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Abstract
We consider the Curry-Howard-Lambek correspondence for effect-
ful computation and resource management, specifically proposing
polarised calculi together with presheaf-enriched adjunction mod-
els as the starting point for a comprehensive semantic theory relat-
ing logical systems, typed calculi, and categorical models in this
context.

Our thesis is that the combination of effects and resources should
be considered orthogonally. Model theoretically, this leads to an
understanding of our categorical models from two complementary
perspectives: (i) as a linearisation of CBPV (Call-by-Push-Value)
adjunction models, and (ii) as an extension of linear/non-linear ad-
junction models with an adjoint resolution of computational effects.
When the linear structure is cartesian and the resource structure is
trivial we recover Levy’s notion of CBPV adjunction model, while
when the effect structure is trivial we have Benton’s linear/non-
linear adjunction models. Further instances of our model theory in-
clude the dialogue categories with a resource modality of Melliès
and Tabareau, and the [E]EC ([Enriched] Effect Calculus) models
of Egger, Møgelberg and Simpson. Our development substantiates
the approach by providing a lifting theorem of linear models into
cartesian ones.

To each of our categorical models we systematically associate
a typed term calculus, each of which corresponds to a variant of
the sequent calculi LJ (Intuitionistic Logic) or ILL (Intuitionistic
Linear Logic). The adjoint resolution of effects corresponds to po-
larisation whereby, syntactically, types locally determine a strict or
lazy evaluation order and, semantically, the associativity of cuts is
relaxed. In particular, our results show that polarisation provides a
computational interpretation of CBPV in direct style. Further, we
characterise depolarised models: those where the cut is associative,
and where the evaluation order is unimportant. We explain possible
advantages of this style of calculi for the operational semantics of
effects.
Categories and Subject Descriptors F.3.2 [Logics and meanings
of programs]: Semantics of Programming Languages—Denotational
semantics, Operational semantics; F.3.3 [Logics and meanings of
programs]: Studies of Program Constructs—Type structure; F.4.1
[Mathematical logic and formal languages]: Mathematical Logic—
Lambda calculus and related systems, Proof theory

Keywords Categorical semantics, Curry-Howard-Lambek corre-
spondence, Intuitionistic logic, Linear logic, Computational effects,
Resource modalities, Polarised calculi, Adjunction models
1. Introduction
The modern study of foundations for programming languages in-
volves looking at the subject from a variety of viewpoints. In partic-
ular: (i) syntactic calculi, formalising typing disciplines and compu-
tational behaviour, are built; (ii) connections to logical systems, for
guiding these developments, are sought; and (iii) models for estab-
lishing a mathematical basis, and informing the design space, are
investigated. In unison, these activities have the overall aim of dis-
covering deep connections as in the Curry-Howard-Lambek corre-
spondence. It is within this landscape that the work presented here
falls, specifically in the context of investigating two prominent as-
pects of computation: computational effects and resource manage-
ment.
Computational effects The analysis of computational effects in
the above light started with the seminal work of Moggi [34]. There,
the notion of monad was put forward as a mathematical abstraction
for encapsulating effects and used to extract a metalanguage (in
indirect style) in which to give semantic interpretations to call-
by-value programming languages (in direct style) with effectful
computations.

Prompted by the mathematical analysis of Power and Robin-
son [42] investigating adjoint resolutions for the monadic theory of
effects, Levy [31] developed CBPV (Call-by-Push-Value), a theory
based on adjunction models. The mathematical structure of these
models is directly reflected in Levy’s CBPV calculus where there is
a dichotomy of type and program structure corresponding to each
of the categories involved in an adjoint situation. This results in a
paradigm with aspects of both call-by-value and call-by-name com-
putation.
Linear logic The analysis of resources in computation started
with Girard’s seminal discovery of their importance in denotational
semantics [22]. Model theoretically, it corresponds to shifting at-
tention from cartesian (intuitionistic) to symmetric monoidal (lin-
ear) structure, recovering the former from the latter by means of
a resource (or exponential) modality; which, after much study [4,
5, 8, 43], was revealed to correspond to a comonad arising from a
monoidal adjoint resolution.

The study of effects and resources, respectively uncovering the
need for adjoint models giving rise to monads and to comonads, of-
fered the tantalising perspective that these two phenomena could
somehow be two sides of the same coin. This possibility was first
investigated by Benton and Wadler [7], and more recently further
pursued by Egger, Møgelberg and Simpson [16]. Our stand in this
respect is that there are in fact other phenomena at play, and that the
combination of effects and resources should be considered orthog-
onally.



Polarisation To understand the computational structures at work,
one needs to consider another logical development of Girard: po-
larisation [23]. In a modern guise, polarisation turns an arbitrary
adjunction into an algebraic structure supporting the composition
of morphisms with source and target belonging to either of the cate-
gories involved; objects are positive or negative depending on their
category of origin. We suggest to understand this as a description
of direct-style calculi that generalises from monads to adjunctions
the direct-style calculus for the Kleisli category in Moggi’s model.

Girard’s work has been related to continuation-passing style
(CPS) and with the investigation of the duality between call by
value and call by name in this context [10, 12, 13, 29, 30, 41, 44].
However, in continuity with the work of Zeilberger [48, 49] and
Melliès [33], we advocate that the perfect symmetry of Girard’s
setting is misleading. Polarisation describes a more general model
of computation in which strictness and laziness are attributes of the
type [36, 39].
Contents of the paper With the above ingredients at hand, our
viewpoint is that the adjoint resolution of amonad describing effects
underpins polarisation, which may be independently considered in
an intuitionistic (cartesian) or in a linear (symmetric monoidal) set-
ting. In the latter case, one may further incorporate resource struc-
ture by means of a monoidal adjoint resolution. This is schemati-
cally presented in the figure below.
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The column on the left above consists of enriched adjoint res-
olutions of intuitionistic models, for multiplicative (top) and for
multiplicative-additive (bottom) structure. The column on the right
refines this into more general linear models. The latter, when further
equipped with an adjoint resolution for resource management, give
rise to cartesian models.

Having set up this model-theoretic scenario, our development
substantiates the approach by relating it to typed calculi. Rather
than reproducing the adjunction structure naively in the syntax, we
rely on Girard’s polarised interpretation. For this kind of develop-
ment, this is novel and comes with two important consequences: the
calculi are in direct style, and the logics behind our type systems
are polarised variants of familiar systems: LJ (Intuitionistic Logic,
�-calculus) and ILL (Intuitionistic Linear Logic, linear �-calculus).
The figure below presents the range of logical considered in the pa-
per. (All the logics considered in this paper are propositional.)
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These sequent calculi provide the type systems for the calculi that
we introduce, and for which we give sound interpretations in their
corresponding models. We employ the standard naming scheme
whereby M stands for the core multiplicative fragment (1, ⊗,⇾),
E for the consideration of a resource (or exponential) modality (!),
and A for additives including units (⊤, 0,&, ⊕).

Our calculi build on the L-calculus �̄��̃ relating sequent calcu-
lus to abstract machines [10] and their variants with polarities [11,
36, 37, 39]. In particular, building on this earlier work, we demon-
strate that a model of computation in which strict and lazy datatypes
coexist provides a direct computational interpretation to Levy’s
CBPV. Further, we characterise depolarisedmodels in a sense close
to that of Melliès and Tabareau [33]: there is a correspondence be-
tween proof systems where the cuts associate, calculi where the or-
der of evaluation is unimportant, and models where the enriched
adjunction is idempotent.

In summary, our contributions are:
• A comprehensive theory of presheaf-enriched adjunction mod-
els, with cartesian, linear, additive, and resource structures as
per the diagram, that encompasses CBPV, linear/non-linear ad-
junction models, dialogue categories, and EEC models.

• A lifting theorem of linear models with resources into cartesian
models.

• Polarised L-calculi and corresponding polarised logics, with
cartesian, linear, additive, and exponential structure as per the
diagram, that are direct-style for the above models, with sound-
ness theorems.

• A characterisation of depolarisation.
Organisation of the paper Section 2 presents the rudiments
of the adjunction models needed here and explains polarisation
putting it in the current context. The formal treatment starts in
Section 3 where the calculi for multiplicative polarised structure,
MLJ�p for cartesian (or intuitionistic) and IMLL�p for linear, are
introduced, with MLJ�pmodels presented. Section 4 follows with
IMLL�pmodels, providing the interpretation of the multiplicative
calculi, and the characterisation of depolarisation. Sections 5 and 6
modularly extend the development to respectively include resource
structure, establishing the lifting theorem, and additive structure,
ending with ILL�p and LJ�p calculi and models. Section 7 concludes
with perspectives on novel aspects of our calculus in the context of
the operational and equational semantics of effects.

2. Adjunction Models and Polarised Calculi
2.1 Notations for Presheaf-Enriched Adjunction Models
We introduce notation for basic presheaf-enriched structure to be
used in the paper; for a comprehensive treatment of enriched cate-
gory theory the reader may consult Kelly [27].

We are interested in this paper in enriched adjoint situations

_V
F
//

⊥ _S
G
oo (1)

where the categories _V and _S respectively provide mathematical
structure for positive and negative worlds to be dwelled upon in
the following section. In this context, we will write P ,Q… for
the objects of _V and N,M… for the objects of _S. Intuitively, the
adjoint functors F and G allow the passage between the two worlds
_Vand _S.

