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Finitely-additive measures on the asymptotic

foliations of a Markov compactum.

Alexander I. Bufetov

1 Introduction.

1.1 Hölder cocycles over translation flows.

Let ρ ≥ 2 be an integer, let M be a compact orientable surface of genus ρ, and
let ω be a holomorphic one-form on M . Denote by m = (ω ∧ ω)/2i the area
form induced by ω and assume that m(M) = 1.

Let h+
t be the vertical flow on M (i.e., the flow corresponding to ℜ(ω)); let

h−
t be the horizontal flow on M (i.e., the flow corresponding to ℑ(ω)). The

flows h+
t , h−

t preserve the area m and are uniquely ergodic.
Take x ∈ M , t1, t2 ∈ R+ and assume that the closure of the set

{h+
τ1

h−
τ2

x, 0 ≤ τ1 < t1, 0 ≤ τ2 < t2} (1)

does not contain zeros of the form ω. Then the set (1) is called an admis-
sible rectangle and denoted Π(x, t1, t2). Let C be the semi-ring of admissible
rectangles.

Consider the linear space Y+ of Hölder cocyles Φ+(x, t) over the vertical flow
h+

t which are invariant under horizontal holonomy. More precisely, a function
Φ+(x, t) : M × R → C belongs to the space Y+ if it satisfies:

1. Φ+(x, t + s) = Φ+(x, t) + Φ+(h+
t x, s);

2. There exists t0 > 0, θ > 0 such that |Φ+(x, t)| ≤ tθ for all x ∈ M and all
t ∈ R satisfying |t| < t0;

3. If Π(x, t1, t2) is an admissible rectangle, then Φ+(x, t1) = Φ+(h−
t2x, t1).

For example, if a cocycle Φ+
1 is defined by Φ+

1 (x, t) = t, then clearly Φ+
1 ∈ Y+.

In the same way define the space of Y− of Hölder cocyles Φ−(x, t) over
the horizontal flow h−

t which are invariant under vertical holonomy, and set
Φ−

1 (x, t) = t.
Given Φ+ ∈ Y+, Φ− ∈ Y−, a finitely additive measure Φ+ × Φ− on the

semi-ring C of admissible rectangles is introduced by the formula

Φ+ × Φ−(Π(x, t1, t2)) = Φ+(x, t1) · Φ
−(x, t2). (2)
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In particular, for Φ− ∈ Y−, set mΦ− = Φ+
1 × Φ−:

mΦ−(Π(x, t1, t2)) = t1Φ
−(x, t2). (3)

For any Φ− ∈ Y− the measure mΦ− satisfies (h+
t )∗mΦ− = mΦ− and is an

invariant distribution in the sense of G. Forni [5], [6]. For instance, mΦ−

1
= m.

A C-linear pairing between Y+ and Y− is given, for Φ+ ∈ Y+, Φ− ∈ Y−, by
the formula

< Φ+, Φ− >= Φ+ × Φ−(M) (4)

The space of Lipschitz functions is not invariant under h+
t , and a larger func-

tion space Lip+
w(M, ω) of weakly Lipschitz functions is introduced as follows. A

bounded measurable function f belongs to Lip+
w(M, ω) if there exists a constant

C, depending only on f , such that for any admissible rectangle Π(x, t1, t2) we
have

∣

∣

∫ t1

0

f(h+
t x)dt −

∫ t1

0

f(h+
t (h−

t2x)dt
∣

∣ ≤ C. (5)

Let Cf be the infimum of all C satisfying (5). We norm Lip+
w(X) by setting

||f ||Lip+
w

= sup
X

f + Cf .

By definition, the space Lip+
w(M, ω) contains all Lipschitz functions on M and

is invariant under h+
t . We denote by Lip+

w,0(M, ω) the subspace of Lip+
w(M, ω)

of functions whose integral with respect to m is 0.

1.2 Flows along the stable foliation of a pseudo-Anosov

diffeomorphism.

Assume that θ1 > 0 and a diffeomorphism g : M → M are such that

g∗(ℜ(ω)) = exp(θ1)ℜ(ω); g∗(ℑ(ω)) = exp(−θ1)ℑ(ω). (6)

The diffeomorphism g induces a linear automorphism g∗ of the cohomology
space H1(M, C). Denote by E+ the expanding subspace of g∗ (in other words,
E+ is the subspace spanned by vectors corresponding to Jordan cells of g∗ with
eigenvalues exceeding 1 in absolute value). The action of g on Y+ is given by
g∗Φ+(x, t) = Φ+(gx, exp(θ1)t).

Proposition 1 There exists a g∗-equivariant isomorphism between E+ and Y+.

Theorem 1 There exists a continuous mapping Ξ+ : Lip+
w(M, ω) → Y+ such

that for any f ∈ Lip+
w(M, ω), any x ∈ X and any T > 0 we have

∣

∣

∫ T

0

f ◦ h+
t (x)dt − Ξ+(f)

(

x, T
)
∣

∣ < Cε||f ||Lip+
w
(1 + log(1 + T ))2ρ+1.

The mapping Ξ+ satisfies Ξ+(f ◦ h+
t ) = Ξ+(f) and Ξ+(f ◦ g) = g∗Ξ+(f).
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The mapping Ξ+ is constructed as follows. By Proposition 1 applied to the flow
h−

t , there exists a g-equivariant isomorphism between Y− and the contracting
space for the action of g∗ on H1(M, C) (in other words, the subspace spanned
by vectors corresponding to Jordan cells with eigenvalues strictly less than 1 in
absolute value).

Proposition 2 The pairing <, > given by (4) is nondegenerate and g∗-invariant.

Remark. Under the identification of Y+ and Y− with respective subspaces
of H1(M, C), the pairing <, > is taken to the cup-product on H1(M, C) (see
Proposition 4.19 in Veech [14]).

If f ∈ Lip+
w(M, ω), then f is Riemann-integrable with respect to mΦ− for

any Φ− ∈ Y− (see (30) for a precise definition of the integral). Assign to f a
cocycle Φ+

f in such a way that for all Φ− ∈ Y− we have

< Φ+
f , Φ− >=

∫

M

fdmΦ− . (7)

By definition, Φ+

f◦h+
t

= Φ+
f . The mapping Ξ+ of Theorem 1 is given by the

formula
Ξ+(f) = Φ+

f . (8)

The first eigenvalue for the action of g∗ on E+ is exp(θ1) and is always
simple. If its second eigenvalue has the form exp(θ2), where θ2 > 0, and is
simple as well, then the following limit theorem holds for h+

t .
Given a bounded measurable function f : X → R and x ∈ X , introduce a

continuous function Sn[f, x] on the unit interval by the formula

Sn[f, x](τ) =

∫ τ exp(nθ1)

0

f ◦ h+
t (x)dt. (9)

The functions Sn[f, x] are C[0, 1]-valued random variables on the probability
space (M, m).

Theorem 2 If g∗|E+ has a simple, real second eigenvalue exp(θ2), θ2 > 0, then
there exists a continuous functional α : Lip+

w(M, ω) → R and a compactly sup-
ported non-degenerate measure η on C[0, 1] such that for any f ∈ Lip+

w,0(M, ω)
satisfying α(f) 6= 0 the sequence of random variables

Sn[f, x]

α(f) exp(nθ2)

converges in distribution to η as n → ∞.

The functional α is constructed explicitly as follows. Under the assumptions
of the theorem the action of g∗ on E− has a simple eigenvalue exp(−θ2); let
v(2) be the eigenvector with eigenvalue exp(−θ2), let Φ−

2 ∈ Y− correspond to
v(2) by Proposition 1 and mΦ−

2
be given by (3); then

α(f) =

∫

fdmΦ−

2
.
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1.3 Generic translation flows.

Let ρ ≥ 2 and let κ = (κ1, . . . , κσ) be a nonnegative integer vector such that
κ1 + · · ·+ κσ = 2ρ− 2. Denote by Mκ the moduli space of Riemann surfaces of
genus ρ endowed with a holomorphic differential of area 1 with singularities of
orders k1, . . . , kσ (the stratum in the moduli space of holomorphic differentials),
and let H be a connected component of Mκ. Denote by gt the Teichmüller flow
on H (see [6], [8]), and let A(t, X) be the Kontsevich-Zorich cocycle over gt [8].

Let P be a gt-invariant ergodic probability measure on H. For X ∈ H,
X = (M, ω), let Y+

X , Y−
X be the corresponding spaces of Hölder cocycles. Denote

by E+
X the space spanned by the positive Lyapunov exponents of the Kontsevich-

Zorich cocycle.

