
HAL Id: hal-01255955
https://hal.science/hal-01255955

Submitted on 21 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Coralline algal structure is more sensitive to rate, rather
than the magnitude, of ocean acidification

Nicholas A. Kamenos, Heidi L. Burdett, Elena Aloisio, Helen S. Findlay,
Sophie Martin, Charlotte Longbone, Jonathan Dunn, Stephen Widdicombe,

Piero Calosi

To cite this version:
Nicholas A. Kamenos, Heidi L. Burdett, Elena Aloisio, Helen S. Findlay, Sophie Martin, et al..
Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification.
Global Change Biology, 2013, 19 (12), pp.3621-3628. �10.1111/gcb.12351�. �hal-01255955�

https://hal.science/hal-01255955
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Coralline algal structure is more sensitive to rate, rather
than the magnitude, of ocean acidification
NICHOLAS A . KAMENOS * , HE ID I L . BURDETT * † , E LENA ALO I S IO ‡ , HELEN S . F INDLAY § ,
SOPH IE MART IN ¶ * * , CHARLOTTE LONGBONE * , JONATHAN DUNN* ,

S TEPHEN WIDD ICOMBE § and PIERO CALOSI‡

*School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK, †Department of Earth Sciences,

University of St Andrews, Fife, KY16 9AJ, UK, ‡Marine Biology and Ecology Research Centre, School of Marine Science and

Engineering, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK, §Plymouth Marine Laboratory, Prospect Place,

Plymouth, PL1 3DH, UK, ¶CNRS, Laboratoire Adaptation et Diversti�e en Milieu Marin, Station Biologique de Roscoff, Place

Georges Teissier, 29688 Roscoff Cedex, France, **Universit�e Pierre et Marie Curie - Paris 6, Laboratoire Adaptation et Diversit�e en

Milieu Marin, Station Biologique de Roscoff, Place Georges Teissier, 29688 Roscoff Cedex, France

Abstract

Marine pCO2 enrichment via ocean acidification (OA), upwelling and release from carbon capture and storage (CCS)

facilities is projected to have devastating impacts on marine biomineralisers and the services they provide. However,

empirical studies using stable endpoint pCO2 concentrations find species exhibit variable biological and geochemical

responses rather than the expected negative patterns. In addition, the carbonate chemistry of many marine systems is

now being observed to be more variable than previously thought. To underpin more robust projections of future OA

impacts on marine biomineralisers and their role in ecosystem service provision, we investigate coralline algal

responses to realistically variable scenarios of marine pCO2 enrichment. Coralline algae are important in ecosystem

function; providing habitats and nursery areas, hosting high biodiversity, stabilizing reef structures and contributing

to the carbon cycle. Red coralline marine algae were exposed for 80 days to one of three pH treatments: (i) current

pH (control); (ii) low pH (7.7) representing OA change; and (iii) an abrupt drop to low pH (7.7) representing the

higher rates of pH change observed at natural vent systems, in areas of upwelling and during CCS releases. We dem-

onstrate that red coralline algae respond differently to the rate and the magnitude of pH change induced by pCO2

enrichment. At low pH, coralline algae survived by increasing their calcification rates. However, when the change to

low pH occurred at a fast rate we detected, using Raman spectroscopy, weaknesses in the calcite skeleton, with evi-

dence of dissolution and molecular positional disorder. This suggests that, while coralline algae will continue to cal-

cify, they may be structurally weakened, putting at risk the ecosystem services they provide. Notwithstanding

evolutionary adaptation, the ability of coralline algae to cope with OA may thus be determined primarily by the rate,

rather than magnitude, at which pCO2 enrichment occurs.
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Introduction

Marine pCO2 enrichment may occur via ocean acidifi-

cation (OA) (Caldeira & Wickett, 2003), releases from

natural CO2 vents (Hall-Spencer et al., 2008), upwelling

(Feely et al., 2008), and sudden releases from carbon

capture and storage (CCS) facilities (Blackford et al.,

2009). Natural CO2 enrichment along with simulated

OA and CCS leakages are used to investigate the

responses of marine biomineralisers to projected OA.

However, enrichment occurs at different rates with

differing longevities in each release process.

