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Exponential stability with decay rate estimation for linear

difference equations
Sérine Damak, Michael Di Loreto, Sabine Mondié, Xavier Brun

Abstract—This technical note addresses the stability analysis of linear

systems governed by continuous-time difference equations with multiple
delays. We propose new sufficient conditions for L2-exponential stability

and exponential stability within the Lyapunov-Krasovskii framework.

These conditions are delay-independent, and provide constructive expo-

nential decay rate estimates of the system response. It is also shown
that these conditions are less conservative than previous results in the

literature.

Index Terms—Time-Delay Systems, Stability, Linear Systems

I. INTRODUCTION

Linear systems governed by continuous-time difference equations

are dynamical systems with a state-space realization described by

x(t) =

N∑

k=1

Ak x(t− rk), t ≥ 0, (1)

where x(·) ∈ R
n is the instantaneous state, rk > 0 are the delays and

Ak ∈ R
n×n, for k = 1, . . . , N . Difference equations in the form (1)

appear in systems of conservation laws modeled by first order

hyperbolic partial differential equations, where the delay operator

describes some transport phenomenon with finite velocity [5], [3], in

coupled differential-difference equations [9], [16], [15], neutral time-

delay systems [10], [12], [7], [13], integral equations or difference

equations with distributed delays [2], [11], [14], and in references

therein, covering a wide class of applications, as electric transmission

lines, road traffic, water channels or gas flow in pipeline networks.

Exponential stability analysis for systems in the form (1) is a crucial

problem for transient response and steady-state analysis, closed-loop

performances and stabilizing control synthesis. Exponential stability

of (1) has been studied in [1], where it was proved that

sup
θ1,...,θN∈[0,2π]N

ρ

(
N∑

k=1

Ak e
jθk

)
< 1, (2)

with ρ(A) the spectral radius of A, is a necessary and sufficient

condition for delay-independent exponential stability of system (1).

Since (2) requires iterative optimization methods to be tested and

is not constructive, in general, for state-feedback synthesis, some

numerically tractable sufficient stability conditions were proposed.

In [12] (see also the references therein), it was shown that the

sufficient exponential stability (delay-independent) condition

N∑

k=1

‖Ak‖ < 1 (3)

leads to constructive exponential estimates for the system response

of (1). However, this condition appears to be highly conservative.
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As a first step for conservatism reduction with respect to (3), an L2-

stability analysis was considered in [4], using a Lyapunov-Krasovskii

approach. From some derived arguments on coupled differential-

difference equations, an equivalent stability condition for (1) was

proposed in [8]. The approach in [4] was further investigated in [16]

(see Theorem 4 and Corollary 5 therein) and in [6] for exponential

estimates in L2-exponential stability. For systems in the form (1),

while Lyapunov-Krasovskii theory appears to be suitable for L2-

exponential stability, with concessions regarding the inherent con-

servatism, the fact that the solution of (1) has in general step

discontinuities and its state-space realization (1) has only difference

operators, makes the analysis of the solution behavior at any time

more intricate than its analysis in L2-norm.

The contributions of this paper are focused on Lyapunov-Krasovskii

methods for stability of the system (1), and are twofold. First, in order

to reduce the inherent conservatism introduced within the approach

in [4], an extended Lyapunov-Krasovskii functional is defined and

used to obtain a new L2-exponential stability delay-independent

condition, which appears to be less conservative than the results

in [6]. Second, an exponential stability delay-independent condition is

derived. Constructive exponential decay rate estimates are provided,

and the conservatism reduction is discussed and compared with

already existing results in both contributions.

The paper is organized as follows. Section II contains the required

background and material for the content of this paper. Section III

addresses L2-exponential stability with constructive estimates for the

decay rate of the system response. Exponential stability is analyzed

in Section IV. A discussion on the conservatism for the proposed

method is included in Section V.

Notations: The transpose of a matrix P is denoted by P T , while

the smallest and the largest eigenvalues of a symmetric matrix P

are denoted by λmin(P ) and λmax(P ), respectively. The standard

notation P ≺ Q (P � Q) means that Q − P is a symmetric

positive definite matrix (semidefinite matrix, respectively). For a

symmetric positive definite matrix P , P 1/2 stands for the (unique)

symmetric positive definite square root matrix of P . Symmetric terms

in symmetric matrices are denoted by ⋆. The notation bd(Pk) for

k = 1, . . . , N stands for the block-diagonal matrix

bd(P1, . . . , PN ) =



P1

. . .