Proposition 3 For P-almost all X ∈ H, we have dimY+
X = dimY−

X = dimE+
X ,

and the pairing <, > between Y+
X and Y−

X is non-degenerate.

Remark. In particular, if P is the Masur-Veech “smooth” measure [10, 12],
then dimY+

X = dimY−
X = ρ.

Assign to f ∈ Lip+
w(M, ω) a cocycle Φ+

f by (7).

Theorem 3 For any ε > 0 there exists a constant Cε depending only on P such
that for P-almost every X ∈ H, any f ∈ Lip+

w(X), any x ∈ X and any T > 0
we have

∣

∣

∫ T

0

f ◦ h+
t (x)dt − Φ+

f (x, T )
∣

∣ < Cε||f ||Lip+
w
(1 + T ε).

If both the first and the second Lyapunov exponent of the measure P are
positive and simple (as, by the Avila-Viana Theorem [2], is the case with the
Masur-Veech “smooth” measure on H), then the following limit theorem holds.

As before, consider a C[0, 1]-valued random variable St[f, x] on (M, m) de-
fined by the formula

Ss[f, x](τ) =

∫ τ exp(s)

0

f ◦ h+
t (x)dt.

Let ||v|| be the Hodge norm in H1(M, R). Let θ2 > 0 be the second Lyapunov
exponent of the Kontsevich-Zorich cocycle and let v2(X) be a Lyapunov vector
corresponding to θ2 (by our assumption, such a vector is unique up to scalar
multiplication). Introduce a real-valued multiplicative cocycle H2(t, X) over gt

by the formula

H2(t, X) =
||A(t, X)v2(X)||

||v2(X)||
. (10)

Theorem 4 Assume that both the first and the second Lyapunov exponent of
the Kontsevich-Zorich cocycle with respect to the measure P are positive and
simple. Then for P-almost any X ′ ∈ H there exists a non-degenerate compactly
supported measure ηX′ on C[0, 1] and, for P-almost all X, X ′ ∈ H, there exists a
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sequence of moments sn = sn(X, X ′) such that the following holds. For P-almost
every X ∈ H there exists a continuous functional

a
(X) : Lip+

w(X) → R

such that for P-almost every X ′ and for any real-valued f ∈ Lip+
w,0(X) satisfying

a(X)(f) 6= 0, the sequence of C[0, 1]-valued random variables

Ssn [f, x](τ)
(

a(X)(f)
)

H2(sn, X)

converges in distribution to ηX′ as n → ∞.

Acknowledgements. W. A. Veech made the suggestion that G. Forni’s
invariant distributions for the vertical flow should admit a description in terms
of cocycles for the horizontal flow, and I am greatly indebted to him. The ob-
servation that cocycles are dual objects to invariant distributions was made by
G. Forni, and I am deeply grateful to him. I am deeply grateful to H. Nakada
who pointed out the reference to S. Ito’s work [7] to me. I am deeply grate-
ful to J. Chaika, P. Hubert, Yu.S. Ilyashenko, E. Lanneau and R. Ryham for
many helpful suggestions on improving the presentation. I am deeply grate-
ful to A. Avila, X. Bressaud, B.M. Gurevich, A.V. Klimenko, V.I. Oseledets,
Ya.G. Sinai, I.V. Vyugin, J.-C. Yoccoz for useful discussions. During the work
on this paper, I was supported in part by the National Science Foundation under
grant DMS 0604386 and by the Edgar Odell Lovett Fund at Rice University.

2 Asymptotic foliations of a Markov compactum.

2.1 Definitions and notation.

Let m ∈ N and let Γ be an oriented graph with m vertices {1, . . . , m} and
possibly multiple edges. We assume that that for each vertex there is an edge
starting from it and an edge ending in it.

Let E(Γ) be the set of edges of Γ. For e ∈ E(Γ) we denote by I(e) its initial
vertex and by F (e) its terminal vertex. Let Q be the incidence matrix of Γ
defined by the formula

Qij = #{e ∈ E(Γ) : I(e) = i, F (e) = j}.

By assumption, all entries of the matrix Q are positive. A finite word e1 . . . ek,
ei ∈ E(Γ), will be called admissible if F (ei+1) = I(ei), i = 1, . . . , k.

To the graph Γ we assign a Markov compactum XΓ, the space of bi-infinite
paths along the edges:

XΓ = {x = . . . x−n . . . x0 . . . xn . . . , xn ∈ E(Γ), F (xn+1) = I(xn)}.

Remark. As Γ will be fixed throughout this section, we shall often omit
the subscript Γ from notation and only insert it when the dependence on Γ is
underlined.
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Cylinders in XΓ are subsets of the form {x : xn+1 = e1, . . . , xn+k = ek},
where n ∈ Z, k ∈ N and e1 . . . ek is an admissible word. The family of all
cylinders forms a semi-ring which we denote by C.

For x ∈ X , n ∈ Z, introduce the sets

γ+
n (x) = {x′ ∈ XΓ : x′

t = xt, t ≥ n}; γ−
n (x) = {x′ ∈ XΓ : x′

t = xt, t ≤ n};

γ+
∞(x) =

⋃

n∈Z

γ+
n (x); γ−

∞(x) =
⋃

n∈Z

γ−
n (x).

The sets γ+
∞(x) are leaves of the asymptotic foliation F+ on the space XΓ; the

sets γ+
∞(x) are leaves of the asymptotic foliation F− on XΓ.

For n ∈ Z let C
+
n be the collection of all subsets of XΓ of the form γ+

n (x),
n ∈ Z, x ∈ X ; similarly, C−

n is the collection of all subsets of the form γ−
n (x).

Set
C

+ =
⋃

n∈Z

C
+
n ; C

− =
⋃

n∈Z

C
−
n . (11)

The collection C+
n is a semi-ring for any n ∈ Z. Since every element of C+

n

is a disjoint union of elements of C
+
n+1, the collection C+ is a semi-ring as well.

The same statements hold for C−
n and C−.

Let exp(θ1) be the spectral radius of the matrix Q, and let h = (h1, . . . , hm)
be the unique positive eigenvector of Q: we thus have Qh = exp(θ1)h. Let
λ = (λ1, . . . , λm) be the positive eigenvector of the transpose matrix Qt: we
have Qtλ = exp(θ1)λ. The vectors λ, h are normalized as follows:

m
∑

i=1

λi = 1;

m
∑

i=1

λihi = 1. (12)

Introduce a sigma-additive positive measure Φ+
1 on the semi-ring C+ by the

formula
Φ+

1 (γ+
n (x)) = hF (xn) exp((n − 1)θ1) (13)

and a sigma-additive positive measure Φ−
1 on the semi-ring C− by the formula

Φ−
1 (γ−

n (x)) = λI(xn) exp(−nθ1). (14)

Let n ∈ Z, k ∈ N, and let e1 . . . ek be an admissible word. The Parry measure
ν on XΓ is defined by the formula

ν({x : xn+1 = e1, . . . , xn+k = ek}) = λI(ek)hF (e1) exp(−kθ1). (15)

The measures Φ+
1 , Φ−

1 are conditional measures of the Parry measure ν in
the following sense. If C ∈ C, then γ+

∞(x) ∩ C ∈ C+, γ−
∞(x) ∩ C ∈ C− for any

x ∈ C, and we have

ν(C) = Φ+
1 (γ+

∞(x) ∩ C) · Φ−
1 (γ−

∞(x) ∩ C). (16)
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2.2 Finitely-additive measures on leaves of asymptotic fo-

liations.

Given v ∈ C
m, write

|v| =

m
∑

i=1

|vi|. (17)

The norms of all matrices in this paper are understood with respect to this
norm. Consider the direct-sum decomposition

C
m = E+ ⊕ E−,

where E+ is spanned by Jordan cells of eigenvalues of Q with absolute value
exceeding 1, and E− is spanned by Jordan cells corresponding to eigenvalues
of Q with absolute value at most 1. Let v ∈ E+ and for all n ∈ Z set v(n) =
Qnv (note that Q|E+ is by definition invertible). Introduce a finitely-additive
complex-valued measure Φ+

v on the semi-ring C
+ (defined in (11)) by the formula

Φ+
v (γ+

n+1(x)) = (v(n))F (xn+1). (18)

The measure Φ+
v is invariant under holonomy along F−: by definition, we

have the following

Proposition 4 If F (xn) = F (x′
n), then Φ+

v (γ+
n (x)) = Φ+

v (γ+
n (x′)).

The measures Φ+
v span a complex linear space, which we denote Y+ (or,

sometimes, Y+
Γ , when dependence on Γ is stressed.) The map

I : v → Φ+
v (19)

is an isomorphism between E+ and Y+
Γ .