The categories _C at play here are to be specifically enriched
over presheaves. Roughly speaking, this means that their homs are
parametrised as follows

_CC (X, Y )



IMLL�p and MLJ�p (1/2) GRAMMAR
values V ,W ∶∶= x |

|

() |
|

V ⊗W |

|

��N.c |
|

�(xA⋅�B).c

expressions t, u ∶∶= ��P.c |
|

V ⋄

stacks S ∶∶= � |

|

V ⋅S |

|

�̃xP.c |
|

�̃(xA⊗yB).c |
|

�̃().c

contexts e ∶∶= �̃xN.c |
|

S⋄

commands c ∶∶= ⟨V ‖ e⟩− |

|

⟨t ‖S⟩+

(a) Pseudo-terms

types A,B
{ positive P ,Q,A+ ∶∶= X+ |

|

1 |
|

A⊗ B

negative N,M,A− ∶∶= X− |

|

A⇾ B

(b) Types
Convention:Weomit writing the operators ⋄, and we use the same
notation ⟨t ‖ e⟩ for ⟨V ‖ e⟩ − and ⟨t ‖ S ⟩ + when there is no
ambiguity on the polarity.

CONVERSIONS
(R�̃") ⟨V ‖ �̃xA".c⟩" ⊳R c[V ∕x]

(R�") ⟨��A".c ‖S⟩" ⊳R c[S∕�]

(R⇾) ⟨�(xA⋅�B).c ‖V ⋅S⟩ ⊳R c[V ∕x, S∕�]

(R⊗) ⟨V ⊗W ‖ �̃(xA⊗yB).c⟩ ⊳R c[V ∕x,W ∕y]

(R1) ⟨() ‖ �̃().c⟩ ⊳R c

(c) Reduction rules

(E�̃") �̃xA".⟨x ‖ e⟩" ⊳E e

(E�") ��A".⟨t ‖ �⟩" ⊳E t

(E⇾) �(xA⋅�B).⟨V ‖ x⋅�⟩ ⊳E V

(E⊗) �̃(xA⊗yB).⟨x⊗y ‖S⟩ ⊳E S

(E1) �̃().⟨() ‖S⟩ ⊳E S

(d) Extensionality rules
—

Figure 1. Multiplicatives: pseudo-terms

and may be thought of as consisting of maps from X to Y in
an environment C . Furthermore, the parametrisation is such that
for every environment morphism D → C one contravariantly has
functions

_CC (X, Y ) → _CD(X, Y )
corresponding to the action of changing environment. For instance,
in the cartesian setting, the action _CC×C (X, Y ) → _CC (X, Y ) in-duced by the duplicator map C → C × C corresponds to the opera-
tion of contracting the environment C .

In the cartesian setting, the identities and composition of _C are
given pointwise; that is, one has
id(C)X ∈ _CC (X,X), ◦

(C)
X,Y ,Z ∶ _CC (Y ,Z) ×_CC (X, Y ) → _CC (X,Z) .

In the linear setting there is a need for a more refined approach and
one instead has
idX ∈ _CI (X,X), ◦

(C,D)
X,Y ,Z ∶ _CD(Y ,Z)×_CC (X, Y )→ _CC⊗D(X,Z) .

This is achieved by means of Day’s convolution monoidal structure
on presheaves [14].

The above theory suffices for discussing multiplicative structure.
Incorporating additive structure calls for the further refinement of
enriching over distributive presheaves. This amounts to requiring
that
_C0(X, Y ) ≅ 1 , _CC+D(X, Y ) ≅ _CC (X, Y ) ×_CD(X, Y ) .
In this presheaf-enriched context, the adjunction (1) amounts to

giving natural bijections
_SC (FP ,N) ≅ _VC (P ,GN)

that are invariant under the environment actions; the unit � and the
counit " of the adjunction are natural families of morphisms �P ∈_VI (P ,GFP ) and "N ∈ _SI (FGN,N), where I intuitively stands
for the empty environment. Analogous bijective correspondences
are used to describe type/logical structure in the vein of traditional
category theory.
2.2 Polarised L Calculi
Polarities: two modes of discourse Our first description of polar-
isation was given by Girard [23] and underpins the interpretation

of our calculi in adjunction models. Girard gives a denotational se-
mantics to classical sequent calculus identifying A and ¬¬A, via a
concrete interpretation based on coherent spaces, and a correspond-
ing abstract construction, given as a negative translation into intu-
itionistic logic. The negative translation is made by “carefully dis-
tinguishing between negative formulas: simply negated, and posi-
tive formulas: doubly negated” [24]. However, there is a subtlety in
this definition “since it is possible to consider a doubly negated for-
mula as simply negated”. The interpretation then takes advantage
of the focusing properties of connectives discovered earlier by An-
dreoli [1]—a well-studied aspect of polarisation, but which in our
sense comes afterwards.

Here is how Girard’s idea is reflected in our interpretation. A
cut:

Γ1 ⊢ A Γ2, A ⊢ Δ—Γ1,Γ2 ⊢ Δ
is interpreted in two different ways depending on the polarity of
A. First, sequents are interpreted in the profunctor of oblique mor-
phisms of the adjunction (1):

_S(F−,=) ≅ _O(−,=) ≅ _V(−, G=) .
To bemore precise, a sequentΓ, A ⊢ B is interpreted as _OΓ+(A+, B−),where ⋅+ and ⋅− suitably add G and F wherever necessary.

Then, if A is positive, the cut is:
_OΓ+2 (A,Δ−) × _OΓ+1 (I, FA) → _OΓ+1⊗Γ+2 (I,Δ−)

and is therefore interpreted by a composition in _S:
_SΓ+2 (FA,Δ−) × _SΓ+1 (FI, FA)→ _SΓ+1⊗Γ+2 (FI,Δ−)

which can be seen as generalising the Kleisli composition for the
monad GF . On the other hand, if A is negative, then the cut is:

_OΓ+2 (GA,Δ−) × _OΓ+1 (I, A) → _OΓ+1⊗Γ+2 (I,Δ−)
and is interpreted by a composition in _V:

_VΓ+2
(GA,GΔ−) ×_VΓ+1

(I, GA) → _VΓ+1⊗Γ
+
2
(I, GΔ−)

which now can be seen as generalising the Kleisli composition for
the comonad FG. A new composition is thus obtained; which is



IMLL�p and MLJ�p (2/2) JUDGEMENTS
• � refers to a pair �∶A of a co-variable and a type.
• � refers to a map from a finite set of variables to types provided with a total order ≤Γ on its domain, notation Γ = (x1∶A1,… , xn∶An).
• The notation Γ,Γ′ implies that Γ and Γ′ have disjoint domains.
• �(�; �′) is the set of maps � ∶ domΓ → domΓ′ satisfying Γ′(�(x)) = Γ(x) for all x ∈ domΓ.
• �∗(�; �′) is the subset of Σ(Γ; Γ′) consisting of bijective maps.
• Judgements are: Γ ⊢ t∶A ∣ Γ ⊢ V ∶A; Γ ∣ e∶A ⊢ Δ Γ;S∶A ⊢ Δ c∶(Γ ⊢ Δ)

TYPING RULES

Γ ⊢ V ∶A;— (⊢ ⋄)
Γ ⊢ V ⋄∶A ∣

c∶(Γ ⊢ �∶N)— (⊢ �−)
Γ ⊢ ��N.c∶N ;

c∶(Γ ⊢ �∶P )— (⊢ �+)
Γ ⊢ ��P.c∶P ∣

Γ;S∶A ⊢ Δ— (⋄ ⊢)
Γ ∣ S⋄∶A ⊢ Δ

c∶(Γ, x∶P ⊢ Δ)— (�̃+ ⊢)
Γ; �̃xP.c∶P ⊢ Δ

c∶(Γ, x∶N ⊢ Δ)— (�̃− ⊢)
Γ ∣ �̃xN.c∶N ⊢ Δ

(a) Coercions

— (⊢ ax)
x∶A ⊢ x∶A;

Γ ⊢ V ∶N ; Γ′ ∣ e∶N ⊢ Δ— (cut−)
⟨V ‖ e⟩−∶(Γ,Γ′ ⊢ Δ)

— (ax⊢)
; �∶A ⊢ �∶A

Γ ⊢ t∶P ∣ Γ′;S∶P ⊢ Δ— (cut+)
⟨t ‖S⟩+∶(Γ,Γ′ ⊢ Δ)

(b) Identity
IMLL�p: for all � ∈ Σ∗(Γ; Γ′) (renaming and exchange):
MLJ�p: for all � ∈ Σ(Γ; Γ′) (also weakening and contraction):

Γ ⊢ V ∶A;— (⊢f �)Γ′ ⊢ V [�]∶A;
Γ;S∶A ⊢ Δ— (� ⊢f )Γ′;S[�]∶A ⊢ Δ

Γ ⊢ t∶A ∣— (� ⊢)
Γ′ ⊢ t[�]∶A ∣

Γ ∣ e∶A ⊢ Δ— (� ⊢)
Γ′ ∣ e[�]∶A ⊢ Δ

c∶(Γ ⊢ Δ)— (�)
c[�]∶(Γ′ ⊢ Δ)

(c) Structure

c∶(Γ, x∶A ⊢ �∶B)— (⊢⇾)
Γ ⊢ �(xA⋅�B).c∶A⇾ B;

Γ ⊢ V ∶A; Γ′;S∶B ⊢ Δ— (⇾ ⊢f )Γ,Γ′;V ⋅S∶A⇾ B ⊢ Δ

Γ ⊢ V ∶A; Γ′ ⊢W ∶B;— (⊢f ⊗)
Γ,Γ′ ⊢ V ⊗W ∶A⊗ B;

c∶(Γ, x∶A, y∶B ⊢ Δ)— (⊗ ⊢)
Γ; �̃(xA⊗yB).c∶A⊗ B ⊢ Δ

— (⊢f 1)⊢ ()∶1;
c∶(Γ ⊢ Δ)— (1 ⊢)

Γ; �̃().c∶1 ⊢ Δ
(d) Logic

DERIVABLE RULES
Γ ⊢ t∶A ∣ Γ′ ∣ e∶B ⊢ Δ—— (⇾ ⊢)
Γ,Γ′ ∣ t⋅e∶A⇾ B ⊢ Δ

tA⋅eB def= �̃xA⇾B.
⟨

�̃�B.
⟨

t ‖‖
‖

�̃yA.⟨x ‖ y⋅�⟩
⟩
‖

‖

‖

‖

e
⟩

Γ ⊢ t∶A ∣ Γ′ ⊢ u∶B ∣—— (⊢ ⊗)
Γ,Γ′ ⊢ t⊗u∶A⊗ B ∣

tA⊗uB def= ��A⊗B.
⟨

t
‖

‖

‖

‖

�̃xA.
⟨

u ‖‖
‖

�̃yB.⟨x⊗y ‖ �⟩
⟩

⟩

(e) Remaining rules of sequent calculus — notice the arbitrary order
—

Figure 2. Multiplicatives: legal terms and derivable rules

only associative, however, when the enriched adjunction F ⊣ G is
idempotent (Theorem 12).