PN


 .

The matrices In and 0n×m are the n × n identity matrix and the

n × m zero matrix, respectively, with indices that may be dropped

if there is no ambiguity. The set of natural numbers is denoted by

N, and if 0 is not included, the set will be denoted by N
∗. The

space of piecewise right-continuous and bounded functions defined

on [−rN , 0) is P([−rN , 0),Rn). This space is equipped with the

uniform norm ‖ϕ‖c = sup
−rN≤θ<0

‖ϕ(θ)‖ or with the L2 norm

‖ϕ‖2L2
=
∫ 0

−rN
‖ϕ(θ)‖2 dθ, where ‖ϕ(θ)‖ stands for the euclidean

norm. We denote x(t, ϕ) the solution at time t of the system with

the initial condition ϕ and xt(ϕ) = {x(t + θ, ϕ) | θ ∈ [−rN , 0)}.
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The dependency with respect to ϕ is dropped when it is clear from

the context. D+v(xt) stands for the Dini upper right-hand derivative

of a functional v(xt).

II. PRELIMINARIES

Consider the linear dynamical system governed by the continuous-

time difference equations in the form

x(t) =

N∑

k=1

Akx(t− rk) , t ≥ 0, (4)

where Ak ∈ R
n×n for k = 1, . . . , N , 0 < r1 < . . . < rN . For

any piecewise right-continuous and bounded initial condition ϕ ∈
P([−rN , 0),Rn), there exists a unique piecewise right-continuous

solution x(t, ϕ) of (4), for all t ≥ 0. This solution is called the

system response of (4).

Let us recall the definitions of stability which are used throughout

the paper.

Definition 1:

(i) System (4) is said to be L2-exponentially stable if there exist

µ > 0 and β ≥ 0 such that, for any ϕ ∈ P([−rN , 0),Rn),

‖xt(ϕ)‖L2
≤ β ‖ϕ‖c e

−µt
, t ≥ 0.

(ii) System (4) is said to be exponentially stable if there exist σ > 0
and γ ≥ 0 such that, for any ϕ ∈ P([−rN , 0),Rn),

‖x(t, ϕ)‖ ≤ γ ‖ϕ‖c e
−σt

, t ≥ 0.

In Definition 1, the positive constants µ and σ are lower bounds for

the exponential decay rates of the system response in L2-norm and

euclidean norm, respectively.

Let us denote by Ac the nN × nN companion matrix

Ac =




A1 A2 · · · AN

I

. . .

I 0


 . (5)

It was proved in [4] Corollary 5.4 that, if there exist n×n symmetric

positive definite matrices Pk , for k = 1, . . . , N , such that

−M0 = A
T
c bd(P1, . . . , PN )Ac − bd(P1, . . . , PN ) (6)

is a negative definite matrix, then the system (4) is L2-exponentially

stable, and also exponentially stable since (2) holds. Based on the

same Lyapunov-Krasovskii functional, [6] proposed an estimate of

the decay rate for L2-exponential stability, that is there exists µ > 0
and β(µ) ≥ 0 such that

−Mµ = −M0 + bd((1− e−2µrk )(Pk − Pk+1)) (7)

is a negative semidefinite matrix (with PN+1 = 0 by convention)

and (i) in Definition 1 holds. Under an additive assumption on

contraction for Mµ in (7), exponential estimates for convergence of

the step discontinuities in the system response were characterized

in [6] (see Theorem 4 therein). Actually, this condition, which

appears also in Theorem 4 and Corollary 5 of [16], leads to

exponential stability, as stated in the following result.

Theorem 2: Assume that there exist symmetric positive definite

matrices Pk, for k = 1, . . . , N , and µ > 0, such that Mµ in (7) is

a positive semidefinite matrix. For this solution, if

α =

N∑

k=1

e−2µrkλmax(Qk −Qk+1) < 1, (8)

where Qk = P
−1/2
1 PkP

−1/2
1 for k = 1, . . . , N , then the system (4)

is exponentially stable, and the following exponential estimate of the

system response holds

‖x(t, ϕ)‖ ≤ γ ‖ϕ‖c e−σt
, ∀t ≥ 0, (9)

with

γ =

√
λmax(P1)

λmin(P1)
, and σ = − ln(α)

2rN
.