For Qt, we have the direct-sum decomposition

C
m = Ẽ+ ⊕ Ẽ−,

where Ẽ+ is spanned by Jordan cells of eigenvalues of Qt with absolute value
exceeding 1, and Ẽ− is spanned by Jordan cells corresponding to eigenvalues of
Qt with absolute value at most 1. As before, for ṽ ∈ Ẽ+ set ṽ(n) = (Qt)nṽ for
all n ∈ Z, and introduce a finitely-additive complex-valued measure Φ−

ṽ on the
semi-ring C− (defined in (11)) by the formula

Φ−
ṽ (γ−

n (x)) = (ṽ(−n))I(xn). (20)

By definition, the measure Φ−
ṽ is invariant under holonomy along F+: more

precisely, we have the following

Proposition 5 If I(xn) = I(x′
n), then Φ−

ṽ (γ−
n (x)) = Φ−

ṽ (γ−
n (x′)).

7



Let Y−
Γ be the space spanned by the measures Φ−

v , v ∈ Ẽ+. The map

Ĩ : v → Φ−
v (21)

is an isomorphism between Ẽ+ and Y−
Γ .

Let σ : XΓ → XΓ be the shift defined by (σx)i = xi+1. The shift σ naturally
acts on the spaces Y+

Γ , Y−
Γ : given Φ ∈ Y+

Γ (or Y−
Γ ), the measure σ∗Φ is defined,

for γ ∈ C+, by the formula

σ∗Φ(γ) = Φ(σγ).

From the definitions we obtain

Proposition 6 The following diagrams are commutative:

E+ I
−−−−→ Y+

Γ




y

Q

x



σ∗

E+ I
−−−−→ Y+

Γ

Ẽ+ Ĩ
−−−−→ Y−

Γ




y
Qt





yσ∗

Ẽ+ Ĩ
−−−−→ Y−

Γ

2.3 Pairings.

Given Φ+ ∈ Y+, Φ− ∈ Y−, introduce, in analogy with (16), a finitely additive
measure Φ+ × Φ− on the semi-ring C of cylinders in XΓ: for any C ∈ C and
x ∈ C, set

Φ+ × Φ−(C) = Φ+(γ+
∞(x) ∩ C) · Φ−(γ−

∞(x) ∩ C). (22)

Note that by Propositions 4, 5, the right-hand side in (22) does not depend on
x ∈ C.

More explicitly, let v ∈ E+, ṽ ∈ Ẽ+, Φ+
v = I(v), Φ−

ṽ = Ĩ(ṽ). As above,
denote v(n) = Qnv, ṽ(n) = (Qt)nv. Let n ∈ Z, k ∈ N and let e1 . . . ek be an
admissible word. Then

Φ+
v × Φ−

ṽ ({x : xn+1 = e1, . . . , xn+k = ek}) =
(

v(n)
)

F (e1)

(

ṽ(−n−k)
)

I(en+k)
. (23)

There is a natural C-linear pairing <, > between the spaces Y+
Γ and Y−

Γ : for
Φ+ ∈ Y+

Γ , Φ− ∈ Y−
Γ , set

< Φ+, Φ− >= Φ+ × Φ−(XΓ). (24)

From (23) we derive
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Proposition 7 Let v ∈ E+, ṽ ∈ Ẽ+, Φ+
v = IΓ(v), Φ−

ṽ = ĨΓ(ṽ). Then

< Φ+
v , Φ−

ṽ >=

m
∑

i=1

viṽi. (25)

In particular, the pairing <, > is non-degenerate and σ∗-invariant.

In particular, for Φ− ∈ Y− denote

mΦ− = Φ+
1 × Φ−. (26)

2.4 Weakly Lipschitz Functions.

Introduce a function space Lip+
w(X) in the following way. A bounded Borel-

measurable function f : X → C belongs to the space Lip+
w(X) if there exists a

constant C > 0 such that for all n ≥ 0 and any x, x′ ∈ X satisfying F (xn+1) =
F (x′

n+1), we have

|

∫

γ+
n (x)

fdΦ+
1 −

∫

γ+
n (x′)

fdΦ+
1 | ≤ C. (27)

If Cf be the infimum of all C satisfying (27), then we norm Lip+
w(X) by setting

||f ||Lip+
w

= sup
X

f + Cf .

As before, let Lip+
w,0(X) be the subspace of Lip+

w(X) of functions whose integral
with respect to ν is zero.

Take Φ− ∈ Y−. Any function f ∈ Lip+
w(X) is integrable with respect to the

measure mΦ− , defined by (26), in the following sense. Let ṽ ∈ E− be the vector
corresponding to Φ− by (20) and let ṽ(n) = (Qt)nṽ. Recall that

|ṽ(−n)| → 0 exponentially fast as n → ∞. (28)

Take arbitrary points x
(n)
i ∈ X , n ∈ N satisfying

F ((x
(n)
i )n) = i, i = 1, . . . , m. (29)

and consider the expression

m
∑

i=1

(

∫

γ+
n (x

(n)
i )

fdΦ+
1

)

·
(

ṽ(1−n)
)

i
. (30)

By (27) and (28), as n → ∞ the expression (30) tends to a limit which does

not depend on the particular choice of x
(n)
i satisfying (29). This limit is denoted

mΦ−(f) =

∫

X

fdmΦ− .
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Introduce a measure Φ+
f ∈ Y+ by requiring that for any Φ− ∈ Y− we have

< Φ+
f , Φ− >=

∫

X

fdmΦ− . (31)

Note that the mapping Ξ+ : Lip+
w(X) → Y+ given by Ξ+(f) = Φ+

f is
continuous by definition and satisfies

Ξ+(f ◦ σ) = σ∗Ξ+(f). (32)

From the definitions we also have

Proposition 8 Let Φ+(1), . . . , Φ+(r) be a basis in Y+ and let Φ−(1), . . . , Φ−(r)
be the dual basis in Y− with respect to the pairing <, >. Then for any f ∈
Lip+

w(X) we have

Φ+
f =

r
∑

i=1

(

mΦ−(i)(f)
)

Φ+(i).

2.5 Approximation.

Let Θ be a finitely-additive complex-valued measure on the semi-ring C
+
0 . As-

sume that there exists a constant δ(Θ) such that for all x, x′ ∈ X and all n ≥ 0
we have

|Θ(γ+
n (x)) − Θ(γ+

n (x′))| ≤ δ(Θ) if F (xn+1) = F (x′
n+1). (33)

In this case Θ will be called a weakly Lipschitz measure.

Lemma 1 There exists a constant CΓ depending only on Γ such that the follow-
ing is true. Let Θ be a weakly Lipschitz finitely-additive complex-valued measure
on the semi-ring C

+
0 . Then there exists a unique Φ+ ∈ Y+

Γ such that for all
x ∈ X and all n > 0 we have

|Θ(γ+
n (x)) − Φ+(γ+

n (x))| ≤ CΓδ(Θ)nm+1. (34)

Assign to the graph Γ the Markov compactum YΓ of one-sided infinite se-
quences of edges:

Y = {y = y1 . . . yn · · · : yn ∈ E(Γ), F (yn+1) = I(yn)},

and, as before, let σ be the shift on YΓ: (σy)i = yi+1. For y, y′ ∈ YΓ, write
y′ ց y if σy′ = y.

Lemma 1 will be derived from

Lemma 2 There exists a constant CΓ depending only on Γ such that the fol-
lowing is true. Let ϕn be a sequence of measurable complex-valued functions on
YΓ. Assume that there exists a constant δ such that for all y ∈ Y and all n ≥ 0
we have

|ϕn+1(y)) −
∑

y′ցy

ϕn(y′)| ≤ δ (35)

10



and for all n ≥ 0 and all y, ỹ ∈ YΓ satisfying F (y1) = F (ỹ1) we have

|ϕn(y)) − ϕn(ỹ)| ≤ δ. (36)

Then there exists a unique v ∈ E+ such that for all y ∈ Y and all n > 0 we
have

|ϕn(y)) − (Qnv)F (yn+1)| ≤ CΓδnm+1. (37)

Proof of Lemma 2. Take arbitrary points y(i) ∈ YΓ in such a way that

F (y(i)1) = i.

Introduce a sequence of vectors v(n) ∈ Cm by the formula

v(n)i = ϕn(y(i)).

From (36) for any y ∈ Y we have

|ϕn(y) − v(n)F (y1)| ≤ δ,

and from (35), (36) we have

|Qv(n) − v(n + 1)| ≤ δ · ||Q||.

