbol stands for the transpose conjugate of a ma-
trix z). As before, we assign to a matrixe Mat(N, C) the sequencg?

of orbital measures corresponding to the sequence of cdmnspagroups
U(n) x U(n), n € N, and say that a matrix € Mat(N, C) is weakly re-
currentif for any bounded positive continuous functigron Mat(N, C) we

have
inf / fdu; >0
n€EN JMat(N,C)

Again we have the following
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Proposition 7. If a matrix z € Mat(N, C) is radially bounded then the
sequence of orbital measurgs is weakly precompact. In particular, ifis
radially bounded, then is also weakly recurrent.

Remark. As before, the converse statement also holds: if the sequenc
of orbital measures is weakly precompact, thaea radially bounded.

Proof. This, again, follows from Rabaoui’s work [10], [11]. Indeddt
z € Mat(N, C), let

let
)\5”) > o>\
be the eigenvalues of the matiix(n))*z(n) arranged in decreasing order,

and set -
Nt () ()

2 =

n2’ n?2
If = is radially bounded, then any infinite set of natural numimenstains
a subsequence. such that the sequengé&’) as well as all the sequences
", i = 1,..., converge (to a finite limit) a8 — oo. In this case, by
Rabaoui’s theorem [10], [11], the sequence of orbital messyj, weakly
converges to a probability measureras> oo; weak precompactness is thus
established.

To conclude the proof of the Theorem, it therefore remainsstablish

the following

Proposition 8. Letm € N and letr € §(m;Mat(N, C)). Thenv-almost
everyz € Mat(N, C) is radially bounded.

The proof follows the same pattern as that of Proposition gaiA, us-
ing Pickrell's classification of ergodic probability meass as well as the
ergodic decomposition theorem of [3], we have

Proposition 9. Letr be al/(co0) x U(oo)-invariant probability measure on
Mat(N, C). Thenv-almost every € Mat(N, C) is radially bounded.

Givenv € §(m,Mat(N, C)), we consider, again, the decomposition

v o= / U om d(2™).
Mat(m,C)

Here Mat(m, C) stands for the space of alk x m-matrices with com-
plex entries; the measureis the projection of> onto Mat(m, C) which is
well-defined by definition of the clasm, Mat(N, C)); and, forr-almost
every pointz(™ ¢ Mat(m, C) the measure .., is the canonical condi-
tional probability measure given by Rohlin’s Theorem. Agaie have the
following



FINITENESS OF ERGODIC MEASURES 13

Proposition 10. If v € §(m, Mat(N, C)) is U(oo0) x U(o0)-invariant, then,
for 7-almost allz(™ € Mat(m, C), the measure

(Mfm.o0)) , Veom
is alsoU (o0) x U(oo)-invariant.

Proof. The proof of this Proposition is exactly the same as that op&si-
tion[5. O

It follows from Proposition 10 that far-almost every, the matrixiI;,, ..)z
is radially bounded. To obtain boundedness for the matitigelf, we again
apply a permutation of rows and columns.

Denote

Tn(z> = tr ((H[l,n]z)*H[l,n]Z) = Z |Zij‘2 :
ij=1
Let the matrixa € U(oo) be defined by((9).
The following clear inequality that holds for anye Mat(N, C) and all
n > 3m:

Tn(z) < Tgm(z) + Tn (H[mpo)z) + 7 (H[mm)(ﬁ_lzﬂ) .

Consequently, it € §(m, Mat(N, C)) is U(oo) x U(oo)-invariant, then-
almost every: € Mat(N, C) is radially bounded, and Theorém 1 is proved
completely.
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