DEVIATION OF ERGODIC AVERAGES FOR SUBSTITUTION DYNAMICAL SYSTEMS WITH EIGENVALUES OF MODULUS ONE - Archive ouverte HAL
Article Dans Une Revue Proceedings of the London Mathematical Society Année : 2014

DEVIATION OF ERGODIC AVERAGES FOR SUBSTITUTION DYNAMICAL SYSTEMS WITH EIGENVALUES OF MODULUS ONE

Résumé

Deviation of ergodic sums is studied for substitution dynamical systems with a matrix that admits eigenvalues of mod-ulus 1. The functions γ we consider are the corresponding eigen-functions. In Theorem 1.1 we prove that the limit inferior of the ergodic sums (n, γ(x 0) +. .. + γ(x n−1)) n∈N is bounded for every point x in the phase space. In Theorem 1.2, we prove existence of limit distributions along certain exponential subsequences of times for substitutions of constant length. Under additional assumptions, we prove that ergodic integrals satisfy the Central Limit Theorem (Theorem 1.3, Theorem 1.9).
Fichier principal
Vignette du fichier
Ergodic-Average.pdf (645.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01256152 , version 1 (14-01-2016)

Identifiants

  • HAL Id : hal-01256152 , version 1

Citer

Xavier Bressaud, Alexander I. Bufetov, Pascal Hubert. DEVIATION OF ERGODIC AVERAGES FOR SUBSTITUTION DYNAMICAL SYSTEMS WITH EIGENVALUES OF MODULUS ONE. Proceedings of the London Mathematical Society, 2014. ⟨hal-01256152⟩
316 Consultations
84 Téléchargements

Partager

More