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This technical note addresses the stability analysis of linear systems governed by continuous-time difference equations with multiple delays. We propose new sufficient conditions for L 2 -exponential stability and exponential stability within the Lyapunov-Krasovskii framework. These conditions are delay-independent, and provide constructive exponential decay rate estimates of the system response. It is also shown that these conditions are less conservative than previous results in the literature.

I. INTRODUCTION

Linear systems governed by continuous-time difference equations are dynamical systems with a state-space realization described by

x(t) = N k=1 A k x(t -r k ), t ≥ 0, (1) 
where x(•) ∈ R n is the instantaneous state, r k > 0 are the delays and A k ∈ R n×n , for k = 1, . . . , N . Difference equations in the form [START_REF] Avellar | On the zeros of exponentials polynomials[END_REF] appear in systems of conservation laws modeled by first order hyperbolic partial differential equations, where the delay operator describes some transport phenomenon with finite velocity [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF], [START_REF] Bressan | Hyperbolic systems of conservation laws. The one dimensional Cauchy problem[END_REF], in coupled differential-difference equations [START_REF] Gu | Stability problem of systems with multiple delay channels[END_REF], [START_REF] Pepe | On the asymptotic stability of coupled delay differential and continuous time difference equations[END_REF], [START_REF] Pepe | On the stability of coupled delay differential and continuous time difference equations[END_REF], neutral timedelay systems [START_REF] Hale | Introduction to functional differential equations[END_REF], [START_REF] Kharitonov | Exponential estimates for neutral time delay systems with multiple delays[END_REF], [START_REF] Fridman | New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems[END_REF], [START_REF] Kharitonov | Time delay systems: Lyapunov functionals and matrices[END_REF], integral equations or difference equations with distributed delays [START_REF] Bellman | Differential-Difference Equations[END_REF], [START_REF] Jerri | Introduction to integral equations with applications[END_REF], [START_REF] Melchor-Aguilar | Exponential stability of linear continuous time difference systems with multiple delays[END_REF], and in references therein, covering a wide class of applications, as electric transmission lines, road traffic, water channels or gas flow in pipeline networks.

Exponential stability analysis for systems in the form (1) is a crucial problem for transient response and steady-state analysis, closed-loop performances and stabilizing control synthesis. Exponential stability of (1) has been studied in [START_REF] Avellar | On the zeros of exponentials polynomials[END_REF], where it was proved that sup

θ 1 ,...,θ N ∈[0,2π] N ρ N k=1 A k e jθ k < 1, (2) 
with ρ(A) the spectral radius of A, is a necessary and sufficient condition for delay-independent exponential stability of system [START_REF] Avellar | On the zeros of exponentials polynomials[END_REF]. Since [START_REF] Bellman | Differential-Difference Equations[END_REF] requires iterative optimization methods to be tested and is not constructive, in general, for state-feedback synthesis, some numerically tractable sufficient stability conditions were proposed.

In [START_REF] Kharitonov | Exponential estimates for neutral time delay systems with multiple delays[END_REF] (see also the references therein), it was shown that the sufficient exponential stability (delay-independent) condition

N k=1 A k < 1 (3) 
leads to constructive exponential estimates for the system response of [START_REF] Avellar | On the zeros of exponentials polynomials[END_REF]. However, this condition appears to be highly conservative.
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Notations: The transpose of a matrix P is denoted by P T , while the smallest and the largest eigenvalues of a symmetric matrix P are denoted by λmin(P ) and λmax(P ), respectively. The standard notation P ≺ Q (P Q) means that Q -P is a symmetric positive definite matrix (semidefinite matrix, respectively). For a symmetric positive definite matrix P , P 1/2 stands for the (unique) symmetric positive definite square root matrix of P . Symmetric terms in symmetric matrices are denoted by ⋆. The notation bd(P k ) for k = 1, . . . , N stands for the block-diagonal matrix bd(P1, . . .