Ocean acidification is projected to occur slowly over

centennial time scales causing oceanic pH to drop 0.3–0.5
units by the end of this century (Caldeira & Wickett,

2003). CO2 releases frommarine vent sites (Kroeker et al.,

2012), biota (Anthony et al., 2012) and upwelling areas

(Gruber et al., 2012) naturally alter marine pCO2 but are

highly variable even at diel time scales (Hall-Spencer

et al., 2008, Kroeker et al., 2012). Sudden CO2 leakage

from CCS infrastructure (CO2 pipelines and under-

ground geological storage reservoirs) into the overlying

sea water may occur at even faster time scales (hours),

accompanied by a sudden fall in pH (Blackford et al.,

2009) with changes in pH being most acute at small spa-

tial scales (meters) (Agnew & Taylor, 1986). Thus, while

pCO2 enrichment will expose marine biomineralisers to
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reduced pH, the rates of exposure will vary significantly.

Such variability is expected to be characteristic of coastal

pCO2 enrichment over the coming century, unlike pelagic

regions which are expected to remain more stable

(Duarte et al., 2013). Therefore the rate, rather than the

magnitude, of exposure may be critical in determining

the ability of marine biomineralisers to cope with pro-

jected changes in carbonate chemistry and synchronous

multiple stressors such as temperature. This may par-

tially explain why organisms show variable responses to

contemporary pCO2 enrichment of similar magnitude

(Burdett et al., 2012, Melzner et al., 2009, Ries, 2011).

Red coralline algae (Fig. 1) have an established

record as model biomineralisers for exploring the

impact of high CO2 on marine calcifying biota (Burdett

et al., 2012, Kroeker et al., 2012, Martin & Gattuso, 2009,

Ragazzola et al., 2012, Ries, 2011). This is because (i)

they use dissolved inorganic carbon to calcify and dur-

ing photosynthesis (Martin & Gattuso, 2009), providing

an excellent contrast to animal models; (ii) they are

important in ecosystem function (e.g., Foster, 2001,

Kamenos et al., 2004a, Kamenos et al., 2004b, Nelson,

2009); (iii) play a significant role in carbon cycling and

reef stabilization (Nelson, 2009); and (iv) are utilised in

ultra-high resolution palaeoenvironmental reconstruc-

tions (Burdett et al., 2011, Kamenos, 2010, Kamenos

et al., 2012, Williams et al., 2011).

Coralline algae have a high-Mg skeleton (7.7–
28.8 mol% MgCO3) (Chave, 1954, Kamenos et al., 2009),

which is expected to make them particularly sensitive

to marine pCO2 enrichment as high-Mg calcite is the

most soluble form of calcium carbonate (Martin &

Gattuso, 2009). However, algal responses to pCO2

enrichment do not show expected regular patterns.

Some studies show negative patterns: for example,

exposure to high pCO2 conditions inhibits coralline

algal settlement (Kuffner et al., 2007), leads to coralline

algal dissolution (Hall-Spencer et al., 2008, Martin &

Gattuso, 2009), surface lesions (Martin & Gattuso,

2009), epithelial cell damage (Burdett et al., 2012) and

modelled structural stress (Ragazzola et al., 2012). Con-

versely, other studies observe non-negative responses:

for example, intracellular concentrations of the algal

antioxidant dimethylsulphoniopropionate (DMSP) did

not increase under gradual change to low pH (Burdett

et al., 2012), OA induced higher coralline algal calcifica-

tion (Martin et al., 2013) and did not cause coralline

algae to change the CaCO3 polymorph deposited (a

high Mg-calcite structure was maintained despite the

higher stability of calcite or aragonite, Ries, 2011).

This study determines the effect of the rate and mag-

nitude of pH change on the molecular structural integ-

rity, calcification and respiration of living and dead

coralline algae. It was hypothesised that, under faster

rates of pH change, red coralline algae would exhibit

the greatest response away from background levels;

they are less likely to show beneficial phenotypic plas-

tic responses to faster, compared to slower environ-

mental change. Additionally, live red coralline algae

were expected to be less impacted than dead red coral-

line algae due to the environmental buffering provided

by the live epithelium.