To prove Lemma 2, it suffices now to establish the following

Proposition 9 Let V be a finite-dimensional complex linear space, let S : V →
V be a linear operator and let V + ⊂ V be the subspace spanned by vectors
corresponding to Jordan cells of S with eigenvalues exceeding 1 in absolute value.
There exists a constant C > 0 depending only on S such that the following is
true. Assume that the vectors v(n) ∈ V , n ∈ N, satisfy

|Sv(n) − v(n + 1)| < δ

for all n ∈ N and some constant δ > 0. Then there exists a unique v ∈ V + such
that for all n ∈ N we have

|Snv − v(n)| ≤ C · δ · ndim V −dim V ++1. (38)

Proof of Proposition 9. By definition, the subspace V + is S-invariant and S is
invertible on V +; we have furthermore that |Q−nv| → 0 exponentially fast as
n → ∞. Let V − be the subspace spanned by Jordan cells corresponding to eigen-
values of absolute value at most 1; for v ∈ V −, we have |Qnv| < Cndim V −dim V +

as n → ∞. We have the decomposition V = V + ⊕ V −. Let

u(0) = v(0), u(n + 1) = v(n + 1) − Sv(n).

Decompose u(n) = u+(n) + u−(n), where u+(n) ∈ V +, u−(n) ∈ V −. Denote

v+(n + 1) = u+(n + 1) + Su+(n) + · · · + Snu+(1);

11



v−(n + 1) = u−(n + 1) + Su−(n) + · · · + Snu−(1);

v = u+(0) + S−1u+(1) + · · · + S−nu+(n) + . . . .

By definition, |v−(n + 1)| is bounded above by CδndimV −dim V ++1 and there
exists C̃ such that |Snv − v+(n)| < C̃δ for all n ∈ N, whence (38) follows.
Uniqueness of v follows from the fact that for any nonzero v′ ∈ V + the sequence
|Snv′| grows exponentially as n → ∞. Proposition 9 and Lemmas 1, 2 are proved
completely.

Let f ∈ Lip+
w(X). We then have a measure Θf on the semi-ring C

+
0 given,

for γ ∈ C
+
0 , by the formula

Θf(γ) =

∫

γ

fdΦ+
1 .

By (27), the measure Θf satisfies the assumptions of Lemma 1. Let Ξ+
f ∈ Y+

be the measure assigned to Θf by Lemma 1.

Lemma 3 Let f ∈ Lip+
w(X), Φ− ∈ Y−

Γ . Then

< Ξ+
f , Φ− >=

∫

X

fdmΦ− . (39)

Proof: Choose the points x
(n)
i ∈ X satisfying (29). As above, let ṽ ∈ E− be

the vector corresponding to Φ− by (20) and let ṽ(n) = (Qt)nṽ, n ∈ Z. For any
ε > 0 and n > 0 sufficiently large, by definition, we have

∣

∣mΦ−(f) −
m

∑

i=1

(

∫

γ+
n (x

(n)
i )

fdΦ+
1

)

·
(

ṽ(−n)
)

i

∣

∣ < ε. (40)

By definition of Ξ+
f and Lemma 1 we have

∣

∣

m
∑

i=1

(

∫

γ+
n (x

(n)
i )

fdΦ+
1

)

·
(

ṽ(−n)
)

i
−

m
∑

i=1

(

Ξ+
f (γ+

n (x
(n)
i )

)

·
(

ṽ(−n)
)

i
| < CΓ·n

m+1|ṽ
(−n)
i

∣

∣,

and, by (28), the right-hand side tends to 0 exponentially fast as n → ∞.
It remains to notice that, by definition,

m
∑

i=1

(

Ξ+
f (γ+

n (x
(n)
i )

)

·
(

ṽ(−n)
)

i
=< Ξ+

f , Φ− >,

and the Lemma is proved completely.
We have thus established that Ξ+

f = Φ+
f , where Φ+

f is given by (31).
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2.6 Orderings.

Following S. Ito [7], A.M. Vershik [15, 16], assume that a partial order o is
given on E(Γ) in such a way that edges starting at a given vertex are ordered
linearly, while edges starting at different vertices are not comparable. An edge
will be called maximal (with respect to o) if there does not exist a greater edge;
minimal, if there does not exist a smaller edge; and an edge e will be called the
successor of e′ if e > e′ but there does not exist e′′ such that e > e′′ > e′.

The ordering o is extended to a partial ordering of XΓ: we write x < x′ if
there exists l ∈ Z such that xl < x′

l and xn = x′
n for all n > l. Under this

ordering each leaf γ+
∞ of the foliation F+ is linearly ordered, while points lying

on different leaves are not comparable.
Let Max(o) be the set of points x ∈ X , x = (xn)n∈Z, such that each xn is a

maximal edge. Similarly, Min(o) denotes the set of points x ∈ X , x = (xn)n∈Z,
such that each xn is a minimal edge. Since edges starting at a given vertex are
ordered linearly, the cardinalities of Max(o) and Min(o) do not exceed m.

If a leaf γ+
∞ does not intersect Max(o), then it does not have a maximal

element; similarly, if γ+
∞ does not intersect Min(o), then it does not have a

minimal element.
For x(1), x(2) ∈ γ+

∞, let

[x(1), x(2)] = {x′ ∈ γ+
∞ : x(1) ≤ x′ ≤ x(2)}.

The sets (x(1), x(2)], [x(1), x(2)), (x(1), x(2)) are defined similarly.

Proposition 10 Let x ∈ X. If γ+
∞(x) ∩ Max(o) = ∅, then for any t ≥ 0 there

exists a point x′ ∈ γ+
∞(x) such that

Φ+
1 ([x, x′]) = t. (41)

Proof. Let V (x) = {t : ∃x′ ≥ x : Φ+
1 ([x, x′]) = t}. Since γ+

∞(x) ∩ Max(o) =
∅, for any n there exists x′′ ∈ γ+

∞(x) such that all points in γ+
n (x′′) are greater

than x. Since Φ+
1 (γ+

n (x′′)) grows exponentially, uniformly in x′′, as n → ∞,
the set V (x) is unbounded. Furthermore, since Φ+

1 (γ+
n (x′′)) decays exponen-

tially, uniformly in x′′, as n → −∞, the set V (x) is dense in R+. Finally,
by compactness of X , the set V (x) is closed, which concludes the proof of the
Proposition.

A similar proposition, proved in the same way, holds for negative t.

Proposition 11 Let x ∈ X. If γ+
∞(x) ∩ Min(o) = ∅, then for any t ≥ 0 there

exists a point x′ ∈ γ+
∞(x) such that

Φ+
1 ([x′, x]) = t. (42)

Define an equivalence relation ∼ on X by writing x ∼ x′ if x ∈ γ+
∞(x′)

and Φ+
1 ([x, x′]) = Φ+

1 ([x′, x]) = 0. The equivalence classes admit the following
explicit description, which is clear from the definitions.

13



Proposition 12 Let x, x′ ∈ X be such that x ∈ γ+
∞(x′), x < x′ and Φ+

1 ([x, x′]) =
0. Then there exists n ∈ Z such that

1. x′
n is a successor of xn;

2. x is the maximal element in γn(x);

3. x′ is the minimal element in γn(x′).

In other words, Φ+
1 ([x, x′]) = 0 if and only if (x, x′) = ∅. In particular, equiv-

alence classes consist at most of two points and, ν-almost surely, of only one
point.

Denote Xo = X/∼, let πo : X → Xo be the projection map and set νo =
(πo)∗ν. The probability spaces (Xo, νo) and (X, ν) are measurably isomorphic;
in what follows, we shall often omit the index o. The foliations F+ and F−

descend to the space Xo; we shall denote their images on Xo by the same letters
and, as before, denote by γ+

∞(x), γ−
∞(x) the leaves containing x ∈ Xo.

Now let x ∈ Xo satisfy γ+
∞(x) ∩ Max(o) = ∅. By Proposition 10, for any

t ≥ 0 there exists a unique x′ satisfying (41). Denote h+
t (x) = x′. Similarly,

if x ∈ Xo satisfy γ+
∞(x) ∩ Min(o) = ∅. By Proposition 11, for any t ≥ 0 there

exists a unique x′ satisfying (42). Denote h+
−t(x) = x′.

We thus obtain a flow h+
t , which is well-defined on the set

Xo \
(

⋃

x∈Max(o)∪Min(o)

γ+
∞(x)

)

,

and, in particular, ν-almost surely on Xo. By (16), the flow h+
t preserves the

measure ν.
More generally, it is clear from the definitions that for any Φ− ∈ Y−, the

measure mΦ− , defined by (26), satisfies

(h+
t )∗mΦ− = mΦ− ,

similarly to G. Forni’s invariant distributions [5], [6].
Remark. S.Ito in [7] gives a construction of a flow similar to the one above.