The subtlety mentioned by Girard arises when we consider the
idea that a type is characterised by the way it can be acted upon. We
have just described how an element of _OΓ(P , FQ) can be involved
in two kinds of cuts on the right: either with _OΓ′ (Q,Δ) in _S, or
with _OΓ′ (GFQ,Δ) in _V. In these respective situations, FQ on the
right is considered in turn positively and negatively. This prompts
to distinguish the positive type Q from a negative type, written
differently as ⇑Q, despite that the right-introduction of ⇑ is given
by the identity in _S.

For symmetric reasons, one needs to distinguish GN on the left
seen negatively (asN) from GN seen positively (as a positive type
⇓N). In this light, polarities describe how a morphism is meant to
be composed, revealing their modal character.
The calculi of polarisation Our calculi are based on a second de-
scription of polarisation. Danos, Joinet and Schellinx [13] recon-
struct Girard’s polarised classical logic as a distinguished way of
endowing the classical sequent calculus LK with a confluent cut-
elimination procedure, the system LK�

p. This is in fact the system

in which the order of cut-elimination is preserved by �-expansions.
The calculi ILL�p and LJ�p that we introduce are appropriate variantsofLK�

p. The meaning of �p is explained in the next section, where the
support of �̄��̃-like L-calculi allow a concise presentation and an
elegant theoretical development, along the lines of the �-calculus in
the standard presentation of Barendregt [3].

On the proof-theoretic side, L-calculi can be understood as
term assignments for sequent calculus rather than natural deduc-
tion. See [10, 47] for introductions to this aspect. On the side of
computation, they can be understood as abstract-machine-like cal-
culi, based on two principles, besides polarisation: the inside-out,
defunctionalised representation of contexts is primitive, and lan-
guage constructs are represented abstractly as solutions to their
abstract-machine transitions. See [40] for an introduction based on
this aspect.

Danos, Joinet and Schellinx recover other classical systems us-
ing annotations on formulae that determine the reduction differently,
but do not affect provability. These annotations can be understood as
the shifts⇓,⇑—A,⇓A, and⇑A are always provably equivalent, al-
beit not isomorphic. In general, polarised calculi let us describe dif-



ferent reduction strategies using appropriately-shifted types. The fa-
miliar decomposition of call-by-value and call-by-name functional
types, as given by Levy [31] and others, can thus be retrieved as
the composition of such annotations with the construction described
previously.

The two qualities wementioned, compatibilitywith �-expansions
and derivability of known systems, are two main features of the
range of calculi that we present. This parallels the general and ab-
stract character of their enriched adjunction models.

3. Cartesian Polarised Structure
We start the development by focusing on the multiplicative intu-
itionistic (or cartesian) setting which we refer to as MLJ�p. Type-theoretically, it corresponds to the unit, strict product, and arrow
types. This is model-theoretically simpler than the linear (or sym-
metric monoidal) variant to be considered next.
3.1 MLJ�p and IMLL�p Calculi
The calculusMLJ�p (polarised multiplicative intuitionistic logic) isintroduced in Figures 1 and 2, at the same time with IMLL�p (po-
larised multiplicative intuitionistic linear logic). On the proof-
theoretic side, MLJ�p corresponds to intuitionistic sequent calcu-
lus given with conjunction in multiplicative style (written ⊗), and
endowed with a polarised cut-elimination procedure. We write the
arrow type as⇾, which is to be understood as⊸ or→ depending on
whether the setting is IMLL�p or MLJ�p. (In this paper, the symbol
→ does not refer to implication but to a compatible closure.)
Barendregt-style �-calculus The calculi are introduced along
the lines of Barendregt’s presentation of the �-calculus [3]. There
is a distinction to make between the latter and the Church-style
�-calculus: in Church style, well-typed terms are directly defined
by induction, whereas in Barendregt style, first a syntax of pseudo-
terms is given, and then the legal terms are defined as those pseudo-
terms that are well-typed. In Church style, type annotations are
located on variables, whereas in Barendregt style, they are located
on binders.

The Barendregt technique consists in proving a Basis Lemma
(judgements assign a type to all the free variables, and non-free vari-
ables can appear in the context only through weakening), followed
by aGeneration Lemma (the typing relation is determined by induc-
tion on the term). Various properties follow: uniqueness of typing,
decidability of type inference, typability of sub-terms, compatibil-
ity of typing (whereby typed reductions, defined by induction on
judgements, coincide with the legal restriction of reduction). The
Substitution Lemma follows (judgements are closed under substitu-
tion), as well as Subject Reduction (judgements are closed under
reduction). Finally, one proves that the typed reduction is confluent.
Here, all these properties will be referred to as the Barendregt-style
properties.

Description of the calculi MLJ�p and IMLL�p In Figure 1, the
pseudo-terms of MLJ�p and IMLL�p are given with three main syn-
tactic categories (expressions t, contexts e, and commands c) as well
as two auxiliary syntactic categories (values V and stacks S). There
are explicit coercions ⋅⋄ from values to expressions and from stacks
to contexts, which we omit by convention: we display values as
particular expressions, and stacks as particular contexts. Binders �
and �̃ are annotated with types that are either positive (P ) or nega-
tive (N).

Head-reductions ⊳R and ⊳E are defined between pseudo-terms.
Reductions →R and →E are obtained by compatible closure as fol-
lows: one has f → g whenever g is obtained from f by application
of ⊳ to a sub-term. Equivalence is obtained as ≃ def= (← ∪→)∗.

Figure 1 defines the legal terms, i.e. well-typed pseudo-terms.
Judgements assign a type to expressions and values on the right,
and a distinguished type to contexts and stacks on the left, while
commands have no type by themselves. Expressions and contexts
determine the active (or main) type in the sequent.

The type system is given by rules of coercion between judge-
ments, together with the usual identity, structure, and logic groups
from linear sequent calculi. Notice that structural rules (exchange,
weakening, and contraction in the usual terminology) are merged
into a single set of rules; in addition they do not make the term
grow but act via a simultaneous substitution of variables for vari-
ables. For intuitionistic logic, this approach with explicit structural
rules might seem somewhat non-standard, but it is in line with the
viewpoint introduced by linear logic [22], and consists in formulat-
ingMLJ�p as the variant of IMLL�p obtained by lifting the linearityconstraint on the left. The variants of the Basis Lemma, the Gen-
eration Lemma, the uniqueness of typing, and the compatibility of
typing that we obtain are strengthened to take into account such non
type-directed rules.
Theorem 1. MLJ�p and IMLL�p have the Barendregt-style proper-
ties.

In the theorem above and the rest of the paper, confluence is
restricted to →Re where →e is the compatible closure of the four
rules (E�") and (E�̃").
Polarisation Danos, Joinet and Schellinx’s �

p technique is sum-
marised in L calculi with two ingredients: the reduction order de-
termined by the polarity:

c[�̃xP.c′∕�] ⊲R ⟨��P.c ‖ �̃xP.c′⟩
⟨��N.c ‖ �̃xN.c′⟩ ⊳R c′[��N.c∕x]

and the �-restriction, whereby the notions of values and stacks must
be defined inductively. These two principles ensure that →E does
not affect the reduction order. Polarisation is also determined by the
presence of shifts. In IMLL�p,MLJ�p, and the other systems that we
consider, shifts are definable:

⇑A def= 1 ⊸ A ⇓A def= 1⊗A

Theorem 2. LJ without disjunction and IMLL are respectively
expressible inMLJ�p and IMLL�p.

Above, expressible means that the rules of LJ without disjunc-
tion and IMLL are derivable in MLJ�p and IMLL�p. In particular,
the latter systems are complete for provability.
3.2 MLJ�p Models
We need consider category-theoretic structure enriched over cate-
gories of presheaves. Background material is provided to keep the
development relatively self-contained.
Presheaf enrichment For a category V, we write V̂ for the large
category of presheavesSetVop and natural transformations between
them, and let PV be its full subcategory consisting of the small
presheaves. These are equivalently defined as those that are a small
colimit of representables, or the left Kan extension of their restric-
tion to some small full subcategory of their domain, or the left
Kan extension of some presheaf whose domain is small; see [15].
Note that every presheaf on a small category is small, and that
PV = SetV

op for every small category V . The Yoneda embed-
ding V↪ V̂, mapping an object X to the representable presheaf
V(−, X), restricts to a Yoneda embedding y ∶ V↪ PV that ex-
hibits PV as the free cocompletion of V. As for limit structure,
PVmay not even have a terminal object in general, and we hence-
forth restrict attention to those categories V for which PV is carte-



sian closed. This is the case, for instance, for a small or for a carte-
sian closed V; see [15].

A PV-category _C is specified by a class of objects |_C| and
hom-presheaves _C(A,B) in PV for all A,B ∈ |_C| together with
identities 1 → _C(A,A) and composition operations _C(B,C) ×
_C(A,B) → _C(A,C) for allA,B, C in _Cthat are subject to the usual
monoid laws. In this context, we will conveniently write _CX(A,B)for the action of the presheaf _C(A,B) ∶ Vop → Set on an object
X in V.

