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HYPERBOLIC STRUCTURE FOR A SIMPLIFIED MODEL OF DYNAMICAL PERFECT PLASTICITY

This paper is devoted to confront two different approaches to the problem of dynamical perfect plasticity. Interpreting this model as a constrained boundary value Friedrichs' system enables one to derive admissible hyperbolic boundary conditions. Using variational methods, we show the well-posedness of this problem in a suitable weak measure theoretic setting. Thanks to the property of finite speed propagation, we establish a new regularity result for the solution in short time. Finally, we prove that this variational solution is actually a solution of the hyperbolic formulation in a suitable dissipative/entropic sense, and that a partial converse statement holds under an additional time regularity assumption for the dissipative solutions.

Introduction

Friedrichs' systems are linear symmetric hyperbolic systems of the form

     ∂ t U + n i=1 A i ∂ xi U = 0 in R n × (0, T ), U (t = 0) = U 0 ,
where U : R n × (0, T ) → R m is the unknown of the problem, A 1 , . . . , A n are symmetric m × m matrices, and U 0 : R n → R m is a given initial data. They appear in a number of physical systems such as the wave equation or systems of conservation laws. In particular, the system of threedimensional linearized elasto-dynamics can be put within this framework (see [START_REF] Thomas | Classical elastodynamics as a linear symmetric hyperbolic system[END_REF]) where U is a vector of size 9 (with three components for the velocity, and six for the symmetric 3 × 3 Cauchy stress), and A 1 , A 2 , A 3 are explicit 9×9 matrices depending on the Lamé coefficients of the material.

Problems of continuum mechanics are usually settled in a bounded domain Ω ⊂ R n , which requires to impose a boundary condition. Of course, it is a difficult issue in hyperbolic equations since the initial condition is transported through the characteristics up to the boundary, where the value of the solution might thus be incompatible with the prescribed boundary data. In other words, one has to impose boundary conditions only on a part of the boundary which is not reached by the characteristics (see e.g. [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF][START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF][START_REF] Málek | Weak and measure-valued solutions to evolutionary PDEs[END_REF] in the case of scalar conservation laws, or [START_REF] Dubois | Boundary conditions for nonlinear hyperbolic systems of conservation laws[END_REF] for onedimensional nonlinear systems). In Friedrichs' seminal work [START_REF] Friedrichs | Symmetric positive linear differential equations[END_REF], the following type of boundary conditions are considered (A ν -M )U = 0 on ∂Ω × (0, T ), (1.1) where

A ν = A ν (x) := n i=1 A i ν i (x) (ν(x)
is the outer normal to Ω at the point x ∈ ∂Ω), and M = M (x) is a m × m matrix, for x ∈ ∂Ω, satisfying the following algebraic conditions (in the non-characteristic case, i.e., when A ν is non-singular, see also [START_REF] Mifsud | Dissipative formulation of initial boundary value problems for Friedrichs' systems[END_REF] for more details)

     M + M T is non-negative, Im(A ν -M ) ∩ Im(A ν + M ) = {0} , R m = Ker(A ν -M ) ⊕ Ker(A ν + M ).
(1.2) Date: January 14, 2016.

The fact that the symmetric part of M is supposed to be non-negative is a way to ensure that the L 2 (Ω)-norm of the solution decreases in time, and thus this hypothesis is related to the uniqueness of the solution. In other words, the non-negativity of M + M T is connected with the dissipativity of the equation. The two other assumptions are related to the existence of a solution.

Unfortunately, the previous formulation necessitates to define properly the trace of U on the boundary, which might not be desirable if one is interested in weak solutions in Lebesgue-type spaces (in the spirit of e.g. [START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF][START_REF] Málek | Weak and measure-valued solutions to evolutionary PDEs[END_REF] for a L ∞ -theory of boundary value scalar conservation laws). In [START_REF] Mifsud | Dissipative formulation of initial boundary value problems for Friedrichs' systems[END_REF], a general L 2 -theory for such boundary value Friedrichs' systems has been introduced. The so-called dissipative solutions are defined as functions U ∈ L 2 (Ω × (0, T ); R m ) satisfying, for all constant vector κ ∈ R m and all ϕ ∈ W 1,∞ (Ω × (0, T )) with ϕ ≥ 0,

T 0 Ω |U -κ| 2 ∂ t ϕ dx dt + n i=1 T 0 Ω A i (U -κ) • (U -κ)∂ xi ϕ dx dt + Ω |U 0 -κ| 2 ϕ(0) dx + T 0 ∂Ω M κ + • κ + ϕ dH n-1 dt ≥ 0, (1.3) 
where κ + = κ + (x) is the orthogonal projection of κ onto the linear space Ker(A ν + M ) ∩ ImA ν . As discussed in [START_REF] Mifsud | Dissipative formulation of initial boundary value problems for Friedrichs' systems[END_REF], this formulation naturally discriminates the admissible boundary conditions. In particular, in this case, the matrix M has to be a non-negative symmetric matrix (see Subsection 3.3). Note that this kind of dissipative formulation is reminiscent in hyperbolic equations (see e.g. [START_REF] Stanislav | First order quasilinear equations with several independent variables[END_REF] in the case of scalar conservations laws). Moreover, the family of functions U → |U -κ| 2 , where κ ∈ R m , can be thought of as the analogue of the Kružkov entropy functions in [START_REF] Stanislav | First order quasilinear equations with several independent variables[END_REF]. The term dissipative refers to the decreasing character of the L 2 -norm of the solution which prevents conservation of the energy, and to a special class of boundary conditions for hyperbolic systems (see [START_REF] Benzoni | Multidimensional hyperbolic partial differential equations[END_REF] and [START_REF] Mifsud | Dissipative formulation of initial boundary value problems for Friedrichs' systems[END_REF]Section 4]).

A number of mechanical problems, such as in elasto-plasticity or generalized non-newtonian fluids, involve a convex constraint. For that reason, it becomes relevant to ask whether one can incoporate convex constraints within a general theory of Friedrichs' systems. In [START_REF] Després | Weak solutions to Friedrichs systems with convex constraints[END_REF], this problem has been addressed in the full space Ω = R n . The authors define a notion of dissipative solutions (from which the previous formulation (1.3) in [START_REF] Mifsud | Dissipative formulation of initial boundary value problems for Friedrichs' systems[END_REF] has been inspired) which are shown in [START_REF] Babadjian | Relaxation approximation of friedrichs' systems under convex constraints[END_REF] to be the (unique) limit of a sequence of viscosity solutions for a regularized diffusive model where the constraint is penalized. The formulation of general constrained Friedrichs' systems in bounded domains becomes therefore a natural extension. However, there might be non trivial interactions between the constraint and the boundary condition (see (1.8) below), which makes the problem difficult to address in its full generality. This is the reason why, in this paper, we focus our attention to the meaningful particular case of dynamical perfect plasticity.

To be more precise, we consider a simplified two dimensional problem of anti-plane shear elastoplasticity (see Subsection 3.2 for a formal derivation from three-dimensional small strain elastoplasticity), where the displacement field u : Ω × [0, T ] → R is scalar valued and the stress σ : Ω × [0, T ] → R 2 is vector-valued. General considerations of continuum mechanics state that the equation of motion ü -divσ = 0 in Ω × (0, T ) must be satisfied. Then, following standard models of perfect plasticity, the stress is constrained to remain inside a fixed closed and convex set of R 2 . For simplifity, we assume that |σ| ≤ 1.

(1.4)

Moreover, the displacement gradient decomposes additively as

∇u = e + p,
where e and p : Ω × [0, T ] → R 2 stand for the elastic and plastic strains, respectively. The elastic strain is related to the stress by means of a linear relation, and, again for simplicity, we set σ = e.

(1.5)

Finally, the plastic variable evolves through the so-called flow rule, which stipulates that

ṗ = 0 if |σ| < 1, ṗ | ṗ| = σ if |σ| = 1.
(1.6)

This system must be supplemented by initial conditions on (u, u, σ, p) and boundary conditions. The mathematical analysis of dynamical elasto-plastic models has been performed in [START_REF] Anzellotti | Dynamical evolution of elasto-perfectly plastic bodies[END_REF][START_REF] Babadjian | Approximation of dynamic and quasi-static evolution problems in elasto-plasticity by cap models[END_REF] (see also [START_REF] Suquet | Sur les équations de la plasticité: existence et régularité des solutions[END_REF][START_REF] Temam | Duality and relaxation in the variational problems of plasticity[END_REF][START_REF] Anzellotti | Existence of the displacement field for an elastoplastic body subject to Hencky's law and von Mises yield condition[END_REF][START_REF] Dal Maso | Quasistatic evolution problems for linearly elastic-perfectly plastic materials[END_REF] in the static and quasi-static cases).

From the hyperbolic point of view, this problem can be interpreted as a constrained Friedrichs' system. Formally it can be put within a hyperbolic formulation of the type (1.3) (see Subsection 3.3) where U = ( u, σ) ∈ R 3 , and the 3 × 3 symmetric matrices A 1 , A 2 are given by

A 1 =   0 -1 0 -1 0 0 0 0 0   , A 2 =   0 0 -1 0 0 0 -1 0 0   .
The dissipative formulation is exactly given by (1.3), except that the constant vector κ must belong to the contraint set K = R × B, where B is the closed unit ball of R 2 (see (1.4) above). The hyperbolic vision of this problem motivates our choice of boundary conditions. It turns out that, in the unconstrained case (i.e. the wave equation), admissible dissipative boundary conditions in the sense of (1.1)-(1.2) are all of the form

σ • ν + λ -1 u = 0 on ∂Ω × (0, T ), (1.7) 
for some λ > 0 (see Lemma 3.1). This choice will be a posteriori justified by the fact that the variational and dissipative formulations are essentially equivalent. Note that this type of boundary condition, is quite unusual in solid mechanics. These are not of Robin type since it involves the velocity u, and not the displacement u. It is closer to Navier's no-slip boundary condition rather found in fluid mechanics problems. The goal of this paper consists thus in studying this particular model (in any space dimension and with a source term) related to dynamical perfect plasticity from both variational and hyperbolic points of view. First of all, using variational methods we establish a well-posedness result for this model. To this aim, we regularize the problem by considering a elasto-visco-plastic model where the constitutive law (1.5) is replaced by a Kelvin-Voigt visco-elastic law σ = σ + ε∇ u, where ε > 0 is a viscosity parameter, and stress constraint (1.4) together with the flow rule (1.6) are replaced by a Perzyna visco-plastic law ṗ = σ -P B (σ) ε ,

where P B denotes the orthogonal projection operator onto B. The equation of motion and the boundary condition are thus to be modified into

ü -div(σ + ε∇ u) = 0 in Ω × (0, T ), (σ + ε∇ u) • ν + λ -1 u = 0 on ∂Ω × (0, T ).
The well-posedness of this regularized model is presented in Section 4.

In Section 5, we prove the existence and uniqueness of a (variational) solution for the original model by means of a vanishing viscosity analysis as ε → 0. However, since in the limit, the stress satisfies the constraint |σ| ≤ 1, the original boundary condition (1.7) cannot be satisfied at points of the boundary where | u| > λ. Therefore, a relaxation phenomenon occurs (see Proposition 5.1) which implies that the boundary condition (1.7) relaxes as

σ • ν + λ -1 T λ ( u) = 0 on ∂Ω × (0, T ), (1.8) 
where T λ (z) = min(-λ, max(z, λ)) is the truncation of z ∈ R by the values ±λ. It shows an interesting interaction which imposes the boundary condition to accomodate the constraint. Note that since λ ∈ (0, +∞), the important cases of Dirichlet and Neumann boundary conditions are prohibited by this formulation. In Subsection 5.5, we show by means of asymptotic analysis that the Dirichlet (resp. Neumann) boundary condition can be recovered by letting λ → 0 (resp. λ → +∞).

As usual in plasticity, the solution happens to concentrate, leading to a bounded variation solution for the displacement, and a measure solution for the plastic strain. In Section 6, using the property of finite speed propagation, we prove a new regularity result in plasticity which states that, provided the data are smooth and compactly supported in space, the solution is smooth as well in short time. The argument rests on a Kato inequality (Proposition 5.12) which states a comparison principle between two solutions associated to different data. The fact that the data is compactly supported in Ω together with the finite speed propagation property ensures that, in short time, the boundary is not reached by the solution so that the boundary condition can be ignored, and one can argue as in the full space. To our knowledge, it seems to be the first regularity result in dynamical perfect-plasticity, and its generalization to more general vectorial models will be the object of a forthcoming work.

Finally, in Section 7, we establish rigorous links between the variational and hyperbolic formulations. We show that any variational solutions generate dissipative solutions. Conversely, provided the solution of the hyperbolic problem are smoother in time, variational solutions can be deduced from the dissipative formulation. 

Mathematical preliminaries

σ → |σ -P B (σ)| 2 2ε is convex, of class C 1 ,
and that its differential is given by σ → σ -P B (σ) /ε. In addition, its convex conjugate is p → |p| + ε|p| 2 /2, and in particular,

p = σ -P B (σ) ε ⇐⇒ σ • p = |p| + ε|p| 2 .
We write M n×n for the set of real n × n matrices, and M n×n sym for that of all real symmetric n × n matrices. Given a matrix A ∈ M n×n , we let |A| := tr(AA T ) (A T is the transpose of A, and trA is its trace) which defines the usual Euclidean norm over M n×n . We recall that for any two vectors a and b ∈ R n , a ⊗ b ∈ M n×n stands for the tensor product, i.e., (a

⊗ b) ij = a i b j for all 1 ≤ i, j ≤ n, and a ⊙ b := (a ⊗ b + b ⊗ a)/2 ∈ M n×n
sym denotes the symmetric tensor product.

Functional spaces.

Let Ω ⊂ R n be an open set. We use standard notation for Lebesgue and Sobolev spaces. In particular, for 1 ≤ p ≤ ∞, the L p (Ω)-norms of the various quantities are denoted by • p . We write M(Ω; R m ) (or simply M(Ω) if m = 1) for the space of bounded Radon measures in Ω with values in R m , endowed with the norm |µ|(Ω), where |µ| ∈ M(Ω) is the total variation of the measure µ. The Lebesgue measure in R n is denoted by L n , and the (n -1)-dimensional Hausdorff measure by H n-1 .

We denote by H(div, Ω) the Hilbert space of all σ ∈ L 2 (Ω; R n ) such that divσ ∈ L 2 (Ω). We recall that if Ω is bounded with Lipschitz boundary and σ ∈ H(div, Ω), its normal trace, denoted by σ • ν, is well defined as an element of

H -1/2 (∂Ω). If further σ ∈ H(div, Ω) ∩ L ∞ (Ω; R n ), it turns out that σ • ν ∈ L ∞ (∂Ω) with σ • ν L ∞ (∂Ω) ≤ σ ∞ (see [2, Theorem 1.2]). Moreover, according to [13, Theorem 2.2], if Ω is of class C 2 , then for all ϕ ∈ L 1 (∂Ω), lim ε→0 1 0 ∂Ω σ(y -εsν(y)) • ν(y) -(σ • ν)(y) ϕ(y) dH n-1 (y) ds = 0, (2.1) 
where ν denotes the outer unit normal to ∂Ω.

The space BV (Ω) of functions of bounded variation in Ω is made of all functions u ∈ L 1 (Ω) such that the distributional gradient Du ∈ M(Ω; R n ). We refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF][START_REF] Evans | Measure theory and fine properties of functions[END_REF][START_REF] Giusti | Minimal surfaces and functions of bounded variation[END_REF] for a detailed presentation of this space. We just recall here few facts. If Ω has Lipschitz boundary, any function u ∈ BV (Ω) admits a trace, still denoted by u ∈ L 1 (∂Ω), such that Green's formula holds (see e.g. Theorem 1, Section 5.3 in [START_REF] Evans | Measure theory and fine properties of functions[END_REF]). Moreover, according to [START_REF] Anzellotti | BV functions and traces[END_REF]Theorem 4], if Ω is further of class C 1 , for every ε > 0, there exists a constant c ε (Ω) > 0 such that for every u ∈ BV (Ω),

u L 1 (∂Ω) ≤ (1 + ε)|Du|(Ω) + c ε (Ω) u 1 . (2.2) Moreover, if Ω is of class C 2 , one has lim ε→0 1 0 ∂Ω |u(y -εsν(y)) -u(y)| dH n-1 (y) ds = 0. (2.3) Conversely, Gagliardo's extension result (see [21, Theorem 2.16 & Remark 2.17]) states that if Ω ⊂ R n is a bounded open set of class C 1 , and g ∈ L 1 (∂Ω), for each ε > 0, there exists a function u ε ∈ W 1,1 (Ω) such that      u ε = g on ∂Ω, u ε 1 ≤ ε g L 1 (∂Ω) , ∇u ε 1 ≤ (1 + ε) g L 1 (∂Ω) . (2.4) 
Let us finally mention a variant of the usual approximation result for BV functions [ 

∈ L 2 (Ω; R n ).
There exists a sequence (u j ) ⊂ W 1,1 (Ω) such that u j ⇀ u weakly* in BV (Ω), |Du j -σ|(Ω) → |Du -σ|(Ω) and u j = u on ∂Ω for all j ∈ N.