The flow h+
t is a continuous-time analogue of a Vershik automorphism [15] (of

which a variant also occurs in Ito’s work [7]), and, in fact, is a suspension flow
over the corresponding Vershik’s automorphism, a point of view adopted in [4].

2.7 Decomposition of Arcs.

We assume that an ordering o is fixed on Γ. Denote by C(o) the semi-ring of
subsets of XΓ of the form [x, x′), where x < x′. Any measure Φ+ ∈ Y+ can be
extended to C(o) in the following way.

Let R
+
n be the ring generated by the semi-ring C

+
n . For γ ∈ C(o), denote

by γ(n) the smallest (by inclusion) element of the ring R
+
−n containing γ and
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let γ̂(n) be the greatest (by inclusion) element of the ring R
+
−n contained in γ

(possibly, γ̂(n) = ∅). By definition,

γ̂(n) ⊂ γ̂(n + 1) ⊂ γ(n + 1) ⊂ γ(n);

γ(n) \ γ̂(n) =

ln
⊔

i=1

γ
(n)
i , (43)

where γ
(n)
i ∈ C

+
−n, ln ≤ ||Q||, and

γ(n) \ γ(n + 1) =

Ln
⊔

i=1

γ
(n+1)
i , (44)

where γ
(n+1)
i ∈ C

+
−n−1, Ln ≤ 2||Q||.

By definition, if Φ+ ∈ Y+, then there are only m possible values of Φ+(γ)
for γ ∈ C

+
−n, and the maximum of these decays exponentially as n → ∞. We

thus have

Proposition 13 There exists positive constants CΓ, depending only on Γ, such
that the following is true. Let v0 = 0, v1, . . . , vl ∈ E+, Qvi = exp(θ)vi + vi−1.
Assume v ∈ Cv1 ⊕ · · · ⊕ Cvl satisfies |v| = 1 and let Φ+

v = IΓ(v). Then for any
γ ∈ C(o) we have

|Φ+
v (γ(n)) − Φ+

v (γ(n + 1))| ≤ CΓnl−1 exp(−(ℜθ)n);

|Φ+
v (γ̂(n)) − Φ+

v (γ̂(n + 1))| ≤ CΓnl−1 exp(−(ℜθ)n).

decay exponentially as n → ∞. In particular, if v ∈ E+, Qv = exp(θ)v, |v| = 1,
then

|Φ+
v (γ(n)) − Φ+

v (γ(n + 1))| ≤ CΓ exp(−(ℜθ)n);

|Φ+
v (γ̂(n)) − Φ+

v (γ̂(n + 1))| ≤ CΓ exp(−(ℜθ)n).

Consequently, for any Φ+ ∈ Y+, γ ∈ C(o), the sequence Φ+(γ(n)) converges
as n → ∞, and we set

Φ+(γ) = lim
n→∞

Φ+(γ(n)).

By (43), we also have
Φ+(γ) = lim

n→∞
Φ+(γ̂(n)).

Proposition 14 The measure Φ+ is finitely-additive on C(o).

Proof: Let v ∈ E+ be such that Φ+ = Φ+
v and let γ0, γ1, . . . , γk ∈ C(o)

satisfy

γ0 =

k
⊔

i=1

γi.
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Consider the arcs γ0(n), γ1(n), . . . , γk(n). We have

γ0(n) ⊂
k

⋃

i=1

γi(n). (45)

and decompose

γi(n) =
⊔

γij(n + 1),

where γij(n + 1) ∈ C
+
−n−1.

By (45), each of the arcs γ0j(n + 1) is also encountered among the arcs
γij(n + 1) (possibly, more than once, but not more than k times). Consider the
collection γij(n + 1) and cross out all the arcs γ0j(n + 1); by maximality, and
since our ordering is linear on each leaf of the foliation F+, there will remain
not more than 2k||Q|| arcs, whence we obtain

∣

∣

k
∑

i=1

Φ+(γi(n)) − Φ+(γ0(n))
∣

∣ ≤ 2k||Q|| · |Q−n−1v|,

and, since the right-hand side decays exponentially as n → ∞, the Proposition
is proved.

Lemma 4 There exists a constant CΓ depending only on Γ such that the fol-
lowing is true. Let f ∈ Lip+

w(XΓ) and let Φ+
f ∈ Y+ be given by (31). For any

γ ∈ C(o) we have

∣

∣

∫

γ

fdΦ+
1 − Φ+

f (γ)
∣

∣ ≤ CΓ||f ||Lip+
w
(1 + log(1 + Φ+

1 (γ))m+1. (46)

Indeed, for γ ∈ C+ this follows from Lemma 1, and for all other arcs from
Proposition 13.

2.8 Ergodic averages of the flow h
+

t
.

Let Φ+ ∈ Y+ and denote Φ+[x, t] = Φ+
i ([x, h+

t x]). The function Φ+(x, t) is an
additive cocycle over the flow h+

t . Let f ∈ Lip+
w(XΓ), and let Φ+

f be defined by

(31). By definition, Φf◦h+
t

= Φ+
f ; recall from (32) that Φ+

f◦σ = σ∗Φ+
f . Lemma

4 implies

Theorem 5 There exists a positive constant CΓ depending only on Γ such that
for any f ∈ Lip+

w(XΓ), for all x ∈ X and all T > 0 we have

∣

∣

∫ T

0

f ◦ h+
t (x)dt − Φ+

f (x, t)
∣

∣ ≤ CΓ||f ||Lip(1 + log(1 + T ))m+1.

Given a bounded measurable function f : X → R and x ∈ X , introduce a
continuous function Sn[f, x] on the unit interval by the formula

Sn[f, x](τ) =

τ exp(nθ1)
∫

0

f ◦ h+
t (x)dt. (47)
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The functions Sn[f, x] are C[0, 1]-valued random variable on the probability
space (XΓ, νΓ).

Theorem 6 If Q has a simple real second eigenvalue exp(θ2), θ2 > 0, then
there exists a continuous functional α : Lip+

w(X) → R and a compactly supported
non-degenerate measure η on C[0, 1] such that for any f ∈ Lip+

w,0(X) satisfying
α(f) 6= 0 the sequence of random variables

Sn[f, x]

α(f) exp(nθ2)

converges in distribution to η as n → ∞.

Remark. Compactness of the support of η is understood in the sense of the
Tchebycheff topology on C[0, 1]. Nondegeneracy of the measure η means that if
ϕ ∈ C[0, 1] is distributed according to η, then for any t0 ∈ (0, 1] the distribution
of the real-valued random variable ϕ(t0) is not concentrated at a single point.

The measure η is constructed as follows: let v2 be an eigenvector with eigen-
value exp(θ2), set Φ+

2 = I(v2) (see (19)); then η is the distribution of Φ+
2 (x, τ),

0 ≤ τ ≤ 1, considered as a C[0, 1]-valued random variable on the space XΓ, νΓ).
The functional α(f) is constructed as follows: under the assumptions of The-
orem 6, the matrix Qt also has the simple real second eigenvalue exp(θ2); let
ṽ2 be the eigenvector with eigenvalue exp(θ2), normalized in such a way that
∑m

i=1(v2)i(ṽ2)i = 1; set Φ−
2 = Ĩ(ṽ2) (see (21)),and let mΦ−

2
be given by (26);

then

α(f) =

∫

fdmΦ−

2
.

2.9 The diagonalizable case.

As an illustration, consider the case when Q|E+ is diagonalizable with eigen-
values exp(θi), i = 1, . . . , r, ℜ(θi) > 0. The Perron-Frobenius vector h corre-
sponds to exp(θ1); let v2, . . . , vr be eigenvectors corresponding to exp(θi): thus
Qvi = exp(θi)vi, i = 2, . . . , r and

E+ = Ch ⊕ Cv2 ⊕ · · · ⊕ Cvr

We have a similar direct-sum representation for Qt:

Ẽ+ = Cλ ⊕ Cṽ2 ⊕ · · · ⊕ Cṽr,

where Qtṽi = exp(θi)ṽi, i = 2, . . . , r. For i 6= j we have

m
∑

l=1

(vi)l(ṽj)l = 0, (48)

and, for normalization, let us assume that for all i = 1, . . . , r we have

m
∑

l=1

(vi)l(ṽi)l = 1. (49)
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Let Φ+
i = I(vi), Φ−

i = Ĩ(ṽi), i = 2, . . . , r. Since Φ+
1 = I(h), the measures

Φ+
i , i = 1, . . . , r, form a basis in Y+, for which the measures Φ−

1 = Ĩ(λ),
Φ−

2 , . . . , Φ−
r form a dual basis in Y−.