We shall use the notation f ∶ A →X B for f ∈ _CX(A,B). Inelementary terms, thus, identities and composition are respectively
given by elements of _CX(A,A) and maps _CX(B,C)×_CX(A,B) →_CX(A,C) natural for X in V.

A PV-functor F ∶ _A → _B between PV-categories is
given by a mapping F ∶ |_A| → |_B| and functorial mappings
FZ
X,Y ∶ _AZ (X, Y ) → _BZ (FX, FY ) natural for Z in V. Further,

a PV-natural transformation ' ∶ F →̇ G ∶ _A → _B between
PV-functors consists of a family 'XA ∈ _BX(FA,GA) natural for
X in Vand A in _A.

The category PV, being assumed cartesian closed, underlies
a PV-category _PV and the Yoneda embedding y ∶ V ↪ PV
induces a PV-enrichment on V. Indeed, every category V un-
derlies the PV-category _V with objects that of V and hom-
presheaves given by the exponential structure of PV; that is, with
_V(X, Y ) =_PV(yX, yY ). In particular, for cartesian V, one has
that _VZ (X, Y ) = V(Z × X, Y ). The Yoneda embedding enriches
to a PV-functor.

A PV-category is said to be powered whenever it has powers;
represented, for presheaves P in PV and objects A in _C, by an
object [P → A] in _C together with an isomorphism

_C(C , [P → A]
)

≅_PV
(

P ,_C(C,A))
PV-natural for C in _C. Powers with respect to representable
presheaves are referred to as V-powers.

A PV-adjunction _A F //
⊥ _BGoo consists of PV-functors to-

gether with a representation
_BX(FA,B) ≅ _AX(A,GB)

natural for X in V, for A in _A, and for B in _B.
Adjunction models The notion of model for MLJ�p follows; it
coincides with that of EC model of Egger, Møgelberg and Simp-
son [16].
Definition 3. An MLJ�p model consists of a cartesian category V
and aPV-category _Swith V-powers together with aPV-adjunction
_V F //

⊥ _SGoo .
Note that V-powers are represented, for objects P in V and N

in _S, by an object [P →N] in _S together with an isomorphism
_SQ

(

M , [P →N]
)

≅ _SQ×P (M,N)
natural for Q in Vand forM in _S.

The coherent and sound interpretation of MLJ�p is given in the
next section as a particular case of that of IMLL�p.
4. Linear Polarised Structure
We now focus on the linear multiplicative setting, whose calculus
IMLL�p was introduced in the previous section. We give its models
and interpretation.
4.1 IMLL�p Models
Models of IMLL�p refineMLJ�p models by weakening the cartesian
structure to being linear, i.e. symmetric monoidal. The main techni-
cal tool needed to do so is a canonical symmetric monoidal structure
on presheaf categories over symmetric monoidal categories.

Presheaf convolution Every symmetric monoidal structure I,⊗
on a categoryLextends to a symmetric monoidal structure on PL
in such a way that the Yoneda embedding y ∶ L ↪ PL is a
symmetric strong monoidal functor [15]. This construction, known
as Day’s convolution monoidal structure [14], has monoidal unit yI
and monoidal product

(P ⊗Q)(Z) = ∫ X,Y∈LP (X) ×Q(Y ) ×L(Z,X ⊗ Y ) .

We henceforth restrict attention to the case when the convolution
monoidal structure on PL is closed, which precisely happens when
the presheavesL(−⊗X, Y ) are small for allX, Y inL [15]; as for
instance holds when L is small or when it is closed.

The categoryPL, being assumed closed, underlies aPL-category
_PL and the Yoneda embedding induces a PL-enrichment on L.
Indeed, the category L underlies the PL-category _Lwith objects
that ofLand hom-presheaves given by the closed structure of PL;
that is, with _L(X, Y ) =_PL(yX, yY ). In particular, one has that
_LZ (X, Y ) = L(Z ⊗ X, Y ). The Yoneda embedding enriches to a
PL-functor.
Adjunctionmodels The notion of model for IMLL�p follows. Notethat this encompassesMLJ�p models.
Definition 4. An IMLL�p model consists of a symmetric monoidal
category L and a PL-category _Swith L-powers together with a
PL-adjunction _L F //

⊥ _SGoo .
To aid the understanding of this structure, we remark that in

elementary terms a PL-category _Sis specified by a class of objects
|_S| and hom-presheaves _S(M,N) in PL for all M,N ∈ |_S|
together with identities in _SI (N,N) and composition operations

_SQ(N ′, N ′′) × _SP (N,N ′) → _SP⊗Q(N,N ′′)

natural for P ,Q in L and subject to monoid laws.
In addition, L-powers are represented, for objects P in L and

N in _S, by an object [P ⊸ N] in _S together with an isomorphism
_SQ

(

M , [P ⊸ N]
)

≅ _SQ⊗P (M,N)

natural for Q in L and forM in _S. Therefore, there are evaluation
maps [P ⊸ N] →P N in _S.
Lemma 5. For every P inLandN in _S, we have an isomorphism

L(Q⊗ P ,GN) ≅ L
(

Q,G[P ⊸ N]
)

natural for Q in L. Therefore, there are evaluation maps G[P ⊸
N]⊗ P → GN in L.
Example 6. Every symmetric monoidal closed category L, pow-
ered L-category _S, and PL-adjunction _L //

⊥ _Soo provide a
IMLL�p model. Such examples include:
1. _S= _Lwith the monoidal-closure adjunction (−)⊗ P ⊣ [P ⊸
−] for P in L, and

2. _S = _Lop with the linear double-dualisation adjunction [− ⊸
P ] ⊣ [− ⊸ P ] for P in L.

Remark 7. The second example above was considered in the linear
case by Melliès and Tabareau [33]. It has extra structure in the form
of an obvious strictly involutive negation _Lop //

≃ _Soo and thus
gives models of polarised classical and linear logic. Its proof theory
in fact led to the introduction of polarisation [23].

Corresponding systems LK�
p (essentially Girard’s LC, see [13])and LL�p can be deduced from LJ�p and ILL�p by adding a (strict

or not) involutive negation by following the ideas in [36, 38]. This
perspective is novel compared to the original intuitions involving
“linear continuations” [17]: it does not presuppose that evaluation
order is irrelevant and, as wewill see, is more faithful to the focusing
properties of linear logic.



Example 8. Let ℂ be a small symmetric monoidal category with
tensor product ∙. For every presheafS ∈ P(ℂop), we have an adjoint
situation:

Pℂ
FS
//

⊥ P(ℂop)
GS

oo

where FS (P ) = ∫ c∈ℂ S(−∙c)×P (c) andGS (N) = ∫z∈ℂ S(z∙−)⇒
N(z). Each of these adjunctions enriches to an IMLL�p model by
taking L to be Pℂ and _S to be the PL-enrichment of P(ℂop)
with homs _SP (M,N) = L

(

P ,GM (N)
). The monads GSFS are

therefore given by the formula
GSFS (P ) = ∫z∈ℂ S(z ∙ −) ⇒ ∫ c∈ℂ S(z ∙ c) × P (c)

and may be computationally interpreted as linear models for local
store. There is in fact more mathematical structure in these models,
details of which will appear elsewhere.
4.2 IMLL�p Semantics
We present the categorical interpretation of IMLL�p.
Interpretation of types To every type A, we associate both a
positive interpretation A+ ∈ L and a negative interpretation A− ∈
_S. These are defined by mutual induction as follows:

• (X+)+ is an assigned object ofL; 1+ = I ; (A⊗ B)+ = A+⊗B+;
andN+ = GN− for every negative typeN ;

• (X−)− is an assigned object of _S; (A ⊸ B)− =
[

A+ ⊸ B−
]; and

P − = FP + for every positive type P .
The interpretation of types extends pointwise to typing contexts

as follows:
• (x1∶A1,… , xn∶An)

+ =
(

⋯ (I ⊗ A1
+)⊗⋯

)

⊗An
+;

• (�∶A)− = A−.
Interpretation of judgements Values and stacks are interpreted in
the categories L and _S, respectively:

•
⟦Γ ⊢ V ∶A; ⟧ ∶ Γ+ → A+ in L,

•
⟦Γ;S∶A ⊢ Δ⟧ ∶ A− →Γ+ Δ− in _S.

As for expressions, contexts and commands, judgements may be
equivalently interpreted as morphisms inL(−, G=) or in _S(F−,=),
as explained in Section 3.1. In fact we fix it arbitrarily as follows:

•
⟦Γ ⊢ t∶A ∣⟧ ∶ Γ+ → GA− in L,

•
⟦Γ ∣ e∶A ⊢ Δ⟧ ∶ FA+ →Γ+ Δ− in _S, and

•
⟦c∶(Γ ⊢ Δ)⟧ ∶ Γ+ → GΔ− in L.

The interpretation is defined by mutual induction on derivations as
follows.

Coercions:
•
⟦Γ ⊢ V ⋄∶A ∣⟧ ∶ Γ+ → GA− is obtained from ⟦Γ ⊢ V ∶A; ⟧ ∶
Γ+ → A+; as this morphism for A negative and, for A positive,
by post-composing it with A+ ≅ I ⊗ A+ → GFA+ where the
second map is the unit;

•
⟦Γ ∣ S⋄∶A ⊢ Δ⟧ ∶ FA+ →Γ+ Δ− is obtained from the map
⟦Γ;S∶A ⊢ Δ⟧ ∶ A− →Γ+ Δ−; as this morphism for A posi-
tive and, for A negative, by pre-composing it with the counit
FGA− →I A−;

• ⟦

Γ ∣ �̃xA.c∶A ⊢ Δ
⟧

∶ FA+ ⟶Γ+ Δ− is the transpose of the
map ⟦c∶(Γ, x∶A ⊢ Δ)⟧ ∶ Γ+ ⊗A+ ⟶ GΔ−;

• ⟦

Γ ⊢ ��A.c∶A ∣
⟧

∶ Γ+ ⟶ GA− is ⟦c∶(Γ ⊢ �∶A)⟧.