Dead coralline algaeLive coralline algae

3 cm

0 25 50 75 100

Control

Low stable pH

Low abrupt pH

Percentage of individuals

0 25 50 75 100

Percentage of individuals

Fig. 1 Lithothamnion glaciale thalli containing HCO3
�. Percentage of L. glaciale thalli (live and dead) where HCO3

� was absent (white

bars) or present (grey bars) after incubation for 80 days in control, low, stable pH, and low, abrupt pH treatments.
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Materials and methods

Experimental setup

Live and dead Lithothamnion glaciale thalli were hand collected

from Loch Sween, Scotland (56°01.99′ N, 05°36.13′ W), in

November 2009 using SCUBA from a depth of 7 m (thalli size:

4–6 cm diam.). In situ, the algae experience an annual temper-

ature range of 5–16 °C, light levels of 30–120 lmol photons

m�2 s�1 photosynthetically active radiation (PAR) and pH 8.1

(Rix et al., 2012). Lithothamnion glaciale was identified as

described in Irvine and Chamberlain (1994). Thalli were main-

tained in aerated sea water at ca. 10 °C during transportation

to Plymouth Marine Laboratory (Plymouth, UK) and were

transferred to a 3000 l flow-through seawater system within

one day of collection. Approximately 400 g of L. glaciale were

separated into 24 experimental mesocosms (6 l volume,

28 9 19 9 16 cm): 12 containing live algae and 12 containing

dead algae. Thalli were maintained in the system for one week

(water temperature 11.63 � 0.32 °C, salinity 34.9 � 0.36

[mean � SD]) prior the start of the ramping period to allow

the thalli to recover from collection and adjust to laboratory

conditions.

Coralline algae were incubated in three pH treatments for

80 days using the method developed by Findlay et al. (2008):

1. Control (pH 8.1, n = 12 [six with live algae and six with

dead algae])

2. Low, stable pH change (pH 7.7, n = 6 [three with live algae

and three with dead algae], rate of change from ambient:

0.05 pH units d�1 over 10 days prior to the experimental per-

iod) representing the A1FI IPCC year 2100 scenario (IPCC

CoreWriting Team Pachauri Rk &Reisinger a Eds, 2007).

3. Low, abrupt pH change (pH 8.1 to 7.7, n = 6 [three with live

algae and three with dead algae], rate of change from ambi-

ent: 0.25 pH units d�1over two days beginning on day 52.

The low, abrupt pH treatment represented a sudden reduc-

tion in pH following an acute injection of CO2 associated

with CCS leaks, natural CO2 vent systems or areas of

upwelling).

Rate of pH change in the low, abrupt pH treatment was sig-

nificantly greater than in the low, stable pH treatment over the

2 days of change beginning on day 52 (F1,43 = 13.51, P = 0.001;

multiple linear regression, assumptions met). Reduced pH

levels were achieved by gradually increasing the bubbling of

CO2 in the mesocosms.

Carbonate system measurements

Seawater temperature, salinity (WTW LF187 combination tem-

perature and salinity probe), pHNBS (Metrohm, 826 pH mobile

with a Metrohm glass electrode) and dissolved oxygen (1302

Oxygen Electrode; Strathkelvin Instruments, Glasgow, UK)

were monitored daily. Nutrient concentrations (nitrate, nitrite,

phosphate, silicate and ammonium) and total alkalinity (AT)

were monitored weekly to ensure seawater quality was main-

tained (Table 1 and Table S1). Mesocosms were maintained at

ambient temperature (11.63 � 0.32 °C, mean � SD) and light

(90 lmol photons m�2 s�1; ca. 10 h light: 14 h dark). Nutrients

were analysed with an autoanalyser (Bran+Luebbe, Norder-

stedt, Germany) using standard methods (Brewer & Riley,

1965, Grasshoff, 1976, Kirkwood, 1989, Mantoura & Wood-

ward, 1983, Zhang & Chi, 2002). Total alkalinity was mea-

sured by poisoning according to Dickson et al. (2007) then

analysing via potentiometric titration using an Apollo SciTech

Alkalinity Titrator Model AS-ALK2 (Apollo SciTech, Bogart,

GA, USA) and Batch 100 certified reference materials from

Andrew Dickson.

Carbonate system calculations

Measured pH and AT data were used to calculate carbonate

and bicarbonate ion concentrations and calcite and aragonite

(Ωcal and Ωarag respectively) saturation states using CO2SYS

(Pierrot et al., 2006) with dissociation constants from Mehr-

bach et al. (1973) refit by Dickson & Millero (1987) and KSO4

using (Dickson, 1990). The calculations for these parameters

also included temperature, salinity, silicate and phosphate

data. pH and CO2 levels remained relatively constant through-

out the 80 days exposure period for the control and stable

treatments (Table 1). AT, temperature, salinity, silicate, and

phosphate showed no differences between CO2 treatments.

