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For H ölder cocycles over a Lipschitz base transformation, possibly noninvertible, we show that the subbundles given by the Oseledets Theorem are H öldercontinuous on compact sets of measure arbitrarily close to 1. The results extend to vector bundle automorphisms, as well as to the Kontsevich-Zorich cocycle over the Teichm üller flow on the moduli space of abelian differentials. Following a recent result of Chaika-Eskin, our results also extend to any given Teichm üller disk.

Introduction

The multiplicative ergodic theorem, or Oseledets theorem [START_REF] Oseledets | A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems[END_REF] provides the theoretical background for computation of Lyapunov exponents of a nonlinear dynamical system. These exponents define subspaces of vectors having the same exponential rate of growth under the action of a typical family of linear maps generated by the orbits of a measure preserving system; typical here meaning almost every point, see below for the precise statements for discrete dynamical systems and flows.

The dependence of the exponents and the corresponding subspaces on the orbit is measurable in general; strong forms of dependence being rarely studied. For the special case of an ergodic partially hyperbolic probability measure preserved by a C 1+α diffeomorphism of a compact manifold, it is known that the subspace given by the direct sum of the Oseledets subspaces corresponding to strictly negative Lyapunov exponents depend H ölder-continuously on the orbit chosen; see Brin [START_REF] Brin | Proc. Sympos. Pure Math. In Smooth Ergodic Theory and its Applications[END_REF] and [BP07, Chpt.5, Section 3].

Here we show that all Oseledets subspaces depend H ölder-continuously on the points of hyperbolic blocks (or regular sets) of the system, which can be chosen to be compact sets of measure arbitrarily close to 1. We present our results for cocycles generated by discrete maps (both invertible and non-invertible) and also for vector bundle automorphisms covering flows, under some regularity conditions on the underlying dynamics.

In addition, we show that our results apply to the Kontsevich-Zorich cocycle over the Teichm üller flow on the moduli space of abelian differentials. Following a recent result of Chaika-Eskin [START_REF] Chaika | Every flat surface is Birkhoff and Oseledets generic in almost every direction[END_REF], our results also extend to any given Teichm üller disk.

We begin, in the following subsections, by stating precisely our results in the setting of the Multiplicative Ergodic Theorem for cocycles over measure preserving Lipschitz maps; then for cocycles over measure preserving Lipschitz flows (Subsections 1.1 and 1.2); and finally stating our results in the setting of Kontsevich-Zorich cocycle over the Teichm üller flow (Subsection 1.3).

For the proof, we present some preliminary results in Section 2 together with the statements of the main technical lemmas. Then in Section 3 we prove the sufficient conditions for the Oseledets subspaces to depend H ölder continuously on points of hyperbolic blocks. Section 4 is reserved to the detailed proofs of the technical lemmas and we finally apply our results to the Kontsevich-Zorich cocycle in Section 5.

1.1. Multiplicative ergodic theorem for cocycles. Let f : M → M be a measurable transformation on the metric space (M, d), preserving some Borel probability measure µ, and let A : M → GL(d, R) (or GL(d, C)) be any measurable function such that log + A(x) is µ-integrable, where • is any norm in the space of real (or complex) d × d matrices and log + (a) := max{log a, 0} for a > 0. The Oseledets theorem states that Lyapunov exponents exist for the sequence A n (x) = A( f n-1 (x)) • • • A( f (x)) A(x) for µ-almost every x ∈ M. More precisely, for µ-almost every x ∈ M there exists k = k(x) ∈ {1, . . . , d}, a filtration

{0} = F 0 x ⊂ F 1 x ⊂ • • • ⊂ F k-1 x ⊂ F k x = R d (or C d ),
and numbers χ 1 (x) < • • • < χ k (x) such that

F i x = v ∈ R d : lim n→∞ 1 n log A n (x) • v ≤ χ i (x) , and 
lim n→∞ 1 n log A n (x) • v = χ i (x) for all v ∈ F i x \ F i-1
x and i ∈ {1, . . . , k} where • is a norm in R d (C d ). More generally, this conclusion holds for any vector bundle automorphism A : V → V over the transformation f , with A(x) :

V x → V f (x)
denoting the action of the bijective linear map between the fibers V x and V f (x) . We assume that a measurable family { • x } x∈M of norms is given which enables us to define

A(x) := sup{ A(x)v f (x) / v x : v ∈ V x , v 0}.
The Lyapunov exponents χ i (x), and their number k(x), are measurable functions of x and they are constant on orbits of the transformation f . In particular, if the measure µ is ergodic then k and the χ i are constant on a full µ-measure set of points. The subspaces F i

x also depend measurably on the point x and are invariant under the automorphism:

A(x) • F i x = F i f (x) .
If the transformation f is invertible one obtains a stronger conclusion, by applying the previous result also to the inverse automorphism: for n > 0 we set A -n (x) = A( f -n (x)) -1 • • • A( f -1 (x)) -1 and A 0 (x) = Id. With this definition we associate to each x a bi-infinite sequence (A n (x)) n∈Z of automorphisms of R d (C d ). Assuming that both log + A(x) and log + A(x) -1 are in L 1 (µ), one gets that there exists a decomposition

V x = E 1 x ⊕ • • • ⊕ E k x ,
defined at almost every point and such that A(x)

• E i x = E i f (x) and lim n→±∞ 1 n log A n (x) • v = χ i (x) (1.1)
for all v ∈ E i x different from zero and all i ∈ {1, . . . , k}. Moreover the convergence in (1.1) is uniform over the set {v ∈ E i

x : v = 1} of unit vectors; see [START_REF] Barreira | Nonuniform hyperbolicity, volume 115 of Encyclopedia of Mathematics and its Applications[END_REF]Lemma 3.4.6] and [BP07, Theorem 3.5.10] for the non-invertible case. These Oseledets subspaces E i

x are related to the subspaces F i x through

F j x = ⊕ j i=1 E i x . (1.2) Hence, dim E i x = dim F i x -dim F i-1
x is the multiplicity of the Lyapunov exponent χ i (x).

The angles between any two Oseledets subspaces decay sub-exponentially along orbits of f (see [BP07, Theorem 1.3.11 & Remark 3.1.8]):

lim n→±∞ 1 n log sin angle         i∈I E i f n (x) , j I E j f n (x)         = 0
for any I ⊂ {1, . . . , k} and almost every point, where for any given pair E, F of complementary subspaces (i.e.

E ⊕ F = R d ) we set cos angle (E, F) := inf {| v, w | : v = 1 = w , v ∈ E, w ∈ F} .
These facts imply the regularity condition mentioned previously and, in particular,

lim n→±∞ 1 n log | det A n (x)| = k i=1 χ i (x) dim E i x
If the measure µ if f -ergodic, then the numbers k(x), χ i (x) are constant µ-almost everywhere.

The Oseledets Multiplicative Ergodic Theorem applies, in particular, when f : M → M is a C 1 diffeomorphism on some compact manifold and A(x) = D f x . Notice that the integrability conditions are automatically satisfied for any f -invariant probability measure µ, since the derivative of f and its inverse are bounded in norm; see e.g. [Ose68, Pes77, Ma ñ87, BP07].

In general, the dependence of E i x on x is measurable. Here we show that, under some mild assumptions on the cocycle and the base transformation, this dependence is in fact H ölder with probability arbitrarily close to 1. For the full stable or unstable subspace, H ölder dependence on the base point has been established by Brin [START_REF] Brin | Proc. Sympos. Pure Math. In Smooth Ergodic Theory and its Applications[END_REF]. Our result gives H ölder dependence for each Oseledets subspace corresponding to each Lyapunov exponent. Furthermore, Theorem 5.6 establishes H ölder dependence for the Kontsevich-Zorich cocycle, while Theorem 5.7 proves a similar result in almost every direction on any Teichm üller disk.

Remark 1.1.

In what follows we present the statements and proofs in the case of real vector spaces and vector bundles, but the same results hold with the same proofs in the complex case. 1.2. Statement of the results. Some preliminary definitions are needed. We define the distance from a vector v to a subspace E in R d with a given euclidean norm • as dist(v, E) := min w∈E vw and then the distance between two subspaces E, F of R d is defined to be

dist(E, F) := max sup v =1,v∈E dist(v, F), sup v =1,v∈F dist(v, E) . (1.3)
Let M be a metric space endowed with a distance d. We say that the cocycle A : M → GL(d, R) is ν-H ölder-continuous if there exists a constant H > 0 such that A(x) -A(y) ≤ Hd(x, y) ν , for all x, y ∈ M.

In this case we also say that A is a (H, ν)-H ölder cocycle. Note that we do not assume that the base is compact; however, the H ölder assumption is uniform on the base.

Theorem A. Let f : M be a Lipschitz transformation preserving an ergodic probability measure µ, and A : M → GL(d, R) a ν-Hölder cocycle over f such that both log A(x) and log A(x) -1 are µ-integrable. We denote by χ 1 < • • • < χ k the distinct k Lyapunov exponents associated to this cocycle, and by F i

x the filtration by subspaces of R N corresponding to each χ i , i = 1, . . . , k, defined for µ-almost every x ∈ M.

Then, for every ε > 0, there exists a compact subset Λ ε of M, and constants

C = C(Λ ε ) > 0, ω i = ω i (χ 1 , . . . , χ k ) ∈ (0, 1), i = 1, . . . , k and δ = δ(ε, A, Λ ε , χ 1 , . . . , χ k ) > 0, such that (1) µ(Λ ε ) ≥ 1 -ε; (2) for all x, y ∈ Λ ε with d(x, y) < δ we have dist(F i x , F i y ) ≤ C ε d(x, y) νω i .