For i = 1, . . . , r, from (26) we have the measures mΦ−

i
= Φ+

1 × Φ−
i . For

instance, mΦ−

1
= ν. Theorem 5 now implies

Corollary 1 For any f ∈ Lip+
w(XΓ) we have

∣

∣

∫ T

0

f◦h+
t (x)dt−T

∫

X

fdν−
r

∑

i=2

Φ+
i (x, T )

(

mΦ−

i
(f)

)∣

∣ ≤ CΓ||f ||Lip(1+log(1+T ))m+1,

where CΓ is a constant depending only on Γ.

For the action of the shift we have:

(σ)∗Φ
+
i = exp(−θi)Φ

+
i , i = 1, . . . , r; (50)

(σ)∗Φ
−
i = exp(θi)Φ

−
i , i = 1, . . . , r. (51)

Corollary 1 now yields

τ exp(θ1n)
∫

0

f ◦ h+
t (x)dt =

r
∑

i=1

exp(nθi)mΦ−

i
(f)Φ+

i (σnx, τ) + O(nm+1). (52)

2.10 The Hölder property.

As above, we write Φ+(x, t) = Φ+([x, h+
t x]). Our next aim is to show that

Φ+(x, t) is Hölder in t for any x ∈ Xo.

Proposition 15 There exist positive constants CΓ and t0, depending only on
Γ such that the following is true. Let v ∈ E+, Qv = exp(θ)v, |v| = 1. Then for
all x ∈ X and positive t < t0 we have

|Φ+
v (x, t)| ≤ CΓtℜθ/θ1 .

Proposition 16 There exist positive constants CΓ and t0, depending only on
Γ such that the following is true. Let v0 = 0, v1, . . . , vl ∈ E+, Qvi = exp(θ)vi +
vi−1. Assume v ∈ Cv1 ⊕ · · · ⊕ Cvl satisfies |v| = 1. Then for all x ∈ X and
positive t < t0 we have

|Φ+
v (x, t)| ≤ CΓ| log t|l−1tℜθ/θ1 .

Proof of Propositions 15, 16. Denote γ = [x, h+
t x]. If t is small enough, then

γ̂(0) = ∅. Let n0 be the smallest positive integer such that γ̂(n0) 6= ∅. There
exist positive constants C1, C2, depending only on Γ, such that

C1t ≤ exp(−θ1n0) ≤ C2t,

and Propositions 15, 16 follow now from Proposition 13.
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Corollary 2 There exist positive constants θ > 0 and t0 > 0 depending only on
Q such that for all v ∈ E+, |v| = 1, all x ∈ X and all positive t < t0 we have

|Φ+
v (x, t)| ≤ tθ/θ1 .

For v ∈ E+, |v| = 1 denote

θv = lim
n→∞

log |Qnv|

n
.

Corollary 3 For any ε > 0 there exists a constant Tε depending only on ε and
Γ such that for any v ∈ E+, |v| = 1, any x ∈ X and any T > Tε, we have

|Φ+
v (x, T )| ≤ T θv/θ1+ε.

Proof: Indeed, let t0 be the constant given by Proposition16. Let n0 = n0(T )
be the smallest such integer that T = τ exp(n(T )θ1), where τ < t0. Since
Φ+

v (x, T ) = Φ+
Qnv(σnx, τ) for all n, it follows from Proposition 16 that

|Φ+(x, T )| ≤ CΓnm+1
0 exp(n0ℜ(θv)) ≤ CΓT θv/θ1+ε

if T is sufficiently large (depending only on ε).

Corollary 4 For any v ∈ E+ we have

lim sup
T→∞

log |Φ+
v (x, T )|

log T
=

θv

θ1
. (53)

Indeed, the upper bound for the limit superior follows from Corollary 3, and
the lower bound is immediate from the relation Φ+

v (γn(x)) = (Qnv)F (xn+1).

Corollary 5 For any τ ∈ R and any v ∈ E+ satisfying v 6= 0,
m
∑

i=1

viλi = 0, the

function Φ+
v (x, τ) is not a constant in x.

Proof: Indeed, assume Φ+
v (x, τ) = c identically. Then Φ+(x, kτ) = kc, which

contradicts (53): is c = 0, then the limit superior is 0; if c 6= 0, then the limit
superior is 1.

2.11 Tightness.

In this subsection, we assume that Q has a simple real second eigenvalue exp(θ2),
θ2 > 0. Let v2 be the corresponding eigenvector and let Φ+

2 = I(v2). Take x ∈ X
and consider Φ+(x, τ) as a continuous function of τ on the unit interval. Let η
be the distribution of Φ+

2 (x, τ) in C[0, 1]. Note that by Corollary 5, for any τ0

the value of Φ+
2 (x, τ) is not constant on X , so the measure η is nondegenerate.

Let Sn[f, x] be defined by the equation (47). Introduce a sequence of mea-
sures µn on C[0, 1] by the formula µn = S[n, f ]∗νΓ.

By Theorem 8.1 in Billingsley [3], p.54, to prove Theorem 6 it suffices to
establish the following two Lemmas.
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Lemma 5 Finite-dimensional distributions of the measures µn weakly converge
to those of η.

Lemma 6 The family µn is tight in C[0, 1].

Proof of Lemma 5. By Theorem 5

∫ T

0

f ◦ h+
t (x)dt = Φ+

f (x, T ) + O((log T )m+1).

Let v2 be the eigenvector corresponding to the eigenvalue exp(θ2), |v| = 1, and
let Φ+

2 ∈ Y+ be the corresponding measure. We have

E+ = Cv2 ⊕ E3,

where E3 is spanned by Jordan cells corresponding to eigenvalues with absolute
value less than exp(θ2). Let ζ be a number smaller than θ2 but greater than
the spectral radius of Q|E3 . Write

Φ+
f = α(f)Φ+

2 + β(f)Φ+
v3

, (54)

where v3 ∈ E+, |v3| = 1, and α(f), β(f) are continuous functionals on Lip+
w(X),

so, in particular, we have

|α(f)| < C01||f ||Lip+
w
; |β(f)| < C02||f ||Lip+

w
,

where the constants C01, C02 only depend on Γ.
By Corollary 2, there exists t0 depending only on Γ such that for any positive

t such that t < t0, any x ∈ X and any v ∈ E+ satisfying |v| = 1 we have

|Φ+
v (x, t)| ≤ 1. (55)

Write T = t exp(nθ1), where t < t0. Since Φ+
v3

(x, T ) = Φ+
Qnv3

(σnx, t), for all
sufficiently large n, we have |Qnv3| < exp(ζn) and therefore

|Φ+
v3

(x, τ exp(nθ1))| < exp(nζ) (56)

for all x ∈ X . By Theorem 5 we have

∣

∣

τ exp(nθ1)
∫

0

f ◦ h+
t (x)dt − Φ+

f (x, τ exp(θ1n))
∣

∣ = O(nm+1). (57)

Since

Φ+
f (x, τ exp(nθ1)) = α(f)Φ+

2 ((x, τ exp(nθ1)) + β(f)Φ+
v3

(x, τ exp(nθ1))

combining the equality

Φ+
2 (x, τ exp(nθ1)) = exp(nθ2)Φ

+
2 (σnx, τ)
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with the bound (56), we obtain, for all large n and all x ∈ X , uniformly in
τ ∈ [0, 1], the estimate

|Sn[f, x](τ) − α(f)Φ+
2 (σnx, τ)| ≤ CΓ||f ||Lip+

w
exp((ζ − θ2)n).

Since σ preserves the measure ν, it follows that the k-dimensional distributions
of

(

Sn[f, x](τ1), Sn[f, x](τ2), . . . , Sn[f, x](τk)
)

converge to the k-dimensional

distribution of
(

Φ+
2 (x, τ1), Φ

+
2 (x, τ2), . . . , Φ

+
2 (x, τk)

)

, and Lemma 5 is proved.
The argument above yields also

Proposition 17 There exist positive constants C0 = C0(Γ) and T0 = T0(Γ)
such that for any x ∈ X, any f ∈ Lip+

w,0(X) and any T > T0 we have

|

∫ T

0

f ◦ h+
t (x)dt| ≤ C0 · ||f ||Lip+

w
· T θ2/θ1 .