, PN ) =    P1 . . . PN    .
The matrices In and 0n×m are the n × n identity matrix and the n × m zero matrix, respectively, with indices that may be dropped if there is no ambiguity. The set of natural numbers is denoted by N, and if 0 is not included, the set will be denoted by N * . The space of piecewise right-continuous and bounded functions defined on [-rN , 0) is P([-rN , 0), R n ). This space is equipped with the uniform norm ϕ c = sup -r N ≤θ<0 ϕ(θ) or with the L2 norm

ϕ 2 L 2 = 0 -r N ϕ(θ) 2 dθ
, where ϕ(θ) stands for the euclidean norm. We denote x(t, ϕ) the solution at time t of the system with the initial condition ϕ and xt(ϕ

) = {x(t + θ, ϕ) | θ ∈ [-rN , 0)}.
The dependency with respect to ϕ is dropped when it is clear from the context. D + v(xt) stands for the Dini upper right-hand derivative of a functional v(xt).

II. PRELIMINARIES

Consider the linear dynamical system governed by the continuoustime difference equations in the form

x(t) = N k=1 A k x(t -r k ) , t ≥ 0, (4) 
where A k ∈ R n×n for k = 1, . . . , N , 0 < r1 < . . . < rN . For any piecewise right-continuous and bounded initial condition ϕ ∈ P([-rN , 0), R n ), there exists a unique piecewise right-continuous solution x(t, ϕ) of ( 4), for all t ≥ 0. This solution is called the system response of ( 4).

Let us recall the definitions of stability which are used throughout the paper.

Definition 1: 4) is said to be L2-exponentially stable if there exist µ > 0 and β ≥ 0 such that, for any

(i) System (
ϕ ∈ P([-rN , 0), R n ), xt(ϕ) L 2 ≤ β ϕ c e -µt , t ≥ 0.
(ii) System ( 4) is said to be exponentially stable if there exist σ > 0 and γ ≥ 0 such that, for any

ϕ ∈ P([-rN , 0), R n ), x(t, ϕ) ≤ γ ϕ c e -σt , t ≥ 0.
In Definition 1, the positive constants µ and σ are lower bounds for the exponential decay rates of the system response in L2-norm and euclidean norm, respectively.

Let us denote by Ac the nN × nN companion matrix

Ac =      A1 A2 • • • AN I . . . I 0      . (5) 
It was proved in [START_REF] Carvalho | On quadratic Liapunov functionals for linear difference equations[END_REF] Corollary 5.4 that, if there exist n×n symmetric positive definite matrices P k , for k = 1, . . . , N , such that

-M0 = A T c bd(P1, . . . , PN )Ac -bd(P1, . . . , PN ) (6) 
is a negative definite matrix, then the system (4) is L2-exponentially stable, and also exponentially stable since (2) holds. Based on the same Lyapunov-Krasovskii functional, [START_REF] Damak | Stability analysis for a class of linear systems governed by continuous-time difference equations[END_REF] proposed an estimate of the decay rate for L2-exponential stability, that is there exists µ > 0 and β(µ) ≥ 0 such that

-Mµ = -M0 + bd((1 -e -2µr k )(P k -P k+1 )) (7) 
is a negative semidefinite matrix (with PN+1 = 0 by convention) and (i) in Definition 1 holds. Under an additive assumption on contraction for Mµ in [START_REF] Fridman | New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems[END_REF], exponential estimates for convergence of the step discontinuities in the system response were characterized in [START_REF] Damak | Stability analysis for a class of linear systems governed by continuous-time difference equations[END_REF] (see Theorem 4 therein). Actually, this condition, which appears also in Theorem 4 and Corollary 5 of [START_REF] Pepe | On the asymptotic stability of coupled delay differential and continuous time difference equations[END_REF], leads to exponential stability, as stated in the following result.

Theorem 2: Assume that there exist symmetric positive definite matrices P k , for k = 1, . . . , N , and µ > 0, such that Mµ in ( 7) is a positive semidefinite matrix. For this solution, if

α = N k=1 e -2µr k λmax(Q k -Q k+1 ) < 1, ( 8 
)
where

Q k = P -1/2 1 P k P -1/2 1
for k = 1, . . . , N , then the system (4) is exponentially stable, and the following exponential estimate of the system response holds

x(t, ϕ) ≤ γ ϕ c e -σt , ∀t ≥ 0, (9) 
with γ = λmax(P1) λmin(P1) , and σ = -ln(α) 2rN .

Proof: Obvious from the proof of Theorem 4 in [START_REF] Damak | Stability analysis for a class of linear systems governed by continuous-time difference equations[END_REF].