Moreover, if the map f is also invertible, then letting E i

x be the Oseledets subspaces corresponding to each χ i , i = 1, . . . , k, which form a splitting

R n = E 1 x ⊕ • • • ⊕ E k x for µ-almost every x ∈ M, we also have (3) dist(E i x , E i y ) ≤ C ε d(x, y) νω i for all x, y ∈ Λ ε with d(x, y) < δ.
We say that a measurable subbundle E = E(x) of R d defined over a measurable subset Λ is locally α-H ölder continuous with H ölder constant H > 0 if, for every x ∈ Λ, there exists δ > 0 such that dist(E(x), E(y)) ≤ Hd(x, y) α for all x, y ∈ Λ with d(x, y) < δ.

Remark 1.2. The definition of H ölder-continuity for measurable subbundles allows the local radius δ > 0 to depend on x. This is not the case for linear cocycles, but is needed for vector bundle automorphisms; see Theorem C in the following Subsection 1.2.2.

Thus Theorem A means that the subbundles given by Oseledets' Theorem are H öldercontinuous on arbitrarily big (in measure) compact subsets of the ambient space, for H ölder cocycles over a Lipschitz base transformation.

Remark 1.3. We have C ε = C(Λ ε ) → +∞ and δ → 0 as ε → 0+, so that the H ölder constant becomes worse as the size of Λ ε grows to fill a full µ-measure subset of M.

The proof shows that the dependence of the Oseledets directions on the base point at every block Λ ε is H ölder, with H ölder exponent only dependent on the minimum gap ε 0 = min{χ i+i -χ i : 1 ≤ i < k} of the Lyapunov spectrum, and H ölder constant essentially dependent on the choice of the regular block. 1.2.1. The case of linear multiplicative cocycles over flows. We can extend our result to the case of linear multiplicative cocycles over flows with the exact same conclusions (1), (2) and (3) of Theorem A as a corollary of the proof for invertible transformations.

We recall some common definitions. Let (X, µ) be a Lebesgue space. The measurable map ϕ : R × X → X is a measurable flow if ϕ 0 = Id and ϕ t • ϕ s = ϕ t+s for each t, s ∈ R. The flow ϕ preserves the measure µ if ϕ t := ϕ(t, •) preserves µ for all t ∈ R.

A measurable function A : X × R → GL(d, R) is a linear multiplicative cocycle over ϕ if A(x, 0) = Id and A(x, t + s) = A(ϕ t (x), s)A(x, t) for all s, t ∈ R and for every x ∈ X.

We can also consider a measurable linear cocycle A acting on a vector bundle V over M, that is A(x, t) : V x → V ϕ t (x) is a linear bijection for all (x, t) ∈ M × R. Taking a family of norms on the vector bundle enables us to define the norm of A(x, t).

Let us take a measurable cocycle A over a flow ϕ which preserves a probability measure µ such that sup

-1≤t≤1 log + A(x, t) ∈ L 1 (X, µ).
Oseledets' Theorem ensures that for µ-almost every x ∈ M there exists k

= k(x) ∈ {1, . . . , d}, a filtration {0} = F 0 x ⊂ F 1 x ⊂ • • • ⊂ F k-1 x ⊂ F k x = V x , and numbers χ 1 (x) < • • • < χ k (x) such that F i x = {v ∈ V x : lim t→∞ 1 t log A(x, t) • v ≤ χ i (x)}, and lim t→∞ 1 t log A(x, t) • v = χ i (x) for all v ∈ F i x \ F i-1
x and i ∈ {1, . . . , k}.

The subspaces are invariant: A(x, t)• F i x = F i ϕ t (x) and depend measurably on the base point x ∈ X. The function k(x) and the Lyapunov exponents χ i (x) are measurable functions, constant on orbits of the flow ϕ and so, if µ is ergodic, these are constant functions almost everywhere. Moreover there exists a decomposition

V x = E 1 x ⊕ • • • ⊕ E k x defined µ-almost everywhere satisfying A(x, t) • E i x = E i ϕ t (x) and lim t→±∞ 1 t log A(x, t) • v = χ i (x) = χ i , 0 v ∈ E i (x), i = 1, . . . , k. (1.4)
As before the convergence in (1.4) is uniform over the set of unit vectors and the Oseledets subspaces E i x are related to the subspaces F j x as follows

F j x = ⊕ j i=1 E i x .
Now let a linear multiplicative cocycle A(x, t) over a flow ϕ preserving a probability measure µ which is also ergodic with respect to ϕ be given. That is, we assume that every measurable subset A of X satisfying ϕ t (A) = A for all t ∈ R also satisfies µ(A)•µ(X\A) = 0. Then it is well known that there exists a denumerable subset Y of R such that the bijection ϕ t is ergodic with respect to µ for all t ∈ R \ Y; see e.g. [START_REF] Pugh | Ergodic elements of ergodic actions[END_REF].

Let us fix 0 < τ ∈ R \ Y. Then A τ : X → GL(d, R), x ∈ X → A(x, τ) defines a cocycle over ϕ τ since A(x, 0) = Id and A(x, nτ) = A(ϕ (n-1)τ (x), τ) • • • A(ϕ τ (x), 1)A(x, τ), n ≥ 0; A(x, nτ) = A(ϕ -nτ (x), -τ) • • • A(ϕ -τ (x), -τ), n < 0
where A(•, -τ) = A(•, τ) -1 by the cocycle property.

We now note that by ergodicity, since the following limits exist, we have the equalities

lim t→±∞ 1 t log A(x, t)v = χ i = lim n→±∞ 1 n log A(x, nτ)v , v ∈ E i (x), µ -a.e. x.
Therefore the Lyapunov exponents and Oseledets subspaces of the cocycle A τ over the invertible transformation f = ϕ τ coincide with those of the cocycle A over the flow ϕ.

We obtain the following result by a direct application of Theorem A to the cocycle A τ and the transformation f . We say that a linear multiplicative cocycle A : X × R → X over a flow ϕ on the metric space X (which is a Lebesgue space with the Borel σ-algebra) is ν-H ölder if, for every t ∈ R there exists a constant H = H t > 0 such that A(x, t) -A(y, t) ≤ Hd(x, y) ν , x, y ∈ X.

Corollary B. Let ϕ : R× X → X be a flow preserving an ergodic probability measure µ and such that ϕ t : X → X is a Lipschitz transformation for all t ∈ R. Let also A :

X × R → GL(d, R) be a ν-Hölder linear multiplicative cocycle over ϕ such that sup t∈[-1,1] log + A(x, t) is a µ-integrable function, denote by χ 1 < • • • < χ k the k

distinct Lyapunov exponents associated to this cocycle, and by E i

x the Oseledets subspaces corresponding to each χ i , i = 1, . . . , k, which form a splitting

R n = E 1 x ⊕ • • • ⊕ E k
x for µ-almost every x ∈ X. Then, for every ε > 0, there exists a compact subset Λ ε of X, and constants C = C(Λ ε ) > 0, ω i = ω i (χ 1 , . . . , χ k ) ∈ (0, 1), i = 1, . . . , k and δ = δ(ε, A, Λ ε , χ 1 , . . . , χ k ) > 0, such that

(1) µ(Λ ε ) ≥ 1 -ε; (2) dist(E i
x , E i y ) ≤ C ε d(x, y) νω i for all x, y ∈ Λ ε with d(x, y) < δ. Remark 1.4. It is no restriction to assume that τ = 1 above since we can always make a linear rescale of time, e.g., we may set s = τ • t as a new time variable.

The case of vector bundle automorphisms. Now

A : V → V is an automorphism of the d-dimensional vector bundle V covering f : M → M.
We assume that f is Lipschitz with Lipschitz constant L > 0, that M is a finite m-dimensional manifold and that A is locally Hölder. This means that

• we can find an at most denumerable locally finite open cover (U i , ψ i ) i≥1 of M together with trivializing charts of the bundle V, that is,

ψ i : p -1 (U i ) → U i × R d
given by w ∈ V x → (x, ψ i,x (w)) and ψ i,x : V x → R d a linear bijection for all x ∈ U i , whose overlaps satisfy

ψ j,i := ψ i • ψ -1 j : (U i ∩ U j ) × R d → (U i ∩ U j ) × R d , (x, v) → (x, ψ j,i,x (v)) = (x, ψ i,x • ψ -1 j,x (v)) for x ∈ U i ∩ U j and x ∈ U i ∩ U j → ψ j,i,x ∈ GL(d, R);
• we assume without loss of generality that the open sets of the cover of M are also domains of charts φ i : U i → R m of M; so we can define on U i a distance d i (x, y) = φ i (x) -φ i (y) 2 for x, y ∈ U i and all possible i, where • 2 is the Euclidean norm in R m ; • since the initial open cover was locally finite, then given any point x ∈ M we have at most finitely many chart domains U i 1 (x) , . . . , U i k (x) containing x. Hence we can define

d x (y) := min{d i 1 (x) (y, x), . . . , d i k (x) (y, x)} for all y ∈ U i 1 (x) ∩ • • • ∩ U i k (x) .
In this way, we write for x ∈ M and ξ > 0

B(x, ξ) := {y ∈ U i 1 (x) ∩ • • • ∩ U i k (x) : d x (y) < ξ}.
• likewise we define the norm v x := sup{ ψ i j (x),x (v) 2 : j = 1, . . . , k} for each x ∈ M, where • 2 is the Euclidean norm in R d . This is a measurable family of norms on the bundle V which is locally constant. Naturally we write

A(x) for sup{ A(x)v f (x) / v x : v ∈ V x , v 0} in what follows; • for any given x and i, j such that x ∈ U j , f (x) ∈ U i we assume that A(x) is (H, ν)-H ölder as before on a neighborhood of x: A(x) -A(y) ≤ H • d x (y) ν , for all x, y ∈ U j ∩ f -1 (U i )
where we allow H = H j,i to depend on i, j.