2.3.

Generalized stress/strain duality. According to [2, Definition 1.4], we define a duality pairing between stresses and plastic strains as follows. 

Definition 2.2. Let u ∈ BV (Ω) ∩ L 2 (Ω) be such that Du = e + p for some e ∈ L 2 (Ω; R n ) and p ∈ M(Ω; R n ), and let σ ∈ H(div, Ω) ∩ L ∞ (Ω; R n ). We define the distribution [σ • p] ∈ D ′ (Ω) by [σ • p] , ϕ = [σ • Du] , ϕ - Ω σ • eϕ dx for all ϕ ∈ C ∞ c (Ω), where [σ • Du] is given by [σ • Du] , ϕ = - Ω u(divσ)ϕ dx - Ω u(σ • ∇ϕ) dx for all ϕ ∈ C ∞ c (Ω
|[σ • p]| ≤ σ ∞ |p| in M(Ω).
A slight adaptation of [2, Theorem 1.9] shows the following integration by parts formula.

Proposition 2.4. Let u ∈ BV (Ω) ∩ L 2 (Ω), σ ∈ H(div, Ω) ∩ L ∞ (Ω; R n ) and ϕ ∈ W 1,∞ (Ω). Then, Ω ϕ d[σ • Du] + Ω uϕ(divσ) dx + Ω u(σ • ∇ϕ) dx = ∂Ω (σ • ν)uϕ dH n-1 .
3. Description of the model 3.1. Small strain elasto-plasticity. To simplify the presentation of the model, we consider the physical three-dimensional case. We assume that the reference configuration of the elasto-plastic body under consideration occupies the volume B ⊂ R 3 . In the framework of small strain elastoplasticity, the natural kinematic variable is the displacement field u : B × [0, T ] → R 3 (or the velocity v := u). Denoting by

Eu := (Du + Du T )/2 : B × [0, T ] → M 3×3
sym the linearized strain tensor, small strain elasto-plasticity assumes that Eu decomposes additively as

Eu = e + p, (3.1) 
where e and p : B × [0, T ] → M 3×3 sym stand for the elastic and plastic strains, respectively. The elastic strain is related to the Cauchy stress tensor σ :

B × [0, T ] → M 3×3
sym by means of Hooke's law σ = Ce, where C is the symmetric fourth order elasticity tensor. For example, in the isotropic case, one has σ = λ(tre)I + 2µe, (

where λ and µ are the Lamé coefficients satisfying µ > 0 and 3λ + 2µ > 0. In a dynamical framework and in the presence of external body loads f : B × [0, T ] → R 3 , the equations of motion are a system of partial differential equations which writes as

ü -divσ = f in B × (0, T ). (3.3) 
Plasticity is characterized by the existence of a yield zone in the stress space beyong which the Cauchy stress is not permitted to live. The stress tensor is indeed constrained to belong to a fixed nonempty, closed and convex subset of M 3×3 sym . In the case of Von Mises plasticity, the constraint only acts on the (trace free) deviatoric stress σ D := σ -(trσ)I/3, and reads as

|σ D | ≤ k, (3.4) 
where k > 0 is a critical stress value. The evolution of the plastic strain is described by means of the flow rule and is expressed with the Prandtl-Reuss law

ṗ = 0 if |σ D | < k, ṗ | ṗ| = σD k if |σ D | = k. (3.5) 
The system (3.1)-(3.5) is supplemented by initial and boundary conditions which will be discussed later.

3.2. Anti-plane shear. Denoting by (e 1 , e 2 , e 3 ) the canonical basis of R 3 , we assume that B is invariant in the e 3 direction so that B = Ω × R, where Ω ⊂ R 2 is a bounded open set. We also suppose that the displacement is anti-plane u(x 1 , x 2 , x 3 ) = u(x 1 , x 2 )e 3 for some scalar function u : Ω × [0, T ] → R, so that computing the linearized strain yields

Eu = (∂ x1 u)e 1 ⊙ e 3 + (∂ x2 u)e 2 ⊙ e 3
corresponding to pure shear strain. We thus assume that the elastic and plastic strains conserve this special structure so that Computing the Cauchy stress according to (3.2) yields a pure shear stress σ = 2µe, so that denoting by σ := (σ 13 , σ 23 ) its only nonzero components, we have

σ = µe.
We also assume that the body load is compatible with the anti-plane assumption, i.e., f = f e 3 , for some f : Ω × [0, T ] → R, so that the equations of motion (3.3) becomes a scalar equation

ü -divσ = f in Ω × (0, T ).
Finally, the stress constraint (3.4) now reads as |σ| ≤ k/ √ 2, and the flow rule (3.5) is given by

ṗ = 0 if |σ| < k/ √ 2, ṗ | ṗ| = √ 2σ k if |σ| = k/ √ 2.
In order to simplify notation, we assume henceforth that µ = 1 (so that σ = e) and k = √ 2. The simplified model of plasticity thus consists in looking for functions u : Ω × [0, T ] → R, σ : Ω × [0, T ] → R 2 and p : Ω × [0, T ] → R 2 such that the following system holds in Ω × (0, T ):

               ∇u = σ + p, ü -divσ = f, |σ| ≤ 1, ṗ = 0 if |σ| < 1, ṗ | ṗ| = σ if |σ| = 1. (3.6) 
Note that the flow rule can be equivalently be written as

σ • ṗ = | ṗ|. (3.7)
which expresses Hill's principle of maximal plastic work. We supplement the system with initial conditions on the displacement, the velocity, the stress and the plastic strain (u, u, σ, p)(0) = (u 0 , v 0 , σ 0 , p 0 ).

The precise mathematical formulation of this model will be the object of Section 5. In particular, the flow rule (3.7) will have to be interpreted in a suitable measure theoretic sense according to the generalized stress/strain duality introduced in Definition 2.2. The discussion of admissible boundary conditions is the object of the following paragraphs, once the hyperbolic structure of the system will be described.

3.3.

Dissipative formulation of the model. In this section, we perform formal manipulations on the system (3.6) in order to write it in a different form, more appropriate to describe hyperbolicity. To do that, we denote by U := ( u, σ), and observe that the first two equations of (3.6) can be written as

∂ t U + A 1 ∂ x1 U + A 2 ∂ x2 U + P = F, (3.8) 
where F = (f, 0, 0), P = (0, ṗ1 , ṗ2 ) and

A 1 =   0 -1 0 -1 0 0 0 0 0   , A 2 =   0 0 -1 0 0 0 -1 0 0   . (3.9)
Taking the scalar product of (3.8) with U , yields

1 2 ∂ t |U | 2 + 1 2 ∂ x1 (A 1 U • U ) + 1 2 ∂ x2 (A 2 U • U ) + P • U = F • U,
while, for every constant vector κ = (k, τ ) ∈ K := R × B, taking the scalar product of (3.8) with κ leads to

∂ t (U • κ) + ∂ x1 (A 1 U • κ) + ∂ x2 (A 2 U • κ) + P • κ = F • κ.
Substracting both previous equalities, and using that P • (U -κ) = ṗ • (σ -τ ) ≥ 0 according to the flow rule written as (3.7), we infer that

∂ t |U -κ| 2 + 2 i=1 ∂ xi A i (U -κ) • (U -κ) ≤ 2F • (U -κ). (3.10) 
We then multiply the previous inequality by a test function ϕ ∈ C ∞ c (Ω × (-∞, T )) with ϕ ≥ 0, and integrate by parts to obtain

T 0 Ω |U -κ| 2 φ dx dt + 2 i=1 T 0 Ω A i (U -κ) • (U -κ)∂ xi ϕ dx dt + Ω |U 0 -κ| 2 ϕ(0) dx + 2 T 0 Ω F • (U -κ)ϕ dx dt ≥ 0,
which is precisely the formulation of constrained Friedrichs' systems as defined in [START_REF] Després | Weak solutions to Friedrichs systems with convex constraints[END_REF] without taking care of boundary conditions since ϕ vanishes in a neighborhood of ∂Ω × (0, T ).

In order to account for boundary condition, we follow an approach introduced in [START_REF] Mifsud | Dissipative formulation of initial boundary value problems for Friedrichs' systems[END_REF]. Following the pioneering work [START_REF] Friedrichs | Symmetric positive linear differential equations[END_REF], we are formally interested in dissipative boundary conditions of the form

(A ν -M )U = 0 on ∂Ω × (0, T ), (3.11) 
where

A ν = A 1 ν 1 + A 2 ν 2 (ν = (ν 1 , ν 2
) is the outer normal to ∂Ω), and M ∈ M 3×3 is a boundary matrix satisfying the following algebraic conditions

         M = M T , M is non-negative, KerA ν ⊂ KerM, R 3 = Ker(A ν -M ) + Ker(A ν + M ).
(3.12)

Note that in the non-characteristic case (i.e. when A ν is non-singular), conditions (3.12) imply those (1.2) introduced by Friedrichs (see [START_REF] Mifsud | Dissipative formulation of initial boundary value problems for Friedrichs' systems[END_REF] for a detailed discussion). Thus, multiplying inequality (3.10) by a test function ϕ ∈ C ∞ c (R n × (-∞, T )) with ϕ ≥ 0, and integrating by parts, we get that

T 0 Ω |U -κ| 2 φ dx dt + 2 i=1 T 0 Ω A i (U -κ) • (U -κ)∂ xi ϕ dx dt + Ω |U 0 -κ| 2 ϕ(0) dx + 2 T 0 Ω F • (U -κ)ϕ dx dt - T 0 ∂Ω A ν (U -κ) • (U -κ)∂ xi ϕ dx dt ≥ 0. (3.13)
According to [26, Lemma 1], we have that

R 3 = KerA ν ⊕ Ker(A ν -M ) ∩ ImA ν ⊕ Ker(A ν + M ) ∩ ImA ν .
For each κ ∈ R 3 , we denote by κ ± the projection of κ onto Ker(A ν ± M ) ∩ ImA ν . Using the (strong) boundary condition (3.11), we have that U ∈ Ker(A ν -M ), or still U + = 0. The algebraic conditions (3.12) together with [26, Lemma 1] thus yield

A ν (U -κ) • (U -κ) = -M (U -κ) + • (U -κ) + + M (U -κ) -• (U -κ) - = -M κ + • κ + + M (U -κ) -• (U -κ) -≥ -M κ + • κ + .
Inserting in (3.13), we get that for all constant vector κ ∈ K and all ϕ ∈ W 1,∞ (Ω × (0, T )) with ϕ ≥ 0,

T 0 Ω |U -κ| 2 φ dx dt + 2 i=1 T 0 Ω A i (U -κ) • (U -κ)∂ xi ϕ dx dt + Ω |U 0 -κ| 2 ϕ(0) dx + 2 T 0 Ω F • (U -κ)ϕ dx dt + T 0 ∂Ω M κ + • κ + ϕ dH 1 dt ≥ 0. (3.14)
The previous family of inequalities defines a notion dissipative solutions U ∈ L 2 (Ω × (0, T ); K) to the dynamical elasto-plastic problem. Note that it is meaningfull within a L 2 theory of Friedrichs' systems (as suggested by (3.14)) since the trace of U on the boundary ∂Ω× (0, T ), which is not well defined, is not involved in this definition (see also [START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF][START_REF] Málek | Weak and measure-valued solutions to evolutionary PDEs[END_REF] for an L ∞ -theory of initial/boundary value conservation laws).

3.4. Derivation of the boundary conditions. The well-posedness of this kind of dissipative formulations in the full space Ω = R 2 has been established in [START_REF] Després | Weak solutions to Friedrichs systems with convex constraints[END_REF]. On the other hand, among the results of [START_REF] Mifsud | Dissipative formulation of initial boundary value problems for Friedrichs' systems[END_REF], it is shown the existence and uniqueness of a solution to this problem in the unconstrained case (K = R 3 ), and the dissipative boundary condition (3.11) is proved to be satisfied in a suitable weak sense.

In order to formulate more precisely the admissible boundary conditions in our particular situation, we need to characterize all boundary matrices satisfying the required algebraic conditions (3.12). Lemma 3.1. Assume that A 1 and A 2 are given by (3.9) and ν ∈ R 2 satisfies |ν| = 1. The following assertions are equivalent:

(1) A matrix M ∈ M 3×3 satisfies (3.12);

(2) There exists λ ∈ (0, +∞) such that

M =   λ -1 0 0 0 λν 2 1 λν 1 ν 2 0 λν 1 ν 2 λν 2 2   . (3.15)
Proof. It is immediate to check that any matrix M of the form (3.15) with λ > 0 fullfills all conditions (3.12). Conversely, assume that

M =   d 1 a b a d 2 c b c d 3   ∈ M 3×3 sym satisfies (3.12). Since A ν =   0 -ν 1 -ν 2 -ν 1 0 0 -ν 2 0 0   , we get that KerA ν = (v, σ) = (v, σ 1 , σ 2 ) ∈ R 3 : v = 0 and σ • ν = σ 1 ν 1 + σ 2 ν 2 = 0 . Denoting by ν ⊥ := σ ∈ R 2 : σ • ν = 0 the linear space of dimension 1 in R 2 , condition KerA ν ⊂ KerM reads as      ν ⊥ ⊂ σ ∈ R 2 : aσ 1 + bσ 2 = 0 =: E 1 , ν ⊥ ⊂ σ ∈ R 2 : d 2 σ 1 + cσ 2 = 0 =: E 2 , ν ⊥ ⊂ σ ∈ R 2 : cσ 1 + d 3 σ 2 = 0 =: E 3 .
Consequently, we obtain that the dimension of the linear spaces E 1 , E 2 and E 3 is larger than or equal to 1.

If dim E 1 = 1, then ν is orthogonal to E 1 , while if dim E 1 = 2, then a = b = 0. In both cases, one can find µ 1 ∈ R such that (a, b) = µ 1 ν. Arguing similarly for E 2 and E 3 , there exist µ 2 and µ 3 ∈ R such that (d 2 , c) = µ 2 ν, (c, d 3 ) = µ 3 ν, so that M =   d 1 µ 1 ν 1 µ 1 ν 2 µ 1 ν 1 µ 2 ν 1 µ 2 ν 2 µ 1 ν 2 µ 3 ν 1 µ 3 ν 2   .
Using that M is symmetric, we must have µ 2 ν 2 = µ 3 ν 1 . Since |ν| = 1, then either ν 1 = 0 or ν 2 = 0. Suppose without loss of generality that ν 1 = 0, and define λ = µ 2 /ν 1 , then

M =   d 1 µ 1 ν 1 µ 1 ν 2 µ 1 ν 1 λν 2 1 λν 1 ν 2 µ 1 ν 2 λν 1 ν 2 λν 2 2   . Using next that M is non-negative, it follows that for all (v, σ) ∈ R 3 , M v σ • v σ = d 1 v 2 + 2µ 1 vσ • ν + λ (σ • ν) 2 ≥ 0, which ensures that d 1 ≥ 0, λ ≥ 0.
In fact, if d 1 = λ = 0, the previous expression can easily be made negative so that either d 1 > 0 or λ > 0 (since the case µ 1 = 0 is impossible).

From the conditions KerA ν ⊂ KerM and dim KerA ν = 1, we obtain that dim Ker(

A ν ± M ) ≥ 1 and dim Ker(A ν -M ) ∩ Ker(A ν + M ) ≥ 1. The last condition R 3 = Ker(A ν -M ) + Ker(A ν + M ) then implies that dim Ker(A ν ± M ) = 2 (since A ν is neither non-negative, nor non-positive). Computing A ν ± M =   ±d 1 (±µ 1 -1)ν 1 (±µ 1 -1)ν 2 (±µ 1 -1)ν 1 ±λν 2 1 ±λν 1 ν 2 (±µ 1 -1)ν 2 ±λν 1 ν 2 ±λν 2 2   ,
we infer that

(A ν -M ) v σ = 0 ⇐⇒ d 1 v + (µ 1 + 1)σ • ν = 0, (µ 1 + 1)v + λσ • ν = 0.
Observe that, since dim Ker(A ν -M ) = 2, we obtain that

d 1 v + (µ 1 + 1)σ • ν = 0 ⇐⇒ (µ 1 + 1)v + λσ • ν = 0 ⇐⇒ d 1 λ -(µ 1 + 1) 2 = 0,
and similarly, since dim Ker(A ν + M ) = 2,

d 1 v + (µ 1 -1)σ • ν = 0 ⇐⇒ (µ 1 -1)v + λσ • ν = 0 ⇐⇒ d 1 λ -(µ 1 -1) 2 = 0,
which implies that µ 1 = 0 and d 1 λ = 1, hence λ > 0.

Remark 3.2. A similar characterization result can be proved in any dimension n ≥ 2, i.e., when the matrices M belong to M (n+1)×(n+1) .

As a consequence of Lemma 3.1, it follows that all admissible boundary conditions (3.11) for the dissipative formulation are of the form

σ • ν + λ -1 u = 0 on ∂Ω × (0, T ), (3.16) 
where λ : ∂Ω → (0, +∞). In the sequel, we will assume for simplicity that λ > 0 is independent of the space variable.