Identity rules:
•
⟦x∶A ⊢ x∶A; ⟧ ∶ I ⊗ A+ ⟶ A+ is the canonical isomor-
phism;

•
⟦; �∶A ⊢ �∶A⟧ ∶ A− ⟶I A− is the identity;

•
⟦⟨V ‖ e⟩−∶(Γ,Γ′ ⊢ Δ)⟧ ∶ (Γ,Γ′)+ ⟶ GΔ−is obtained from
the composite I ⟶Γ+ GN− ⟶ Γ′+GΔ− in _L where the
first morphism arises from ⟦Γ ⊢ V ∶N ; ⟧ ∶ Γ+ ⟶ GN−

and the second one from the transpose of ⟦Γ′ ∣ e∶N ⊢ Δ⟧ ∶
FGN− ⟶Γ′+ Δ−;

•
⟦⟨t ‖S⟩+∶(Γ,Γ′ ⊢ Δ)⟧ ∶ (Γ,Γ′)+ ⟶ GΔ− is obtained from
the transpose of the composite FI ⟶Γ+ FP + ⟶Γ′+ Δ−
in _S where the first morphism arises from ⟦Γ ⊢ t∶P ∣⟧ ∶
Γ+ ⟶ GFP + by transposition and the second morphism is
⟦Γ′;S∶P ⊢ Δ⟧.

Structural rules:
•
⟦Γ′ ⊢ V [�]∶A; ⟧ ∶ Γ′+ ⟶ A+ is ⟦Γ ⊢ V ∶A; ⟧ ◦ ⟦�⟧ where
⟦�⟧ ∶ Γ′+ ≅ Γ+ is the canonical isomorphism interpreting the
bijection �;

•
⟦Γ′;S[�]∶A ⊢ Δ⟧ ∶ A− ⟶Γ′+ Δ− is themap ⟦Γ;S∶A ⊢ Δ⟧ ∶
A− ⟶Γ+ Δ− acted upon by ⟦�⟧;

•
⟦Γ′ ⊢ t[�]∶A ∣⟧ ∶ Γ′+ ⟶ GA− is ⟦Γ ⊢ t∶A ∣⟧ ◦ ⟦�⟧;

•
⟦Γ′ ∣ e[�]∶A ⊢ Δ⟧ ∶ FA+ →Γ′+ Δ− is themap ⟦Γ ∣ e∶A ⊢ Δ⟧ ∶
FA+ →Γ+ Δ− acted upon by ⟦�⟧;

•
⟦c[�]∶(Γ′ ⊢ Δ)⟧ ∶ Γ′+ ⟶ GΔ− is ⟦c∶(Γ ⊢ Δ)⟧ ◦ ⟦�⟧.

Logical rules:
•
⟦Γ,Γ′ ⊢ V ⊗W ∶A⊗ B; ⟧ ∶ (Γ,Γ′)+ ⟶ A+ ⊗B+ is given by
pre-composing ⟦Γ ⊢ V ∶A; ⟧⊗ ⟦Γ ⊢ W ∶B; ⟧ ∶ Γ+⊗ Γ′+ ⟶

A+ ⊗B+ with (Γ,Γ′)+ ≅ Γ+ ⊗ Γ′+.
• ⟦

Γ; �̃(xA⊗yB).c∶A⊗ B ⊢ Δ
⟧

∶ F
(

A+⊗B+
)

⟶Γ+ Δ− is the
transpose of ⟦c∶(Γ, x∶A, y∶B ⊢ Δ)⟧ ∶ (Γ+ ⊗ A+) ⊗ B+ ⟶

GΔ− pre-composed with Γ+⊗ (

A+⊗B+
)

≅ (Γ+⊗A+)⊗B+;
• ⟦

Γ ⊢ �(xA⋅�B).c∶A ⊸ B;
⟧

∶ Γ+ ⟶ G[A+ ⊸ B−] is ob-
tained from ⟦c∶(Γ, x∶A ⊢ �∶B)⟧ ∶ Γ+ ⊗ A+ ⟶ GB− by
means of Lemma 5;

•
⟦Γ,Γ′;V ⋅S∶A ⊸ B ⊢ Δ⟧ ∶ [A+ ⊸ B−] ⟶(Γ,Γ′)+ Δ− is ob-
tained from the evaluation map [A+ ⊸ B−] →A+ B− acted
upon by ⟦Γ ⊢ V ∶A; ⟧ ∶ Γ+ → A+ post-composed with
⟦Γ′;S∶B ⊢ Δ⟧ ∶ B− →Γ′+ Δ−;

•
⟦⊢ ()∶1; ⟧ ∶ I ⟶ I is the identity;

•
⟦Γ; �̃().c∶1 ⊢ Δ⟧ ∶ FI ⟶Γ+ Δ− is the transpose of the map
⟦c∶(Γ ⊢ Δ)⟧ ∶ Γ+ ⟶ GΔ− pre-composed with Γ+ ⊗ I ≅ Γ+.

Theorem 9. The IMLL�p semantics is coherent: all derivations of
a judgement have the same interpretation; and sound: if c →RE
c′∶(Γ ⊢ Δ) then ⟦c∶(Γ ⊢ Δ)⟧ = ⟦c′∶(Γ ⊢ Δ)⟧.

The key to these results is an extension of the Generation Lemma
with the preservation of the denotations in any model, which shows
that the interpretation is in fact determined by induction on the
terms.
4.3 MLJ�p Semantics
The categorical interpretation of MLJ�p derivations in its models
from Section 3.2 extends that of IMLL�p using the canonical carte-
sian interpretation ⟦�⟧ ∶ Γ′+ ⟶ Γ+of maps � ∈ Σ(Γ; Γ′).
Theorem 10. TheMLJ�p semantics is coherent and sound.



4.4 Depolarisation
Polarisation, inMLJ�p, IMLL�p, and their extensions, is representedby the fact that the following equations (here given with an orienta-
tion) are not always derivable from ≃RE when A is positive and B
is negative:

⟨

t ‖‖
‖

�̃xA.⟨��B.c ‖ e⟩
⟩

⊳A
⟨

��B.⟨t ‖ �̃xA.c⟩ ‖‖
‖

e
⟩ (2)

⟨t ‖ �̃xA.c⟩ ⊳T c[t∕x] (3)
c[e∕�] ⊳L ⟨��B.c ‖ e⟩ (4)

The equation ⊳A corresponds to an associativity of cuts. The nota-
tions [t∕x] and [e∕�] refer to the substitutions of t for x and of e
for � under the condition that every occurrence of x is of the form
⟨x ‖S⟩+, and every occurrence of � is of the form ⟨V ‖ �⟩−. (They
can equivalently be defined as standard substitutions, in the sense
of higher-order rewriting, by adding the so-called “&-rules”.)

These equations are in fact equal modulo ≃RE in the following
sense:
Lemma 11. Let A be a type and t be an expression. We denote
with ⊳A(t) and ⊳T(t) the relations given respectively by (2) and (3)
quantified over arbitrary B, c and e. Symmetrically, let B be a type
and e be a context. We denote with⊳A(e) and⊳L(e) the relations given
respectively by (2) and (4) quantified over arbitrary A, c and t. One
has:

(≃RE ⋅ ⊳A(t) ⋅ ≃RE ) = (≃RE ⋅ ⊳T(t) ⋅ ≃RE )

(≃RE ⋅ ⊳A(e) ⋅ ≃RE ) = (≃RE ⋅ ⊳L(e) ⋅ ≃RE )

With the additional constraint that c[��A.⟨y ‖ ()⋅�⟩∕x] (in the case
of ⊳T ) and c[�̃xB.⟨x⊗() ‖ �⟩∕�] (in the case of ⊳L ) are typable,
these equalities restrict to the corresponding typed relations be-
tween legal terms.

In particular, ⊳A , ⊳T , and ⊳L are equal modulo ≃RE . Noticethat the final typing constraint is a linearity constraint in the case
of IMLL�p and its extensions. A model is depolarised if it validates
either of these equivalent equation schemes. The following theorem
characterises depolarised models and extends the characterisation
in [39].
Theorem 12. Let _L F //

⊥ _SGoo be an IMLL�p model. Every inter-
pretation satisfies the typed restriction of (2) if and only if the ad-
junction is idempotent.

This result generalises the depolarisation criterion for dialogue
categories [33]. There, categorical models of linear logic are built
from polarised ones by enforcing commutativity of the strong
monad ¬¬. For the adjunction ¬ ⊣ ¬, being idempotent is equiva-
lent to ¬¬ being commutative (Führmann [21]).
Example 13. Erratic choice [31, Section 5.5], based on the pow-
erset monad, is an example of a commutative, but non-idempotent
effect.

5. Resource Modalities
We now focus on resource structure relating linear models to carte-
sian ones. In the calculus, we give a treatment of the exponential
modality ! consistent with its focusing properties. Its sound inter-
pretation by means of resource structure extends that of Melliès and
Tabareau [33].
5.1 IMELL�p Calculus
IMELL�p is defined in Figure 3 by adding to IMLL�p the exponen-tial modality ! from linear logic [22]. Unlike the other connectives,
the pattern-matching form (�!�.c) is a positive expression; it corre-

sponds to promotion. For this reason, it is difficult to provide syntac-
tic sugar for IMELL�p in �-calculus style, as was noticed for linear
logic in its early days [4, 5, 45, 46]. A main novelty of our syntax
is that contraction and weakening are treated by merging and intro-
ducing variables in the context, instead of introducing explicit gram-
matical counterparts to the logical rules.1 This treatment is similar
to [36] but is now substantiated by a semantic interpretation.