Proof: Obvious from the proof of Theorem 4 in [6]. �

It is worthy of mention that the condition −Mµ � 0 in Theorem 2

is delay-independent, in the sense that if it is satisfied for some

delays (r1, . . . , rN), it is also satisfied for any delays (r′1, . . . , r
′
N).

Its solution is however delay-dependent: for the matrices Pk and

µ that satisfy −Mµ � 0, inequality (8) may be feasible or not

depending on the delays. For L2-exponential stability, we will need

the following lemma [6].

Lemma 3: Assume that there exists a continuous functional v :
P([−rN , 0),Rn) → R such that t 7→ v(xt(ϕ)) is Dini upper right-

hand differentiable for t ≥ 0 and such that

(a) β1 ‖ϕ‖2L2
≤ v(ϕ) ≤ β2 ‖ϕ‖2c , for some β1 > 0, β2 > 0 ,

(b) ∀t ≥ 0, D+v(xt(ϕ)) + 2µ v(xt(ϕ)) ≤ 0, for some µ > 0.

Then the system (4) is L2-exponentially stable, that is

‖xt(ϕ)‖L2
≤
√

β2

β1
‖ϕ‖c e−µt

, t ≥ 0.

III. L2-EXPONENTIAL STABILITY

The major source of conservatism of the results presented in the

previous section is related to the considered Lyapunov-Krasovskii

functional, corresponding to (see [4] and [6])

νµ(xt(ϕ)) =
N∑

k=1

∫ t

t−rk

e−2µ(t−θ)
x(θ)T (Pk − Pk+1)x(θ) dθ, (10)

with 0 ≺ Pk, for k = 1, . . . , N and µ > 0 the solutions of (7) in

Theorem 2. In order to achieve less conservative stability conditions,

the block-diagonal structure in (7) must be relaxed by increasing the

number of decision variables in Theorem 2, which is realized by the

introduction in the Lyapunov-Krasovskii functional (10) of delayed

cross-weighted terms.

For this, let SN a n × n symmetric positive definite matrix, n × n

symmetric positive semidefinite matrices Si, for i = 1, . . . , N − 1,

2n × 2n symmetric positive semidefinite matrices Pk and Qk, for

k = 2, . . . , N ,

Pk =

[
P

(k)
11 P

(k)
12

⋆ P
(k)
22

]
, Qk =

[
Q

(k)
11 Q

(k)
12

⋆ Q
(k)
22

]
, (11)

with respective blocks of size n×n, and denote the positive constants

κk = rk − rk−1, for k = 2, . . . , N .

With these notations, consider the Lyapunov-Krasovskii functional

vµ(xt) =

N∑

i=1

v
µ
i (xt) +

N∑

k=2

(vµP,k(xt) + v
µ
Q,k(xt)), (12)

where

v
µ
i (xt) =

∫ t

t−ri

e−2µ(t−θ)
x(θ)TSix(θ) dθ, (13)

v
µ
P,k(xt) =

∫ t

t−κk

e−2µ(t−θ)
ζk(θ)

T
Pkζk(θ) dθ, (14)

v
µ
Q,k(xt) =

∫ t−κk

t−rk

e−2µ(t−θ)
ξk(θ)

T
Qkξk(θ) dθ, (15)
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ζk(θ) =

[
x(θ)

x(θ − rk−1)

]
and ξk(θ) =

[
x(θ + κk)

x(θ)

]
.

The Lyapunov-Krasovskii functional introduced in (12) leads to the

following L2-exponential stability result.

Theorem 4: Assume that there exist a n × n symmetric positive

definite matrix SN , n × n symmetric positive semidefinite matrices

Si, for i = 1, . . . , N − 1, 2n × 2n symmetric positive semidefinite

matrices Pk and Qk , for k = 2, . . . , N , and µ > 0 such that

−Λµ =

[
Ψµ Υµ

ΥT
µ Φµ

]
(16)

is a (2N − 1)n× (2N − 1)n negative semidefinite matrix, where

Ψµ = A
T
c WAc −WP −WQ (17)

Φµ = bd(e−2µκk (Q
(k)
22 −P

(k)
11 )) (18)