Remark 3.3. Note that, strictly speaking, (homogeneous) Dirichlet and Neumann conditions are not contained within this framework. However, they can be recovered by means of an asymptotic analysis as λ → 0 + and λ → +∞, respectively (see Section 5.5). Moreover, since λ is actually a (Borel) function of the space variable, letting λ → 0 in some subset Γ D ⊂ Ω, and λ → +∞ on its complementary Γ N := ∂Ω \ Γ D would lead to mixed boundary conditions of Dirichlet type on Γ D and Neumann type on Γ N . This problem will not be addressed in the present work.

The dynamic elasto-visco-plastic model

In order to establish the existence and uniqueness of solution to (3.6) and (3.16), we consider an elasto-visco-plastic approximation model which consists in regularizing the constitutive law by means of a Kelvin-Voigt type visco-elasticity, and the flow rule thanks to a Perzyna type viscoplasticity. Except for our choice of boundary conditions (3.16), the model described below is very similar to that studied in [START_REF] Dal | Quasistatic evolution in perfect plasticity as limit of dynamic processes[END_REF] (see also [START_REF] Suquet | Evolution problems for a class of dissipative materials[END_REF][START_REF] Babadjian | Approximation of dynamic and quasi-static evolution problems in elasto-plasticity by cap models[END_REF]).

This choice of regularization is motivated by the approximation employed in [START_REF] Després | Weak solutions to Friedrichs systems with convex constraints[END_REF][START_REF] Babadjian | Relaxation approximation of friedrichs' systems under convex constraints[END_REF] in order to show the well-posedness of constrained Friedrichs' systems in the whole space. It consists in penalizing the constraint (which is described by Perzyna visco-plasticity), and adding up a diffusive term (which corresponds to Kelvin-Voigt visco-elasticity).

Note also that since the space dimension does not really matter in the subsequent arguments, we perform the analysis in any space dimension.

The main result of this section is the following existence and uniqueness result. 

(u 0 , v 0 , σ 0 , p 0 ) ∈ H 1 (Ω)×H 2 (Ω)×H(div, Ω)× L 2 (Ω; R n ) such that      ∇u 0 = σ 0 + p 0 in L 2 (Ω; R n ), σ 0 • ν + λ -1 v 0 = 0 H n-1 -a.e. on ∂Ω, |σ 0 | ≤ 1 a.e. in Ω.
For each ε > 0, we define

g ε := ε∇v 0 • ν ∈ L 2 (∂Ω). Then, there exist a unique triple (u ε , σ ε , p ε ) with the regularity      u ε ∈ W 2,∞ ([0, T ]; L 2 (Ω)) ∩ H 2 ([0, T ]; H 1 (Ω)), σ ε ∈ W 1,∞ ([0, T ]; L 2 (Ω; R n )), p ε ∈ H 1 ([0, T ]; L 2 (Ω; R n ))
, which satisfies the following properties:

(1) The initial conditions:

u ε (0) = u 0 , uε (0) = v 0 , σ ε (0) = σ 0 , p ε (0) = p 0 ;
(2) The additive decomposition: for all t ∈ [0, T ]

∇u ε (t) = σ ε (t) + p ε (t) in L 2 (Ω; R n ); (4.1) 
(3) The equation of motion:

üε -div(σ ε + ε∇ uε ) = f in L 2 (0, T ; L 2 (Ω));
(4) The dissipative boundary condition:

(σ ε + ε∇ uε ) • ν + λ -1 uε = g ε in L 2 (0, T ; L 2 (∂Ω)); (4.2) 
(5) The visco-plastic flow rule:

ṗε = σ ε -P B (σ ε ) ε in L 2 (0, T ; L 2 (Ω; R n )). (4.3)
In addition, we have the following energy balance: for all t ∈ [0, T ],

1 2 uε (t) 2 2 + 1 2 σ ε (t) 2 2 + ε t 0 Ω |∇ uε | 2 dx ds + t 0 Ω | ṗε | 2 dx ds + 1 λ t 0 ∂Ω | uε | 2 dH n-1 ds + t 0 Ω | ṗε | dx ds = 1 2 v 0 2 2 + 1 2 σ 0 2 2 + t 0 Ω f uε dx ds + t 0 ∂Ω g ε uε dH n-1 ds, (4.4)
and the estimate

sup t∈[0,T ] üε (t) 2 2 + sup t∈[0,T ] σε (t) 2 2 + ε T 0 ∇ü ε (t) 2 2 dt + 1 λ T 0 üε (t) 2 L 2 (∂Ω) dt ≤ C div(σ 0 + ε∇v 0 ) + f (0) 2 2 + ∇v 0 2 2 + T 0 ḟ (t) 2 dt 2 , (4.5) 
for some constant C > 0 independent of ε and λ.

The proof of Theorem 4.1 is standard and follows the lines of e.g. [START_REF] Dal | Quasistatic evolution in perfect plasticity as limit of dynamic processes[END_REF] for the existence and uniqueness in the energy space, and of [START_REF] Babadjian | Approximation of dynamic and quasi-static evolution problems in elasto-plasticity by cap models[END_REF] for the additional regularity results (4.5). We will not present the proof of that result, whose arguments can be easily reconstructed by the reader from the above mentioned references. The main difference with [START_REF] Babadjian | Approximation of dynamic and quasi-static evolution problems in elasto-plasticity by cap models[END_REF][START_REF] Dal | Quasistatic evolution in perfect plasticity as limit of dynamic processes[END_REF] is concerned with the boundary condition. However, as long as ε > 0, since the analysis takes place in Sobolev type spaces, this difference will not really matter.

The proof of existence relies on a time discretization procedure. At each time step, we solve a minimization problem. After defining suitable interpolants, we derive some standard a priori estimates that allow one to obtain some weak convergences in the energy space as the time discretization parameter goes to zero. It enables one to establish the additive decomposition as well as the initial conditions for the displacement, the stress and the plastic strain. At this stage, the equation of motion and the boundary condition are just formulated in a weak sense. Nonetheless, it allows one to get the initial condition for the velocity using results on Banach-valued Sobolev spaces. Indeed, since uε ∈ L 2 (0, T ; H 1 (Ω)) and üε ∈ L 2 (0, T ; [H 1 (Ω)] ′ ), it follows from [8, Theorem 1.19] that uε ∈ C 0 ([0, T ]; L 2 (Ω)). In order to get the flow rule, we derive a strong convergence result. Finally, we obtain, thanks to suitable a posteriori estimates, the equation of motion in a strong sense as well as the boundary condition. Note that the introduction of the term g ε allows one to get rid off undesirable boundary terms in the proof of estimate (4.5).

Remark 4.2. The equation of motion implies, for all

ϕ ∈ L 2 (0, T ; H 1 (Ω)), T 0 Ω üε ϕ dx dt + T 0 Ω (σ ε + ε∇ uε ) • ∇ϕ dx dt + 1 λ T 0 ∂Ω uε ϕ dH n-1 dt = T 0 Ω f ϕ dx dt + T 0 ∂Ω g ε ϕ dH n-1 dt. (4.6)

The dynamic elasto-plastic model

The object of this section is to show the well-posedness of the model (3.6) and (3.16) by letting the viscosity parameter ε tend to zero. It turns out that a relaxation phenomenon occurs, and it leads to a modification of the boundary condition which has to accomodate to the stress constraint. Indeed, since it is expected that |σ| ≤ 1, the boundary condition σ • ν + λ -1 u = 0 can only be satisfied at the points of the boundary where | u| ≤ λ, while on the part of the boundary where | u| > λ, the velocity has to be truncated by the values ±λ. This phenomena is easily explained by looking at the energy balance (4.4). In order to pass to the limit in this equality, we must (at least) ensure the sequential lower semicontinuity of the mapping

(u, σ) → Ω |∇u -σ| dx + 1 2λ ∂Ω |u| 2 dH n-1
with respect to a reasonable topology provided by the energy estimates. Unfortunately, this property fails according to the following result (see also [START_REF] José | The 1-Laplacian elliptic equation with inhomogeneous Robin boundary conditions[END_REF][START_REF] Modica | Gradient theory of phase transitions with boundary contact energy[END_REF]). 

F : W 1,1 (Ω) × L 2 (Ω; R n ) → [0, +∞] by F (u, σ) = Ω |∇u -σ| dx + 1 2λ ∂Ω |u| 2 dH n-1 , with the convention that F (u, σ) = +∞ if u ∈ L 2 (∂Ω).
Then, the lower semicontinuous enveloppe of F with respect to the weak* convergence in BV (Ω) and the strong convergence in L 2 (Ω; R n ) is given by

F (u, σ) = |Du -σ|(Ω) + ∂Ω ψ λ (u) dH n-1 ,
where ψ λ : R → [0, +∞) is defined by

ψ λ (z) = z 2 2λ if |z| ≤ λ, |z| -λ 2 if |z| ≥ λ.
(5.1)

Proof. Let us fix (u, σ) ∈ BV (Ω) × L 2 (Ω; R n ).
Step 1: Lower bound. We must show that for every sequences

(u k ) ⊂ W 1,1 (Ω) and (σ k ) ⊂ L 2 (Ω; R n ) with u k ⇀ u weakly* in BV (Ω) and σ k → σ strongly in L 2 (Ω; R n ), then F (u, σ) ≤ lim inf k→∞ F (u k , σ k ). Since ψ λ ≤ | • | 2 /(2λ), we first observe that lim inf k→∞ F (u k , σ k ) ≥ lim inf k→∞ F (u k , σ k ). (5.2)
Possibly extracting a subsequence, we can assume without loss of generality that

lim inf k→∞ F (u k , σ k ) = lim k→∞ F (u k , σ k ) < +∞,
and, up to another subsequence, we can also suppose that |Du k -σ k | ⇀ µ weakly* in M(Ω) for some non-negative measure µ ∈ M(Ω).

The argument presented below is very close to that of [START_REF] Modica | Gradient theory of phase transitions with boundary contact energy[END_REF]Proposition 1.2]. Let δ > 0, and

ζ δ ∈ C ∞ c (Ω; [0, 1]) be a cut-off function such that ζ δ = 1 on A δ := {x ∈ Ω : dist(x, ∂Ω) ≥ δ} and |∇ζ δ | ≤ 2/δ in Ω. We consider the function w δ,k := (1 -ζ δ )(u -u k ) ∈ BV (Ω) which satisfies w δ,k = u -u k in a neighborhood of ∂Ω, w δ,k = 0 in A δ , and Dw δ,k = -(u -u k )∇ζ δ + (1 -ζ δ )(Du -Du k )
in Ω. According to the trace inequality (2.2), we infer that

∂Ω |u -u k | dH n-1 ≤ (1 + ε)|Dw δ,k |(Ω) + c ε Ω |w δ,k | dx ≤ 2(1 + ε) δ + c ε Ω\A δ |u -u k | dx + (1 + ε)|Du -Du k |(Ω \ A δ ).
Since the function ψ λ is 1-Lipschitz, we have that

∂Ω |ψ λ (u) -ψ λ (u k )| dH n-1 ≤ ∂Ω |u -u k | dH n-1 , while |Du -Du k |(Ω \ A δ ) ≤ |Du -σ|(Ω \ A δ ) + Ω\A δ |∇u k -σ k | dx + Ω |σ k -σ| dx.
As a consequence,

F (u, σ) -F (u k , σ k ) ≤ C ε,δ Ω\A δ |u -u k | dx + (1 + ε) Ω |σ -σ k | dx + (1 + ε)|Du -σ|(Ω \ A δ ) + (1 + ε)|Du k -σ k |(Ω \ A δ ) + |Du -σ|(Ω) -|Du k -σ k |(Ω).
Choosing a sequence (δ j ) j∈N with δ j ց 0 + and µ(∂A δj ) = 0 for all j ∈ N, we get that |Du k -

σ k |(Ω \ A δj ) → |Du -σ|(Ω \ A δj ) as k → ∞, and thus 
F (u, σ) -lim inf k→∞ F (u k , σ k ) ≤ 2(1 + ε)|Du -σ|(Ω \ A δj ).
Finally, since A δj is increasing to Ω as j → ∞, we get that

F (u, σ) ≤ lim inf k→∞ F (u k , σ k ),
which together with (5.2) completes the proof of the lower bound.

Step 2: Upper bound. We show the existence of sequences (u

k ) ⊂ W 1,1 (Ω) and (σ k ) ⊂ L 2 (Ω; R n ) such that u k ⇀ u weakly* in BV (Ω), σ k → σ strongly in L 2 (Ω; R n ), and lim sup k→∞ F (u k , σ k ) ≤ F (u, σ).
This proof follows the lines of [START_REF] Bouchitté | Relaxation of variational problems under trace constraints[END_REF]Lemma 2.1]. Let us denote by θ = max(-λ, min(u, λ)) the truncation of the trace of u on ∂Ω by the values ±λ. Then θ ∈ L ∞ (∂Ω), and using Gagliardo's extension theorem (2.4), for each k ∈ N * , one can find a function

w k ∈ W 1,1 (Ω) such that w k = θ-u on ∂Ω, Ω |w k | dx ≤ 1 k ∂Ω |θ -u| dH n-1 ,
and

Ω |∇w k | dx ≤ 1 + 1 k ∂Ω |θ -u| dH n-1 .
Applying next Proposition 2.1, there exists a sequence (

z k ) ⊂ W 1,1 (Ω) such that z k ⇀ u weakly* in BV (Ω), |Dz k -σ|(Ω) → |Du -σ|(Ω) and z k = u on ∂Ω for each k. Setting σ k ≡ σ and u k := w k + z k ∈ W 1,1 (Ω), then u k = θ on ∂Ω, u k ⇀ u weakly* in BV (Ω), and lim sup k→∞ Ω |∇u k -σ| dx ≤ |Du -σ|(Ω) + ∂Ω |u -θ| dH n-1 . Consequently, lim sup k→∞ F (u k , σ k ) ≤ |Du -σ|(Ω) + ∂Ω |u -θ| dH n-1 + 1 2λ ∂Ω |θ| 2 dH n-1 = |Du -σ|(Ω) + ∂Ω∩{u≤-λ} (-u -λ) dH n-1 + ∂Ω∩{u≥λ} (u -λ) dH n-1 + 1 2λ ∂Ω∩{|u|≤λ} |u| 2 dH n-1 + λ 2 H n-1 ({|u| > λ}) = F (u, σ),
which concludes the proof of the upper bound.

Remark 5.2. In the proof of the lower bound we strongly used the C 1 regularity of the boundary. Indeed [START_REF] Modica | Gradient theory of phase transitions with boundary contact energy[END_REF]Remark 1.3] shows that energy functionals of the form

BV (Ω) ∋ u → |Du|(Ω) + Ω ψ(u) dH n-1 ,
with Ω ⊂ R n only Lipschitz, and ψ : R → R 1-Lipschitz, might fail to be sequentially weakly* lower semicontinuous in BV (Ω). On the other hand, the use of the C 

ψ ′ λ (z) =      -1 if z ≤ -λ, z λ if |z| < λ, 1 if z ≥ λ.
Moreover, its convex conjugate is given, for all z ∈ R, by

ψ * λ (z) = λ 2 |z| 2 + I [-1,1] (z), (5.3) 
where

I [-1,1]
is the indicator function of the interval [-1, 1] which is equal to 0 in [-1, 1], and +∞ outside.

We now state the main result of this section. 