Our definition reflects the complex focalisation properties of !:
almost invertible on the right (meaning that the rule (E!) is ill-typed
unless the context is of the form !Γ) and non-invertible on the left.
A key property to notice is that if Γ ⊢ V ∶ !A, then Γ is of the
form !Γ′, by analysis on the derivation. Thus, restricting the rule
(E!) to values ensures that it is valid. For the same reason, any
reduction ⟨ V ‖ �̃x!A.c ⟩ ⊳R c[V ∕x], which may duplicate or
erase V due to contractions or weakening in x, is valid because the
same contractions or weakening apply to the typing context of V ,
necessarily of the form !Γ.
Theorem 14. IMELL is expressible in IMELL�p.

Theorem 15. IMELL�p has the Barendregt-style properties.

5.2 IMELL�p Models
Adjunction models We extend IMLL�p models with resources in
the form of a monoidal adjunction; when this is linear/non-linear [4]
it describes IMELL�p models.
Definition 16. An IMLL�p model with a resource modality con-
sists of an IMLL�p model _L //

⊥ _Soo together with a symmetric
monoidal category K and a monoidal adjunction K

//
⊥ Loo . An

IMELL�p model is an IMLL�p model with a resource modality in
which the symmetric monoidal structure of K is cartesian.
Example 17. The dialogue categories with a resource modality
of Melliès and Tabareau [33] are IMLL�p models with a resource
modality.
Semantics For an IMLL�p model with a resource modality as
above, we write E for the monoidal comonad on L induced by the
monoidal adjunction, and define:

(!A)+ def= EGA−

The terms associated to the exponential are then interpreted as
follows:

•
⟦!Γ ⊢ �!�.c∶!A; ⟧ ∶ EGΓ− ⟶ EGA− is obtained by pre-
composing E⟦c∶(!Γ ⊢ �∶A)⟧ ∶ EEGΓ− ⟶ EGA− with the
comultiplication EGΓ− ⟶ EEGΓ− of E;

•
⟦Γ; !S∶!A ⊢ Δ⟧ ∶ FEGA− ⟶Γ+ Δ− arises from the map
⟦Γ;S∶A ⊢ Δ⟧ ∶ A− ⟶Γ+ Δ− by pre-composition with the
composite FEGA− ⟶I FGA− ⟶I A− where the first map
is obtained from the application of F to the map I⊗EGA− ⟶

GA− arising from the counit of E and the second map is the
counit of F ⊣ G.

Assuming that the model is one of IMELL�p, the interpretation of
the structural rules is as before relying on a functorial interpretation
⟦�⟧ ∶ Γ′+ ⟶ Γ+ of maps � ∈ Σ!(Γ; Γ′):

• maps (x1∶A,… , xn∶A)⟶ (x∶A) are interpreted by

(x∶A)+ ≅ A+
�(n)
A+
⟶ (A+)⊗n ≅ (x1∶A,… , xn∶A)

+ (n ≥ 0)
1While the linear/non-linear syntax [4] does offer a similar treatment for
structural rules on the non-linear part of the sequent, deriving the actual
structural rules of linear logic amounts to encoding contraction and weaken-
ing with the explicit syntactic constructs that we manage to avoid.



IMELL�p = IMLL�p + exponentials as follows:
GRAMMAR AND CONVERSIONS (PSEUDO-TERMS)

P ,Q ∶∶= … |

|

!A
(a) Types

values V ,W ∶∶= … |

|

�!�A.c

stacks S ∶∶= … |

|

!S

(b) Pseudo-terms

(R!) ⟨�!�A.c ‖ !S⟩ ⊳R c[S∕�]

(E!) �!�A.⟨V ‖ !�⟩ ⊳E V

(c) Reduction and expansion
TYPING RULES AND DERIVABLE RULES (LEGAL TERMS)

• �!(�; �′) is the subset of Σ(Γ; Γ′) consisting of the maps that restrict to a bijection on the variables that are not of the type !A.
c∶(!Γ ⊢ �∶A)— (⊢ !)
!Γ ⊢ �!�A.c∶!A;

Γ;S∶A ⊢ Δ— (! ⊢f )Γ; !S∶!A ⊢ Δ

and the rules from Figure 2c extended to all � ∈ Σ!(Γ; Γ′).
(d) Structure

Γ ∣ e∶A ⊢ Δ—— (! ⊢)
Γ ∣ !e∶!A ⊢ Δ

!eA def= �̃x!A.
⟨

��A.⟨x ‖ !�⟩ ‖‖
‖

e
⟩

(e) Remaining rule of sequent calculus
—

Figure 3. Exponentials

where �(n)A+ is the identity for n = 1 and otherwise, writingL ⊣ Kfor the adjoint resolution of E, given by the canonical maps

LKP
LΔ(n)KP
⟶ L((KP )n) ≅ (LKP )⊗n

with P = GB− for A = !B;
• arbitrary maps � ∶ Γ ⟶ (x1 ∶A1,… , xn ∶An) are interpretedby

(x1∶A1,… , xn∶An)
+ ≅ (x1∶A1)

+ ⊗⋯⊗ (x∶An)
+

�A1⊗…⊗�An
⟶ (Γ1

+ ⊗⋯⊗ Γn
+) ≅ Γ+

where Γi is the restriction of Γ to �−1(xi).
Theorem 18. The IMELL�p semantics is coherent and sound.

In the particular case of dialogue categories, this interpretation
corresponds, when taking into account the presence of an involutive
negation, toMelliès and Tabareau’s “focalised” translation of linear
logic into tensor logic [33], but for the omission of a shift in their
definition that our interpretation corrects.

In fact, this interpretation suggests a decomposition of the expo-
nential !A in the calculus as a composite ¡⇑A where ¡ is interpreted
with (¡A)+ = EA+, not investigated here. This new connective ¡
has to be understood as a proto-exponential whose promotion rule
is restricted to values. As for the value restriction of polymorphism,
it is the constraint on the typing context that prevents the immediate
lifting of this restriction to values.

5.3 Lifting Theorem
We establish a model-theoretic lifting theorem for IMLL�p models
with a resource modality. In the context of exponential structure
it corresponds to a Girard decomposition of cartesian into linear
structure.

Every functor L ∶ K → L induces the adjoint situation L! ⊣
L⋆ ∶ PL → PKwhere L! is the universal cocontinuous exten-
sion of L and L⋆P = P L. Furthermore, if L is a (symmetric)
strong monoidal functor, as it is the case when it is a (symmetric)
monoidal left adjoint [26], then the adjunctionL! ⊣ L⋆ is (symmet-
ric) monoidal [25].

In this situation, as it happens with every monoidal functor, one
obtains a 2-functor mapping a PL-category _C to the PK-category
L⋆_Cwith objects those of _C and hom-presheaves L⋆_C(A,B) =
L⋆

(_C(A,B)). This construction has the following closure property:

if _C has L-powers [− ⊸L =] then L⋆_C has K-powers [− ⊸K =].These are given by
[X ⊸K B ] = [LX ⊸L B ]

as
L⋆_C(A, [LX ⊸L B ]

)

≅ L⋆_PL(

y(LX),_C(A,B))

≅ _CL(X)⊗L(−)(A,B) ≅ _CL(X⊗−)(A,B)

≅_PL(

yX,L⋆_C(A,B))

Furthermore, we have aPK-functor _L ∶ _K→ L⋆_Lwith object
mapping that of L and hom-actions given by
_K(X, Y )

≅
��

// L⋆_L(LX,LY )

K(X ⊗ −, Y ) // L
(

L(X ⊗ −), LY
)

// L
(

L(X)⊗L(−), LY
)

≅
OO

with the property that _L is a left PK-adjoint whenever L is a
monoidal left adjoint. In particular, note that for a monoidal adjunc-
tion L ⊣ K ∶ L→ Kone has

L⋆_L(LX, Y ) ≅ L
(

L(X)⊗L(−), Y
)

≅ L
(

L(X ⊗ −), Y
)

≅K(X ⊗ −, KY ) ≅ _K(X,KY )
To summarise, we have the following lifting theorem.

Theorem 19. Every IMLL�p model with a resource modality
( _L //

⊥ _Soo , K
L
//

⊥ Loo

)

induces an IMLL�p model, obtained by composing the following two
adjunctions:

_K //
⊥ L⋆_Loo

//
⊥ L⋆_Soo .

Corollary 20. Every IMELL�p model ( _L //
⊥ _Soo , V L //

⊥ Loo )
induces an MLJ�p model _V //

⊥ L⋆_Soo .

6. Additive Structure
We now consider additive connectives, that is to say positive co-
products and negative products. Computationally, they correspond
to strict sums and lazy pairs. The semantic subtlety is due to co-
products, whereas the model theory of the negative cartesian prod-
uct is simpler and could have been introduced earlier in Section 4.