Υµ = A
T
c

[
e−2µκ2Q

(2)
12 · · · e−2µκNQ

(N)
12

0(N−1)n×n · · · 0(N−1)n×n

]

−
[

0n×(N−1)n

bd(e−2µκkP
(k)T

12 )

]
(19)

and W, WP , WQ are defined in (23)-(25), respectively. Then, the

system (4) is L2-exponentially stable. Furthermore, the following

exponential estimate holds

‖xt(ϕ)‖L2
≤
√

β2

β1
‖ϕ‖c e−µt

, t ≥ 0, (20)

with

β1 = 2 min
k=2,...,N

{e−2µκkλmin(Pk), e
−2µrkλmin(Qk)}

+ e−2µrN λmin(SN), (21)

β2 = 2
N∑

k=2

(κkλmax(Pk) + rk−1e
−2µκkλmax(Qk))

+
N∑

k=1

rkλmax(Sk). (22)

Proof: The functional vµ(xt(ϕ)) in (12) is well-defined over

P([−rN , 0),Rn), continuous with respect to t, and Dini upper right-

hand differentiable for any t ≥ 0 along the trajectory of (4). Simple

computations lead to

β1 ‖ϕ‖2L2
≤ vµ(ϕ) ≤ β2 ‖ϕ‖2c , (26)

where β1 > 0 and β2 > 0 are defined in (21) and (22), respectively.

For i = 1, . . . , N , the Dini upper right-hand derivative of v
µ
i (xt(ϕ))

in (13) along the trajectory of (4) is

D
+
v
µ
i (xt) = −2µ v

µ
i (xt) + x(t)TSix(t)

−e−2µrix(t− ri)
T
Six(t− ri).

Similarly, concerning (14) and (15), we have, for any k = 2, . . . , N ,

D
+
v
µ
P,k(xt) = −2µ v

µ
P,k(xt) + ζk(t)

T
Pkζk(t)

−e−2µκkζk(t− κk)
T
Pkζk(t− κk)

and

D
+
v
µ
Q,k(xt) = −2µ v

µ
Q,k(xt)

+e−2µκk ξk(t− κk)
T
Qkξk(t− κk)

−e−2µrkξk(t− rk)
T
Qkξk(t− rk).

Substitute (4) into these expressions, and using the decomposition

blocks (11) in (12), we arrive at the Dini upper right-hand derivative

of vµ(xt(ϕ)) along the trajectory of (4), that is

D
+
vµ(xt(ϕ)) = −2µ vµ(xt(ϕ))− χ(t)TΛµχ(t), (27)

where 0 � Λµ is defined in (16) and χ(t) =
[
χ1(t)

T χ2(t)
T
]T

,

χ1(t) =



x(t− r1)

...

x(t− rN)


 , χ2(t) =



x(t− κ2)

...

x(t− κN )


 . (28)

It follows from (27) that D+vµ(xt(ϕ)) + 2µ vµ(xt(ϕ)) ≤ 0, for

any t ≥ 0. Lemma 3 applies and the proof is completed. �

Remark 5: Note that with respect to [4], if there exist Pk ≻ 0, for

k = 1, . . . , N , and µ > 0 such that −Mµ � 0 in (7), Theorem 2

in [6] leads to L2-exponential stability, with the Lyapunov-Krasovskii

functional (10). This implies of course that Theorem 4 is fulfilled,

with Pk = Qk = 0 for k = 2, . . . , N , and Sk = Pk − Pk+1 for

k = 1, . . . , N (with PN+1 = 0). The matrices Pk satisfy, using

the block-diagonal terms in (7), PN � PN−1 � · · · � P1. This

implies that Si are positive semidefinite matrices, and SN = PN is

positive definite. The converse is false, as illustrated and commented

in Section V.

The condition given in Theorem 4 is delay-independent. It is

equivalent to the existence of SN ≻ 0, Si � 0 for i = 1, . . . , N −1,

Pk � 0 and Qk � 0 for k = 2, . . . , N , such that −Λ0 ≺ 0. This

fact is outlined in the following result, where the necessary and

sufficient delay-independent condition (2) is implied.

Theorem 6: Assume that there exist a n × n symmetric positive

definite matrix SN , n × n symmetric positive semidefinite matrices

Si, for i = 1, . . . , N − 1, 2n × 2n symmetric positive semidefinite

matrices Pk and Qk, for k = 2, . . . , N , and µ > 0 such that Λµ

in (16) is a (2N − 1)n × (2N − 1)n positive semidefinite matrix.