(u 0 , v 0 , σ 0 , p 0 ) ∈ H 1 (Ω) × H 2 (Ω) × H(div, Ω) × L 2 (Ω; R n ) such that      ∇u 0 = σ 0 + p 0 in L 2 (Ω; R n ), σ 0 • ν + λ -1 v 0 = 0 H n-1 on ∂Ω, |σ 0 | ≤ 1 a.e. in Ω.
(5.4)

Then there exist a unique triple (u, σ, p) with the regularity

     u ∈ W 2,∞ ([0, T ]; L 2 (Ω)) ∩ C 0,1 ([0, T ]; BV (Ω)), σ ∈ W 1,∞ ([0, T ]; L 2 (Ω; R n )), p ∈ C 0,1 ([0, T ]; M(Ω; R n )),
which satisfies the following properties:

(1) The initial conditions:

u(0) = u 0 , u(0) = v 0 , σ(0) = σ 0 , p(0) = p 0 ;
(2) The additive decomposition: for all t ∈ [0, T ]

Du(t) = σ(t) + p(t) in M(Ω; R n );
(3) The equation of motion:

ü -divσ = f in L 2 (0, T ; L 2 (Ω));
(4) The relaxed boundary condition:

σ • ν + ψ ′ λ ( u) = 0 in L 2 (0, T ; L 2 (∂Ω));
(5) The stress constraint: for all t ∈ [0, T ],

|σ(t)| ≤ 1 a.e. in Ω; (6) The flow rule: for a.e. t ∈ [0, T ], | ṗ(t)| = [σ(t) • ṗ(t)] in M(Ω).
In addition, we have the following energy balance: for all t ∈ [0, T ],

1 2 u(t) 2 2 + 1 2 σ(t) 2 2 + t 0 | ṗ(s)|(Ω) ds + λ 2 t 0 ∂Ω |σ • ν| 2 dH n-1 ds + t 0 ∂Ω ψ λ ( u) dH n-1 ds = 1 2 v 0 2 2 + 1 2 σ 0 2 2 + t 0 Ω
f u dx ds. (5.5)

Remark 5.5. In the sequel we will refer to the solution given by Theorem 5.4 as the variational solution to the elasto-plastic problem associated to the initial data (u 0 , v 0 , σ 0 , p 0 ) and the source term f . Unless otherwise specified, we always assume in the sequel that

f ∈ H 1 ([0, T ]; L 2 (Ω)) and (u 0 , v 0 , σ 0 , p 0 ) ∈ H 1 (Ω) × H 2 (Ω) × H(div, Ω) × L 2 (Ω; R n ) satisfy (5.4).
The rest of this section is devoted to prove Theorem 5.4. We consider the unique solution (u ε , σ ε , p ε ) to the elasto-visco-plastic problem (given by Theorem 4.1) associated to the initial condition (u 0 , v 0 , σ 0 , p 0 ) and the source terms f and g ε = ε∇v 0 • ν. Using the estimates obtained in Theorem 4.1, we derive weak convergences which enable one to get the initial conditions, the equation of motion and the stress constraint. We then obtain in Subsection 5.2 some strong convergence results despite we did not yet identify the correct boundary condition. Together with the relaxation result Proposition 5.1, it allows one to derive a first energy inequality between two arbitrary times. In Subsection 5.3 we show that this inequality is actually an equality which leads to the flow rule in a measure theoretic sense, and the relaxed boundary condition. Eventually, uniqueness of the solution is established in Subsection 5.4 as a consequence of a Kato inequality which states a comparison principle between two solutions. 

üε (t) 2 2 + sup t∈[0,T ] σε (t) 2 2 + 1 λ T 0 üε (t) 2 L 2 (∂Ω) dt ≤ C div(σ 0 + ε∇v 0 ) + f (0) 2 2 + ∇v 0 2 2 + T 0 ḟ (t) 2 dt 2 , (5.6) 
while the energy balance (4.4) gives

sup t∈[0,T ] uε (t) 2 2 + sup t∈[0,T ] σ ε (t) 2 2 + 1 λ T 0 uε (t) 2 L 2 (∂Ω) dt + ε T 0 ∇ uε (t) 2 2 dt + ε T 0 ṗε (t) 2 2 dt + T 0 Ω | ṗε | dx dt ≤ C v 0 2 2 + σ 0 2 2 + T 0 f (t) 2 dt 2 + λε ∇v 0 • ν 2 L 2 (∂Ω) , (5.7) 
where the constants C > 0 occuring in (5.6) and (5.7) are independent of ε and λ. Using also that

u ε ∈ W 2,∞ ([0, T ]; L 2 (Ω)) and u 0 ∈ H 1 (Ω), then u ε (t) = u 0 + t 0 uε (s) ds for all t ∈ [0, T ],
where the integral is intended as a Bochner integral in L 2 (Ω), and we get sup

ε>0 u ε W 2,∞ ([0,T ];L 2 (Ω)) < ∞. (5.8) 
Arguing similarly yields sup

ε>0 u ε H 2 ([0,T ];L 2 (∂Ω)) < ∞, (5.9) 
and sup

ε>0 σ ε W 1,∞ ([0,T ];L 2 (Ω)) < ∞. (5.10) 
Thanks to the estimates (5.8), (5.9) and (5.10) we can extract a subsequence (not relabeled), and

find functions u ∈ W 2,∞ ([0, T ]; L 2 (Ω)), σ ∈ W 1,∞ ([0, T ]; L 2 (Ω; R n )) and w ∈ H 2 ([0, T ]; L 2 (∂Ω)) such that      u ε ⇀ u weakly* in W 2,∞ ([0, T ]; L 2 (Ω)), σ ε ⇀ σ weakly* in W 1,∞ ([0, T ]; L 2 (Ω; R n )), u ε ⇀ w weakly in H 2 ([0, T ]; L 2 (∂Ω)).
(5.11)

Moreover, according to [15, Lemma 2.7], for every t ∈ [0, T ],

               u ε (t) ⇀ u(t) weakly in L 2 (Ω), uε (t) ⇀ u(t) weakly in L 2 (Ω), σ ε (t) ⇀ σ(t) weakly in L 2 (Ω; R n ), u ε (t) ⇀ w(t) weakly in L 2 (∂Ω), uε (t) ⇀ ẇ(t) weakly in L 2 (∂Ω).
(5.12)

In order to derive weak compactness of the sequence of plastic strains, we use the energy balance (4.4) between two arbitrary times 0 ≤ t 1 < t 2 ≤ T , which leads to

t2 t1 Ω | ṗε | dx ds ≤ t2 t1 Ω f uε dx ds + t2 t1 ∂Ω g ε uε dH n-1 ds + 1 2 uε (t 1 ) 2 2 -uε (t 2 ) 2 2 + 1 2 σ ε (t 1 ) 2 2 -σ ε (t 2 ) 2 2 . (5.13)
Using the fact that f ∈ L ∞ (0, T ; L 2 (Ω)) and ( uε ) ε>0 is uniformly bounded in L ∞ (0, T ; L 2 (Ω)) by (5.8), we infer that

t2 t1 Ω f uε dx ds ≤ C(t 2 -t 1 ), (5.14) 
for some constant C > 0 independent of ε. Then, using that g ε = ε∇v 0 • ν ∈ L 2 (∂Ω) and ( uε ) ε>0 is uniformly bounded in L ∞ (0, T ; L 2 (∂Ω)) by (5.9), t2 t1 ∂Ω g ε uε dH n-1 ds ≤ C(t 2 -t 1 ), (5.15) for some constant C > 0 independent of ε. Next, using again (5.8) yields

uε (t 1 ) 2 2 -uε (t 2 ) 2 2 = Ω ( uε (t 1 ) -uε (t 2 ))( uε (t 1 ) + uε (t 2 )) dx ≤ C uε (t 2 ) -uε (t 1 ) 2 ≤ C(t 2 -t 1 ), (5.16) 
where again, C > 0 is independent of ε. Similarly, using (5.10) leads to

σ ε (t 1 ) 2 2 -σ ε (t 2 ) 2 2 ≤ C σ ε (t 2 ) -σ ε (t 1 ) 2 ≤ C(t 2 -t 1 ), (5.17) 
Gathering (5.13)-(5.17) and using Jensen's inequality yields

Ω |p ε (t 2 ) -p ε (t 1 )| dx ≤ C(t 2 -t 1 ).
It is thus possible to apply Ascoli-Arzela Theorem to get, up to another subsequence independent of time, the existence of p ∈ C 0,1 ([0, T ]; M(Ω; R n )) such that for all t ∈ [0, T ],

p ε (t) ⇀ p(t) weakly* in M(Ω; R n ).
(5.18)

Using next the decomposition ∇u ε = p ε + σ ε the convergences (5.12) and (5.18) and the already established regularity properties for (u, σ, p), we obtain that u ∈ C 0,1 ([0, T ]; BV (Ω)), and for all t ∈ [0, T ],

u ε (t) ⇀ u(t) weakly* in BV (Ω).

(

Remark 5.6. Let us stress that, as u(t) ∈ BV (Ω) for all t ∈ [0, T ], its trace is well defined as an element of L 1 (∂Ω). However, the trace mapping from BV (Ω) to L 1 (∂Ω) is not sequentially weakly* continuous, and therefore we cannot ensure that w(t) is the trace of u(t).

The initial condition. Since u ε (0) = u 0 , uε (0) = v 0 , σ ε (0) = σ 0 , p ε (0) = p 0 for all ε > 0, we obtain that u(0) = u 0 , u(0) = v 0 , σ(0) = σ 0 and p(0) = p 0 . The additive decomposition. Using the additive decomposition (4.1) and the weak convergences (5.12), (5.18) and (5.19), we infer that for all t ∈ [0, T ],

Du(t) = σ(t) + p(t) in M(Ω; R n ).
The stress constraint. Let τ ε := P B (σ ε ). Since τ ε L ∞ (Ω×(0,T )) ≤ 1, we can assume, up to another subsequence, that τ ε ⇀ τ weakly* in L ∞ (Ω × (0, T ); R n ) with τ L ∞ (Ω×(0,T )) ≤ 1. According to estimate (5.7) and the flow rule (4.3), we get that

T 0 σ ε (t) -τ ε (t) 2 2 dt ≤ Cε → 0, so that σ = τ . Consequently, for all t ∈ [0, T ], we have |σ(t)| ≤ 1 a.e. in Ω.
The equation of motion. According to (5.7), we get that ε∇ uε → 0 strongly in L 2 (0, T ; L 2 (Ω; R n )).

We thus deduce that σ ε + ε∇ uε → σ strongly in L 2 (0, T ; L 2 (Ω; R n )), and since from the equation of motion at fixed ε, one has div(σ ε + ε∇ uε ) = f -üε , we obtain thanks to the estimate (5.8) that sup ε>0 σ ε + ε∇ uε L 2 (0,T ;H(div,Ω)) < +∞.

As a consequence div(σ ε + ε∇ uε ) ⇀ divσ weakly in L 2 (0, T ; L 2 (Ω)), and

ü -divσ = f in L 2 (0, T ; L 2 (Ω)).
Note also that (σ ε +ε∇ uε )•ν ⇀ σ •ν weakly in L 2 (0, T ; H -1/2 (∂Ω)). Using the boundary condition at fixed ε, we also have that (σ ε + ε∇ uε ) • ν = g ε -λ -1 uε which is bounded in L 2 (0, T ; L 2 (∂Ω)) according to (5.9), and consequently,

(σ ε + ε∇ uε ) • ν ⇀ σ • ν in L 2 (0, T ; L 2 (∂Ω)).
(5.20)

Remark 5.7. Passing to the limit in (4.6), we get for all ϕ ∈ L 2 (0, T ; H 1 (Ω)),

T 0 Ω üϕ dx dt + T 0 Ω σ • ∇ϕ dx dt + 1 λ T 0 ∂Ω ẇϕ dH n-1 dt = T 0 Ω f ϕ dx dt.
(5.21) 5.2. Strong convergences. At this stage, it still remains to prove the boundary condition and the flow rule. To do that, we need to improve some of the weak convergences established above into strong convergences. This is the object of the following result.

Proposition 5.8. The following strong convergences hold:

         uε → u strongly in C 0 ([0, T ]; L 2 (Ω)), σ ε → σ strongly in C 0 ([0, T ]; L 2 (Ω; R n )), √ ε∇ uε → 0 strongly in L 2 (0, T ; L 2 (Ω; R n )), uε → ẇ strongly in L 2 (0, T ; L 2 (∂Ω)).
Proof. Substracting equations (4.6) to (5.21), and taking ϕ := 1 [0,t] uε ∈ L 2 (0, T ; H 1 (Ω)) where t ∈ [0, T ] as test function, we get that

t 0 Ω (ü ε -ü) uε dx ds + t 0 Ω (σ ε -σ) • ∇ uε dx ds + ε t 0 Ω |∇ uε | 2 dx ds + 1 λ t 0 ∂Ω ( uε -ẇ) uε dH n-1 ds = t 0 ∂Ω g ε uε dH n-1 ds.
Thanks to the additive decomposition (4.1), we have

t 0 Ω (σ ε -σ) • ∇ uε dx ds = t 0 Ω (σ ε -σ) • ṗε dx ds + t 0 Ω (σ ε -σ) • σε dx ds.
According to the flow rule (4.3) and the fact that for all t ∈ [0, T ], σ(t) ∞ ≤ 1, we deduce that

t 0 Ω (σ ε -σ) • ṗε dx ds ≥ 0,
and thus,

t 0 Ω (ü ε -ü)( uε -u) dx ds + ε t 0 Ω |∇ uε | 2 dx ds + t 0 Ω (σ ε -σ) • ( σε -σ) dx ds + 1 λ t 0 ∂Ω ( uε -ẇ) 2 dH n-1 ds ≤ - t 0 Ω (ü ε -ü) u dx ds - t 0 Ω (σ ε -σ) • σ dx ds - 1 λ t 0 ∂Ω ( uε -ẇ) ẇ dH n-1 ds + t 0 ∂Ω g ε uε dH n-1 ds.
The weak convergences (5.11) imply that the right hand side of the previous inequality tends to 0 as ε → 0. Thus, noticing that

t 0 Ω (ü ε -ü)( uε -u) dx ds = 1 2 uε (t) -u(t) 2 2 ,
and

t 0 Ω (σ ε -σ) • ( σε -σ) dx ds = 1 2 σ ε (t) -σ(t) 2 2 ,
we get the desired strong convergences.

An important consequence of the strong convergences is the derivation of an energy inequality between two arbitrary times. The following result makes use of the lower bound inequality established in Proposition 5.1. Proposition 5.9. For every 0 ≤ t 1 ≤ t 2 ≤ T ,

1 2 u(t 2 ) 2 2 + 1 2 σ(t 2 ) 2 2 + λ 2 t2 t1 ∂Ω |σ •ν| 2 dH n-1 ds+ t2 t1 ∂Ω ψ λ ( u) dH n-1 ds+ t2 t1 | ṗ(s)|(Ω) ds ≤ 1 2 u(t 1 ) 2 2 + 1 2 σ(t 1 ) 2 2 + t2 t1 Ω f u dx ds.
In addition, for a.e. t ∈ [0, T ],

λ 2 ∂Ω |σ(t) • ν| 2 dH n-1 + ∂Ω ψ λ ( u(t)) dH n-1 + | ṗ(t)|(Ω) ≤ [σ(t) • ṗ(t)](Ω) - ∂Ω (σ(t) • ν) u(t) dH n-1 .
Proof. Using the energy balance (4.4) and the boundary condition, we have for all 0

≤ t 1 ≤ t 2 ≤ T 1 2 uε (t 2 ) 2 2 + 1 2 σ ε (t 2 ) 2 2 + λ 2 t2 t1 ∂Ω |(σ ε + ε∇ uε ) • ν -g ε | 2 dH n-1 ds + 1 2λ t2 t1 ∂Ω | uε | 2 dH n-1 ds + t2 t1 Ω | ṗε | dx ds ≤ 1 2 uε (t 1 ) 2 2 + 1 2 σ ε (t 1 ) 2 2 + t2 t1 Ω f uε dx ds + t2 t1 ∂Ω g ε uε dH n-1 ds. (5.22)
By Jensen's inequality, we have

1 t 2 -t 1 1 2λ t2 t1 ∂Ω | uε | 2 dH n-1 ds + t2 t1 Ω | ṗε | dx ds ≥ 1 2λ ∂Ω u ε (t 2 ) -u ε (t 1 ) t 2 -t 1 2 dH n-1 + Ω p ε (t 2 ) -p ε (t 1 ) t 2 -t 1 dx,
where we used that, as Bochner integrals,

t2 t1 uε (s) ds = u ε (t 2 ) -u ε (t 1 ) in L 2 (∂Ω),
and

t2 t1 ṗε (s) ds = p ε (t 2 ) -p ε (t 1 ) in L 2 (Ω; R n ).
Using (5.19) and Proposition 5.8, we know that

u ε (t 2 ) -u ε (t 1 ) t 2 -t 1 ⇀ u(t 2 ) -u(t 1 ) t 2 -t 1 weakly* in BV (Ω),
and

σ ε (t 2 ) -σ ε (t 1 ) t 2 -t 1 → σ(t 2 ) -σ(t 1 ) t 2 -t 1 strongly in L 2 (Ω; R n ),
from which we deduce, according to Proposition 5.1, that

∂Ω ψ λ u(t 2 ) -u(t 1 ) t 2 -t 1 dH n-1 + p(t 2 ) -p(t 1 ) t 2 -t 1 (Ω) ≤ lim inf ε→0 1 2λ ∂Ω u ε (t 2 ) -u ε (t 1 ) t 2 -t 1 2 dH n-1 + Ω p ε (t 2 ) -p ε (t 1 ) t 2 -t 1 dx .
Therefore, thanks to the strong convergences results established in Proposition 5.8 together with the weak convergence (5.20) of the normal trace, it is possible to pass to the (lower) limit in (5.22) to get that 

1 2 u(t 2 ) 2 2 -u(t 1 ) 2 2 t 2 -t 1 + 1 2 σ(t 2 ) 2 2 -σ(t 1 ) 2 2 t 2 -t 1 + λ 2(t 2 -t 1 ) t2 t1 ∂Ω |σ • ν| 2 dH n-1 ds + ∂Ω ψ λ u(t 2 ) -u(t 1 ) t 2 -t 1 dH n-1 + p(t 2 ) -p(t 1 ) t 2 -t 1 (Ω) ≤ 1 t 2 -t 1 t2 t1 Ω f u dx ds. (5.23) Since u ∈ W 1,∞ ([0, T ]; L 2 (Ω)) and σ ∈ W 1,∞ ([0, T ]; L 2 (Ω; R n )),
+ ∂Ω ψ λ ( u(t)) dH n-1 + | ṗ(t)|(Ω) ≤ Ω f (t) u(t) dx. (5.25)
On the one hand, using the equation of motion together with the Definition 2.2 of duality and the integration by parts formula stated in Proposition 2.4 (with ϕ = 1), infer that for a.e. t ∈ [0, T ],

λ 2 ∂Ω |σ(t) • ν| 2 dH n-1 + ∂Ω ψ λ ( u(t)) dH n-1 + | ṗ(t)|(Ω) ≤ [σ(t) • ṗ(t)](Ω) - ∂Ω (σ(t) • ν) u(t) dH n-1 .
On the other hand, integrating (5.25) between two arbitray times t 1 and t 2 , and using (5.24) yields

1 2 u(t 2 ) 2 2 + 1 2 σ(t 2 ) 2 2 + λ 2 t2 t1 ∂Ω |σ • ν| 2 dH n-1 ds + t2 t1 ∂Ω ψ λ ( u) dH n-1 ds + t2 t1 | ṗ(s)|(Ω) ds ≤ 1 2 u(t 1 ) 2 2 + 1 2 σ(t 1 ) 2 2 + t2 t1 Ω f u dx ds,
which is the announced energy inequality.