IMALL�p ∕ LJ�p = IMLL�p ∕MLJ�p + additives as follows:
GRAMMAR AND CONVERSIONS (PSEUDO-TERMS)

N,M ∶∶= … |

|

A& B |

|

⊤

P ,Q ∶∶= … |

|

A⊕ B |

|

0
(a) Types

values V ,W ∶∶= … |

|

�1(V ) || �2(V ) || �<�A.c ; �B.c′> |

|

�<V >

stacks S ∶∶= … |

|

�1⋅S |

|

�2⋅S |

|

�̃[xA.c|yB.c′] |
|

�̃[S]

(b) Pseudo-terms

(R&) ⟨�<�A11 .c1 ; �
A2
2 .c2> ‖�i⋅S⟩ ⊳R ci[S∕�i] (no reduction R⊤)

(R⊕) ⟨�i(V ) ‖ �̃[x
A1
1 .c1|x

A2
2 .c2]⟩ ⊳R ci[V ∕xi] (no reduction R0)

(c) Reductions

(E&) �<�.⟨V ‖�1⋅�⟩; �.⟨V ‖�2⋅�⟩> ⊳E V (E⊤) �<x1⊗⋯ ⊗xn> ⊳E V , where {x1,… , xn} = fvV
(E⊕) �̃

[

x.⟨�1(x) ‖S⟩
|

|

|

y.⟨�2(y) ‖S⟩
]

⊳E S (E0) �̃[x1⋯xn⋅�] ⊳E S, where {x1,… , xn, �} = fvS
(d) Expansions

TYPING RULES (LEGAL TERMS)
Γ;S∶Ai ⊢ Δ— (&i ⊢f )Γ;�i⋅S∶A1 & A2 ⊢ Δ

c∶(Γ ⊢ �∶A) c′∶(Γ ⊢ �∶B)— (⊢ &)
Γ ⊢ �<�A.c ; �B .c′>∶A& B;

Γ ⊢ V ∶A;— (⊢f ⊤)Γ ⊢ �<V >∶⊤;

Γ ⊢ V ∶Ai;— (⊢f ⊕i)Γ ⊢ �i(V )∶A1 ⊕A2;
c∶(Γ, x∶A ⊢ Δ) c′∶(Γ, y∶B ⊢ Δ)— (⊕ ⊢)

Γ; �̃[xA.c|yB .c′]∶A⊕ B ⊢ Δ
Γ;S∶A ⊢ Δ— (0 ⊢f )Γ; �̃[S]∶0 ⊢ Δ

(e) Logic
DERIVABLE RULES

Γ ∣ e∶Ai ⊢ Δ—— (&i ⊢)
Γ ∣ �i⋅e∶A1 & A2 ⊢ Δ

�i⋅eAi
def= �̃xA1&A2.

⟨

��Ai.⟨x ‖�i⋅�⟩
‖

‖

‖

e
⟩ —— (⊢ ⊤)

Γ ⊢ �<>Γ∶⊤; �<>�
def= �<⊗ domΓ>

Γ ⊢ t∶Ai ∣—— (⊢ ⊕i)
Γ ⊢ �i(t)∶A1 ⊕A2 ∣

�i(tAi )
def= ��A1⊕A2.

⟨

t ‖‖
‖

�̃xAi.⟨�i(x) ‖ �⟩
⟩ —— (0 ⊢)

Γ; �̃[]Γ,Δ∶0 ⊢ Δ �̃[]�,�
def= �̃[∙ dom(Γ,Δ)]

(f) Remaining rules of sequent calculus
—

Figure 4. Additives

They are grouped here mainly for their similarity on the calculus
side.
6.1 IMALL�p Calculus
IMALL�p is obtained by adding to IMLL�p the additives of Figure 4:binary connectives & and⊕, and units ⊤ and 0.
Sums Sums provide a striking example of the simplification
brought by L-calculi [40]. For instance, a commuting conversion
of the �-calculus with sums, such as:

�(tA⊕B , xA.u, yB .v)C⇾D V C ⊳ �(tA⊕B , xA.u V , yB .v V )D

(where x, y ∉ fvV ) is redundant with the definition in Figure 4.
Indeed, in context �, both sides of the above equation reduce to:

⟨

t ‖‖
‖

�̃
[

xA.⟨u ‖V ⋅�⟩||
|

yB .⟨v ‖V ⋅�⟩
]⟩

which can unlock further reductions involving V ⋅�.
Units Because of linearity, additive units require a special treat-
ment. Indeed, a naive approach is to introduce the syntax �<> and
�̃[] (nullary variants of �<�.c ; �.c′> and �̃[x.c|y.c′]) together with
the following rules:
—Γ ⊢ �<>∶⊤; —Γ; �̃[]∶0 ⊢ Δ

However, this gives an incoherent system: the judgement x∶A, y∶B ⊢
�<>⊗�<>∶⊤⊗⊤; has two derivations with possibly distinct inter-
pretations (viz. arising from ⊤A+⊗⊤B+ and G⊤,G⊤◦(⊤A+⊗⊤B+)where
⊤P ∶I ⊗ P → G1 is the transpose of the unique map FP →I 1).

The syntax �̃[V ] and �̃[S] and the rules (⊢f ⊤) and (0 ⊢f ) fromFigure 4 provide the necessary disambiguation: the two morphisms
are represented differently, with �<x>⊗�<y> and �<y>⊗�<x>
respectively. They also preserve the property that all variables with
a linear type are free, which is important for splitting the contexts
of the rules (cut), (⊢f ⊗), and (⇾ ⊢f ).We have seen surprisingly few treatments of additive units in
syntax for linear logic; one exception is Cockett and Pastro [9,
Appendix A] who present a solution involving annotations by the
typing context, qualified as “tricky”. Proof nets, as well, attach the
wires from the context to the ⊤ rule. Figure 4f defines the derived
sequent calculus rules (⊢ ⊤) and (0 ⊢) with derived constructs
�<>Γ and �̃[]Γ,Δ that have such typing context annotations. Our
treatment is technically simpler because it lets us keep Barendregt’s
technique intact. Notice also that with our approach we find back
that in the intuitionistic case no annotation is in fact required, since
we always have Γ ⊢ �<()>∶⊤; and Γ; �̃[�]∶0 ⊢ �∶A.
Theorem 21. IMALL is expressible in IMALL�p.

Theorem 22. IMALL�p has the Barendregt-style properties.

In the above, and in the rest of the paper, the rules (E⊤) and
(E0) are excluded from Subject Reduction.

6.2 IMALL�p Models
The relevant notion of additive structure is distributive.



Positive additive structure In the linear setting we consider the
following.
Definition 23. A linear distributive category is a symmetric
monoidal category with finite coproducts in which the distributive
law of tensor products over coproducts holds; that is, the canonical
map ∐

i∈I (Xi ⊗ Y ) →
(
∐

i∈I Xi
)

⊗ Y is an isomorphism, for all
finite families of objects {Xi}i∈I and objects Y .
Distributive presheaves Incorporating coproducts into IMLL�pmodels (Definition 4) requires a further analysis of presheaves cru-
cial to which is the following definition (cf. Fiore, Di Cosmo and
Balat [19, Section 3.1]).
Definition 24. For a cocartesian categoryL, a presheafP ∶ Lop →
Set is said to be distributive whenever it maps coproducts in L to
products inSet; that is, for all finite families of objects {Xi}i∈I ofL,
the canonical map P (∐i∈I Xi

)

→
∏

i∈I P (Xi) is an isomorphism.
We let DVbe the full subcategory of PVconsisting of all the

distributive presheaves.
For a linear distributive category L, the convolution monoidal

structure onPLrestricts toDLyielding a strongmonoidal Yoneda
embedding y ∶ L↪ DL that induces a DL-enrichment (with re-
spect to the convolution monoidal structure) _LonL. Furthermore,
DL is a full reflective linear-exponential ideal of PL and thereby
underlies aDL-category (with respect to the convolution monoidal
structure)_DL for which the Yoneda embedding is a DL-functor.

We remark that a DL-category is a PL-category in which ev-
ery hom-presheaf is distributive, while theDL-enriched notions of
functor, natural transformation, cartesian structure, and adjunctions
coincide with those for PL-enrichment. For linear distributive L,
the same holds for powers.
Negative additive structure ADL-category _C is cartesianwhen-
ever every finite family of objects {Ai}i∈I can be represented by anobject∏i∈I Ai together with an isomorphism

_CX
(

B,
∏

i∈I Ai
)

≅
∏

i∈I _CX(B,Ai)

natural for X in L and L-natural for B in _C.
Adjunction models The above leads to the following notion of
model.
Definition 25. An IMALL�p model consists of a linear distributivecategoryLand a cartesianDL-category _SwithL-powers together
with a DL-adjunction _L //

⊥ _Soo .
In view of the remarks above on the relationship between the

DV and PV enriched notions involved in IMLL�p and IMALL�pmodels, there is only one difference between the two notions;
namely, that the latter come with cartesian structure in _Sand linear
distributive structure in L crucially satisfying

_S∐

i∈I Pi
(M,N) ≅

∏

i∈I _SPi (M,N) (5)
for all finite families of objects {Pi}i∈I inLand objectsM,N in _S.
More precisely, we have the following.
Proposition 26. An IMLL�p model _L //

⊥ _Soo is an IMALL�p model
iff L is linear distributive, _S is cartesian, and every hom-presheaf
of _S is distributive.

Note that the refinement from enriching over PL to enriching
over DL guarantees that:

_S0(M,N) ≅ 1
_SQ⊗(P1+P2)(M,N) ≅ _SQ⊗P1 (M,N) × _SQ⊗P2 (M,N)

We mention a few basic examples of models.

Example 27. Every bicartesian symmetric monoidal closed cate-
goryL, cartesian and poweredL-category _C, andDL-adjunction
_L //

⊥ _Soo provide a IMALL�p model. Such examples include:
1. _S= _Lwith the monoidal-closure adjunction (−)⊗ S ⊣ [S ⊸
−] for S in L,

2. _S = _Lop with the linear double-dualisation adjunction [− ⊸
R] ⊣ [− ⊸ R] for R in L, and

3. _S = _Lop for a cartesian ⋆-autonomous category L, with the
adjoint equivalence provided by the duality.