The proof of the previous Theorem A uses Lemma 2.2 which says that there exists c 1 > 0 such that the H ölder constant of an iterate A n of an H ölder cocycle A is bounded by c n 1 for all n ≥ 1. We cannot identify naturally all the subspaces V x where A(x) acts, so we assume that iterates A n of the vector bundle automorphism have H ölder constant similarly bounded in the following way.

We take an ergodic f -invariant probability measure µ and the family (U i ) i≥1 of open charts of the vector bundle, and assume that

• the partition P given by the intersection of the these sets is a µ -mod0 partition of M; • there exists a full µ-measure subset Y of M such that the refined partitions

P n := P ∨ f -1 P ∨ • • • ∨ f -n+1
P do not shrink faster than exponentially, that is, they satisfy: there exists 0 < ξ < 1 such that for all x ∈ Y there is c = c(x) > 0 so that

B(x, cξ n ) ⊂ P n (x) for all n ≥ 1. (1.5)
In the above statement, as usually, P(x) denotes the atom of P which contains x; or P(x) = ∅ if x is not contained in any atom (which can only happen for a zero µ-measure subset of points). • the diameter of P n can be made sufficiently small µ-almost everywhere, that is, there exists δ 0 = δ 0 (ε, A, Λ ε , χ 1 , . . . , χ k ) > 0 and for x ∈ Y there exists n such that diam P n (x) < δ 0 .

• there exists c 1 > 0 such that for all n ≥ 1, x ∈ Y and y ∈ P n (x)

A n (x) -A n (y) ≤ c n 1 d x (y) ν . (1.6)
Above we implicitly assume that the bound (1.6) does not depend on the choices of i, j. We say that a vector bundle automorphism A satisfying the above properties is an admissible (c 1 , ν)-Hölder vector bundle automorphism with respect to µ. With these notions we can now state our main result.

Theorem C. Let A be an admissible (c 1 , ν)-Hölder vector bundle automorphism with respect to the ergodic f -invariant probability measure µ such that both log A(x) and log A(x) -1 are µ-integrable. We denote by

χ 1 < • • • < χ k the k

distinct Lyapunov exponents associated to this cocycle, and by F i

x the filtration by subspaces of R N corresponding to each χ i , i = 1, . . . , k, defined for µ-almost every x ∈ M.

Then, for every ε > 0, there exists a compact subset Λ ε of M, and constants

C = C(Λ ε ) > 0, ω i = ω i (χ 1 , . . . , χ k ) ∈ (0, 1), i = 1, . . . , k such that (1) µ(Λ ε ) ≥ 1 -ε; (2) for all x ∈ Λ ε there exists δ = δ(x) > 0 such that for all y ∈ B(x, δ) we have dist(F i x , F i y ) ≤ C ε d x (y) νω i .

Moreover, if the map f is also invertible, then letting E i

x be the Oseledets subspaces corresponding to each

χ i , i = 1, . . . , k, which form a splitting T x M = E 1 x ⊕ • • • ⊕ E k x for µ-almost every x ∈ M, we also have δ = δ(x) > 0 defined for x ∈ Λ ε satisfying (3) dist(E i x , E i y ) ≤ C ε d x (y) νω i for all x ∈ Λ ε , y ∈ Λ ε ∩ B(x, δ). Remark 1.5. Condition (1.5) can be easily obtained in many examples as follows. It is well-known that, if θ(x) := -log dist x (∂P(x), x) is µ-integrable, then we have (1/n) • θ • f n ----→ n→+∞ 0, µ-a.e.
Hence given α > 0 for µ-a.e. x we can find N(x) > 1 such that dist x (∂P( f n (x)), f n (x)) ≥ e -αn for all n ≥ N(x). Therefore there exists c(x) > 0 such that dist x (∂P( f n (x)), f n (x)) ≥ c(x)e -αn for all n ≥ 1.

If in addition we assume that f is locally Lipschitz, then we can find 0 < ξ < 1 so that assumption (1.5) is satisfied.

Thus µ-integrability of θ together with a Lipschitz condition on f is enough to show that the atoms of the refined partitions P n do not shrink at a rate faster than exponential. 1.2.3. The case of a vector bundle automorphism covering a flow. We may, analogously to the case of a vector bundle automorphism, consider a vector bundle automorphism covering a flow. We provide the relevant definitions and just note that the proof is a straightforward corollary of the previous Theorem C.

The measurable function A : V × R → V on a vector bundle V is a linear multiplicative cocycle covering a flow ϕ : R × X → X on the base manifold

X of V if A(x, t) : V x → V ϕ t (x)
is a linear isomorphism satisfying the cocycle property

A(x, 0) = Id : V x → V x and A(x, t + s) = A(ϕ t (x), s) • A(x, t), x ∈ X, s, t ∈ R.

Corollary D.

Let A be a linear multiplicative cocycle on a vector bundle covering a flow ϕ : R×M → M which preserves an ergodic probability measure µ such that sup t∈[-1,1] log + A(x, t) is a µ-integrable function. We assume that the transformation f = ϕ 1 is Lipschitz; that µ is also f -ergodic and that A 1 := A(•, 1) is an admissible (c 1 , ν)-Hölder vector bundle automorphism with respect to f and µ. We denote by χ 1 < • • • < χ k the k distinct Lyapunov exponents associated to the cocycle A and by E i

x the Oseledets subspaces corresponding to each χ i , i = 1, . . . , k, which form a splitting T

x M = E 1 x ⊕ • • • ⊕ E k
x for µ-almost every x ∈ M. Then, for every ε > 0, there exists a compact subset Λ ε of M, and constants C = C(Λ ε ) > 0,

ω i = ω i (χ 1 , . . . , χ k ) ∈ (0, 1), i = 1, . . . , k such that (1) µ(Λ ε ) ≥ 1 -ε; (2) for all x ∈ Λ ε there exists δ = δ(x) > 0 such that for all y ∈ Λ ε ∩ B(x, δ) we have dist(E i x , E i y ) ≤ C ε d x (y) νω i . 1.
3. The Kontsevich-Zorich cocycle. Conditions (1.5) and (1.6) are non-trivial to verify in the case of the Kontsevich-Zorich cocycle (see [Zor06] for a survey). We thus deal with the corresponding theorem separately in Section 5 (see Theorem 5.6). The result is as follows.

Theorem E. Let M be an affine invariant manifold and let µ be the corresponding ergodic SL 2 R-invariant probability measure (see [START_REF] Eskin | Invariant and stationary measures for the SL(2,R) action on Moduli space[END_REF]). Let E be the Kontsevich-Zorich cocycle (or any of its tensor powers) and let {λ i } be its Lyapunov exponents, with Oseledets subspaces E i .

Then there exists ν i > 0 such that for any ε > 0 there exists a compact set K ε with µ(K ε ) > 1-ε and such that the spaces E i vary ν i -Hölder continuously on K ε .

Similar in spirit to a recent result of Chaika-Eskin [START_REF] Chaika | Every flat surface is Birkhoff and Oseledets generic in almost every direction[END_REF], the above result in fact generalizes to individual Teichm üller disks (see Theorem 5.7).

Theorem F. Let x ∈ H (κ) be a flat surface in a stratum and let E be the Kontsevich-Zorich cocycle. If E is some tensor power of the KZ cocycle, let k ≥ 1 be the smallest order of the tensor product which contains it.

For g ∈ SL 2 R denote by A(g, x) : E x → E gx the matrix of the cocycle E. By Theorem 1.2 in [START_REF] Chaika | Every flat surface is Birkhoff and Oseledets generic in almost every direction[END_REF] there exist λ 1 > • • • > λ k such that for a.e. θ ∈ S 1 we have

(1) There exists a decomposition E x = ⊕ i E i (θ) x with E i (θ) x measurably varying in θ (2) We have (where g θ t is the geodesic flow in direction θ)

lim t→±∞ 1 t log A(g θ t , x)v i = λ i ∀v i ∈ E i (θ) x Let ν i := 1 2k min log λ i λ i+1 , log λ i-1 λ i -ε ′ ,
for arbitrarily small ε ′ . Then for any ε > 0 there exists a compact set K ε ⊆ S 1 of Lebesgue measure at least 1 -ε such that the subspaces E i (θ) vary ν i -Hölder continuously for θ ∈ K ε .

Preliminary results and definitions

In what follows we adopt the convention that for a point x ∈ M its iterates are denoted by x i := f i (x) for i ∈ Z if f is invertible. For non-invertible f the meaning of x i with i < 0 is given by the set of ith pre-images x i = ( f i ) -1 ({x}).

Regular blocks for (possibly) non-invertible base transformation. Using the definition of Lyapunov exponents and of the subspaces of the filtration F i

x and of the Oseledets-Pesin Reduction Theorem in [BP07, Theorem 3.5.5], we can find sets Λ ℓ ε where the expansion/contraction rates are bounded, as follows.

For simplicity we assume that µ is f -ergodic and so function k, the exponents χ 1 , . . . , χ k and the dimensions dim F i

xdim F i-1

x for i = 1, . . . , k are constant on a full µ-measure subset. We denote by ε 0 = min{χ i+i -χ i : 1 ≤ i < k} the minimum gap in the Lyapunov spectrum.

For any given ℓ ∈ Z + and 0 < ε < ε 0 /10 we define the regular block Λ ℓ ε as the set of points x ∈ M such that for i = 1, . . . , k and all m, n ≥ 0

A n (x m )v i ≤ ℓe (χ i (x)+ε)n+εm v i , ∀v i ∈ A m (x)F i x ; ℓ -1 e (χ i (x)-ε)n+εm v i ≤ A n (x m )v i ≤ ℓe (χ i (x)+ε)n+εm v i , ∀v i ∈ A m (x)F i-1 x ⊥ ∩ A m (x)F i x ,
where x m = f m (x) and (•) ⊥ denotes the orthogonal complement with respect to the inner product that defines • .