It is worthy of mention that the condition -Mµ 0 in Theorem 2 is delay-independent, in the sense that if it is satisfied for some delays (r1, . . . , rN ), it is also satisfied for any delays (r ′ 1 , . . . , r ′ N ). Its solution is however delay-dependent: for the matrices P k and µ that satisfy -Mµ 0, inequality (8) may be feasible or not depending on the delays. For L2-exponential stability, we will need the following lemma [START_REF] Damak | Stability analysis for a class of linear systems governed by continuous-time difference equations[END_REF].

Lemma 3: Assume that there exists a continuous functional v :

P([-rN , 0), R n ) → R such that t → v(xt(ϕ)) is Dini upper right- hand differentiable for t ≥ 0 and such that (a) β1 ϕ 2 L 2 ≤ v(ϕ) ≤ β2 ϕ 2 c , for some β1 > 0, β2 > 0 , (b) ∀t ≥ 0, D + v(xt(ϕ)) + 2µ v(xt(ϕ)) ≤ 0, for some µ > 0. Then the system (4) is L2-exponentially stable, that is xt(ϕ) L 2 ≤ β2 β1 ϕ c e -µt , t ≥ 0.

III. L2-EXPONENTIAL STABILITY

The major source of conservatism of the results presented in the previous section is related to the considered Lyapunov-Krasovskii functional, corresponding to (see [START_REF] Carvalho | On quadratic Liapunov functionals for linear difference equations[END_REF] and [START_REF] Damak | Stability analysis for a class of linear systems governed by continuous-time difference equations[END_REF]) [START_REF] Hale | Introduction to functional differential equations[END_REF] with 0 ≺ P k , for k = 1, . . . , N and µ > 0 the solutions of (7) in Theorem 2. In order to achieve less conservative stability conditions, the block-diagonal structure in [START_REF] Fridman | New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems[END_REF] must be relaxed by increasing the number of decision variables in Theorem 2, which is realized by the introduction in the Lyapunov-Krasovskii functional [START_REF] Hale | Introduction to functional differential equations[END_REF] of delayed cross-weighted terms. For this, let SN a n × n symmetric positive definite matrix, n × n symmetric positive semidefinite matrices Si, for i = 1, . . . , N -1, 2n × 2n symmetric positive semidefinite matrices P k and Q k , for k = 2, . . . , N ,

νµ(xt(ϕ)) = N k=1 t t-r k e -2µ(t-θ) x(θ) T (P k -P k+1 )x(θ) dθ,
P k = P (k) 11 P (k) 12 ⋆ P (k) 22 , Q k = Q (k) 11 Q (k) 12 ⋆ Q (k) 22 , (11) 
with respective blocks of size n×n, and denote the positive constants

κ k = r k -r k-1 , for k = 2, . . . , N .
With these notations, consider the Lyapunov-Krasovskii functional

vµ(xt) = N i=1 v µ i (xt) + N k=2 (v µ P,k (xt) + v µ Q,k (xt)), (12) 
where

v µ i (xt) = t t-r i e -2µ(t-θ) x(θ) T Six(θ) dθ, (13) 
v µ P,k (xt) = t t-κ k e -2µ(t-θ) ζ k (θ) T P k ζ k (θ) dθ, (14) 
v µ Q,k (xt) = t-κ k t-r k e -2µ(t-θ) ξ k (θ) T Q k ξ k (θ) dθ, (15) 
ζ k (θ) = x(θ) x(θ -r k-1 )
and ξ k (θ) = x(θ + κ k )

x(θ) .

The Lyapunov-Krasovskii functional introduced in (12) leads to the following L2-exponential stability result.

Theorem 4: Assume that there exist a n × n symmetric positive definite matrix SN , n × n symmetric positive semidefinite matrices Si, for i = 1, . . . , N -1, 2n × 2n symmetric positive semidefinite matrices P k and Q k , for k = 2, . . . , N , and µ > 0 such that

-Λµ = Ψµ Υµ Υ T µ Φµ ( 16 
)
is a (2N -1)n × (2N -1)n negative semidefinite matrix, where