IMALL�p semantics The interpretation of types is given by set-
ting:

(A& B)− = A− × B− ⊤− = 1
(A⊕ B)+ = A+ + B+ 0+ = 0

As for terms, the definitions are:
•
⟦Γ;�i⋅S∶A1 & A2 ⊢ Δ⟧ ∶ A1

− × A2
− ⟶Γ+ Δ− is obtained

from ⟦Γ;S∶Ai ⊢ Δ⟧ ∶ Ai
− ⟶Γ+ Δ− pre-composed with

�i ∶ A1
− × A2

− ⟶I Ai
−;

• ⟦

Γ ⊢ �<�A.c ; �B .c′>∶A& B;
⟧

∶ Γ+ ⟶ G(A− × B−) is
obtained from the transpose of the map FΓ+ ⟶I A− × B−given by the pairing of the transposes of maps arising from
⟦c∶(Γ ⊢ �∶A)⟧ ∶ Γ+ ⟶ GA− and ⟦c′∶(Γ ⊢ �∶B)⟧ ∶
Γ+ ⟶ GB−;

•
⟦Γ ⊢ �<V >∶⊤; ⟧ ∶ Γ+ ⟶ G1 arises from the transpose of
the unique map FΓ+ ⟶I 1;

•
⟦Γ ⊢ �i(V )∶A1 ⊕A2; ⟧ ∶ Γ+ ⟶ A1

++A2
+ is ⟦Γ ⊢ V ∶Ai; ⟧ ∶

Γ+ ⟶ Ai
+ post-composed with �i ∶ Ai

+ ⟶ A1
+ + A2

+;
• ⟦

Γ; �̃[xA.c|yB .c′]∶A⊕ B ⊢ Δ
⟧

∶ F (A+ + B+ ) ⟶Γ+ Δ− is
the transpose of the composite Γ+⊗ (A+ + B+) ≅ (Γ+ ⊗A+) +
(Γ+ ⊗B+)⟶ GΔ− where the second map is the copairing of
⟦c∶(Γ, x∶A ⊢ Δ)⟧ and ⟦c′∶(Γ, y∶B ⊢ Δ)⟧;

•
⟦Γ; �̃[S]∶0 ⊢ Δ⟧ ∶ F0 ⟶Γ+ Δ− is obtained by transposing
the unique map Γ+ ⊗ 0 ≅ 0⟶ GΔ−.

Theorem 28. The IMALL�p semantics is coherent and sound.

6.3 ILL�p, Calculus and Models
Calculus The calculus ILL�p is given by adding exponentials and
additives to IMLL�p.
Theorem 29. ILL is expressible in ILL�p.
Theorem 30. ILL�p has the Barendregt-style properties.
Adjunction models As previously, our modular development al-
lows for a straightforward extension with resources.
Definition 31. An IMALL�p model with a resource modality
(_L //

⊥ _Soo , K //
⊥ Loo ) consists of an IMALL�pmodel _L //

⊥ _Soo

together with a linear distributive category K and a monoidal ad-
junction K

//
⊥ Loo . An ILL�p model is an IMALL�p model with

resources in which the symmetric monoidal structure of K is carte-
sian.

The ILL�p semantics is that of IMALL�p and IMELL�p, and thusalso sound.
Lifting theorem For every symmetric strong monoidal functor
L ∶ K → L between linear distributive categories K and L, the
symmetric monoidal adjunction L! ⊣ L⋆ ∶ PL→ PKcuts down
to a symmetric monoidal adjunctionL! ⊣ L⋆ ∶ DL→ DK. As in
Section 5.2, the DK-category L⋆_S has K-powers and, moreover,
it is cartesian whenever _C is:
L⋆_S(N,∏i∈INi

)

≅ L⋆
(
∏

i∈I_S(N,Ni)
)

≅
∏

i∈IL
⋆_S(N,Ni) .



Hence we have the following lifting theorem.
Theorem 32. Every IMALL�p model with a resource modality
( _L //

⊥ _Soo , K L //
⊥ Loo ) induces an IMALL�p model, obtained

by composing the following two adjunctions:

_K //
⊥ L⋆_Loo

//
⊥ L⋆_Soo .

6.4 LJ�p, Calculus and Models
Calculus The calculus LJ�p is given by adding additives toMLJ�p.
Theorem 33. LJ is expressible in LJ�p.

Theorem 34. LJ�p has the Barendregt-style properties.

Adjunctionmodels Models ofLJ�p are the intuitionistic version of
IMALL�p models. TheLJ�p semantics is that ofMLJ�p and IMALL�pand thus sound; it is also coherent.
Definition 35. An LJ�p model is an IMALL�p model _L //

⊥ _Soo in
which the symmetric monoidal structure of L is cartesian.
Theorem 36. The notion of LJ�p model and Levy’s notion of CBPV
adjunction [32, Definition 5.5] are equivalent.

Corollary 37. Every ILL�p model ( _L //
⊥ _Soo , V L //

⊥ Loo ) in-
duces an LJ�p model _V //

⊥ L⋆_Soo .

7. Perspectives
Benefits of L-calculi L-calculi are an alternative to structured
operational semantics. They can be seen as providing a princi-
pled reconstruction of defunctionalized CPS in direct style [40],
while giving a modern view on the dualities of computation: ex-
pression/context, producer/consumer, strict/lazy.

In particular, as a legacy of CPS, there are benefits reminis-
cent of the advantages of CPS over ANF [20] and monadic meta-
languages [35] as reported by Kennedy [28]: simplifications of com-
muting conversions, of inlining, of sharing of contexts. . . A natural
question is, then, whether these simplifications carry over to the op-
erational and equational modelling of effects and resources.
Commuting conversions and effects Benton and Kennedy [6]
show that lessons from the proof theory of �-calculus with sums, in
particular the role of commuting conversions, help in the design and
equational reasoning of exceptions. It is thus tempting to investigate
how far advantages of L calculi on the �-calculus with sums carry
over to the study of effects.

Benton and Kennedy refine the syntax for exceptions using a
new form of handler try-unless which is suitable for expressing
commuting conversions in the vein of the conversions for sums.
Commuting conversions are used to turn an abstract-machine-based
operational semantics of exceptions into a definition in terms of
the source language, which is simpler since “there is a certain
amount of clutter involved in using stacks (extra syntax, type rules,
etc.)”. They moreover show that it is possible to produce optimised
code by combining commuting conversions with effect analysis in
the intermediate representation (for instance, compiling a non-tail-
recursive source example into a tail-recursive final code). Finally,
while commuting conversions duplicate expressions, they mention
that it is possible to avoid the explosion in code size by using in the
implementation “a special abstraction construct which compiles to
a block of code accessed by jumps”.

The calculus LJ�p can be extended so as to give an operational
semantics for exceptions, using an auxiliary stack of stacks, as intro-
duced by Ariola, Herbelin and Sabry [2] in the context of delimited
control operators.

⟨�̂c ‖S⟩+{�} ⊳R c{S, �}

⟨V ‖ ̂⟩+{S, �} ⊳R ⟨V ‖S⟩+{�}

To do so, those stacks are made to correspond to the successive try-
unless handlers (�(t, x.u, E(y).v)) in scope, by solving the following
(simplified) equations.

⟨V ‖ return⟩+{�̃[R(x).c|E(y).c′], �}→∗
R c[V ∕x]{�}

⟨raiseE(V ) ‖S⟩+{�̃[R(x).c|E(y).c′], �} →∗
R c

′[V ∕y]{�}
⟨

�(t, x.u, E(y).v) ‖‖
‖

S
⟩+{�}

→∗
R ⟨t ‖ return⟩+

{

�̃
[

R(x).⟨u ‖S⟩+||
|

E.⟨v ‖S⟩+
]

, �
}

Thus, the abstract machine for exceptions can, as an alternative to
adding commuting conversions to the source language, be turned
into an L-calculus that reveals a decomposition of try-unless into
simpler primitives:
�(t, x.uP , E(y).vP )
def= ��P.

⟨

�̂
⟨

t ‖‖
‖

�̃xP.⟨R(x) ‖ ̂⟩
⟩
‖

‖

‖

‖

�̃
[

R(x).⟨u ‖ �⟩||
|

E(y).⟨v ‖ �⟩
]

⟩

In particular, it is possible to derive the commuting conversions that
Benton and Kennedy use to define the operational semantics2.

However, other conversions, characteristic of exceptions3, are
out of reach. Thus, on the one hand, the L-calculus provides a sim-
pler operational semantics than the �-calculus with try-unless, but
on the other hand it is not able to produce by itself exception-specific
optimisations as in Benton and Kennedy (as one can expect).

Lastly, the duplications happening during commuting conver-
sions are mediated by �. Thus, the mismatch between the reduc-
tion theory and the implementation in Benton and Kennedy can be
explained as the need to determine an appropriate sharing imple-
mentation for a single � binder, as is done with CPS [28].

The challenge is to let L calculi model the operational semantics
of a wider class of effects, such as algebraic effects, along the above
lines, all the while simplifying the study of their equational theory.
Completeness In connection to the model theory, direct algebraic
descriptions of our calculi are to be obtained in terms of the du-
ploids arising from the effect adjunctions. These direct models are
to be put in reflection with the enriched adjunction models, to gen-
eralise Führmann’s direct characterisation of �C -models [21], in the
continuity of [39]. In fact, we conjecture that the calculi form initial
models, not only for direct duploid models, but also for the adjunc-
tion models, provided that the data of values and stacks is appropri-
ately preserved.

In particular, we have observed that the distributivity require-
ment on presheaves, while needed for the correspondence with
CBPV models, and holding in all concrete models we know of, was
actually not used for defining the semantic interpretation. However,
as syntactic presheaves are naturally distributive, we conjecture that
distributivity is required for completeness.
Biclosed action models As alluded in Example 8, we are aware
of classes of models that display more mathematical structure than
the ones presented here and will be studied elsewhere. We are
particularly interested in the class given by biclosed symmetric-
monoidal skew actions, that seems to be related to delimited control
and type-and-effect systems.
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