Regular blocks for invertible base transformation. Again using the definition of

Lyapunov exponents and Oseledets subspaces, we can find sets Λ ℓ ε where the expansion/contraction rates are uniform and the angles between the subspaces are bounded away from zero, as follows.

We assume that µ is f -ergodic and so the function k, the exponents χ 1 , . . . , χ k and the dimensions dim E i

x for i = 1, . . . , k are constant on a full µ-measure subset. We continue to write ε 0 > 0 for the minimum gap in the Lyapunov spectrum and for ℓ ∈ Z + and 0 < ε < ε 0 /10 we define Λ ℓ ε as the set of points x ∈ M such that for i = 1, . . . , k and for all m ∈ Z, writing x m = f m (x) we have

ℓ -1 e (χ i (x)-ε)n-ε|m| v i ≤ A n (x m )v i ≤ ℓe (χ i (x)+ε)n+ε|m| v i , ∀v i ∈ A m (x)E i (x), ∀n ≥ 0; ℓ -1 e (χ i (x)+ε)n-ε|m| v i ≤ A n (x m )v i ≤ ℓe (χ i (x)-ε)n+ε|m| v i , ∀v i ∈ A m (x)E i (x), ∀n ≤ 0; and cos angle       i∈I E i f n (x) , j I E j f n (x)         ≤ 1 - e -ε|n| ℓ
for any I ⊂ {1, . . . , k} and for all n ∈ Z.

The control of the norm along the subspaces F i x on Λ ℓ ε implies easily that there exists L > 0 such that

A n (x m ) ≤ ℓL |n| e εm for all m, n ∈ Z and every x ∈ Λ ℓ ε (2.1) with L = e 2(χ k -χ 1 ) ≤ exp 4 log A(x) dµ(x) .
From the Theorem of Oseledets we have that for any given small ε > 0 we can find ℓ 0 ∈ Z + such that µ(Λ ℓ ε ) > 0 for ℓ ≥ ℓ 0 and ∪ ℓ≥ℓ 0 Λ ℓ ε has full µ-measure in M. We note that to have µ(Λ ε ) > 1 -ε with smaller ε > 0 we must increase the value of ℓ ∈ Z + .

Consequences of the angle control on regular blocks for invertible base.

We remark that the angle condition has the following consequence: given a pair of complementary subspaces E, F with angle (E, F) ≤ 1 -1/ℓ for some ℓ ∈ Z + , then for any vector v + w with v ∈ E, w ∈ F we have v ≤ ℓ v + w and w ≤ ℓ v + w . Indeed, we consider E ⊕ F with the given norm • and E × F with the norm |(v, w)| := ( v 2 + w 2 ) 1/2 for (v, w) ∈ E × F. Then we can write for any v ∈ E and w ∈ F with v + w 0 that v = λv 0 and w = µw 0 with λ, µ ∈ R + , v 0 = 1 = w 0 ; and

v + w 2 |v + w| 2 = v 0 + µw 0 /λ 2 |v 0 + µw 0 /λ| 2 = 1 + 2(µ/λ) < v 0 , w 0 > +(µ/λ) 2 1 + (µ/λ) 2 = 1 + 2λµ λ 2 + µ 2 < v 0 , w 0 >, where < v 0 , w 0 >∈ [-1, 1] and 0 ≤ 2λµ/(λ 2 + µ 2 ) ≤ 1. Hence we get v = |v| ≤ |v + w| = 1 + 2λµ λ 2 + µ 2 < v 0 , w 0 > -1 v + w ≤ 1 1 -angle (E, F) v + w ≤ ℓ v + w .
2.4. H ölder estimates for exponentially expanded/contracted subspaces. Now we need the following technical results whose proofs we postpone. We compare the definition given in (1.3) to an alternative description of the distance between subspaces E, F of R d . We can obtain a linear map L : E → E ⊥ such that its graph {u + Lu : u ∈ E} equals F and obtain that, on the one hand

sup u+Lu =1,u∈E dist(u + Lu, E) = sup u 2 + Lu 2 =1,u∈E min w∈E u + Lu -w = sup u 2 + Lu 2 =1,u∈E Lu = sup{ L • u 0 : u 0 ∈ E s.t. u 0 2 + Lu 0 2 = 1 and L = Lu 0 u 0 } = L √ 1 + L 2 .
On the other hand, for u 1 ∈ E such that u 1 = 1 and

Lu 1 = L sup u =1,u∈E dist(u, F) = sup u =1,u∈E min v∈E u -(v + Lv) ≤ u 1 -(u 1 -Lu 1 ) = Lu 1 ≤ L .
Therefore from the definition of dist(E, F) we get

L √ 1 + L 2 ≤ dist(E, F) ≤ L (2.2)
and we may estimate (or indeed define) the distance between E and F by L .

The following simple lemma enables us to provide a rough control of the distance between subspaces which are exponentially expanded/contracted by a pair of sequences of linear maps, such that the norm of the difference between these maps is a sequence that grows at most exponentially fast.

Lemma 2.1. (from [BP07, Lemma 5.3.3]) Let (A n ) n≥1 , (B n ) n≥1 be two sequences of real N × N matrices such that for some 0 < λ < µ and C ≥ 1 there exist subspaces E, E ′ , F, F ′ of R N satisfying R N = E ⊕ E ′ = F ⊕ F ′ with d > 0 such that u = v + w, v ∈ E, w ∈ E ′ or v ∈ F, w ∈ F ′ =⇒ max{ v , w } ≤ d u , (2.3)
and, for some fixed n > 0

• A n u ≤ Cλ n u for u ∈ E; and C -1 µ n v ≤ A n v for v ∈ E ′ ; • B n u ≤ Cλ n u for u ∈ F; and C -1 µ n v ≤ B n v for v ∈ F ′ . Then for every pair (δ, a) ∈ (0, 1] × [λ, +∞) satisfying λ a n+1 < δ and A n -B n ≤ δa n (2.4)
we get dist(E, F) ≤ (2 + d)C 2 µ λ δ log(µ/λ)/ log(a/λ) . In the previous lemma we assumed condition (2.3) instead of taking

E ′ = E ⊥ and F ′ = F ⊥ as in [BP07, Lemma 5.3.3].
Now we state a result which enables us to show that the iterated cocycle A n , of a ν-H ölder cocycle A over a Lipschitz base map f , is also ν-H ölder for every n ≥ 1. Moreover the H ölder constant of A n grows at most exponentially fast with n.

Lemma 2.2. Let us assume that

A : M → GL(d, R) is ν-Hölder with constant c 0 = c 0 (A, ν)
and there exists L > 1 such that f : M is Lipschitz with constant L and A n (x) ≤ L |n| for all x is some fixed compact Λ ⊂ M and n ∈ Z + . Then for c 1 = max{e ε , L 1+ν , 1 + c 0 } we have A n (x) -A n (y) ≤ c n 1 dist(x, y) ν for all x, y ∈ Λ and n ∈ Z + . The previous lemmas combined show (see e.g. [BP07, Theorem 5.3.1]) that the splitting of the tangent space into the directions with positive and negative Lyapunov exponents depends H ölder continuously on the base point over every "regular block" associated to an invariant probability measure with non-zero Lyapunov exponents.

We want to extend this conclusion to all the Oseledets subspaces for any ergodic invariant probability. For that we need to study splittings of the tangent bundle into three subbundles exhibiting distinct exponential growth under the action of a sequence of linear operators, as we state below. This allows us to analyze the behavior of all Oseledets subspaces by associating them into a splitting with three subbundles in different combinations. Otherwise Lemma 2.1 would only allow the study of the flags

{0} = F 0 x ⊂ F 1 x ⊂ • • • ⊂ F k-1 x ⊂ F k x = R d for µ-a.e.
x ∈ M. The condition of distinct exponential growth rates encompasses the case of zero Lyapunov exponents in one statement.

The main lemma we need is the following extension of Lemma 2.1.

Lemma 2.3. Let (A n ) n∈Z , (B n ) n∈Z be two bi-infinite sequences of real N × N invertible matrices admitting 0 < λ 1 < λ 2 < µ 1 < µ 2 < σ 1 < σ 2 and C, d > 0 such that there exist subspaces E * , F * , G * of R N satisfying for all n > 0 • R N = E * ⊕ F * ⊕ G * for * = A, B and -for u ∈ E A : Cλ n 1 u ≤ A n u ≤ Cλ n 2 u and Cλ -n 2 u ≤ A -n u ≤ Cλ -n 1 u ; -for v ∈ F A : Cµ n 1 v ≤ A n v ≤ Cµ n 2 v and Cµ -n 2 v ≤ A -n v ≤ Cµ -n 1 v ; -for w ∈ G A : Cσ n 1 w ≤ A n w ≤ Cσ n 2 w and Cσ -n 2 w ≤ A -n w ≤ Cσ -n 1 w . -for u ∈ E B : Cλ n 1 u ≤ B n u ≤ Cλ n 2 u and Cλ -n 2 u ≤ B -n u ≤ Cλ -n 1 u ; -for v ∈ F B : Cµ n 1 v ≤ B n v ≤ Cµ n 2 v and Cµ -n 2 v ≤ B -n v ≤ Cµ -n 1 v ; -for w ∈ G B : Cσ n 1 w ≤ B n w ≤ Cσ n 2 w and Cσ -n 2 w ≤ B -n w ≤ Cσ -n 1 w . • for * = A, B, if u = v + w and either v ∈ E * , v ∈ F * ⊕ G * or v ∈ F * , w ∈ G * or v ∈ E * ⊕ F * , w ∈ G * or v ∈ E * , w ∈ F * , then v ≤ d u .
Then there exists a > λ 2 + 1/λ 2 + σ 1 and δ 0 = δ 0 (a, C, µ 1 /λ 2 , σ 1 /µ 2 ) ∈ (0, 1) such that if, for some n > 0, we have A n ≤ a n and A -n ≤ a n

(2.5)

and for some 0 < δ < δ 0 , we also have

A n -B n ≤ δa n and A -n -B -n ≤ δa n (2.6)
then the following relations are true:

dist(E A , E B ) ≤ (2 + d)C 2 µ 1 λ 2 δ α , dist(F A , F B ) ≤ 9 2 (2 + 3d) 1+η C 2(1+η) σ 1 µ η 1 µ 2 λ η 2 δ β and dist(G A , G B ) ≤ (2 + d)C 2 σ 1 µ 2 δ γ ,
where α := log(µ 1 /λ 2 )/ log(a/λ 2 ), η = log(σ 1 /µ 2 )/ log(a/µ 2 ), γ := log(σ 1 /µ 2 )/ log(aσ 1 ) and also β = [log(µ 1 /λ 2 ) log(σ 1 /µ 2 )]/[log(aµ 1 ) log(a/µ 2 )].