Ψµ = A T c WAc -WP -WQ (17) 
Φµ = bd(e -2µκ k (Q (k) 22 -P (k) 11 )) (18) 
Υµ = A T c e -2µκ 2 Q (2) 12 • • • e -2µκ N Q (N) 12 
0 (N-1)n×n • • • 0 (N-1)n×n - 0 n×(N-1)n bd(e -2µκ k P (k) T 12 ) (19) 
and W, WP , WQ are defined in ( 23)-( 25), respectively. Then, the system ( 4) is L2-exponentially stable. Furthermore, the following exponential estimate holds 

xt(ϕ) L 2 ≤ β2 β1 ϕ c e -µt , t ≥ 0, (20) 
β2 = 2 N k=2 (κ k λmax(P k ) + r k-1 e -2µκ k λmax(Q k )) + N k=1 r k λmax(S k ). ( (21) 
) 22 
Proof: The functional vµ(xt(ϕ)) in ( 12) is well-defined over P([-rN , 0), R n ), continuous with respect to t, and Dini upper righthand differentiable for any t ≥ 0 along the trajectory of (4). Simple computations lead to

β1 ϕ 2 L 2 ≤ vµ(ϕ) ≤ β2 ϕ 2 c , (26) 
where β1 > 0 and β2 > 0 are defined in ( 21) and (22), respectively. For i = 1, . . . , N , the Dini upper right-hand derivative of v µ i (xt(ϕ)) in ( 13) along the trajectory of ( 4) is

D + v µ i (xt) = -2µ v µ i (xt) + x(t) T Six(t) -e -2µr i x(t -ri) T Six(t -ri).
Similarly, concerning ( 14) and (15), we have, for any k = 2, . . . , N ,

D + v µ P,k (xt) = -2µ v µ P,k (xt) + ζ k (t) T P k ζ k (t) -e -2µκ k ζ k (t -κ k ) T P k ζ k (t -κ k ) and D + v µ Q,k (xt) = -2µ v µ Q,k (xt) +e -2µκ k ξ k (t -κ k ) T Q k ξ k (t -κ k ) -e -2µr k ξ k (t -r k ) T Q k ξ k (t -r k ).
Substitute (4) into these expressions, and using the decomposition blocks [START_REF] Jerri | Introduction to integral equations with applications[END_REF] in [START_REF] Kharitonov | Exponential estimates for neutral time delay systems with multiple delays[END_REF], we arrive at the Dini upper right-hand derivative of vµ(xt(ϕ)) along the trajectory of (4), that is

D + vµ(xt(ϕ)) = -2µ vµ(xt(ϕ)) -χ(t) T Λµχ(t), (27) 
where 0 Λµ is defined in [START_REF] Pepe | On the asymptotic stability of coupled delay differential and continuous time difference equations[END_REF] and χ(t) = χ1(t) T χ2(t) T T ,

χ1(t) =   
x(t -r1) . . .

x(t -rN )    , χ2(t) =    x(t -κ2) . . . x(t -κN )    . (28) 
It follows from ( 27) that D + vµ(xt(ϕ)) + 2µ vµ(xt(ϕ)) ≤ 0, for any t ≥ 0. Lemma 3 applies and the proof is completed.

Remark 5: Note that with respect to [START_REF] Carvalho | On quadratic Liapunov functionals for linear difference equations[END_REF], if there exist P k ≻ 0, for k = 1, . . . , N , and µ > 0 such that -Mµ 0 in (7), Theorem 2 in [START_REF] Damak | Stability analysis for a class of linear systems governed by continuous-time difference equations[END_REF] leads to L2-exponential stability, with the Lyapunov-Krasovskii functional [START_REF] Hale | Introduction to functional differential equations[END_REF]. This implies of course that Theorem 4 is fulfilled, with P k = Q k = 0 for k = 2, . . . , N , and S k = P k -P k+1 for k = 1, . . . , N (with PN+1 = 0). The matrices P k satisfy, using the block-diagonal terms in [START_REF] Fridman | New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems[END_REF], PN PN-1 • • • P1. This implies that Si are positive semidefinite matrices, and SN = PN is positive definite. The converse is false, as illustrated and commented in Section V.

The condition given in Theorem 4 is delay-independent. It is equivalent to the existence of SN ≻ 0, Si 0 for i = 1, . . . , N -1, P k 0 and Q k 0 for k = 2, . . . , N , such that -Λ0 ≺ 0. This fact is outlined in the following result, where the necessary and sufficient delay-independent condition (2) is implied.