Then

sup
θ1,...,θN∈[0,2π]N

ρ

(
N∑

k=1

Ak e
jθk

)
< 1. (29)

Proof: Under the specified assumptions and for any θi ∈ [0, 2π],
i = 1, . . . , N , we compute the quadratic form −u∗Λµu ≤ 0 with

u =




ejθ1In
.
..

ejθN In∑N
i=1 Aie

j(θi−θ1+θ2)

...∑N
i=1 Aie

j(θi−θN−1+θN )




.

We obtain

−u
∗
Λµu =

(
N∑

k=1

Ake
jθk

)∗

Y

(
N∑

k=1

Ake
jθk

)
− Ỹ + S, (30)

where

Y =
N∑

l=1

Sl +
N∑

k=2

e−2µκkHk, (31)

Ỹ =

N∑

l=1

e−2µrlSl +

N∑

k=2

e−2µrkHk, (32)

S =

N∑

k=2

(1− e−2µκk )Rk, (33)
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W =




Ξ P
(2)
12 P

(3)
12 · · · P

(N)
12

⋆ P
(2)
22

⋆ P
(3)
22

...
. . .

⋆ P
(N)
22



,Ξ =

N∑

i=1

Si +

N∑

k=2

(P
(k)
11 + e−2µκkQ

(k)
11 ) (23)

WP = bd(e−2µr1S1, e
−2µκ2P

(2)
22 + e−2µr2S2, . . . , e

−2µκNP
(N)
22 + e−2µrNSN ) (24)

WQ =




e−2µr2Q
(2)
11 e−2µr2Q

(2)
12

⋆ e−2µr2Q
(2)
22 + e−2µr3Q

(3)
11 e−2µr3Q

(3)
12

. . .
. . .

. . .

e−2µrN−1Q
(N−1)
22 + e−2µrNQ

(N)
11 e−2µrNQ

(N)
12

⋆ e−2µrNQ
(N)
22




(25)

with

Hk =

[
In

ej(θk−θk−1)In

]∗
Qk

[
In

ej(θk−θk−1)In

]
(34)

and

Rk =

[∑N
i=1 Aie

jθie−jθk−1

In

]∗
Pk

[∑N
i=1 Aie

jθie−jθk−1

In

]
. (35)

Note that Hk and Rk defined in (34) and (35), respectively, are

hermitian positive semidefinite matrices, for any k = 2, . . . , N and

for any θi ∈ [0, 2π], i = 1, . . . , N . Since S defined in (33) is a

positive semidefinite matrix, the negative term (30) implies that
(

N∑

k=1

Ake
jθk

)∗

Y

(
N∑

k=1

Ake
jθk

)
− Ỹ � 0. (36)

Furthermore, using (31), (32) and the fact that SN is positive definite,

we see that Y is positive definite and Ỹ ≺ Y. Applying this last

inequality in (36) leads to
(

N∑

k=1

Ake
jθk

)∗

Y

(
N∑

k=1

Ake
jθk

)
−Y ≺ 0. (37)

It follows that ρ
(∑N

k=1 Ake
jθk

)
< 1, for any θk ∈ [0, 2π],

k = 1, . . . , N . This concludes the proof. �

IV. EXPONENTIAL STABILITY

According to Theorem 3.5 with inequality (3.22) and Theorem 6.1

p. 286 in [10], Theorem 6 leads to delay-independent exponential

stability, with however non constructive estimates. In order to

evaluate the performance of the system (4) through its exponential

decay rate, we assume that the conditions of Theorem 4 are fulfilled.

Estimates for exponential stability are given in the following result.