We remark that α, β and γ are positive and smaller than 1 by the choice of a and the order relations between the rates of expansion/contraction.

H ölder continuity of the Oseledets splitting on regular blocks

Here we prove the main theorem by combining the lemmas from Section 2 and applying them to regular sets of a (not necessarily invertible) co-cycle A over f . After that we prove the invertible case of the main theorem. Then we prove the lemmas in Section 4.

We assume the first two conditions on Lemma 2.2, i.e. f : M is Lipschitz and R,d) is (c 0 , ν)-H ölder; and check the other condition, that is, that A n (x) grows at most exponentially for n ≥ 1. We continue under the assumption that µ is f -ergodic.

A : M → GL(

The case of non-invertible base.

For ℓ ≥ ℓ 0 and 0 < ε < ε 0 we set Λ ε = Λ ℓ ε such that µ(Λ ε ) > 1 -ε, from Section 2.1, we take x, y ∈ Λ ε and for each 1 < i < k, n ∈ Z + we define A n = A n (x), B n = A n (y) and L = e 2(χ k -χ 1 ) and C = ℓ; λ = e χ i +ε , µ = e χ i+1 -ε , σ = e χ k +ε and d = 1;

E = F i x , E ′ = F i x ⊥ and F = F i y , F ′ = F i y ⊥ .
From the definition of regular block in the possibly non-invertible case, in Section 2.1, we have guaranteed the upper bound on the exponential growth of A n (x) for x ∈ Λ ℓ ε and n ≥ 0. The value d = 1 comes from the choice of E ′ , F ′ as orthogonal complements with respect to the inner product that defines • .

From Lemma 2.2 we can find a constant a > c 1 big enough such that the condition (2.4) in Lemma 2.1 is true for the choices of sequences A n , B n and for some n ∈ Z + with 0 < δ = dist(x, y) ν < min{χ 1 /c 1 }. Here χ 1 is the smallest Lyapunov exponent and c 1 is given by Lemma 2.2.

Indeed, for δ and λ chosen as above for any given i = 2, . . . , k -1, since χ 1 ≤ λ we can certainly find n > 0 such that (λ/a) n+1 < δ and then proceed using the statements of Lemmas 2.1 and 2.2. The other assumptions on Lemma 2.1 are true by the definition of hyperbolic block in Section 2.1 together with the choices of subspaces above.

We can then apply Lemma 2.1 to conclude that for i = 1, . . . , k -

1 dist(F i x , F i y ) ≤ 3ℓ 2 e η i dist(x, y) νω i where η i = χ i+1 -χ i -2ε and ω i = η i log a -χ i -ε .
This completes the proof of Theorem A in the non-invertible case once we set C ε = ℓ 2 max i=1,...,k-1 {e η i }.

The case of invertible base.

Again for ℓ ≥ ℓ 0 and 0 < ε < ε 0 we set Λ ε = Λ ℓ ε such that µ(Λ ε ) > 1 -ε, from Section 2.2, we take x, y ∈ Λ ε and for each 1 < i < k, n ∈ Z we define A n = A n (x), B n = A n (y) and L = e 2(χ k -χ 1 ) and C = d = ℓ; λ 1 = e χ 1 -ε , λ 2 = e χ i-1 +ε , µ 1 = e χ i -ε , µ 2 = e χ i +ε , σ 1 = e χ i+1 -ε , σ 2 = e χ k +ε ;

E A = F i-1 x = ⊕ i-1 j=1 E j x , F A = E i x and G A = ⊕ k j=i+1 E i x E B = F i-1 y = ⊕ i-1 j=1 E j y , F B = E i y and G B = ⊕ k j=i+1 E i y .
From the definition of regular block, in Section 2.2, we know that the assumption on exponential growth of A n (x) for x ∈ Λ ℓ ε and n ∈ Z is guaranteed; see the observation in (2.1). So from Lemma 2.2 we can find a constant a > 0 big enough such that condition (2.5) and item (1) in the statement of Lemma 2.3 are true for the choices of sequences A n , B n and subspaces above with 0 < δ = dist(x, y) ν < min{χ 1 /c 1 , δ 0 } and some n ∈ Z + . By the definition of the regular block Λ ℓ ε , and the choices of constants, all the conditions of item (2) and (3) are satisfied also. The statement of Lemma 2.3 ensures then that

dist(E i x , E i y ) ≤ C ℓ e χ i+1 -χ i -2ε+η(χ i -χ i-1 -2ε) d(x, y) νβ where η = χ i+1 -χ i -2ε log a -χ i -ε , β = η χ i -χ i-1 -2ε χ i -ε+log a and C ℓ → ∞ monotonically as ℓ → +∞.
For the subbundle E 1 (with smallest Lyapunov exponent) we take i = 2 as above and consider the estimate for dist(E A , E B ) from Lemma 2.3 to obtain dist(E 1

x ,

E 1 y ) ≤ C ℓ e χ 2 -χ 1 -2ε d(x, y) να where α = χ 2 -χ 1 -2ε log a -χ 1 -ε .
Finally for the subbundle E k (with largest Lyapunov exponent) we take i = k -1 as above and consider the estimate for dist(G A , G B ) from Lemma 2.3 to obtain

dist(E k x , E k y ) ≤ C ℓ e χ k -χ k-1 -2ε d(x, y) νγ where γ = χ k -χ k-1 -2ε log a + χ k -ε .
This shows that the dependence of the Oseledets directions on the base point at every regular block is H ölder, with H ölder exponent essentially dependent on the minimum gap ε 0 of the Lyapunov spectrum, and H ölder constant essentially dependent on the choice of the regular block. The proof of Theorem A is complete once we set C ε to equal the maximum of the factors multiplying dist(x, y) in the above expressions.

3.3. The case of vector bundle automorphisms. Now A : V → V is an automorphism of the d-dimensional vector bundle V covering the map f : M → M on the m-dimensional manifold M. We assume that f admits an ergodic f -invariant probability such that A is admissible with respect to µ.

We again start by choosing a regular block Λ ε = Λ ℓ ε for some 0 < ε < ε 0 and ℓ ≥ ℓ 0 , such that µ(Λ ε ) > 1 -ε. We recall that for µ-a.e. x we have defined in (1.5) a positive function c(x) relating the distance between x and P n (x). For µ-a.e. x let N 1 = N(x) ∈ Z + be the first integer so that c(x) > 1/2 N . Then we have

n > N 1 =⇒ y ∈ P n (x) \ P n+1 (x) satisfies dist x (y) ≥ c(x)ξ n+1 > ξ 2 n+1 . (3.1)
Let N 2 = N 2 (x) ≥ N 1 be such that diam P n (x) < χ 1 /c 1 for all n > N 2 .

The case of non-invertible base.

With the previous choices, for each 1 < i < k and n ∈ Z + we define x n = f n (x) and y n = f n (y) for y ∈ Λ ε ∩ P N 2 (x)

A n = ψ j n ,x n A n (x)ψ -1 i,x , with x n ∈ U j n , x ∈ U i ; (3.2) B n = ψ r n ,y n A n (y)ψ -1 i,y , with y n ∈ U r n , x ∈ U i ; (3.3)
and then choose L, C, λ, µ, σ, d, E, E ′ , F, F ′ and also δ = d x (y) ν as in Section 3.1. There exists n ≥ N 2 such that y ∈ P n (x) \ P n+1 (x), thus if we choose a > c 1 big enough, since λ ≥ χ 1 , we have (λ/a) n+1 < (ξ/2) (n+1)/ν < d x (y). For this it is enough to take a > c 1 + χ k • (ξ/2) -ν . This, together with the definition of hyperbolic block, ensures that the conditions of Lemma 2.1 are verified for y ∈ Λ ε ∩ P N 2 (x). Finally we note that, from (1.5), every point y ∈ Λ ε ∩ B(x, c(x)ξ N 2 ) belongs to Λ ε ∩ P N 2 (x), so that we arrive at the same conclusion as in Section 3.1.

This completes the proof of Theorem C in the non-invertible case, if we set δ(x)

:= c(x)ξ N 2 .
with values in GL(d, R), we can write

A n+1 (x 0 ) -A n+1 (y 0 ) = A(x n ) • (A n (x 0 ) -A n (y 0 )) + (A(x n ) -A(y n )) • A n (y 0 )
adding and subtracting A(x n ) • A n (y 0 ). We recall that log L > 0 is assumed to be an upper bound for {n -1 log A n (z) : z ∈ M, n ∈ N} and write, using the induction assumption

A n+1 (x 0 ) -A n+1 (y 0 ) ≤ A(x n ) • A n (x 0 ) -A n (y 0 ) + A n (y 0 ) • A(x n ) -A(y n ) ≤ e εn C n dist(x 0 , y 0 ) ν + L n c 0 dist(x n , y n ) ν .
Now since L is also a Lipschitz constant of f we get dist(x n , y n ) ≤ L n dist(x 0 , y 0 ) and so we can bound the previous expression

≤ [(e ε C) n + L n c 0 L nν ] dist(x 0 , y 0 ) ν = [(e ε C) n + c 0 L n(1+ν) ] dist(x 0 , y 0 ) ν .
To complete the inductive step all we need is that

C n+1 ≥ (Ce ε ) n + c 0 L n(1+ν) that is C ≥ e ε C n + c 0 L 1+ν C n for all n ≥ 0
which can easily be achieved by taking a sufficiently large C ≥ c 1 > c 0 > 0 as in the statement of the lemma.