Theorem 6: Assume that there exist a n × n symmetric positive definite matrix SN , n × n symmetric positive semidefinite matrices Si, for i = 1, . . . , N -1, 2n × 2n symmetric positive semidefinite matrices P k and Q k , for k = 2, . . . , N , and µ > 0 such that Λµ in ( 16) is a (2N -1)n × (2N -1)n positive semidefinite matrix. Then

sup θ 1 ,...,θ N ∈[0,2π] N ρ N k=1
A k e jθ k < 1.

(29)

Proof: Under the specified assumptions and for any θi ∈ [0, 2π], i = 1, . . . , N , we compute the quadratic form -u * Λµu ≤ 0 with

u =            e jθ 1 In . . . e jθ N In N i=1 Aie j(θ i -θ 1 +θ 2 ) . . . N i=1 Aie j(θ i -θ N -1 +θ N )           
.

We obtain

-u * Λµu = N k=1 A k e jθ k * Y N k=1 A k e jθ k -Y + S, (30) 
where

Y = N l=1 S l + N k=2 e -2µκ k H k , (31) 
Y = N l=1 e -2µr l S l + N k=2 e -2µr k H k , (32) 
S = N k=2 (1 -e -2µκ k )R k , ( 33 
) W =         Ξ P (2) 12 P 
(3) 12 

        , Ξ = N i=1 Si + N k=2 (P (k) 11 + e -2µκ k Q (k) 11 ) (23) 
WP = bd(e -2µr 1 S1, e -2µκ 2 P

(2)

22 + e -2µr 2 S2, . . . , e -2µκ N P (N)

22 + e -2µr N SN ) (24)

WQ =         e -2µr 2 Q (2) 11 e -2µr 2 Q (2) 12 ⋆ e -2µr 2 Q (2)
22 + e -2µr 3 Q

(3) 11

e -2µr 3 Q (3) 12 . . . . . . . . . e -2µr N -1 Q (N-1) 22 + e -2µr N Q (N) 11 e -2µr N Q (N) 12 ⋆ e -2µr N Q (N) 22         (25) 
with

H k = In e j(θ k -θ k-1 ) In * Q k In e j(θ k -θ k-1 ) In ( 34 
)
and

R k = N i=1 Aie jθ i e -jθ k-1 In * P k N i=1 Aie jθ i e -jθ k-1 In . (35) 
Note that H k and R k defined in (34) and ( 35), respectively, are hermitian positive semidefinite matrices, for any k = 2, . . . , N and for any θi ∈ [0, 2π], i = 1, . . . , N . Since S defined in (33) is a positive semidefinite matrix, the negative term (30) implies that

N k=1 A k e jθ k * Y N k=1 A k e jθ k -Y 0. (36) 
Furthermore, using (31), (32) and the fact that SN is positive definite, we see that Y is positive definite and Y ≺ Y. Applying this last inequality in (36) leads to

N k=1 A k e jθ k * Y N k=1 A k e jθ k -Y ≺ 0. (37) 
It follows that ρ N k=1 A k e jθ k < 1, for any θ k ∈ [0, 2π], k = 1, . . . , N . This concludes the proof.

IV. EXPONENTIAL STABILITY

According to Theorem 3.5 with inequality (3.22) and Theorem 6.1 p. 286 in [START_REF] Hale | Introduction to functional differential equations[END_REF], Theorem 6 leads to delay-independent exponential stability, with however non constructive estimates. In order to evaluate the performance of the system (4) through its exponential decay rate, we assume that the conditions of Theorem 4 are fulfilled. Estimates for exponential stability are given in the following result.

Lemma 7: Assume that there exist β ≥ 0 and µ > 0 such that, for any ϕ ∈ P([-rN , 0), R n ) and for any t ≥ 0,

xt(ϕ) L 2 ≤ β ϕ c e -µt .
(38)

Then we have

x(t, ϕ) ≤ β √ rN ϕ c e -µt , a.e. t ≥ 0. (39) 
Proof: Let us first define the function φ(ϑ) = ϑ -r N

x(θ) 2 dθ with ϑ ≥ -rN which is continuous, non negative, non decreasing and bounded, since from (38), φ(∞) ≤ β 2 ϕ 2 c 1 1-e -2µr N . This function allows us to rewrite the inequality (38) as