Indeed, for sufficiently large T , T = t exp(nθ1), where t < t0, from (54) we
have

Φ+
f (x, T ) = α(f) exp(nθ2)Φ

+
2 (σnx, t) + O(exp(nζ)).

Since, by (55), we have |Φ+
2 (σnx, t)| ≤ 1, Proposition 17 is established.

We proceed to the proof of Lemma 6.

Proposition 18 There exists a constant CΓ depending only on Γ such that for
any f ∈ Lip+

w,0(X), any n > 0, any x ∈ X and any τ1, τ2 ∈ [0, 1], we have

|Sn[x, f ](τ2) − Sn[x, f ](τ1)| ≤ CΓ||f ||Lip+
w
|τ2 − τ1|

θ2/θ1 .

Lemma 6 follows from Proposition 18 by the Arzelà-Ascoli Theorem.
Proof of Proposition 18: Let τ1, τ2 ∈ [0, 1], τ1 < τ2. For brevity, write

Sn = Sn[f, x]. We have then

Sn(τ2) − Sn(τ1) =
1

exp(nθ2)

τ2 exp(nθ1)
∫

τ1 exp(nθ1)

f ◦ h+
t (x)dt.

Let T0 be the constant given by Proposition 17 and assume first that

(τ2 − τ1) · exp(nθ1) ≥ T0.

By Proposition 17 we have

τ2 exp(nθ1)
∫

τ1 exp(nθ1)

f ◦ ht(x)dt ≤ C||f ||Lip+
w
· (τ2 − τ1)

θ2/θ1 exp(nθ2),

and, consequently,

|Sn(τ2) − Sn(τ1)| ≤ C33(τ2 − τ1)
θ2/θ1 ,
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where the constant C33 only depends on Γ.
Now let τ2 − τ1 = τ0 exp(−nθ1), τ0 < T0. Since

exp(−nθ2) = ((τ2 − τ1)/τ0)
θ2/θ1 ,

using boundedness of f , write

1

exp(nθ2)

τ2 exp(nθ1)
∫

τ1 exp(nθ1)

f ◦ h+
t (x)dt ≤ exp(−nθ2) · ||f ||∞ · τ0 ≤

≤ τ
1−θ2/θ1

0 ||f ||∞(τ2 − τ1)
θ2/θ1 ≤ T

1−θ2/θ1

0 ||f ||∞(τ2 − τ1)
θ2/θ1 ,

and the Proposition is proved. Theorem 6 is proved completely.

2.12 A symbolic coding for translation flows on surfaces.

To derive Theorems 1, 2 from Theorems 5, 6, it remains to observe that the
vertical flow on the stable foliation of a pseudo-Anosov diffeomorphism is iso-
morphic to a symbolic flow on the asymptotic foliation of a Markov compactum
obtained from the decomposition of the underlying surface into Veech’s zippered
rectangles, see [4], Sec. 4. The identification of E+ (and, consequently, of Y+)
with the corresponding subspace in cohomology is given by Proposition 4.16
in Veech[14]. The fact that the pairing between cocycles corresponds to the
cup-product is immediate from Proposition 4.19 in [14].

3 Spaces of Markov Compacta.

Let G be the set of all oriented graphs on m vertices such that there is an edge
starting at every vertex and an edge ending at every vertex. As before, for a
graph Γ ∈ G, we denote by E(Γ) the set of its edges and by A(Γ) its incidence
matrix: Aij(Γ) = #{e ∈ E(Γ) : I(e) = i, F (e) = j}. Denote Ω = GZ:

Ω = {ω = . . . ω−n . . . ωn . . . , ωi ∈ G, i ∈ Z},

For ω ∈ Ω, denote by X(ω) the corresponding Markov compactum:

X(ω) = {x = . . . x−n . . . xn . . . , xn ∈ E(ωn), F (xn+1) = I(xn)}.

For x ∈ X , n ∈ Z, introduce the sets

γ+
n (x) = {x′ ∈ X(ω) : x′

t = xt, t ≥ n}; γ−
n (x) = {x′ ∈ X(ω) : x′

t = xt, t ≤ n};

γ+
∞(x) =

⋃

n∈Z

γ+
n (x); γ−

∞(x) =
⋃

n∈Z

γ−
n (x).

The sets γ+
∞(x) are leaves of the asymptotic foliation F+

ω on X(ω); the sets
γ−
∞(x) are leaves of the asymptotic foliation F−

ω on X(ω).
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For n ∈ Z let C+
n,ω be the collection of all subsets of X(ω) of the form γ+

n (x),
n ∈ Z, x ∈ X ; similarly, C−

n,ω is the collection of all subsets of the form γ−
n (x).

Set
C

+
ω =

⋃

n∈Z

C
+
n,ω; C−

ω =
⋃

n∈Z

C
−
n,ω. (58)

Just as in the periodic case, the collections C+
n,ω, C−

n,ω, C+
ω , C−

ω are semi-rings.
Remark. To make notation lighter, we shall often omit the subscript ω and

only include it when dependence on ω is underlined.

3.1 Measures and Cocycles.

Let σ be the shift on Ω given by the formula (σω)n = ωn+1. Let P be an ergodic
σ-invariant probability measure on Ω. We then have a natural cocycle A on the
system (Ω, σ, P) defined, for n > 0, by the formula

A(n, ω) = A(ωn) . . . A(ω1).

The cocycle A will be called the renormalization cocycle.
We need the following assumptions on the measure P and on the cocyle A.

Assumption 1 The matrices A(ωn) are almost surely invertible with respect to
P. There exists Γ ∈ G such that P(Γ) > 0.

Assumption 2 The logarithm of the renormalization cocycle (and of its in-
verse) is integrable.

For n < 0 set
A(n, ω) = A−1(ω−n) . . . A−1(ω0).

and set A(0, ω) to be the identity matrix.
The transpose cocycle At over the dynamical system (Ω, σ−1, P) defined, for

n > 0, by the formula

A
t(n, ω) = At(ω1−n) . . . At(ω0).

Similarly, for n < 0 write

A
t(n, ω) = (At)−1(ω−n) . . . (At)−1(ω1).

and set A
t(0, ω) to be the identity matrix.

By Assumptions 1, 2, for P-almost any ω ∈ Ω we have the decompositions

R
m = E+

ω ⊕ E−
ω ; R

m = Ẽ+
ω ⊕ Ẽ−

ω ,

where E+ is the Lyapunov subspace corresponding to positive Lyapunov expo-
nents of A; Ẽ+ is the Lyapunov subspace corresponding to positive Lyapunov
exponents of At; E− is the Lyapunov subspace corresponding to zero and nega-
tive Lyapunov exponents of A; E− is the Lyapunov subspace corresponding to
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zero and negative Lyapunov exponents of At. The standard inner product on
Rm yields a nondegenerate pairing between the spaces E+

ω and Ẽ+
ω .

In particular, by Assumption 1, the spaces E+
ω and Ẽ+

ω each contain a unique
vector all whose coordinates are positive; we denote these vectors by h(ω) and
λ(ω), respectively, and assume that they are normalized by (12).

Let v ∈ E+
ω and for all n ∈ Z set v(n) = A(n, ω)v. Introduce a finitely-

additive complex-valued measure Φ+
v on the semi-ring C+

ω (defined in (58)) by
the formula

Φ+
v (γ+

n+1(x)) = (v(n))F (xn+1). (59)

As before, the measure Φ+
v is invariant under holonomy along F−: by defi-

nition, we have the following

Proposition 19 If F (xn) = F (x′
n), then Φ+

v (γ+
n (x)) = Φ+

v (γ+
n (x′)).

The measures Φ+
v span a complex linear space, which is denoted Y+

ω . The
map Iω : v → Φ+

v is an isomorphism between E+
ω and Y+

ω . Set Φ+
1,ω = Iω(h(ω)).

Now for ṽ ∈ Ẽ+ and for all n ∈ Z set ṽ(n) = At(n, ω)ṽ and introduce a
finitely-additive complex-valued measure Φ−

ṽ on the semi-ring C−
ω (defined in

(58)) by the formula
Φ−

ṽ (γ−
n (x)) = (ṽ(−n))I(xn). (60)

By definition, the measure Φ−
ṽ is invariant under holonomy along F+: more

precisely, we have the following

Proposition 20 If I(xn) = I(x′
n), then Φ−

ṽ (γ−
n (x)) = Φ−

ṽ (γ−
n (x′)).