Proof of Lemma 2.3. We use Lemma 2.1 applied to the splitting E * ⊕ (F * ⊕ G * ) to deduce that, on the one hand

dist(E A , E B ) ≤ (2 + d)C 2 µ 1 λ 2 δ log(µ 1 /λ 2 )/ log(a/λ 2 ) = (2 + d)C 2 µ 1 λ 2 δ α (4.1)
and, on the other hand

dist(V A , V B ) ≤ (2 + d)C 2 λ -1 2 µ -1 1 δ log(λ -1 2 /µ -1 1 )/ log(a/µ -1 1 ) = C µ 1 λ 2 δ log(µ 1 /λ 2 )/ log(aµ 1 ) = C µ 1 λ 2 δ ω , (4.2)
where C = (2+d)C 2 , V A := F A ⊕G A and V B := F B ⊕G B and ω = log(µ 1 /λ 2 )/ log(aµ 1 ) for simplicity. The bound for the distance between V A , V B is deduced using Lemma 2.1 applied to the sequences (A -n ) n≥0 and (B -n ) n≥0 . The hypothesis in the statement of Lemma 2.3 exactly provide the necessary conditions to apply Lemma 2.1 to these sequences of matrices.

We can also apply Lemma 2.1 for the sequences (A -n ) n≥0 and (B -n ) n≥0 but now with the splittings

U A ⊕ G A and U B ⊕ G B with U A := E A ⊕ F A and U B := E B ⊕ F B . We obtain dist(G A , G B ) ≤ C µ -1 2 σ -1 1 δ log(µ -1 2 /σ -1 1 )/ log(a/σ -1 1 ) = C σ 1 µ 2 δ log(σ 1 /µ 2 )/ log(aσ 1 ) = C σ 1 µ 2 δ γ . (4.3)
So we can find a linear map L : V A → (V A ) ⊥ such that its graph equals V B , that is

V B = {u + Lu : u ∈ V A } and L √ 1 + L 2 ≤ dist(V A , V B ) ≤ L (4.4)
by the estimate obtained in (2.2).

This allows us to identify V A with V B via the isomorphism

φ := I + L : V A → V B , u → u + Lu
and then pass the splitting

F B ⊕ G B of V B to a corresponding splitting FB ⊕ ĜB of V A with FB = φ -1 F B , ĜB = φ -1 G B .
Now we can compare the distance between the pair F A , FB using the action of the sequences of matrices A n and Bn = φ -1 B n φ and Lemma 2.1 again. To finish we need to estimate

dist(F A , F B ) ≤ dist(F A , FB ) + dist( FB , F B ). (4.5)
We first consider the estimation of dist(F A , FB ). We already have the right conditions for the action of A n over the splitting F A ⊕ G A . As for Bn it is easy to see that

1 φ B n | F B ≤ Bn | FB = φ -1 B n | F B ≤ φ -1 • B n | F B
and since the image of L is orthogonal to the domain, we have φ(v) ≥ v for all v, thus

φ -1 ≤ 1 and φ = I + L ≤ 1 + L
we obtain a control of the action of Bn on FB in a similar way to what we had for B n on F B , were the constant C is replaced by C(1 + L ) on the upper bound and C(1 -L ) on the lower bound, as long as we take dist(V A , V B ) close enough to zero by letting δ 0 be small enough since the beginning. An analogous estimate holds for Bn | ĜB . We now estimate the angle between FB and ĜB , that is, the new value which plays the role of d in Lemma 2.1.

We assume that for all v ∈ F B , w

∈ G B we have v ≤ d v + w . If we now take v ∈ FB , w ∈ ĜB , then φ(v) ∈ F B and φ(w) ∈ G B and so φ(v) ≤ d φ(v + w) . This implies φ -1 -1 v ≤ d φ v + w so we obtain v ≤ d φ φ -1 v + w ≤ τ(d, L) v + w where τ(d, L) := d 1 + L 1 -L .
The relation (4.4) between L and dist(V A , V B ) enables us to deduce

1 + dist(V A , V B ) 1 -dist(V A , V B ) ≤ 1 + L 1 -L ≤ 1 + dist(V A , V B ) 1 -dist(V A , V B ) 2 -1/2 1 -dist(V A , V B ) 1 -dist(V A , V B ) 2 -1/2
and so τ(d, L) is a function of dist(V A , V B ). Moreover τ(d, L) goes to d as dist(V A , V B ) goes to zero. In particular, if 0 < L < 1/2 we get τ(d, L) ≤ 3d.

We finally check the condition on the distance between A n and Bn

A n -Bn ≤ A n -φ -1 A n + φ -1 A n -φ -1 A n φ + φ -1 A n φ -Bn ≤ I -φ A n + φ -1 A n I -φ + φ -1 A n -B n φ ≤ a |n| L 1 -L + a |n| L (1 -L ) 2 + δa |n| L (1 + L ) 1 -L = a n L ω(L) since I -φ -1 = I -(I + L) -1 ≤ L 1-L ,
where L is essentially dist(V A , V B ) according to (4.4), and ω(L) can be made as close to 1 as we need by letting L (or dist(V A , V B )) be close enough to zero. Hence by taking δ small enough since the beginning we can ensure that L ∈ (0, 1/2) and L ω(L) ∈ (0, 1/2).

We can now apply Lemma 2.1 to the pairs F A , G A and FB , ĜB to conclude

dist(F A , FB ) ≤ (2 + τ(d, L))(C(1 + L )) 2 σ 1 µ 2 ( L ω(L)) log(σ 1 /µ 2 )/ log(a/µ 2 ) .
For 0 < δ < δ 0 < 1 with δ 0 small enough, depending on C, µ 1 /λ 2 and a, we obtain that

L ω(L) ≤ 2 dist(V A , V B ). Thus, setting η = log(σ 1 /µ 2 )/ log(a/µ 2 ) for simplicity dist(F A , FB ) ≤ (2 + 3d)( 3 2 C) 2 • 2 η σ 1 µ 2 dist(V A , V B ) η ≤ 9 4 C 2 (2 + 3d) Cη σ 1 µ η 1 µ 2 λ η 2 δ ωη . (4.6) 
To finish we estimate dist( FB , F B ). We already have that dist(φ -1 F B , F B ) is comparable to φ -1 by (2.2). We remark that φ -1 = (I + L) -1 = I + k>0 (-L) k = I + L, where L :

V A → (V A ) ⊥ and L ≤ L (1 -L ) -1 ≤ L ω(L). Hence dist( FB , F B ) ≤ L ≤ L ω(L) ≤ 2 dist(V A , V B ) (4.7)
and we finally complete (4.5) using (4.6) and (4.2)

dist(F A , F B ) ≤ 9 4 C 2 (2 + 3d) Cη σ 1 µ η 1 µ 2 λ η 2 δ ωη + C µ 1 λ 2 δ ω ≤ 9 2 (2 + 3d) 1+η C 2(1+η) σ 1 µ η 1 µ 2 λ η 2 δ ωη (4.8)
for δ 0 ∈ (0, 1) small enough. Putting the inequalities (4.1), (4.3) and (4.8) together, we arrive to the conclusion of the lemma.

The Kontsevich-Zorich cocycle

In this section, we prove the theorem about H ölder continuity of the Oseledets subspaces for the Kontsevich-Zoricqh cocycle.

We first provide some general lemmas to deal with topologically non-trivial cocycles. The first is a different point of view on Lemma 2.1; the focus is on norms rather than matrices. The second allows one to intersect Oseledets filtrations, thus reducing the necessary estimates. Finally, the third allows one to reduce vector bundle cocycles to matrix ones.

In the last part of the section, we combine these constructions with the norm constructed by Avila, Gouezel and Yoccoz [START_REF] Avila | Exponential mixing for the Teichm üller flow[END_REF][START_REF] Avila | Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichm üller flow[END_REF]. This gives the main results for the Kontsevich-Zorich cocycle. 5.1. Some more preliminary lemmas. We consider Euclidean inner products on R d , which we call metrics below. Given two such, say h 1 and h 2 , define the distance between them as dist(h 1 , h 2 ) := log sup

v 1 h 1 =1 v 2 h 2 =1 v 1 h 2 , v 2 h 1 (5.1)
This gives the inequality v h 1 ≤ e dist(h 1 ,h 2 ) v h 2 Given a metric h, define the distance between two spaces E, F to be

dist h (E, F) := sup f ⊥ h : e = f + f ⊥ , e h = 1, e ∈ E, f ∈ F, f ⊥ ∈ F ⊥ e ⊥ h : f = e + e ⊥ , f h = 1, f ∈ F, e ∈ E, e ⊥ ∈ E ⊥ . Lemma 5.1. Suppose we are given decompositions of R d as R d = E ⊕ E ⊥ = F ⊕ F ⊥
where perpendiculars are for a fixed metric h 0 . Suppose given a sequence of metrics h

E n , h F n satisfying dist(h E n , h F n ) ≤ log(1 + δC 2 A n ) (5.2)
for some constants C 2 , A, δ. Assume further that we have constants 0 < λ < µ and C such that

∀ f ∈ F, ∀ f ′ ∈ F ⊥ f h F n ≤ Cλ n f h 0 (5.3) C -1 µ n f ′ h 0 ≤ f ′ h F n .
(5.4) Suppose that the above growth estimates hold analogously for E instead of F. Then we have the distance estimate

dist h 0 (E, F) ≤ C 2 (2 + C 2 A)δ log µ λ log A .
Remark 5.2. In fact, in the proof below we do not need the inequalities in the assumptions to hold for all n. We only need to know it for a value of n such that c 3 ≤ δA n ≤ c 4 , for some fixed constants c 3 , c 4 . Then the same conclusion holds (with different constants, but same δ and exponents).