φ(t) -φ(t -rN ) ≤ β 2 ϕ 2 c e -2µt , t ≥ 0. (40) 
For an arbitrary ς ∈ N * , multiplying (40) by r -1 N and introducing intermediate values of φ(•), we obtain for any t ≥ 0,

1 ς ς-1 i=0 ως (t -i rN ς ) ≤ β 2 rN ϕ 2 c e -2µt , (41) 
where

ως (t) = φ(t)-φ(t- r N ς ) r N ς
. This function is also continuous, non negative and bounded for any t ≥ 0. For any i = 0, . . . , ς -1,

ως (t -i rN ς ) ≥ min i=0,...,ς-1 ως (t -i rN ς ) ≥ min 0≤χ≤1 ως (t -rN χ) = ως (t -rN χ * ς ), such that χ * ς ∈ [0, 1]
, for all ς ∈ N * . Using this inequality into (41),

ως (t -rN χ * ς ) ≤ β 2 rN ϕ 2 c e -2µt , t ≥ 0. (42) 
Since the function ως (•) is continuous, we obtain, taking the limit sup when ς → ∞ in (42), that

lim sup ς→∞ ως (t -rN χ * ς ) = lim sup ς→∞ ως (t -rN χ * ∞ ) = D + φ(t -rN χ * ∞ ) ≤ β 2 rN ϕ 2 c e -2µt
holds for any t ≥ 0. Since D + φ(t) = x(t, ϕ) 2 a.e. and e -2µr N χ * ∞ ≤ 1, it follows that

x(t, ϕ) 2 ≤ β 2 rN ϕ 2 c e -2µt , a.e. t ≥ 0, that is (39) is satisfied.
The main advantage of Lemma 7 is that, unlike in Theorem 2, no additional assumption is required to get constructive estimates for exponential stability from estimates for L2-exponential stability. Note that (39) holds almost everywhere for t ≥ 0. While the step discontinuities in the system response are ensured, from Theorem 6, to converge exponentially to zero, estimates for such a convergence are not obtained in Lemma 7. A direct application of Lemma 7 to Theorem 4 leads to the following result on exponential stability.

Theorem 8: Assume that there exist a n × n symmetric positive definite matrix SN , n × n symmetric positive semidefinite matrices Si, for i = 1, . . . , N -1, 2n × 2n symmetric positive semidefinite matrices P k and Q k , for k = 2, . . . , N , and µ > 0 such that Λµ defined in ( 16) is a positive semidefinite matrix. Then, the system ( 4) is exponentially stable, and its system response satisfies

x(t, ϕ) ≤ β2 rN β1
ϕ c e -µt , a.e. t ≥ 0, where β1 and β2 are given in ( 21) and ( 22), respectively. Proof: Obvious from Theorem 4 and Lemma 7.

V. CONSERVATISM ANALYSIS AND DISCUSSION

We prove first that Theorem 4 is less conservative than Corollary 5.4 in [START_REF] Carvalho | On quadratic Liapunov functionals for linear difference equations[END_REF] or Theorem 2 in [START_REF] Damak | Stability analysis for a class of linear systems governed by continuous-time difference equations[END_REF]. As outlined in Remark 5, it is clear that if Corollary 5.4 in [START_REF] Carvalho | On quadratic Liapunov functionals for linear difference equations[END_REF] is fulfilled, then Theorem 4 holds, leading to a delay-independent exponential stability. However, the converse is false. Indeed, let us consider the system

x(t) = A1x(t -r1) + A2x(t -r2), (43) 
where A1 =

1 2 0 0 -1 2 , A2 = 0 1 2 -1 2 0 . (44) 
It was proved in [START_REF] Carvalho | On quadratic Liapunov functionals for linear difference equations[END_REF] that for this system, the condition -M0 ≺ 0 in (6) has no solution, or equivalently -Mµ ≺ 0 in ( 7) is not feasible. However, a solution of Theorem 4 exists. For r1 = 1 and r2 = √ 2, we found µ = 0.2842, xt(ϕ) L 2 ≤ 3.9989 ϕ c e -0.2842t , for t ≥ 0, and Theorem 8 leads to x(t, ϕ) ≤ 3.3627 ϕ c e -0.2842t . Note that the computational cost of the proposed method requires (5N -4) + 2n 2 (N -1) decision variables and 3N -1 constraint inequalities comparing to n(n+1) 2 N decision variables and N +1 constraint inequalities for the condition (6) in [START_REF] Carvalho | On quadratic Liapunov functionals for linear difference equations[END_REF]. On the other hand, this increase allows us to reduce the conservatism.