Let Y−
ω be the space spanned by the measures Φ−

ṽ , ṽ ∈ Ẽ+. The map

Ĩω : ṽ → Φ−
ṽ is an isomorphism between Ẽ+

ω and Y−
ω . Set Φ−

1,ω = Ĩω(λ(ω)).
Define a map tσ : Xω → Xσω by (tσx)i = xi+1. The map tσ induces a map

t∗σ : Y+
σω → Y+

ω given, for Φ+
σω ∈ Y+

σω and γ ∈ C+
ω , by the formula

t∗σΦ+(γ) = Φ+
σω(tσγ).

We have the following commutative diagrams:

E+
ω

Iω−−−−→ Y+
ω





y

A(1,ω)

x





t∗σ

E+
σω

Iσω−−−−→ Y+
σω

Ẽ+
ω

Ĩω−−−−→ Y−
ω

x




A

t(1,σω)

x





t∗σ

Ẽ+
σω

Ĩσω−−−−→ Y−
σω
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3.2 Pairings and weakly Lipschitz functions.

Given Φ+ ∈ Y+
ω , Φ− ∈ Y−

ω , introduce a finitely additive measure Φ+ × Φ− on
the semi-ring C of cylinders in X(ω): for any C ∈ C and x ∈ C, set

Φ+ × Φ−(C) = Φ+(γ+
∞(x) ∩ C) · Φ−(γ−

∞(x) ∩ C). (61)

Note that by Propositions 19, 20, the right-hand side in (61) does not depend
on x ∈ C.

As above, for Φ− ∈ Y−
ω , denote

mΦ− = Φ+
1 × Φ−. (62)

In particular, we have a positive countably additive measure

νω = Φ+
h(ω) × Φ−

λ(ω) .

There is a natural C-linear pairing <, > between the spaces Y+
ω and Y−

ω : for
Φ+ ∈ Y+

ω , Φ− ∈ Y−
ω , set

< Φ+, Φ− >= Φ+ × Φ−(X(ω)). (63)

As in Sec. 2.3, we have

Proposition 21 Let v ∈ E+
ω , ṽ ∈ Ẽ+

ω , Φ+
v = Iω(v), Φ−

ṽ = Ĩω(ṽ). Then

< Φ+
v , Φ−

ṽ >=

m
∑

i=1

viṽi. (64)

The pairing <, > is non-degenerate and t∗σ-invariant.

The function space Lip+
w(X(ω)) is introduced in the same way as before: a

bounded Borel-measurable function f : X(ω) → C belongs to the space Lip+
w(X)

if there exists a constant C > 0 such that for all n ≥ 0 and any x, x′ ∈ X
satisfying F (xn+1) = F (x′

n+1), we have

|

∫

γ+
n (x)

fdΦ+
1 −

∫

γ+
n (x′)

fdΦ+
1 | ≤ C, (65)

and, if Cf is the infimum of all C satisfying (65), then we norm Lip+
w(X) by

setting
||f ||Lip+

w
= sup

X
f + Cf .

As before, we denote by Lip+
w,0(X(ω)) the subspace of functions of νω-integral

zero.
Take Φ− ∈ Y−. Any function f ∈ Lip+

w(X) is integrable with respect to
the measure mΦ− in the same sense as in Sec. 2.4, and a measure Φ+

f ∈ Y+ is

defined by the requirement that for any Φ− ∈ Y− we have

< Φ+
f , Φ− >=

∫

X(ω)

fdmΦ− . (66)
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Note that the mapping Ξ+
ω : Lip+

w(X(ω)) → Y+
ω given by Ξ+

ω (f) = Φ+
f is

continuous by definition and satisfies

Ξ+
σω(f ◦ tσ) = (tσ)∗Ξ+

ω (f). (67)

From the definitions we also have

Proposition 22 Let Φ+(1), . . . , Φ+(r) be a basis in Y+
ω and let Φ−(1), . . . , Φ−(r)

be the dual basis in Y−
ω with respect to the pairing <, >. Then for any f ∈

Lip+
w(X(ω)) we have

Φ+
f =

r
∑

i=1

(

mΦ−(i)(f)
)

Φ+(i).

3.3 Orderings and flows.

Assume that for P-almost every ω a partial ordering o(ω) is given on E(ωn)
for all n ∈ Z in such a way that edges starting at a given vertex are ordered
linearly, while edges starting at different vertices are incomparable. Assume,
moreover, that the orders o(ω) are σ-invariant, in the sense that the ordering
o(ω) on E(ωn) is the same as the ordering o(σω) on E((σω)n−1).

Similarly to the above, construct spaces Xo(ω) and introduce a flow h
(+,ω)
t

on each Xo(ω). The shift σ renormalizes the flows h
(+,ω)
t : if we set

H(1)(n, ω) = ||A(n, ω)||, (68)

then for any t ∈ R we have a commutative diagram

X(ω)
h
(+,ω)
t−−−−→ X(ω)





y

tσ





y

tσ

X(σω)
h
(+,σω)

t/H(1)(1,ω)
−−−−−−−−→ X(σω)

As before, each measure Φ+ ∈ Y+
ω yields a Hölder cocycle over the flow

h
(+,ω)
t ; we shall denote the cocycle by the same letter as the measure.

Note that for any Φ− ∈ Y−
ω the measure mΦ− defined by (62) satisfies

(h
(+,ω)
t )∗mΦ− = mΦ− ,

similarly to G. Forni’s invariant distributions [5], [6].
Note that the mapping Ξ+

ω : Lip+
w(X(ω)) → Y+

ω given by Ξ+
ω (f) = Φ+

f by
definition satisfies

Ξ+
ω (f ◦ h

(+,ω)
t ) = Ξ+

ω (f). (69)

We thus have the following
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Theorem 7 Let P be an ergodic σ-invariant probability measure on Ω satisfying
the assumptions 1, 2. For any ε > 0 there exists a positive constant Cε depending
only on P such that the following holds. For P-almost any ω there exists a
continuous mapping Ξ+

ω : Lip+
w(X(ω)) → Y+

ω such that for any f ∈ Lip+
w(X(ω)),

any x ∈ X(ω) and all T > 0 we have

|

∫ T

0

f ◦ h
(+,ω)
t (x)dt − Ξ+

ω (f)
(

x, t
)

| ≤ Cε||f ||Lip+
w
(1 + T ε).

The mapping Ξ+
ω satisfies the equality Ξ+

ω (f ◦ h
(+,ω)
t ) = Ξ+

ω (f). The diagram

Lip+
w(X(σω))

Ξ+
σω−−−−→ Y+

σω




y

t∗σ





y

t∗σ

Lip+
w(X(ω))

Ξ+
ω−−−−→ Y+

ω

is commutative.

The mapping Ξ+
ω is given by Ξ+

ω (f) = Φ+
f , where Φ+

f is defined by (66).
Now assume that the second Lyapunov exponent θ2 of the renormalization

cocycle A is positive and simple. Let v2 ∈ E+
ω be a Lyapunov vector correspond-

ing to the exponent exp(θ2) (such a vector is defined up to multiplication by a
scalar). Introduce a multiplicative cocycle H(2)(n, ω) over σ by the formula

H(2)(n, ω) =
|A(n, ω)v

(ω)
2 |

|v
(ω)
2 |

. (70)

Recall that the cocycle H(1)(n, ω) is given by (68). Similarly to the above,
given a bounded measurable function f : X(ω) → R and x ∈ X(ω), introduce a
continuous function Sn[f, x] on the unit interval by the formula

Sn[f, x](τ) =

τH(1)(n,ω)
∫

0

f ◦ h
(+,ω)
t (x)dt. (71)

The functions Sn[f, x] are C[0, 1]-valued random variables on the probability
space (X(ω), νω).

Theorem 8 Let P be an ergodic σ-invariant probability measure on Ω satisfying
the assumptions 1, 2 and such the second Lyapunov exponent of the renormal-
ization cocycle A with respect to P is positive and simple.

For P-almost any ω′ ∈ Ω there exists a non-degenerate compactly supported
measure ηω′ on C[0, 1] and, for P-almost any pair (ω, ω′) there exists a sequence
of moments ln = ln(ω, ω′) such that the following holds.

For P-almost any ω there exists a continuous functional

a
(ω) : Lip+

w(X(ω)) → R
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such that for P-almost any ω′ and any f ∈ Lip+
w,0(X(ω)) satisfying a(ω)(f) 6= 0

the sequence of random variables

Sln(ω,ω′)[f, x]

a(ω)(f)H(2)(ln(ω, ω′), ω)

converges in distribution to ηω′ as n → ∞.

Theorems 7, 8 imply Theorems 3, 4. The proofs of Theorems 7, 8 follow
the same pattern as those of Theorems 5, 6; detailed proofs will appear in the
sequel to this paper.
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