Proof. Pick e ∈ E with e h 0 = 1 and write it as e = f + f ⊥ where f ∈ F, f ⊥ ∈ F ⊥ . By the assumption on F we have

C -1 µ n f ⊥ h 0 ≤ f ⊥ h F n .
We also have the following chain of inequalities

f ⊥ h F n = e -f h F n ≤ e h F n + f h F n ≤ e h E n (1 + δC 2 A n ) + Cλ n f h 0 by (5.
2) for e and (5.3) for f ≤ e h 0 Cλ n (1 + δC 2 A n ) + Cλ n by (5.3) for e and since f h 0 ≤ e h 0 = 1.

Combining the two inequalities, we find that

f ⊥ h 0 ≤ 2C 2 λ µ n + C 2 C 2 δ λA µ n ≤ C 2 λ µ n (2 + δC 2 A n ).
Choose now n such that 1 ≤ δA n < A, i.e. 0 ≤ log δ + n log A < log A. Then we have

f ⊥ h 0 ≤ C 2 (2 + C 2 A)e log λ µ • -log δ log A ≤ C 2 (2 + C 2 A)δ log µ λ log A
An analogous argument gives the estimate for vectors in F, thus proving the claim.

Remark 5.3. Suppose given two sequences of matrices A n , B n with

A n -B n ≤ δL n
Then we have the bound A n v ≤ B n v + δL n v . If we also had the Oseledets-type estimate v ≤ Cµ -n B n v we could conclude A n v ≤ B n v (1 + δCL n µ -n ). If we defined a sequence of metrics by

v h A n := A n v v h B
n := B n v then we could apply the above lemma (with A = L µ ) and get a conclusion similar to that of Lemma 5.3.3 from [START_REF] Barreira | Nonuniform hyperbolicity, volume 115 of Encyclopedia of Mathematics and its Applications[END_REF]. The advantage of using the metric formulation is that the metrics defined above can come from linear operators with the same source, but different targets.

The next result allows us to intersect subspaces in the past and future Oseledets filtrations.

Lemma 5.4. Let K be a compact metric space and let F + , F -be two Hölder continuous maps to Grassmanians F ± : K → Gr(k ± , R d ) with Hölder exponents ν + , ν -. Suppose that for all x ∈ K, we have that F + (x) and F -(x) are in general position, i.e. intersect in a space of dimension r := k + + k -d.

Then the map I : K → Gr(r, R d ) assigning to x the intersection of F + (x) and F -(x) is Hölder of exponent min(ν + , ν -).

Proof. We omit the R d from the notation for Grassmanians. Inside Gr(k + ) × Gr(k -) × Gr(r) define the closed algebraic set

Γ := {(V + , V -, I) : I ⊆ V + ∩ V -} .
We have projections

p 12 : Γ → Gr(k + ) × Gr(k -) p 3 : Γ → Gr(r).
Over the Zariski-open set U ⊂ Gr(k + ) × Gr(k -) of planes in general position we know that the map p 12 : Γ ∩ p -1 12 (U) → U is a smooth (even algebraic) bijection. Denote its inverse by p -1 12,U assumed to take values in Gr(k + ) × Gr(k -) × Gr(r).

By assumption, the map F + × F -: K → U lands inside the open set, and has compact image. In particular, the first derivative of p -1 12,U is uniformly bounded on this image. The function I giving the intersection of F + and F -over K can now be written as the composition

p 3 • p -1 12,U • (F + × F -).
It is therefore H ölder, with exponent min(ν + , ν -). We next explain how cocycles on vector bundles can be reduced to cocycles over matrices.

Lemma 5.5. Suppose V → X is a vector bundle with metric over a connected manifold X. Then we can find another vector bundle with metric W → X and an isomorphism V ⊕ W R N .

Here R N denotes the trivial vector bundle over X, with the standard metric. The regularity of W and the isomorphism can be taken as good as that of V and X.

Proof. First, we show that V can be trivialized using finitely many open sets (not necessarily connected). Then we find the isometric embedding.

To begin, since X is a manifold it has finite Lebesgue covering dimension, say n. Therefore, there exist a cover of X by open sets U α such that at most n + 1 intersect at any point, and we have trivializations

U α × R d V| U α .
Take a partition of unity φ α subordinated to the covering, and for any set I = {α 1 , . . . , α i } define the open sets

W I := {x ∈ X : φ α (x) < φ α j (x), ∀α I, α j ∈ I}
The sets W I are open by the local finiteness of the covering, and V can be trivialized on each of them. Furthermore, if I I ′ and of the same cardinality, then W I ∩ W I ′ = ∅. We can thus define the n + 1 open sets

W i := #I=i W I i = 1, . . . , n + 1
These sets are open, give a cover of X and V is trivialized on each of them. Next, take a partition of unity ρ i adapted to W i . Let v (i) 1 , . . . , v (i) d be the global sections of V obtained from the coordinate sections in each trivialization, multiplied by the ρ i to have support in W i .

We can now define a surjection

X × R d(n+1) ։V - → e (i-1)d+j →v (i) j i = 1, . . . , n + 1, j = 1, . . . , d
Here -→ e l denotes the l-th coordinate vector in R d(n+1) .

Let W be the kernel bundle of the surjection just defined, and let V ′ be its orthogonal complement. The surjection induces an isomorphism V ′ → V, which we can invert to an injection V → R N .

Letting h be the initial metric on V, the embedding just described induces a different metric h ′ . The space of metrics on a fiber of the bundle is SL d (R)/SO d (R), which is contractible. Moreover, we have unique geodesics given as exponentials of symmetric operators (symmetric for the underlying metric). See for example [BH99, pg. 324] for a discussion of these properties.

This means that precomposing the injection V → R N with uniquely defined linear operators on the fibers of V, we can arrange the map to be isometric. We have thus obtained the desired isometric decomposition V ⊕ W = R N 5.2. Applications to the Kontsevich-Zorich cocycle. We refer to [Zor06] for a general introduction to flat surfaces and the Kontsevich-Zorich (KZ) cocycle. The results of Eskin, Mirzakhani, and Mohammadi [EM13, EMM13] lead us to consider affine invariant manifolds, since those support the SL 2 R-invariant measures.

In this section, we prove two types of results in that context. The first one is that the main theorem C applies to the KZ cocycle. The second one is similar to the results of Chaika-Eskin [START_REF] Chaika | Every flat surface is Birkhoff and Oseledets generic in almost every direction[END_REF].

Theorem 5.6. Let M be an affine invariant manifold and let µ be the corresponding ergodic SL 2 R-invariant probability measure (see [START_REF] Eskin | Invariant and stationary measures for the SL(2,R) action on Moduli space[END_REF]). Let E be the Kontsevich-Zorich cocycle (or any of its tensor powers) and let {λ i } be its Lyapunov exponents, with Oseledets subspaces E i .

Then there exists ν i > 0 such that for any ε > 0 there exists a compact set K ε with µ(K ε ) > 1-ε and such that the spaces E i vary ν i -Hölder continuously on K ε .

The AGY norm. Before the start the proof, we recall some properties of a norm defined by Avila-Gouëzel-Yoccoz (see [AGY06, Sect. 2.2.2] and [AG13, Sect. 5]). For the definitions below, we potentially need to pass to a finite cover of M to avoid orbifold issues.

Denote by H 1 rel the real bundle of relative cohomology. We denote by ω both a point in the affine manifold M and the cohomology class in H 1 rel that it represents. The norm on H 1 rel is then defined by

α ω := sup saddle γ |α(γ)| |ω(γ)| (5.5)
Recall that γ is a saddle if on the flat surface represented by ω, the class γ can be realized as a straight line connecting two singular points of the flat metric.

Identifying the relative cohomology with the tangent space to the stratum, the expression (5.5) gives a complete metric ([AGY06, Cor. 2.13]). Given x ∈ M, denote by W u (x) the unstable leaf through x, and by E u (x) ⊆ H 1 rel (x) the tangent space to the unstable leaf. We have the exponential map (linear in period coordinates)

Ψ x : H 1 rel (x) → W u (x) α → x + α
The main properties of the metric relative to the Teichm üller flow are summarized below. We denote by Dg t the induced cocycle on the tangent bundle, and by g t the Kontsevich-Zorich cocycle (i.e. the flat Gauss-Manin connection).

(1) [AGY06, ineq. 2.13] For x ∈ M, v ∈ H 1 rel (x) we have the growth bounds

e -2t v x ≤ Dg t v g t x ≤ e 2t v x (5.6) 
(2) [AG13, Prop. 5.3] If we denote by B(0, r) x the ball of radius r in H 1 rel (x) then Ψ x is well-defined on B(0, 1/2) for all x ∈ M, and for all v ∈ B(0, 1/2) we have

d W u (x) (x, Ψ x (v)) ≤ 2 v x
(5.7)

(3) [AG13, Prop. 5.3] For all w ∈ E u (x) and v ∈ B(0, 1/2) we have

1 2 w Ψ x (v) ≤ w x ≤ 2 w Ψ x (v) (5.8)
In the above inequality, the vector w is transported to Ψ x (v) using the flat connection along the exponential map.