Lemma 7: Assume that there exist β ≥ 0 and µ > 0 such that, for

any ϕ ∈ P([−rN , 0),Rn) and for any t ≥ 0,

‖xt(ϕ)‖L2
≤ β ‖ϕ‖c e−µt

. (38)

Then we have

‖x(t, ϕ)‖ ≤ β√
rN

‖ϕ‖c e−µt
, a.e. t ≥ 0. (39)

Proof: Let us first define the function φ(ϑ) =
∫ ϑ

−rN
‖x(θ)‖2 dθ

with ϑ ≥ −rN which is continuous, non negative, non decreasing

and bounded, since from (38), φ(∞) ≤ β2 ‖ϕ‖2c 1

1−e−2µrN
. This

function allows us to rewrite the inequality (38) as

φ(t)− φ(t− rN ) ≤ β
2 ‖ϕ‖2c e−2µt

, t ≥ 0. (40)

For an arbitrary ς ∈ N
∗, multiplying (40) by r−1

N and introducing

intermediate values of φ(·), we obtain for any t ≥ 0,

1

ς

ς−1∑

i=0

ως(t− i
rN

ς
) ≤ β2

rN
‖ϕ‖2c e−2µt

, (41)

where ως(t) =
φ(t)−φ(t−

rN
ς

)
rN
ς

. This function is also continuous, non

negative and bounded for any t ≥ 0. For any i = 0, . . . , ς − 1,

ως(t− i
rN

ς
) ≥ min

i=0,...,ς−1
ως(t− i

rN

ς
)

≥ min
0≤χ≤1

ως(t− rNχ) = ως(t− rNχ
∗
ς ),

such that χ∗
ς ∈ [0, 1], for all ς ∈ N

∗. Using this inequality into (41),

ως(t− rNχ
∗
ς ) ≤

β2

rN
‖ϕ‖2c e−2µt

, t ≥ 0. (42)

Since the function ως(·) is continuous, we obtain, taking the limit

sup when ς → ∞ in (42), that

lim sup
ς→∞

ως(t− rNχ
∗
ς ) = lim sup

ς→∞

ως(t− rNχ
∗
∞)

= D
+
φ(t− rNχ

∗
∞) ≤ β2

rN
‖ϕ‖2c e−2µt

holds for any t ≥ 0. Since D+φ(t) = ‖x(t, ϕ)‖2 a.e. and

e−2µrNχ∗

∞ ≤ 1, it follows that

‖x(t, ϕ)‖2 ≤ β2

rN
‖ϕ‖2c e−2µt

, a.e. t ≥ 0,

that is (39) is satisfied. �

The main advantage of Lemma 7 is that, unlike in Theorem 2, no

additional assumption is required to get constructive estimates for

exponential stability from estimates for L2-exponential stability.

Note that (39) holds almost everywhere for t ≥ 0. While the step

discontinuities in the system response are ensured, from Theorem 6,

to converge exponentially to zero, estimates for such a convergence

are not obtained in Lemma 7. A direct application of Lemma 7 to

Theorem 4 leads to the following result on exponential stability.

Theorem 8: Assume that there exist a n × n symmetric positive

definite matrix SN , n × n symmetric positive semidefinite matrices

Si, for i = 1, . . . , N − 1, 2n × 2n symmetric positive semidefinite

matrices Pk and Qk, for k = 2, . . . , N , and µ > 0 such that Λµ

defined in (16) is a positive semidefinite matrix. Then, the system (4)

is exponentially stable, and its system response satisfies

‖x(t, ϕ)‖ ≤
√

β2

rNβ1
‖ϕ‖c e−µt

, a.e. t ≥ 0,
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where β1 and β2 are given in (21) and (22), respectively.

Proof: Obvious from Theorem 4 and Lemma 7. �

V. CONSERVATISM ANALYSIS AND DISCUSSION

We prove first that Theorem 4 is less conservative than Corol-

lary 5.4 in [4] or Theorem 2 in [6].

As outlined in Remark 5, it is clear that if Corollary 5.4 in [4]

is fulfilled, then Theorem 4 holds, leading to a delay-independent

exponential stability. However, the converse is false. Indeed, let us

consider the system

x(t) = A1x(t− r1) + A2x(t− r2), (43)

where

A1 =

[
1
2

0
0 − 1

2

]
, A2 =

[
0 1

2

− 1
2

0

]
. (44)

It was proved in [4] that for this system, the condition −M0 ≺ 0
in (6) has no solution, or equivalently −Mµ ≺ 0 in (7) is not feasible.

However, a solution of Theorem 4 exists. For r1 = 1 and r2 =
√
2,

we found µ = 0.2842, ‖xt(ϕ)‖L2
≤ 3.9989 ‖ϕ‖c e−0.2842t , for

t ≥ 0, and Theorem 8 leads to ‖x(t, ϕ)‖ ≤ 3.3627 ‖ϕ‖c e−0.2842t .