Flow rule and boundary condition.

We now show that the previous energy inequality is actually an equality, and as a byproduct, we obtain the flow rule and the boundary condition.

Proposition 5.10. For every 0 ≤ t 1 ≤ t 2 ≤ T ,

1 2 u(t 2 ) 2 2 + 1 2 σ(t 2 ) 2 2 + λ 2 t2 t1 ∂Ω |σ •ν| 2 dH n-1 ds+ t2 t1 ∂Ω ψ λ ( u) dH n-1 ds+ t2 t1 | ṗ(s)|(Ω) ds = 1 2 u(t 1 ) 2 2 + 1 2 σ(t 1 ) 2 2 + t2 t1 Ω f u dx ds. (5.26)
In addition,

σ • ν + ψ ′ λ ( u) = 0 in L 2 (0, T ; L 2 (∂Ω)), and, for a.e. t ∈ [0, T ], | ṗ(t)| = [σ(t) • ṗ(t)] in M(Ω).
Proof. Deriving the additive decomposition with respect to time yields, for a.e. t ∈ [0, T ], 

D u(t) = σ(t) + ṗ(t) in M(Ω; R n ), where u(t) ∈ BV (Ω) ∩ L 2 (Ω), σ(t) ∈ L 2 (Ω; R n ) and ṗ(t) ∈ M(Ω; R n ).
| ṗ(t)| ≥ [σ(t) • ṗ(t)] in M(Ω), (5.27) 
and in particular

| ṗ(t)|(Ω) ≥ [σ(t) • ṗ(t)](Ω). (5.28) 
On the other hand, since

σ(t) ∈ H(div, Ω) ∩ L ∞ (Ω; R n ) with σ(t) ∞ ≤ 1, we infer that σ(t) • ν ∈ L ∞ (∂Ω) with σ(t) • ν L ∞ (∂Ω) ≤ 1. As a consequence, for all t ∈ [0, T ] ψ λ ( u(t)) + λ 2 |σ(t) • ν| 2 ≥ -(σ(t) • ν) u(t) H n-1 -a.e. on ∂Ω, (5.29) 
or still

∂Ω ψ λ ( u(t)) dH n-1 + λ 2 ∂Ω |σ(t) • ν| 2 dH n-1 ≥ - ∂Ω (σ(t) • ν) u(t) dH n-1 .
(5.30)

Summing up (5.28) and (5.30), using Definition 2.2 of duality together with the integration by parts formula given by Proposition 2.4 and the equation of motion yields, for a.e. t ∈ [0, T ],

| ṗ(t)|(Ω) + ∂Ω ψ λ ( u(t)) dH n-1 + λ 2 ∂Ω |σ(t) • ν| 2 dH n-1 ≥ Ω f (t) u(t) dx - Ω ü(t) u(t) dx - Ω σ(t) • σ(t) dx.
Thanks to (5.24) together with an integration between two arbitrary times 0 ≤ t 1 ≤ t 2 ≤ T gives the converse energy inequality

1 2 u(t 2 ) 2 2 + 1 2 σ(t 2 ) 2 2 + λ 2 t2 t1 ∂Ω |σ •ν| 2 dH n-1 ds+ t2 t1 ∂Ω ψ λ ( u) dH n-1 ds+ t2 t1 | ṗ(s)|(Ω) ds ≥ 1 2 u(t 1 ) 2 2 + 1 2 σ(t 1 ) 2 2 + t2 t1 Ω
f u dx ds which gives the energy equality (5.26) according to Proposition 5.9.

We now derive the energy balance (5.26) with respect to time. It follows that for a.e. t ∈ [0, T ],

| ṗ(t)|(Ω) + ∂Ω ψ λ ( u(t)) dH n-1 + λ 2 ∂Ω |σ(t) • ν| 2 dH n-1 = Ω f (t) u(t) dx - Ω ü(t) u(t) dx - Ω σ(t) • σ(t) dx,
or still, thanks to the equation of motion, Definition 2.2 of duality and the integration by parts formula given by Proposition 2.4,

| ṗ(t)|(Ω) + ∂Ω ψ λ ( u(t)) dH n-1 + λ 2 ∂Ω |σ(t) • ν| 2 dH n-1 = [σ(t) • ṗ(t)](Ω) - ∂Ω (σ(t) • ν) u(t) dH n-1 .
Remembering (5.28) and (5.30) implies that

| ṗ(t)|(Ω) = [σ(t) • ṗ(t)](Ω),
and

∂Ω ψ λ ( u(t)) dH n-1 + λ 2 ∂Ω |σ(t) • ν| 2 dH n-1 = - ∂Ω (σ(t) • ν) u(t) dH n-1 ,
and by (5.27) and (5.29),

| ṗ(t)| = [σ(t) • ṗ(t)] in M(Ω),
as well as

ψ λ ( u(t)) + λ 2 |σ(t) • ν| 2 = -(σ(t) • ν) u(t) H n-1 -a.e. on ∂Ω.
By (5.3) and standard arguments of convex analysis, this last formula is then equivalent to the boundary condition σ(t) • ν + ψ ′ λ ( u(t)) = 0 H n-1 -a.e. on ∂Ω.

Remark 5.11. According to the boundary condition at fixed ε > 0 and the convergence (5.20) of the normal stress, we have that, as ε → 0, uε = λg ε -λ(σ ε + ε∇ uε ) • ν ⇀ -λσ • ν = λψ ′ λ ( u) weakly in L 2 (0, T ; L 2 (∂Ω)). It enables one to identify the function w (the limit of the trace of u ε in (5.11)) as ẇ = λψ ′ λ ( u), and by Proposition 5.8, uε → λψ ′ λ ( u) strongly in L 2 (0, T ; L 2 (∂Ω)).

(5.31) 5.4. Uniqueness. In order to establish the uniqueness, we derive a general comparison principle between two solutions which, in the context of hyperbolic equations, is known as a Kato inequality. This result is much more than needed in order to establish uniqueness. However, it will be useful later to show regularity results for the variational solution of the elasto-plastic problem (see Section 6).

Proposition 5.12 (Kato inequality). Let (u, σ, p) (resp. (ũ, σ, p)) be a variational solution of the elasto-plastic problem associated to the initial condition (u 0 , v 0 , σ 0 , p 0 ) (resp. (ũ 0 , ṽ0 , σ0 , p0 )) and the source term f (resp. f ). Then for all ϕ ∈ W 1,∞ (Ω × (0, T )) with ϕ ≥ 0,

T 0 Ω ( u -u) 2 φ dx dt + T 0 Ω |σ -σ| 2 φ dx dt + Ω (v 0 -ṽ0 ) 2 ϕ(0) dx + Ω |σ 0 -σ0 | 2 ϕ(0) dx -2 T 0 Ω (σ -σ) • ∇ϕ( u -u) dx dt + 2 T 0 Ω (f -f )( u -u)ϕ dx dt ≥ 2λ T 0 ∂Ω ψ ′ λ ( u) -ψ ′ λ ( u) 2 ϕ dH n-1 dt. (5.32)
Proof. For fixed ε > 0, let (u ε , σ ε , p ε ) (resp. (ũ ε , σε , pε )) be the solution of the elasto-visco-plastic problem given by Theorem 4.1 for the initial condition (u 0 , v 0 , σ 0 , p 0 ) (resp. (ũ 0 , ṽ0 , σ0 , p0 )) and the source terms f and g ε := ε∇v 0 • ν (resp. f and gε := ε∇ṽ 0 • ν). According to Remark 4.2 with the test function ( uε -uε )ϕ ∈ L 2 (0, T ; H 1 (Ω)), we infer that

T 0 Ω üε uε -uε ϕ dx dt + T 0 Ω (σ ε + ε∇ uε ) • ∇ ( uε -uε )ϕ dx dt + 1 λ T 0 ∂Ω uε uε -uε ϕ dH n-1 dt = T 0 Ω f uε -uε ϕ dx dt + T 0 ∂Ω g ε uε -uε ϕ dH n-1 dt,
and similarly,

T 0 Ω üε uε -uε ϕ dx dt + T 0 Ω (σ ε + ε∇ uε ) • ∇ ( uε -uε )ϕ dx dt + 1 λ T 0 ∂Ω uε ( uε -uε )ϕ dH n-1 dt = T 0 Ω f ( uε -uε )ϕ dx dt + T 0 ∂Ω gε ( uε -uε )ϕ dH n-1 dt.
Summing up both previous equalities leads to

T 0 Ω (ü ε -üε )( uε -uε )ϕ dx dt + T 0 Ω σ ε -σε + ε(∇ uε -∇ uε ) • ∇ ( uε -uε )ϕ dx dt + 1 λ T 0 ∂Ω ( uε -uε ) 2 ϕ dH n-1 dt = T 0 Ω (f -f )( uε -uε )ϕ dx dt + T 0 ∂Ω (g ε -gε ) uε -uε ϕ dH n-1 dt. (5.33)
Using the additive decompositon (4.1), we get that

T 0 Ω σ ε -σε + ε(∇ uε -∇ uε ) • ∇ ( uε -uε )ϕ dx dt = T 0 Ω (σ ε -σ ε )•( σε -σε )ϕ dx dt+ T 0 Ω (σ ε -σ ε )•( ṗε -ṗε )ϕ dx dt+ε T 0 Ω ∇ uε -∇ uε 2 ϕ dx dt + T 0 Ω (σ ε -σε ) • ∇ϕ uε -uε dx dt + ε T 0 Ω (∇ uε -∇ uε ) • ∇ϕ( uε -uε ) dx dt. (5.34)
Observe that, thanks to the flow rule (4.3) the second term of the right hand side is non-negative. Consequently, gathering (5.33) and (5.34), we obtain that

1 λ T 0 ∂Ω ( uε -uε ) 2 ϕ dH n-1 dt ≤ - T 0 Ω (ü ε -üε )( uε -uε )ϕ dx dt - T 0 Ω (σ ε -σε ) • ( σε -σε )ϕ dx dt - T 0 Ω (σ ε -σε ) • ∇ϕ uε -uε dx dt + T 0 Ω (f -f )( uε -uε )ϕ dx dt + T 0 ∂Ω (g ε -gε ) uε -uε ϕ dH n-1 dt -ε T 0 Ω (∇ uε -∇ uε ) • ∇ϕ( uε -uε ) dx dt. (5.35) Using next that both functions uε -uε ∈ W 1,∞ ([0, T ]; L 2 (Ω)) and σ ε -σ ε ∈ W 1,∞ ([0, T ]; L 2 (Ω; R n )),
we can integrate by parts with respect to the time variable to get that

- T 0 Ω (ü ε -üε )( uε -uε )ϕ dx dt - T 0 Ω (σ ε -σε ) • ( σε -σε )ϕ dx dt = 1 2 T 0 Ω ( uε -uε ) 2 φ dx dt + 1 2 T 0 Ω |σ ε -σε | 2 φ dx dt + 1 2 Ω (v 0 -ṽ0 ) 2 ϕ(0) dx - 1 2 Ω ( uε (T ) -uε (T )) 2 ϕ(T ) dx + 1 2 Ω |σ 0 -σ0 | 2 ϕ(0) dx - 1 2 Ω |σ ε (T ) -σε (T )| 2 ϕ(T ) dx,
and inserting inside (5.35) leads to

1 λ T 0 ∂Ω ( uε -uε ) 2 ϕ dH n-1 dt ≤ 1 2 T 0 Ω ( uε -uε ) 2 φ dx dt + 1 2 T 0 Ω |σ ε -σε | 2 φ dx dt + 1 2 Ω (v 0 -ṽ0 ) 2 ϕ(0) dx + 1 2 Ω |σ 0 -σ0 | 2 ϕ(0) dx - T 0 Ω (σ ε -σε ) • ∇ϕ uε -uε dx dt + T 0 Ω (f -f )( uε -uε )ϕ dx dt + T 0 ∂Ω (g ε -gε ) uε -uε ϕ dH n-1 dt -ε T 0 Ω (∇ uε -∇ uε ) • ∇ϕ( uε -uε ) dx dt.
Using Proposition 5.8 and (5.31), and letting ε → 0 in the previous inequality, we get (5.32).

As a consequence of Proposition 5.12, if (u 1 , σ 1 , p 1 ) and (u 2 , σ 2 , p 2 ) are two variational solutions of the elasto-plastic problem given by Theorem 5.4 for the same initial data (u 0 , v 0 , e 0 , p 0 ) and source term f , taking ϕ(x, t) := T -t as test function in (5.32) implies that σ 1 = σ 2 and u1 = u2 . Consequently, since u 1 (0) = u 2 (0) = u 0 , we deduce that u 1 = u 2 , and using the additive decomposition, that p 1 = p 2 .

Remark 5.13. The uniqueness of the solution shows that there is no need to extract subsequences in all weak and strong convergences obtained before. 

(u 0 , v 0 , σ 0 , p 0 ) ∈ H 1 (Ω) × H 2 (Ω) × H(div, Ω) × L 2 (Ω; R n ) such that ∇u 0 = σ 0 + p 0 in L 2 (Ω; R n ), |σ 0 | ≤ 1 a.e.
in Ω, (5.36)

and σ 0 • ν = v 0 = 0 H n-1
-a.e. on ∂Ω.

(5.37)

For any λ > 0, let (u λ , σ λ , p λ ) the unique variational solution to the elasto-plastic problem given by Theorem 5.4. For ℓ ∈ {0, +∞}, there exist a unique triple (u (ℓ) , σ (ℓ) , p (ℓ) ) with the regularity

     u (ℓ) ∈ W 2,∞ ([0, T ]; L 2 (Ω)) ∩ C 0,1 ([0, T ]; BV (Ω)), σ (ℓ) ∈ W 1,∞ ([0, T ]; L 2 (Ω; R n )), p (ℓ) ∈ C 0,1 ([0, T ]; M(Ω; R n )), (5.38) such that, as λ → ℓ,      u λ ⇀ u (ℓ) weakly* in W 2,∞ ([0, T ]; L 2 (Ω)), σ λ ⇀ σ (ℓ) weakly* in W 1,∞ ([0, T ]; L 2 (Ω; R n )), p λ (t) ⇀ p (ℓ) (t) weakly* in M(Ω; R n ) for all t ∈ [0, T ],
(5.39) and which satisfies the following properties:

(1) The initial conditions:

u (ℓ) (0) = u 0 , u(ℓ) (0) = v 0 , σ (ℓ) (0) = σ 0 , p (ℓ) (0) = p 0 ;
(2) The additive decomposition: for all t ∈ [0, T ]

Du (ℓ) (t) = σ (ℓ) (t) + p (ℓ) (t) in M(Ω; R n );
(3) The equation of motion:

ü(ℓ) -divσ (ℓ) = f in L 2 (0, T ; L 2 (Ω));
(4) The boundary condition:

σ (∞) • ν = 0 in L 2 (0, T ; L 2 (∂Ω));
(5) The stress constraint: for all t ∈ [0, T ],

|σ (ℓ) (t)| ≤ 1 a.e. in Ω; (6) The flow rule: for a.e. t ∈ [0, T ], | ṗ(0) (t)| = [σ (0) (t) • ṗ(0) (t)] in M(Ω), | u(0) (t)| = -(σ (0) (t) • ν) u(0) (t) H n-1 -a.e. on ∂Ω, or | ṗ(∞) (t)| = [σ (∞) (t) • ṗ(∞) (t)] in M(Ω).
Remark 5.15. Note that in the Dirichlet case (ℓ = 0), as classical in variational problems with linear growth, the velocity may concentrate on the boundary so that its inner trace might not vanish as required by the boundary condition. It explains why some plastic strain can accumulate on the boundary and that the flow rule is formulated in Ω and not only in Ω.

Remark 5.16. The assumption (5.37) seems to be artificial, however it allows us to easily satisfy the boundary condition σ 0 • ν + λ -1 v 0 = 0 on ∂Ω for the initial data for every λ > 0. It seems more natural to consider initial data that satisfy (5.36) and, for example in the Neumann case, only

σ 0 • ν = 0 H n-1
-a.e. on ∂Ω.