Second, it is of interest to mention the conservatism improvement of our method with respect to the norm condition [START_REF] Bressan | Hyperbolic systems of conservation laws. The one dimensional Cauchy problem[END_REF]. For this, we just prove that (3) implies that Theorem 2 is satisfied. Assume that (3) holds. By assumption, it is straightforward to see

that Ae = A1 • • • AN 0 (N-1)n×n • • • 0 (N-1)n×n < 1. (45) 
Let λ1 > 0 be any positive constant. The spectral theorem for symmetric matrices and (45) imply that A T e λ1Ae ≺ λ1 • InN . For P1 = λ1 • In, this last inequality rewrites as A T e bd(P1)Aebd(P1) ≺ 0.

Since the previous inequality is strict, there exist sufficiently small positive constants ε1, . . . , εN satisfying εN < . . . < ε1, N-2 N-1 ε1 < εN and A T e bd(P1)Aebd(P1 -

ε k • In) 0. Let us define µ > 0 such that µ < -1 2r N ln((N -1)(1 -ε N ε 1 
)), and the matrices

P k = λ k • In, for k = 1, . . . , N , obtained iteratively by λ1 = N k=1 e 2µr k ε k N k=1 e 2µr k -1 , (46) 
λ k -λ k+1 = e 2µr k (λ1 -ε k ). (47) 
The matrices P k satisfy P k -P k+1 = e 2µr k (P1ε k • In), so that P k+1 ≺ P k , for k = 1, . . . , N . Since PN = e 2µr N (P1-εN •In) ≻ 0, all the matrices P k are positive definite and diagonal. It follows that the matrices P k ≻ 0 , k = 1, . . . , N , and the positive constant µ, satisfy Mµ 0. Furthermore, as these matrices are in the form P k = λ k • In, (8) is satisfied since α < e -2µr 1 . Hence, Theorem 2 is fulfilled with γ = 1 in (9), and consequently Theorem 4 holds. The converse of this assertion is false, as shown in the example below. These matrices satisfy N k=1 A k = 1.4435, therefore the exponential stability of (43) cannot be analyzed using the conditions in [START_REF] Kharitonov | Exponential estimates for neutral time delay systems with multiple delays[END_REF]. However, this system is exponentially stable. Indeed, Theorem 2 leads to µ = 0.1084, α = 0.9084 in [START_REF] Fridman | Stability of linear descriptor systems with delay : a Lyapunovbased approach[END_REF], and x(t, ϕ) ≤ 1.8245 ϕ c e -0.0153t , for any t ≥ 0. On the other hand, Theorem 8 leads to the estimate x(t, ϕ) ≤ 3.6514 ϕ c e -0.1231t , t ≥ 0.

Theorem 4 gives only sufficient conditions for the exponential stability of (4), which are less conservative than those proposed previously in the literature. When the delays are arbitrary but commensurate, that is r k = ξ k r for ξ k ∈ N * and some r > 0, the conditions in Theorem 4 appear to be necessary and sufficient for exponential stability. Indeed, if (4) is exponentially stable for any commensurate delays, this implies in particular that ρ(Ac) < 1, or equivalently that there exist P ≻ 0 and µ > 0 such that A T c P Ac -e -2µr P 0, which is precisely the condition -Mµ 0 given in [START_REF] Fridman | New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems[END_REF] for the one-delay case. This in turn implies that Theorem 4 holds. The converse is obvious from Theorem 8 since delay-independent stability is characterized therein.

VI. CONCLUDING REMARKS

New exponential stability sufficient conditions providing the decay estimate of the response of linear difference equations in continuous time are presented. The a priori norm condition which is required in similar results in the literature is lifted, thus allowing the study of a wider class of systems.

with β1 = 2

 2 min k=2,...,N {e -2µκ k λmin(P k ), e -2µr k λmin(Q k )} + e -2µr N λmin(SN ),

Example 9 :

 9 Consider the difference equation (43) with r1 = 1, r2 = π and A1 = -0.4 -0.3 0.1 0.15 , A2 = 0.1 0.25 -0.9 -0.1 .

n(n+1)
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