In order to invoke Lemma 5.1, we note that its proof works in the same way for Finsler metrics. The distance between Finsler metrics is defined by equation (5.1).

Alternatively, to a Finsler metric one can associate canonically the Riemannian metric coming from the John ellipsoid construction (see [Bal97, Thm. 3.1]), and each controls the other by absolute constants (depending on dimension only). Recall that given a bounded convex body K ⊂ R n , there is a canonically associated ellipsoid E ⊆ K (the John ellipsoid) with the following two properties. First, E is the ellipsoid of maximal volume and satisfying E ⊆ K, and moreover K ⊆ √ nE, where √ nE denotes the rescaling by √ n based at the center of E. Interpreting a convex body as the unit ball of a norm, this means that we can replace a Finsler metric with a canonical inner product, such that each is within a bounded factor of the other.

Proof of Theorem 5.6. We prove H ölder continuity for the forward Oseledets filtration, the proof for the backward one being similar. Combining them using Lemma 5.4, the desired claim follows.

Define the forward Oseledets filtration by

F i (θ) x := ⊕ i≥j E j (θ) x
Fix ε 1 > 0 arbitrarily small. Then for C sufficiently large, there exists a compact set K ε ⊆ M of measure at least 1 -ε/10 on which the Oseledets theorem holds uniformly:

C -1 e (λ i -ε 1 )t v i ≤ g t v i ≤ Ce (λ i +ε 1 )t v i ∀i, ∀v i ∈ E i x , ∀x ∈ K ε By passing to a further compact subset, we can assume the angle between Oseledets subspaces is uniformly bounded away from zero. Since the forward Oseledets filtration only depends on the position of the point on unstable leaves, given x and y ∈ W u (x), it suffices to estimate dist(F i (x), F i (y)) in terms of d W u (x) (x, y). Assuming d W u (x) (x, y) ≤ 1/4, using the properties of the AGY norm we have y = Ψ x (v) for some v ∈ H 1 rel (x). Denote by GM v the Gauss-Manin connection from x to x + v along the exponential map. If w ∈ E x is a vector, we define new norms by flowing forward: w x,t := g t w g t x A similar norm is defined on E y and we wish to compare w x,t and GM v (w) y,t .

Set δ = v x and t = -1 2 log δ -2. Note that with this choice we have 1/100 < δe 2t < 1/4. We would like to apply Lemma 5.1 (see Remark 5.2 for why it suffices to check assumptions at a well-chosen time). The Oseledets-type assumptions of Lemma 5.1 (i.e. (5.3) and (5.4)) on the filtrations hold by the choice of compact sets. We need to estimate the distance between norms, i.e. check assumption (5.2) in Lemma 5.1.

Thus, given w ∈ E x , we need to estimate the ratio of g t w g t x and GM Dg t v (g t w) g t y .

By our choice of t and using property (5.6) on the AGY norm, we have Dg t v g t x ≤ 1/2 Therefore, using property (5.8) of the AGY norm we find 1 2 GM Dg t v (g t w) g t y ≤ g t w g t x ≤ 2 GM Dg t v (g t w) g t y

Therefore, the assumptions of Lemma 5.1 are satisfied, with A = e 2 (coming from property (5.6) of the AGY norm). We can now conclude the forward Oseledets filtration F i varies H ölder-continuously with exponent 1 2 log λ i λ i+1 -ε ′ . Combining the forward and backward filtrations using Lemma 5.4, we find individual Oseledets subspaces E i are H ölder with exponent ν i := 1 2 min log λ i λ i+1 , log λ i-1

λ i -ε ′ .
Following Chaika-Eskin [START_REF] Chaika | Every flat surface is Birkhoff and Oseledets generic in almost every direction[END_REF], the next result refines the above one when restricting to a single SL 2 R-orbit. Recall the notation for 1-parameter subgroups of SL 2 R:

g t :=
e t 0 0 e -t r θ := cos θsin θ sin θ cos θ g θ t := r -1 θ g t r θ

Theorem 5.7. Let x ∈ H (κ) be a flat surface in a stratum and let E be the Kontsevich-Zorich cocycle. If E is some tensor power of the KZ cocycle, let k ≥ 1 be the smallest order of the tensor product which contains it. For g ∈ SL 2 R denote by A(g, x) : E x → E gx the matrix of the cocycle E. By Theorem 1.2 in [START_REF] Chaika | Every flat surface is Birkhoff and Oseledets generic in almost every direction[END_REF] there exist λ 1 > • • • > λ k such that for a.e. θ ∈ S 1 we have

(1) There exists a decomposition E x = ⊕ i E i (θ) x with E i (θ) x measurably varying in θ (2) We have

lim t→±∞ 1 t log A(g θ t , x)v i = λ i ∀v i ∈ E i (θ) x
Let ν i := 1 2k min log λ i λ i+1 , log λ i-1 λ i -ε ′ , for arbitrarily small ε ′ . Then for any ε > 0 there exists a compact set K ε ⊆ S 1 of Lebesgue measure at least 1 -ε such that the subspaces E i (θ) vary ν i -Hölder continuously for θ ∈ K ε .

Proof. First we show that the forward (resp. backward) Oseledets filtrations are H ölder. Then we combine the results to conclude individual subspaces are H ölder.

Define the forward Oseledets filtration by

F i (θ) x := ⊕ i≥j E j (θ) x
Define also norms on E x by v g θ t := A(g θ t , x)v Fix ε 1 > 0 arbitrarily small. Then for C sufficiently large, there exists a compact set K 1 ⊆ S 1 of measure at least 1 -ε/10 on which the Oseledets theorem holds uniformly:

C -1 e (λ i -ε 1 )t v i ≤ v i g θ t ≤ Ce (λ i +ε 1 )t v i ∀i, ∀v i ∈ E i (θ) x , ∀θ ∈ K 1 By Lusin's theorem, we can further restrict to a compact subset K 2 ⊆ K 1 of measure at least 1 -ε such that E i (θ) vary continuously on it. In particular, the distance between E i (θ) and E j (θ) for i j is uniformly bounded away from zero on K 2 . Consider now the decomposition E = F i (θ) ⊕ F i (θ) ⊥ . From the uniform boundedness of the angle between Oseledets subspaces, there exists C 1 > 0 such that v g θ t ≤ C 1 e (λ i +ε 1 )t v ∀v ∈ F i (θ)

C -1 1 e (λ i-1 -ε 1 )t ≤ v g θ t ∀v ∈ F i (θ) ⊥
We can now apply Lemma 5.1 to conclude the H ölder continuity of F i (θ), provided we control the divergence of metrics. We need to find a A, C 2 such that dist -

g θ 1 t , -g θ 2 t ≤ A|θ 1 -θ 2 |e tC 2
By results of Forni (see [START_REF] Forni | Deviation of ergodic averages for area-preserving flows on surfaces of higher genus[END_REF]) the norm of the Kontsevich-Zorich cocycle on a Teichm üller disk is bounded by the hyperbolic distance between points. Namely, if we E is contained in a k-th tensor product of the KZ cocycle, then A(x, gx) ≤ e k•dist (x,gx) Next, from hyperbolic geometry we have for t bounded away from zero e 1 2 dist g

θ 1 t x,g θ 2 t x ≤ C 3 |θ 1 -θ 2 |e t
Plugging in these estimates into Lemma 5.1, we get H ölder continuity of F i (θ) with exponent ν i = 1 2k log λ i-1 λ i . An analogous result holds for the backward Oseledets filtration. Therefore, combining the filtrations using Lemma 5.4 we obtain the desired result.
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The case of invertible base.

We again use the previous choices of N 2 = N 2 (x) and, for each 1 < i < k, we set L, C, λ 1 , λ 2 , µ 1 , µ 2 , σ 1 , σ 2 as in Section 3.2. This provides a value δ 0 = δ 0 (i) from Lemma 2.3. We now choose κ i = κ i (x) ≥ N 2 so that diam P n (x) < δ 0 (i) for all n > κ i .

For each n ∈ Z, we define x n = f n (x) and y n = f n (y) for y ∈ Λ ε ∩ P κ i (x), and we make the same definitions as in (3.2) and (3.3).

We then take E A , F A , G A , E B , F B , G B as in Section 3.2. From the definition of hyperbolic block in the invertible case we can verify the conditions of Lemma 2.3 with δ = d x (y) ν for some positive integer n. For that we have to choose a sufficiently large as explained above.

So we obtain the same conclusions as in Section 3.2 for each 1 < i < k and also for i = 1 and i = k. We then set N = N(x) = max{κ 1 , . . . , κ k } and obtain the conclusion of Theorem C for y ∈ Λ ε ∩ P n (x) with n ≥ N.

To conclude, since

Lemmata

Now we present a proof of the technical lemmas from Section 2.

Proof of Lemma 2.1. The proof follows the one given in [BP07, Lemma 5.3.3] closely.

Let us fix n > 0 as in the statement. We define the following cones

u for all u ∈ Q. Now for a > λ and δ ∈ (0, 1] such that (2.4) is true we set γ := λ/a ∈ (0, 1) and observe that if u ∈ F then

Proof of Lemma 2.2. We follow [Ma ñ87, proof of Lemma 13.5] (see also [START_REF] Barreira | Nonuniform hyperbolicity, volume 115 of Encyclopedia of Mathematics and its Applications[END_REF]Lemma 5.3.4]) and argue by induction on n ∈ N and write x n = f n (x 0 ) and y n = f n (y 0 ) for n ≥ 0 and x 0 , y 0 ∈ Λ. For n = 1 we have A(x 0 ) -A(y 0 ) ≤ c 0 dist(x 0 , y 0 ) ν by the H ölder assumption, for some c 0 > 0.

Let us assume that we can find c > c 0 as in the statement of the lemma for k = 1, . . . , n and let us see what we need to extend the property for k = n + 1. Since we have a cocycle