(5.40)

To do so, one should be able to construct for every (u 0 , v 0 , σ 0 , p (5.36) and (5.40), a sequence (

0 ) ∈ H 1 (Ω) × H 2 (Ω) × H(div, Ω) × L 2 (Ω; R n ), satisfying
u λ 0 , v λ 0 , σ λ 0 , p λ 0 ) ∈ H 1 (Ω) × H 2 (Ω) × H(div, Ω) × L 2 (Ω; R n ) such that      ∇u λ 0 = σ λ 0 + p λ 0 in L 2 (Ω; R n ), σ λ 0 • ν + λ -1 v λ 0 = 0 H n-1 -a.e. on ∂Ω, |σ λ 0 | ≤ 1 a.e.
in Ω, and, at least,

         u λ 0 ⇀ u 0 weakly in L 2 (Ω), v λ 0 ⇀ v 0 weakly in H 1 (Ω), σ λ 0 ⇀ σ 0 weakly in H(div, Ω), p λ 0 ⇀ p 0 weakly* in M(Ω; R n
). This issue will not be addressed in this paper and for that reason, we assume (5.37) for simplicity.

Proof. The proof follows closely the lines of that of Theorem 5.4. It is divided into three steps.

Step 1: Weak convergences. Passing to the limit as ε → 0 in estimates (5.6) and (5.7) yields

sup t∈[0,T ] üλ (t) 2 2 + sup t∈[0,T ] σλ (t) 2 2 ≤ C divσ 0 + f (0) 2 2 + ∇v 0 2 2 + T 0 ḟ (t) 2 dt 2 ,
and sup

t∈[0,T ] uλ (t) 2 2 + sup t∈[0,T ] σ λ (t) 2 2 + T 0 ψ λ ( uλ (t)) dt + λ 2 T 0 ∂Ω |σ λ • ν| 2 dH n-1 dt ≤ C v 0 2 2 + σ 0 2 2 + T 0 f (t) 2 dt 2 , (5.41)
where the constants C > 0 are independent of λ. Using similar arguments than in Subsection 5.1, we can find a subsequence (not relabeled) and, for ℓ ∈ {0, +∞}, functions u (ℓ) , σ (ℓ) and p (ℓ) as in (5.38) such that the weak convergences (5.39) hold. In particular, we can easily derive the initial conditions, the additive decomposition, the stress constraint, and the equation of motion. Using the equation of motion for fixed λ > 0, we infer that the sequence (σ λ ) λ>0 is bounded in L 2 (0, T ; H(div, Ω)), so that σ λ • ν ⇀ σ (ℓ) • ν weakly in L 2 (0, T ; H -1/2 (∂Ω)). On the other hand, according to estimate (5.41), we have that

σ λ • ν → 0 strongly in L 2 (0, T ; L 2 (∂Ω)) as λ → +∞. Therefore, the Neumann boundary condition σ (∞) • ν = 0 in L 2 (0, T ; L 2 (∂Ω)) follows.
Step 2: Strong convergences. We now show that, as λ → ℓ,

uλ → u(ℓ) strongly in C 0 ([0, T ]; L 2 (Ω)), σ λ → σ (ℓ) strongly in C 0 ([0, T ]; L 2 (Ω; R n )).
(5.42)

To this aim, substracting the equations of motion, we get that

üλ -ü(ℓ) -div(σ λ -σ (ℓ) ) = 0 in L 2 (0, T ; L 2 (Ω)).
For t ∈ [0, T ], multiplying by 1 [0,t] uλ , integrating over Ω×(0, T ), and using Definition 2.2 of duality together with the integration by parts formula given by Proposition 2.4 yields

t 0 Ω (ü λ -ü(ℓ) ) uλ dx ds + t 0 Ω (σ λ -σ (ℓ) ) • σλ dx ds + t 0 [(σ λ (s) -σ (ℓ) (s)) • ṗλ (s)](Ω) ds - t 0 ∂Ω (σ λ • ν -σ (ℓ) • ν) uλ dH n-1 ds = 0.
According to the flow rule for fixed λ > 0, the fact that for all s ∈ [0, T ], σ (ℓ) (s) ∞ ≤ 1 and Remark 2.3, we get that [(σ λ (s) -σ (ℓ) (s)) • ṗλ (s)](Ω) ≥ 0 for a.e. s ∈ [0, T ]. Thus,

t 0 Ω (ü λ -ü(ℓ) )( uλ -u(ℓ) ) dx ds + t 0 Ω (σ λ -σ (ℓ) ) • ( σλ -σ(ℓ) ) dx ds ≤ - t 0 Ω (ü λ -ü(ℓ) ) u(ℓ) dx ds- t 0 Ω (σ λ -σ (ℓ) )• σ(ℓ) dx ds+ t 0 ∂Ω (σ λ •ν -σ (ℓ) •ν) uλ dH n-1 ds,
and integrating by parts the left hand side with respect to time yields

1 2 uλ (t) -u(ℓ) (t) 2 2 + 1 2 σ λ (t) -σ (ℓ) (t) 2 2 ≤ - t 0 Ω (ü λ -ü(ℓ) ) u(ℓ) dx ds - t 0 Ω (σ λ -σ (ℓ) ) • σ(ℓ) dx ds + t 0 ∂Ω (σ λ • ν -σ (ℓ) • ν) uλ dH n-1 ds. ( 5.43) 
The weak convergences (5.39) ensure that the first two integrals in the right hand side of (5.43) tend to 0 as λ → ℓ. Concerning the boundary integral, if ℓ = +∞, since σ (∞) • ν = 0, using the boundary condition for fixed λ > 0, we infer that

(σ λ • ν -σ (∞) • ν) uλ = -ψ ′ λ ( 
uλ ) uλ ≤ 0 a.e. on ∂Ω × (0, T ) by convexity of ψ λ . On the other hand, if ℓ = 0, from the boundary condition for fixed λ > 0 and the fact that σ (0) • ν L ∞ (∂Ω×(0,T )) ≤ 1, we get that

(σ λ • ν -σ (0) • ν) uλ = -| uλ |1 {| uλ |>λ} + | uλ | 2 λ 1 {| uλ |≤λ} + (σ (0) • ν) uλ ≤ - | uλ | 2 λ + (σ (0) • ν) uλ 1 {| uλ |≤λ} ≤ λ a.e. on ∂Ω × (0, T ).
In both cases, we obtain that the right hand side of (5.43) is infinitesimal as λ → ℓ, which completes the proof of the strong convergences.

Step 3: The flow rules. If ℓ = +∞, writting the energy balance (5.5) between two arbitrary times 0

≤ t 1 < t 2 ≤ T yields 1 2 uλ (t 2 ) 2 2 + 1 2 σ λ (t 2 ) 2 2 + t2 t1 | ṗλ (t)|(Ω) dt ≤ 1 2 uλ (t 1 ) 2 2 + 1 2 σ λ (t 1 ) 2 2 + t2 t1 Ω f uλ dx dt.
Using the strong convergences (5.42) together with the sequential lower semicontinuity of the mapping

p → t2 t1 | ṗ(t)|(Ω) dt
with respect to the weak convergence (5.39) (see e.g. [START_REF] Dal Maso | Quasistatic evolution problems for linearly elastic-perfectly plastic materials[END_REF]Appendix]) leads to

1 2 u(∞) (t 2 ) 2 2 + 1 2 σ (∞) (t 2 ) 2 2 + t2 t1 | ṗ(∞) (t)|(Ω) dt ≤ 1 2 u(∞) (t 1 ) 2 2 + 1 2 σ (∞) (t 1 ) 2 2 + t2 t1 Ω f u(∞) dx dt.
Deriving this inequality with respect to time, and using the equation of motion then implies that for a.e.

t ∈ [0, T ], | ṗ(∞) (t)|(Ω) ≤ [σ (∞) (t) • ṗ(∞) (t)](Ω).
On the other hand, since we have

σ (∞) L ∞ (Ω×(0,T )) ≤ 1, Remark 2.3 ensures that | ṗ(∞) (t)| ≥ [σ (∞) (t) • ṗ(∞) (t)] in M(Ω), from which we deduce that | ṗ(∞) (t)| = [σ (∞ (t) • ṗ(∞) (t)] in M(Ω) for a.e. t ∈ [0, T ].
Next, if ℓ = 0, writting the energy balance (5.5) between two arbitrary times 0 ≤ t 1 < t 2 ≤ T yields

1 2 uλ (t 2 ) 2 2 + 1 2 σ λ (t 2 ) 2 2 + t2 t1 | ṗλ (t)|(Ω) dt + t2 t1 ∂Ω ψ λ ( uλ ) dH n-1 dt ≤ 1 2 uλ (t 1 ) 2 2 + 1 2 σ λ (t 1 ) 2 2 + t2 t1 Ω f uλ dx dt.
Using the definition of ψ λ , we have

t2 t1 ∂Ω ψ λ ( uλ ) dH n-1 dt ≥ t2 t1 ∂Ω | uλ | dH n-1 dt - t2 t1 {| uλ (t)|≤λ} | uλ | dH n-1 dt - λ 2 t2 t1 H n-1 ({| uλ (t)| > λ}) dt ≥ t2 t1 ∂Ω | uλ | dH n-1 dt -λ(t 2 -t 1 )H n-1 (∂Ω).
Thanks to the strong convergences (5.42) and the sequential lower semicontinuity of the mapping

(u, p) → t2 t1 | ṗ(t)|(Ω) dt + t2 t1 ∂Ω | u| dH n-1 dt
with respect to the convergences (5.39) and (5.42) (see e.g. [START_REF] Dal Maso | Quasistatic evolution problems for linearly elastic-perfectly plastic materials[END_REF]Appendix]), we get

1 2 u(0) (t 2 ) 2 2 + 1 2 σ (0) (t 2 ) 2 2 + t2 t1 | ṗ(0) (t)|(Ω) dt + t2 t1 ∂Ω | u(0) | dH n-1 dt ≤ 1 2 u(0) (t 1 ) 2 2 + 1 2 σ (0) (t 1 ) 2 2 + t2 t1 Ω f u(0) dx dt,
or still, by definition of duality

| ṗ(0) (t)|(Ω) + ∂Ω | u(0) (t)| dH n-1 ≤ [σ (0) (t) • ṗ(0) (t)](Ω) - ∂Ω (σ (0) (t) • ν) u(0) (t) dH n-1 .
On the other hand, since

σ (0) • ν L ∞ (∂Ω×(0,T )) ≤ σ (0) L ∞ (Ω×(0,T )) ≤ 1, Remark 2.3 ensures that for a.e. t ∈ [0, T ], | ṗ(0) (t)| ≥ [σ (0) (t) • ṗ(0) (t)] in M(Ω) and | u(0) (t)| ≥ -(σ (0) (t) • ν) u(0) (t) H n-1 -a.e.
on ∂Ω, from which we deduce that

| ṗ(0) (t)| = [σ (0) (t) • ṗ(0) (t)] in M(Ω) and | u(0) (t)| = -(σ (0) (t) • ν) u(0) (t) H n-1
-a.e. on ∂Ω. Finally, in both cases ℓ ∈ {0, +∞}, the uniqueness can be recovered as in Subsection 5.4.

Short time regularity of the solution

In this section, we prove that the variational solutions to the elasto-plastic problem are smooth in short time, provided the initial data are smooth and compactly supported in space. This kind of regularity result in the context of dynamical elasto-plasticity seems to be new, and the argument strongly rests on the hyperbolic structure of the model. The general idea is similar to the proof of the fact that the (unique) entropic solution to a scalar conservation law with BV initial data is actually BV (instead of just L 1 in the Kružkov theory [START_REF] Stanislav | First order quasilinear equations with several independent variables[END_REF]). It consists in proving a comparison principle between two solutions associated to different initial data. In [START_REF] Stanislav | First order quasilinear equations with several independent variables[END_REF], an L 1 -contraction principle states that, at time t, the L 1 -distance between two solutions can be estimated by the L 1 -distance of the initial data. In our context, an L 2 -comparison principle has been established in Proposition 5.12. Then, translating in space the data enables one to get an L 2 -estimate on the difference quotient of the solution in terms of the L 2 -norm of the difference quotient of the data. In particular, if the data are H 1 , then the solution is H 1 as well (see [START_REF] Després | Weak solutions to Friedrichs systems with convex constraints[END_REF]Lemma 10] in the full space). Since we are dealing with a boundary value problem, one has to be careful that the translated solutions remain inside the domain Ω. This is the reason why we need to ensure that, in short time, if the data are compactly supported in space, then so is the solution, which is a statement of the finite speed propagation property. In that way, the boundary of the domain can be ignored, and one can argue similarly as in the full space. Proposition 6.1 (Finite speed propagation). Let (u, σ, p) be the variational solution of the elastoplastic problem given by Theorem 5.4 for the initial condition (u 0 , v 0 , σ 0 , p 0 ) and the source term f . Suppose that there exists a compact set K ⊂ Ω such that

supp(v 0 , σ 0 , f (t)) ⊂ K for all t ∈ [0, T ].
Then, for all T * ∈ (0, T ] be such that T * < dist(K, ∂Ω), there exists a compact set

K * ⊂ Ω such that supp( u, σ) ⊂ K * × [0, T * ].
Proof. By assumption, we know that for all x ∈ ∂Ω, we have dist(x, K) > T * , so that we can find some r x > 0 such that dist(x, K) = r x + T * . Using the fact that ∂Ω is compact, we obtain the existence of p ∈ N and x 1 , . . . , x p ∈ ∂Ω such that

∂Ω ⊂ p i=1 B x i , r xi 4 .
Observe that if y ∈ B x i ,

rx i 2 for some 1 ≤ i ≤ p, then |dist(y, K) -dist(x i , K)| ≤ |y -x i | ≤ r xi 2 ,
and consequently,

dist(y, K) ≥ T * + r xi 2 > 0, which implies that v 0 = 0, σ 0 = 0 and f (t) = 0 in ∪ p i=1 B (x i , r i /2) for all t ∈ [0, T ]. Define η = min 1≤i≤p r xi /4 > 0,

and consider the boundary layer

L η = {y ∈ Ω : 0 < dist(y, ∂Ω) < η} ⊂ p i=1 B x i , r xi 2 ∩ Ω so that v 0 = 0, σ 0 = 0 and f (t) = 0 in L η for all t ∈ [0, T ].
Let us show that u = 0 and σ = 0 on L η × [0, T * ]. To this aim, let x 0 ∈ L η , and, the set L η being open, let ρ 0 ∈ (0, η/2) be such that

B(x 0 , ρ 0 ) ⊂ L η . Now define the function ϕ ∈ W 1,∞ (R n × (0, T * )) as ϕ(t, x) =                T * -t + ρ 0 -|x -x 0 | if t ∈ [0, T * ], ρ 0 < |x -x 0 | < ρ 0 + T * -t, T * -t if t ∈ [0, T * ], |x -x 0 | < ρ 0 , 0 otherwise.
Note that ϕ ≥ 0, and

φ = -1 {(x,t): t∈[0,T * ], |x-x0|<ρ0+T * -t} , ∇ϕ = -x-x0 |x-x0| 1 {(x,t): t∈[0,T * ], ρ0<|x-x0|<ρ0+T * -t} , which implies that -| u| 2 φ -|σ| 2 φ + 2σ
• ∇ϕ u ≥ 0 a.e in Ω × (0, T * ). Consequently, using the comparison principle Proposition 5.12 (with (u, σ, p) and the null solution) it follows that

- T * 0 B(x0,ρ0) (| u| 2 + |σ| 2 ) φ dx dt + 2 T * 0 B(x0,ρ0) σ • ∇ϕ u dx dt ≤ B(x0,ρ0+T * ) (|v 0 | 2 + |σ 0 | 2 )ϕ(0) dx + T * 0 B(x0,ρ0+T * )
|f || u|ϕ dx dt, and since the spatial derivative of ϕ vanish on B(x 0 , ρ 0 ), we get that

T * 0 B(x0,ρ0) (| u| 2 + |σ| 2 ) dx dt ≤ B(x0,ρ0+T * ) (|v 0 | 2 + |σ 0 | 2 )ϕ(0) dx + T * 0 B(x0,ρ0+T * ) |f || u|ϕ dx dt.
Using the definition of x 0 , we obtain that for every y ∈ B(x 0 , ρ 0 + T * ),

|dist(y, K) -dist(x 0 , K)| ≤ ρ 0 + T * ,
and thus dist(y,

K) > T * + η -ρ 0 -T * > η 2 > 0.
Consequently,

T * 0 B(x0,ρ0) (| u| 2 + |σ| 2 ) dx dt ≤ 0
which implies that both u and σ vanish in L η × (0, T * ). The conclusion thus follows by setting

K * = Ω \ L η . Remark 6.2. Since u ∈ W 2,∞ ([0, T ]; L 2 (Ω)), we have, for all t ∈ [0, T ], u(t) = u 0 + t 0 u(s) ds,
where the integral is intended as a Bochner integral in L 2 (Ω). Therefore, if further supp(u 0 ) ⊂ K, it follows that supp(u) ⊂ K * × [0, T * ]. As a consequence, the measure Du is also compactly supported in K * × [0, T * ], and the additive decomposition entails that supp(p) ⊂ K * × [0, T * ] as well.