Note that the computational cost of the proposed method requires
n(n+1)

2
(5N − 4) + 2n2(N − 1) decision variables and 3N − 1

constraint inequalities comparing to
n(n+1)

2
N decision variables and

N+1 constraint inequalities for the condition (6) in [4]. On the other

hand, this increase allows us to reduce the conservatism.

Second, it is of interest to mention the conservatism improvement of

our method with respect to the norm condition (3). For this, we just

prove that (3) implies that Theorem 2 is satisfied.

Assume that (3) holds. By assumption, it is straightforward to see

that

‖Ae‖ =

∥∥∥∥
[

A1 · · · AN

0(N−1)n×n · · · 0(N−1)n×n

]∥∥∥∥ < 1. (45)

Let λ1 > 0 be any positive constant. The spectral theorem for

symmetric matrices and (45) imply that AT
e λ1Ae ≺ λ1 · InN . For

P1 = λ1 · In, this last inequality rewrites as

A
T
e bd(P1)Ae − bd(P1) ≺ 0.

Since the previous inequality is strict, there exist sufficiently small

positive constants ε1, . . . , εN satisfying εN < . . . < ε1, N−2
N−1

ε1 <

εN and AT
e bd(P1)Ae −bd(P1 − εk · In) � 0. Let us define µ > 0

such that µ < − 1
2rN

ln((N − 1)(1− εN
ε1

)), and the matrices Pk =
λk · In, for k = 1, . . . , N , obtained iteratively by

λ1 =

∑N
k=1 e

2µrkεk∑N
k=1 e

2µrk − 1
, (46)

λk − λk+1 = e2µrk (λ1 − εk). (47)

The matrices Pk satisfy Pk − Pk+1 = e2µrk (P1 − εk · In), so that

Pk+1 ≺ Pk, for k = 1, . . . , N . Since PN = e2µrN (P1−εN ·In) ≻ 0,

all the matrices Pk are positive definite and diagonal. It follows that

the matrices Pk ≻ 0 , k = 1, . . . , N , and the positive constant µ,

satisfy Mµ � 0. Furthermore, as these matrices are in the form

Pk = λk ·In, (8) is satisfied since α < e−2µr1 . Hence, Theorem 2 is

fulfilled with γ = 1 in (9), and consequently Theorem 4 holds. The

converse of this assertion is false, as shown in the example below.

Example 9: Consider the difference equation (43) with r1 = 1,

r2 = π and

A1 =

[
−0.4 −0.3
0.1 0.15

]
, A2 =

[
0.1 0.25
−0.9 −0.1

]
.

These matrices satisfy
∑N

k=1 ‖Ak‖ = 1.4435, therefore the exponen-

tial stability of (43) cannot be analyzed using the conditions in [12].

However, this system is exponentially stable. Indeed, Theorem 2

leads to µ = 0.1084, α = 0.9084 in (8), and ‖x(t, ϕ)‖ ≤
1.8245 ‖ϕ‖c e−0.0153t , for any t ≥ 0. On the other hand, Theorem 8

leads to the estimate

‖x(t, ϕ)‖ ≤ 3.6514 ‖ϕ‖c e
−0.1231t

, t ≥ 0.

Theorem 4 gives only sufficient conditions for the exponential stabil-

ity of (4), which are less conservative than those proposed previously

in the literature. When the delays are arbitrary but commensurate,

that is rk = ξkr for ξk ∈ N
∗ and some r > 0, the conditions

in Theorem 4 appear to be necessary and sufficient for exponential

stability. Indeed, if (4) is exponentially stable for any commensurate

delays, this implies in particular that ρ(Ac) < 1, or equivalently that

there exist P ≻ 0 and µ > 0 such that

A
T
c PAc − e−2µr

P � 0,

which is precisely the condition −Mµ � 0 given in (7) for the

one-delay case. This in turn implies that Theorem 4 holds. The

converse is obvious from Theorem 8 since delay-independent stability

is characterized therein.

VI. CONCLUDING REMARKS

New exponential stability sufficient conditions providing the decay

estimate of the response of linear difference equations in continuous

time are presented. The a priori norm condition which is required in

similar results in the literature is lifted, thus allowing the study of a

wider class of systems.
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