We are now in position to state the regularity result.

Theorem 6.3 (Short time regularity). Let (u, σ, p) be the variational solution to the elasto-plastic problem given by Theorem 5.4 for the initial condition (u 0 , v 0 , σ 0 , p 0 ) and the source term f . Suppose that there exists a compact set K ⊂ Ω such that supp(u 0 , v 0 , σ 0 , p 0 , f (t)) ⊂ K for all t ∈ [0, T ],

and that

σ 0 ∈ H 1 (Ω; R n ), f ∈ H 1 (Ω × (0, T )).
Then, for all T * ∈ (0, T ] be such that T * < dist(K, ∂Ω), we have

     u ∈ H 1 ([0, T * ]; H 1 (Ω)), σ ∈ L 2 (0, T * ; H 1 (Ω; R n )), p ∈ H 1 ([0, T * ]; L 2 (Ω; R n )).
Proof. Using Proposition 6.1 and Remark 6.2, we know that for all T * < dist(K, ∂Ω), there exists a compact set, K * ⊂ Ω such that supp(u, σ, p) ⊂ K * × [0, T * ]. Since K * is a compact subset of Ω, there exists δ > 0 such that for all h ∈ R n with |h| < δ, the sets K * + h are also compactly embedded in Ω. Let Ω ′ be a bounded smooth open subset of R n such that Ω ⊂ Ω ′ , and for all h ∈ R n with |h| < δ, Ω + h ⊂ Ω ′ .

Step 1: Extension on Ω ′ × (0, T * ). We denote by f , ū and σ the extensions of f , u and σ by zero on Ω ′ × (0, T * ). Clearly, one has f

∈ H 1 ([0, T * ]; L 2 (Ω ′ )), ū ∈ W 2,∞ ([0, T * ]; L 2 (Ω ′ )), σ ∈ W 1,∞ ([0, T * ]; L 2 (Ω ′ ; R n )) and σ L ∞ (Ω ′ ×(0,T * )) ≤ 1.
In addition, for all t ∈ [0, T * ], since the (inner) trace on ∂Ω of u(t) vanishes, [1, Theorem 3.87] ensures that the function ū(t) ∈ BV (Ω ′ ) and D ū(t) = Du(t) in M(Ω ′ ). Hence, we get that ū ∈ C 0,1 ([0, T * ]; BV (Ω ′ )). Similarly, since the (inner) normal trace on ∂Ω of σ vanishes, we deduce that divσ ∈ L ∞ (0, T * ; L 2 (Ω ′ )), which implies that σ ∈ L ∞ (0, T * ; H(div, Ω ′ )). For every t ∈ [0, T * ], we define the measure p(t) ∈ M(Ω ′ ; R n ) by p(t) = D ū(t) -σ(t).

Using the regularity of ū and σ, we obtain that p ∈ C Step 2: Spatial translation. For every h ∈ R n be such that |h| < δ, we define the translation operator τ h of a generic function F : Ω ′ × (0, T * ) → R by τ h F (x, t) = F (x + h, t) for all (x, t) ∈ Ω × (0, T * ).

Then,

τ h f ∈ H 1 ([0, T * ]; L 2 (Ω)), τ h ū ∈ W 2,∞ ([0, T * ]; L 2 (Ω)) and τ h σ ∈ W 1,∞ ([0, T * ]; L 2 (Ω; R n )) with τ h σ L ∞ (Ω×(0,T * )) ≤ 1.
According to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Remark 3.18], for all t ∈ [0, T * ], we have that D(τ h ū)(t) = τ -h # D ū(t) (the push-forward of the measure D ū(t) by the mapping x → x -h) which implies that τ h ū ∈ C 0,1 ([0, T * ]; BV (Ω)). Finally, since for all t ∈ [0, T * ] the push-forward measure

τ -h # p(t) ∈ M(Ω; R n ) satisfies τ -h # p(t) = Dτ h ū(t) -τ h σ(t),
the regularity of τ h ū and τ h σ ensures that τ -h # p ∈ C 0,1 ([0, T * ]; M(Ω; R n )).

Step 3 : The translation of the solution is a solution. We define the translation of the solution (u h , σ h , p h ) := (τ h ū, τ h σ, τ -h # p) and f h := τ h f . Let us show that (1) Regularity properties: we have

u h ∈ W 2,∞ ([0, T * ]; L 2 (Ω)) ∩ C 0,1 ([0, T * ]; BV (Ω)), σ h ∈ W 1,∞ ([0, T * ]; L 2 (Ω; R n )) and p h ∈ C 0,1 ([0, T * ]; M(Ω; R n ));
(2) Equation of motion: üh 

-divσ h = f h in L ∞ (0,
u h (0) = τ h u 0 , uh (0) = τ h v 0 , σ h (0) = τ h σ 0 , p h (0) = τ -h # p 0 .
Items 1, 3 and 4 have already been proved in step 2. Due to the definition of τ h , items 2 and 7 are automatically satisfied. Let us examine the point 6. Since supp(u, σ) ⊂ K * × [0, T * ], then for all t ∈ [0, T * ], supp(u h (t), σ h (t)) ⊂ (K * + h) which is a compact subset of Ω as long as |h| < δ. Therefore, for all t ∈ [0, T * ], we have uh (t) = 0 and σ h (t) • ν = 0 on ∂Ω, and thus 6 holds. It remains to show item 5. By Definition 2.2 of duality, we know that for a.e. t ∈ [0, T * ] and for all

ϕ ∈ C ∞ c (Ω), [ ṗh (t) • σ h (t)], ϕ = - Ω uh (t)divσ h (t)ϕ dx - Ω σ h (t) • ∇ϕ uh (t) dx - Ω σh (t) • σ h (t)ϕ dx.
Using a change of variables (and since |h| < δ), we get that

[ ṗh (t) • σ h (t)], ϕ = - Ω u(t)divσ(t)ϕ(• -h) dx - Ω σ(t) • ∇ϕ(• -h) u(t) dx - Ω σ(t) • σ(t)ϕ(• -h) dx,
and according to the integration by parts formula (Proposition 2.4), we obtain

[ ṗh (t) • σ h (t)], ϕ = | ṗ | , ϕ(• -h) = | ṗh | , ϕ ,
where we used that ϕ(

• -h) ∈ C ∞ c (Ω ′ ) and | ṗ(t)| = [σ(t) • ṗ(t)] in M(Ω ′ ).
Step 4 : Regularity. Now that (u h , σ h , p h ) is a solution associated to the initial condition (τ h u 0 , τ h v 0 , τ h σ 0 , τ -h # p 0 ) and source term f h , Proposition 5.12 (with the test function ϕ(x, t) = T * -t) then implies that

T * 0 Ω ( uh -u) 2 dx dt + T 0 Ω |σ h -σ| 2 dx dt ≤ T * Ω (τ h v 0 -v 0 ) 2 dx + T * Ω |τ h σ 0 -σ 0 | 2 dx + 2T * T * 0 Ω |τ h f -f ||τ h u -u| dx dt.
According to Young's inequality, and since

v 0 ∈ H 1 (Ω), σ 0 ∈ H 1 (Ω; R n ), f ∈ H 1 (Ω × (0, T * )), we get that T * 0 Ω ( uh -u) 2 dx dt + T * 0 Ω |σ h -σ| 2 dx dt ≤ C(T * )|h| 2 ∇v 0 2 2 + ∇σ 0 2 2 + T * 0 ∇f (t) 2 2 dt ,
from which we get that u ∈ L 2 (0, T * ; H 1 (Ω)) and σ ∈ L 2 (0, T * ; H 1 (Ω; R n )). Writting for all t ∈ [0, T ],

u(t) = u 0 + t 0 u(s) ds
as a Bochner integral in L 2 (Ω), we obtain that u ∈ L 2 (0, T * ; H 1 (Ω)), or still u ∈ H 1 ([0, T * ]; H 1 (Ω)). Finally, we have p = ∇u -σ ∈ L 2 (0, T * ; L 2 (Ω; R n )) and ṗ = ∇ u -σ ∈ L 2 (0, T * ; L 2 (Ω; R n )) which shows the desired regularity p ∈ H 1 ([0, T * ]; L 2 (Ω; R n )).

Remark 6.4. A similar result holds for the variational solutions to the elasto-plastic problem with homogeneous Dirichlet or Neumann boundary conditions given by Theorem 5.14.

Dissipative formulation

In this last Section, we establish precise links between the variational and the dissipative formulations by making rigorous the formal computations done in Subsection 3.3. We show that any variational solution generates a dissipative solution by performing the manipulations on the approximate elasto-visco-plastic model (for which the solution is essentially smooth), and then by passing to the limit as the viscosity parameter ε → 0. A partial converse statement is proved, provided the dissipative solutions are smoother in time. We then employ measure theoretic arguments to establish that a solution of the variational problem can be constructed.

In order to define precisely the dissipative formulation of the dynamical elasto-plastic problem, we introduce the convex set K := R × B ⊂ R n+1 , and, for i = 1, . . . , n, we define the matrices

A i := -2e 1 ⊙ e i+1 ,
where {e 1 , . . . , e n } stands for the canonical basis of R n . For all x ∈ ∂Ω, we denote the boundary matrix by

A ν (x) := n i=1 A i ν i (x),
where ν(x) is the outer unit normal to Ω at x ∈ ∂Ω. In addition, for each λ > 0 and all x ∈ ∂Ω, we define the matrix M (x) ∈ M (n+1)×(n+1) by

M (x) := λ -1 e 1 ⊗ e 1 + λ n i,j=1 ν i (x)ν j (x)e i+1 ⊙ e j+1 .
In this section, we always assume that Ω is of class C 1 , so the normal ν ∈ C(∂Ω), and thus both matrices A ν and M ∈ C(∂Ω; M (n+1)×(n+1) ). Definition 7.1. Let U 0 ∈ L 2 (Ω; K) be an initial data and

F ∈ L 2 (Ω × (0, T ); R n+1 ) be a source term. A function U ∈ L 2 (Ω × (0, T ); K) is a dissipative solution to the elasto-plastic problem if for all constant vector κ ∈ K and all ϕ ∈ W 1,∞ (Ω × (0, T )) with ϕ ≥ 0, T 0 Ω |U -κ| 2 φ + n i=1 A i (U -κ) • (U -κ)∂ xi ϕ dx dt + Ω |U 0 -κ| 2 ϕ(0) dx + 2 T 0 Ω F • (U -κ)ϕ dx dt + T 0 ∂Ω M κ + • κ + ϕ dH n-1 dt ≥ 0,
where κ + denotes the orthorgonal projection of κ onto Ker(A ν + M ) ∩ ImA ν .

Remark 7.2. Using elementary algebraic computations, we have for all κ = (k, τ ) ∈ R n+1 and all ξ

∈ R n n i=1 ξ i A i κ • κ = -2(τ • ξ)k.
In addition, according to [26, Lemma 1], we have that

R n+1 = KerA ν ⊕ Ker(A ν -M ) ∩ ImA ν ⊕ Ker(A ν + M ) ∩ ImA ν .
For each κ = (k, τ ) ∈ R n+1 , denoting by κ (0) , κ -and κ + the projection of κ onto KerA ν , Ker(A ν -M ) ∩ ImA ν and Ker(A ν + M ) ∩ ImA ν , respectively, we get that κ = κ (0) + κ -+ κ + where

     κ (0) = (0, τ -(τ • ν)ν), κ -= k-λτ •ν 2 , τ •ν 2 -k 2λ ν , κ + = k+λτ •ν 2 , τ •ν 2 + k 2λ ν . In particular M κ ± • κ ± = 2λ k 2λ ± τ • ν 2 2 .
The following result states that variational solutions to the elasto-plastic problem generate dissipative solutions. Proposition 7.3. Let (u, σ, p) be the variational solution to the elasto-plastic problem given by Theorem 5.4 for the initial data (u 0 , v 0 , σ 0 , p 0 ) and the source term f , and define U := ( u, σ). Then U ∈ L 2 (Ω × (0, T ); K) is a dissipative solution to the elasto-plastic problem according to Definition 7.1 for the initial data U 0 = (v 0 , σ 0 ) and the source term F = (f, 0).

Proof. The proof is very close to that of Proposition 5.12. For fixed ε > 0, let (u ε , σ ε , p ε ) be the solution of the elasto-visco-plastic problem given by Theorem 4.1 for the initial condition (u 0 , v 0 , σ 0 , p 0 ) and the source terms f and g ε = ε∇v 0 • ν. Let k ∈ R and τ ∈ B, taking ( uεk)ϕ ∈ L 2 (0, T ; H 1 (Ω)) as test function in the variational formulation (4.6), and using the additive decomposition (4.1) together with the boundary condition (4.2) yields

T 0 Ω üε ( uε -k) ϕ dx dt + T 0 Ω σε • (σ ε -τ )ϕ dx dt + T 0 Ω (σ ε -τ ) • ṗε ϕ dx dt + ε T 0 Ω |∇ uε | 2 ϕ dx dt + T 0 Ω (σ ε -τ ) • ∇ϕ( uε -k) dx dt + T 0 Ω τ • ∇ ( uε -k)ϕ dx dt +ε T 0 Ω ∇ uε •∇ϕ( uε -k) dx dt- T 0 ∂Ω (σ ε +ε∇ uε )•ν( uε -k)ϕ dH n-1 dt = T 0 Ω f ( uε -k)ϕ dx dt.
Using next the flow rule (4.3) and the fact that τ ∈ B, we infer that (σ ε -τ ) • ṗε ≥ 0 a.e. in Ω × (0, T ), and thus

T 0 Ω üε ( uε -k) ϕ dx dt + T 0 Ω σε • (σ ε -τ )ϕ dx dt + T 0 Ω (σ ε -τ ) • ∇ϕ( uε -k) dx dt + T 0 Ω τ • ∇ ( uε -k)ϕ dx dt + ε T 0 Ω ∇ uε • ∇ϕ( uε -k) dx dt - T 0 ∂Ω (σ ε + ε∇ uε ) • ν( uε -k)ϕ dH n-1 dt ≤ T 0 Ω f ( uε -k)ϕ dx dt. (7.1) Since uε ∈ W 1,∞ ([0, T ]; L 2 (Ω)) and σ ε ∈ W 1,∞ ([0, T ]; L 2 (Ω; R n ))
, integrating by parts with respect to time yields

2 T 0 Ω üε ( uε -k)ϕ dx dt = - T 0 Ω ( uε -k) 2 φ dx dt + Ω ( uε (T ) -k) 2 ϕ(T ) dx - Ω (v 0 -k) 2 ϕ(0) dx, (7.2)
and similarly

2 T 0 Ω (σ ε -τ ) • σε ϕ dx dt = - T 0 Ω |σ ε -τ | 2 φ dx dt + Ω |σ ε (T ) -τ | 2 ϕ(T ) dx - Ω |σ 0 -τ | 2 ϕ(0) dx. (7.3)
In addition, since τ is constant and uε ∈ L 2 (0, T ; H 1 (Ω)), using an integration by parts formula with respect to the space variable leads to

T 0 Ω τ • ∇ ( uε -k)ϕ dx dt = T 0 ∂Ω (τ • ν)( uε -k)ϕ dH n-1 dt. (7.4) Gathering (7.1)-(7.4) yields T 0 Ω ( uε -k) 2 φ dx dt + T 0 Ω |σ ε -τ | 2 φ dx dt + Ω (v 0 -k) 2 ϕ(0) dx + Ω |σ 0 -τ | 2 ϕ(0) dx -2 T 0 Ω (σ ε -τ ) • ∇ϕ( uε -k) dx dt -2ε T 0 Ω ∇ uε • ∇ϕ( uε -k) dx dt + 2 T 0 Ω f ( uε -k)ϕ dx dt + 2 T 0 ∂Ω (σ ε + ε∇ uε ) • ν -τ • ν ( uε -k)ϕ dH n-1 dt ≥ 0,
and passing to the limit as ε → 0, Proposition 5.8 and (5.31) imply that

T 0 Ω ( u -k) 2 φ dx dt + T 0 Ω |σ -τ | 2 φ dx dt + Ω (v 0 -k) 2 ϕ(0) dx + Ω |σ 0 -τ | 2 ϕ(0) dx -2 T 0 Ω (σ -τ ) • ∇ϕ( u -k) dx dt + 2 T 0 Ω f ( u -k)ϕ dx dt + 2 T 0 ∂Ω (σ • ν -τ • ν)(λψ ′ λ ( u) -k)ϕ dH n-1 dt ≥ 0.
Thanks to algebraic manipulations, we have for a.e. (x, t) ∈ ∂Ω × (0, T ),

2(σ • ν -τ • ν)(λψ ′ λ ( u) -k) = 2λ λψ ′ λ ( u) -k 2λ + σ • ν -τ • ν 2 2 - λψ ′ λ ( u) -k 2λ - σ • ν -τ • ν 2 2 = 2λ k 2λ + τ • ν 2 2 - λψ ′ λ ( u) -k 2λ - σ • ν -τ • ν 2 2 ,
where we used the boundary condition σ • ν + ψ ′ λ ( u) = 0 on ∂Ω × (0, T ). Finally, from Remark 7.2, it follows that

T 0 Ω |U -κ| 2 φ dx dt + n i=1 T 0 Ω A i (U -κ) • (U -κ)∂ xi ϕ dx dt + Ω |U 0 -κ| 2 ϕ(0) dx + 2 T 0 Ω F • (U -κ)ϕ dx dt + T 0 ∂Ω M κ + • κ + ϕ dH n-1 dt ≥ 0,
as required.

We finally show that, provided additional regularity assumptions, any dissipative solution to the elasto-plastic problem generates a variational solution.

Proposition 7.4. Assume that Ω ⊂ R n is a bounded open set with C 2 boundary. Let U = (v, σ) ∈ W 1,∞ ([0, T ]; L 2 (Ω; K)
) be a dissipative solution to the elasto-plastic problem according to Definition 7.1 for the initial data U 0 = (v 0 , σ 0 ) ∈ L 2 (Ω; K) and the source term F = (f, 0) with f ∈ L ∞ (0, T ; L 2 (Ω)). Then, for all u 0 ∈ BV (Ω) ∩ L 2 (Ω), there exists a triple (u, σ, p) which is a variational solution to the elasto-plastic problem associated to the initial data (u 0 , v 0 , σ 0 , Du 0 -σ 0 ) and the source term f . Proof. We split the proof into several steps.

Step 1: Initial conditions for v and σ. According to [26, Lemma 3], we infer that the initial condition is satisfied in the essential-limit sense, i.e., for all φ ∈ C 1 c (Ω),

lim t→0 lim α→0 1 α t t-α Ω |U (x, s) -U 0 (x)| 2 φ(x) dx ds = 0.
On the other hand, since

U ∈ W 1,∞ ([0, T ]; L 2 (Ω; R n+1 )), then U (t) → U (0) strongly in L 2 (Ω; R n+1 ) as t → 0.
It thus follows that U (0) = U 0 , or still v(0) = v 0 and σ(0) = σ 0 . By Definition 7.1 of dissipative solutions, and using the regularity assumption U ∈ W 1,∞ ([0, T ]; L 2 (Ω; R n+1 )), we can integrate by parts with respect to time to get that, for all ϕ ∈ C 1 c (R n × (0, T )) with ϕ ≥ 0 and all constant vector κ ∈ K,

T 0 Ω -2 U • (U -κ)ϕ + n i=1 A i (U -κ) • (U -κ)∂ xi ϕ dx dt + 2 T 0 Ω F • (U -κ)ϕ dx dt + T 0 ∂Ω M κ + • κ + ϕ dH n-1 dt ≥ 0, or still T 0 Ω -2(U • U )ϕ + n i=1 (A i U • U )∂ xi ϕ + 2(F • U )ϕ dx dt +2κ• T 0 Ω U ϕ - n i=1 (A i U )∂ xi ϕ -F ϕ dx dt+ T 0 ∂Ω M κ + • κ + + A ν κ • κ ϕ dH n-1 dt ≥ 0. According to [26, Lemma 1], we have that M κ + • κ + + A ν κ • κ = M κ -• κ -, and thus T 0 Ω -2(U • U )ϕ + n i=1 (A i U • U )∂ xi ϕ + 2(F • U )ϕ dx dt + 2κ • T 0 Ω U ϕ - n i=1 (A i U )∂ xi ϕ -F ϕ dx dt + T 0 ∂Ω M κ -• κ -ϕ dH n-1 dt ≥ 0. (7.5)
Step 2: Definition of (u, σ, p) and first properties. For all t ∈ [0, T ], let us define the displacement as

u(t) := u 0 + t 0 v(s) ds in L 2 (Ω).
According to the regularity assumption on U , we infer that u ∈ W 2,∞ ([0, T ]; L 2 (Ω)) and that σ ∈ W 1,∞ ([0, T ]; L 2 (Ω; R n )). In addition, for all t ∈ [0, T ], we have |σ(t)| ≤ 1 a.e. in Ω. Note that, by construction u(0) = u 0 , and by step 1, u(0) = v 0 . We also define the plastic strain by p := Du -σ ∈ W 1,∞ ([0, T ]; H -1 (Ω; R n )). In particular, one can localize in time to get, for all φ ∈ C In particular σ ∈ L ∞ (0, T ; H(div, Ω)), and since by the stress constraint σ ∈ L ∞ (Ω × (0, T ); R n ), then σ • ν ∈ L ∞ (∂Ω × (0, T )). As a consequence, for all ϕ ∈ C 1 c (R n × (0, T )), where C * > 0 is independent of t, which shows that ṗ(t) ∈ M(Ω; R n ). In particular, since µ(t) ≥ 0, we obtain that | ṗ(t)| ≤ µ(t) in M(Ω). (7.12)

We already know that p ∈ W 1,∞ ([0, T ]; H -1 (Ω; R n )) which ensures the measurability of the function t → ṗ(t), φ for all φ ∈ C 1 c (Ω). Then by density this property remains true for all φ ∈ C c (Ω). It shows the weak* measurability of the mapping t → ṗ(t) ∈ M(Ω; R n ), and by (7.11), that ṗ ∈ L ∞ w * (0, T ; M(Ω; R n )). Then by definition of the distributional derivative we have that for all φ ∈ C c (Ω), t → p(t), φ ∈ W Dividing the previous inequality by φ ∞ and passing to the supremum with respect to φ ∈ C c (Ω) shows that p ∈ C 0,1 ([0, T ]; M(Ω; R n )). By construction, we have Du(t) = σ(t) + p(t) in M(Ω; R n ) for all t ∈ [0, T ], and therefore, thanks to the already established regularity of u and σ, we infer that u ∈ C 0,1 ([0, T ]; BV (Ω)).

According to the definition (7.8) of the measure µ(t) and the equation of motion, we have that for all φ ∈ C Step 4: Boundary condition. Let ϕ ∈ C 1 c (R n × (0, T )) with ϕ ≥ 0. Using, the integration by parts formula in BV , we get that As a consequence, we get that for a.e. t ∈ [0, T ] and all (k, τ ) ∈ R × B, then

-(σ(t) • ν -τ • ν) u(t) ≥ -kσ(t) • ν -λ k 2λ - τ • ν 2 2
H n-1 -a.e. on ∂Ω. (7.15) Note that the maximum of the right-hand side with respect to k ∈ R, is attained at some k * ∈ R, which satisfies according to the first order condition

-σ(t) • ν - k * 2λ - τ • ν 2 = 0.
Replacing in (7.15), and taking τ = -zν for any z ∈ [- Finally, from Remark 5.3, we deduce that u(t) ∈ ∂ψ * λ (-σ(t) • ν), or equivalently that σ(t) • ν + ψ ′ λ ( u(t)) = 0.

Remark 7.5. In the variational framework, the initial data must satisfy the hypotheses (5.4).

Here, the constraint is also satisfied by the initial data. Note that since the hyperbolic variables are the velocity and the stress, the additive decomposition of the initial data has been ensured by the construction of the plastic strain. However, we did not suppose that the initial data satisfies the boundary condition.

2. 1 .

 1 General notation. If a and b ∈ R n , we write a • b for the Euclidean scalar product, and we denote by |a| = √ a • a the associated norm. Let B := {x ∈ R n : |x| ≤ 1} be the closed unit ball in R n , and P B be the orthonormal projection onto B, i.e., P B (σ) = σ/|σ| if σ = 0, and P B (σ) = 0 if σ = 0. It is a standard fact of convex analysis that the function

p = p 1 e 1 ⊙ e 3 + p 2 e 2 ⊙ e 3 , e = e 1 e 1 ⊙ e 3 + e 2 e 2 ⊙ e 3 ,

 13231323 for some functions e 1 , e 2 , p 1 and p 2 : Ω × [0, T ] → R. Denoting by e = (e 1 , e 2 ) and p = (p 1 , p 2 ), the additive decomposition (3.1) now reads as ∇u = e + p.
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 54 Let Ω ⊂ R n be a bounded open set with C 1 boundary and λ > 0. Consider a source term f ∈ H 1 ([0, T ]; L 2 (Ω)) and an initial data

5. 1 .

 1 Weak convergences. In the proof of Theorem 4.1, we have established the following estimate (see (4.5)) sup t∈[0,T ]

5. 5 .

 5 Homogeneous Dirichlet and Neumann boundary conditions. The boundary condition studied so far does not account for the important Dirichlet and Neumann cases. It is however possible to recover these particular situations by means of asymptotic analysis as the coefficient λ → 0 + for the Dirichlet, or λ → +∞ for the Neumann case. The object of this section is to show such rigorous convergence results. Theorem 5.14. Let Ω ⊂ R n be a bounded open set of class C 1 . Consider a source term f ∈ H 1 ([0, T ]; L 2 (Ω)) and an initial data

2 ϕ

 2 • σϕ + (σ • ∇ϕ) u -f uϕ dx + k T 0 Ω (üϕ + σ • ∇ϕ -f ϕ) dx dt + τ • dH n-1 dt ≥ 0, (7.7)for all κ = (k, τ ) ∈ R × B and all ϕ ∈ C 1 c (R n × (0, T )) with ϕ ≥ 0. Choosing k = 0 and τ = 0, we deduce that-T 0 Ω uüϕ + σ • σϕ + (σ • ∇ϕ) u -f uϕ dx dt ≥ 0.

µ

  (t)(R n ) < +∞ (7.9) which shows that µ ∈ L ∞ w * (0, T ; M(R n )).Step 3: Equation of motion. In (7.7), choosing τ = 0 and k ∈ R arbitrary leads toT 0 Ω (üϕ + σ • ∇ϕ -f ϕ) dx dt = 0 for every ϕ ∈ C 1 c (Ω × (0, T )), which implies that ü -divσ = f in L ∞ (0, T ; L 2 (Ω)).

2 T 0 Ω 2 ϕStep 3 :ϕ

 2023 σ • ∇ϕ -f ϕ) dx dt = T 0 ∂Ω (σ • ν)ϕ dH n-1 dt.Reporting into (7.7) leads to-uüϕ + σ • σϕ + (σ • ∇ϕ) u -f uϕ dx dt + 2k T 0 ∂Ω (σ • ν)ϕ dH n-1 dt + 2τ • dH n-1 dt ≥ 0. (7.10) Flow rule and additional regularity. Choosing next k = 0 in (7.10), we get that for all τ ∈ B and all ϕ ∈ C 1 c (Ω × (0, T )) with ϕ ≥ 0, u∇ϕ) dx dt ≤ T 0 Ω ϕ dµ(t) dt.Using the definition (7.6) of p, we infer that τ dµ(t) dt.Since ṗ ∈ L 2 (0, T ; H -1 (Ω)), we can localize with respect to time to get that, for a.e. t ∈ [0, T ] andall φ ∈ C 1 c (Ω) with φ ≥ 0, τ • ṗ(t), φ ≤ Ω φ dµ(t).Passing to the supremum with respect to τ ∈ B and using (7.9) yields| ṗ(t), φ | ≤ Ω φ dµ(t) ≤ C * ϕ ∞ ,(7.11)

  1,∞ ([0, T ]; R n ) and d dt p(t), φ = ṗ(t), φ for a.e. t ∈ [0, T ]. It thus shows that for all 0 ≤ t 1 ≤ t 2 ≤ T , | p(t 2 ) -p(t 1 ), φ | = | p(t 2 ), φ -p(t 1 ), φ | = t2 t1 ṗ(t), φ dt ≤ C * φ ∞ (t 2 -t 1 ).

ϕ 2 ϕ2λ - τ • ν 2 2 φ 1 0 1 .2λ - τ • ν 2 2 ζ

 22112 uν dH n-1 dt, while the integration by parts formula given by Proposition 2.4 together with the equation of motion yieldsµ(t), φ = [σ(t) • ṗ(t)], φ -∂Ω (σ(t) • ν) u(t)φ dH n-1 .Reporting inside (7.10), it follows thatT 0 Ω ϕ d[(σ(t) -τ ) • ṗ(t)] dt ≥ T 0 ∂Ω (σ • ν -τ • ν) uϕ dH n-1 dt -k T 0 ∂Ω (σ • ν)ϕ dH n-1 dt -λ dH n-1 dt,and localizing in time, we get that for a.e. t ∈ [0, T ], and all φ ∈ W 1,∞ (Ω) with φ ≥ 0.Ω φ d[(σ(t) -τ ) • ṗ(t)] ≥ ∂Ω (σ(t) • ν -τ • ν) u(t)φ dH n-1 -k ∂Ω (σ(t) • ν)φ dH n-1 -λ ∂Ω k dH n-1 . (7.13)We next wish to localize the previous relation in space. To this aim, we define,φ ε (x) := 0 if dist(x, ∂Ω) ≥ ε, ε-dist(x,∂Ω) ε if dist(x, ∂Ω) < ε. Note that φ ε ∈ W 1,∞ (Ω), φ ε ≥ 0 and since Ω is of class C 2 , then for ε > 0 small enough, we have ∇φ ε (x -εsν(x)) = ν(x)/ε for all x ∈ ∂Ω and all s ∈ [0, 1]. Using that φ ε = 1 on ∂Ω, we get that for all ζ ∈ W 1,∞ (Ω) with ζ ≥ 0, Ω φ ε ζ d[(σ(t) -τ ) • ṗ(t)] = -Ω (σ(t) -τ ) • σ(t)φ ε ζ dx -Ω u(t)divσ(t)φ ε ζ dx -Ω (σ(t) -τ ) • (∇ζ)φ ε u(t) dx -Ω (σ(t) -τ ) • (∇φ ε )ζ u(t) dx + ∂Ω (σ(t) • ν -τ • ν) u(t)ζ dH n-1 . (7.14)Since φ ε → 0 strongly in L 1 (Ω), the dominated convergence theorem ensures that the three first integrals in the right hand side of (7.14) tend to zero as ε → 0. Then, according to the coarea formula (see[START_REF] Federer | Geometric measure theory[END_REF] Lemma 3.2.34]), denoting Ω ε := {x ∈ Ω : dist(x, ∂Ω) < ε}, the fourth integral writes asΩ (σ(t) -τ ) • (∇φ ε )ζ u(t) dx = Ωε (σ(t) -τ ) • (∇φ ε )ζ u(t) dx = ∂Ω σ(x -sεν(x), t) -τ • ν(x) u(x -sεν(x), t)ζ(x -sεν(x)) dH n-1 (x) ds.Therefore, according to (2.1) and (2.3), we obtainlim ε→0 Ω (σ(t) -τ ) • (∇φ ε )ζ u(t) dx = ∂Ω (σ(t) • ν -τ • ν) u(t)ζ dH n-Inserting inside (7.14), we get that Ω φ ε ζ d[(σ(t) -τ ) • ṗ(t)] → 0, and (7.13) yields for all ζ ∈ W 1,∞ (Ω) with ζ ≥ 0, 0 ≥ ∂Ω (σ(t) • ν -τ • ν) u(t)ζ dH n-1 -k ∂Ω (σ(t) • ν)ζ dH n-1 -λ ∂Ω k dH n-1 .

  ).

	Remark 2.3. Using an approximation procedure as in [2, Lemma 5.2], one can show that [σ • p] is actually a bounded Radon measure in Ω satisying

  T * ; L 2 (Ω));(3) Additive decomposition: for every t ∈ [0, T * ],Du h (t) = σ h (t) + p h (t) in M(Ω; R n );

	(4) Stress constraint: for every t ∈ [0, T * ], |σ h (t)| ≤ 1 a.e. in Ω; (5) Flow rule: for a.e. t ∈ [0, T * ], | ṗh (t)| = [σ h (t) • ṗh (t)] in M(Ω); (6) Boundary condition: for a.e. t ∈ [0, T * ],
	σ h (t) • ν + ψ ′ λ ( uh (t)) = 0 H n-1 -a.e. on ∂Ω;
	(7) Initial conditions:

  1 c (Ω) and for a.e. t ∈ [0, T ],µ(t), φ = -Ω u(t)divσ(t)φ + σ(t) • σ(t)φ + (σ(t) • ∇φ) u(t) dx = [σ(t) • ṗ(t)], φwhich is well defined according to Definition 2.2 since, for a.e.t ∈ [0, T ], σ(t) ∈ H(div, Ω) ∩ L ∞ (Ω; R n ), and D u(t) = σ(t) + ṗ(t) with u(t) ∈ BV (Ω) ∩ L 2 (Ω), σ(t) ∈ L 2 (Ω; R n ),and ṗ(t) ∈ M(Ω; R n ). Therefore, (7.12) yields | ṗ(t)| ≤ [σ(t) • ṗ(t)] in M(Ω). On the other hand, using the stress constraint σ(t) ∞ ≤ 1 and Remark 2.3, the other inequality | ṗ(t)| ≥ [σ(t) • ṗ(t)] in M(Ω) follows, so that, finally | ṗ(t)| = [σ(t) • ṗ(t)] in M(Ω).
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