Sample preparation

Live and dead L. glaciale thalli from each treatment (live:

n = 3, dead: n = 3) were sampled after 80 days exposure. Sam-

ples were selected at random from each mesocosm; within the

control treatment three of the six mesocosms were chosen at

random. Thalli were air dried, embedded in resin (Buehler

EpoxyCure, D€usseldorf, Germany), transverse sectioned

Table 1 Mean � SD experimental system values over the

80 days experimental period for measured temperature

(n = 80), salinity (n = 80), pH (n = 80) and alkalinity (n = 12)

and calculated, dissolved inorganic carbon (DIC), bicarbonate

(HCO3
�), carbonate (CO3

2�), pCO2, calcite saturation state

(Ωcal) and aragonite saturation state (Ωarag) for the three pH

treatments.

Control

Low, stable

pH

Low, abrupt

pH

Temperature (°C) 11.74 � 0.34 11.51 � 0.28 11.64 � 0.33

Salinity 34.9 � 0.34 35.0 � 0.32 34.9 � 0.41

pH (T) 8.18 � 0.10 7.70 � 0.14 7.75 � 0.40

Alkalinity

(lmol kg�1)

2975 � 443 2964 � 467 2991 � 414

DIC (lmol kg�1) 2717 � 420 2850 � 489 3023 � 556

HCO3
�

(lmol kg�1)

2498 � 395 2696 � 475 2810 � 463

CO3
2�(lmol kg�1) 198 (�53) 110 (�26) 73 (�40)

pCO2 498 � 161 1081 � 488 2778 � 4047

Ωcal 4.7 � 1.26 2.62 � 0.61 1.74 � 0.94

Ωarag 3.0 � 0.81 1.67 � 0.39 1.11 � 0.60

© 2013 John Wiley & Sons Ltd, Global Change Biology, 19, 3621–3628
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(Buehler Petrothin) and polished using Buehler graded silicon

carbide papers.

Physical molecular structure

Changes in the physical structure of the skeleton at the molec-

ular level were detected using Raman spectroscopy. Raman

spectroscopy uses laser light to determine the molecular vibra-

tional modes of substances, providing information on crystal-

lographic structure, composition and stability. Raman

spectroscopy was conducted using a Renishaw inVia Raman

equipped with a Leica DM 2500M (Leica Microsystems

GmbH, Wetzlar, Germany) microscope using a 785 nm laser

and 1200 l mm�1 grating within the School of Geographical

and Earth Sciences at the University of Glasgow (Glasgow,

UK). Peak presence or absence at 1014 cm�1 Raman shift was

recorded. Frequency and full width half maximum (FWHM,

the peak width at half the peak height) were calculated for the

V1 lattice mode (peaks nominally at a Raman shift of ca.

1089 cm�1). Raman spectroscopy was conducted on the

spring–time deposited portion of each growth band to ensure

temperature-dependent Mg concentrations remained the same

across treatments. The spring-time growth portion was identi-

fied from Alizarin red stained calibration individuals in paral-

lel experiments (e.g., Kamenos et al., 2008). Peak parameters

were compared using a general linear model (assumptions of

normality and heterogeneity of variance were met).

Bicarbonate presence. The 1014 cm�1 peak in Raman spectra

of high Mg-calcite indicates the presence of bicarbonate

(HCO3
�) within the analysed sample (Bischoff et al., 1985)

Carbonate ion positional disorder. Band width (FWHM) of

the ca.1089 cm�1 Raman spectrum peak is positively related

to Mg concentrations and most likely results from positional

disorder of the carbonate ion (increasing rotation of CO3
2� out

of the basal plane) (Bischoff et al., 1985).

Composition. The frequency of the ca. 1089 cm�1 peak in

spectra of biogenic calcite is primarily controlled by the Mg

content (Bischoff et al., 1985). As the Mg content increases, the

peak moves from 1085 cm�1 in calcite containing <3.9 mol%

MgCO3, to 1094 cm�1 in Magnesite (25 mol% MgCO3)

(Bischoff et al., 1985, Urmos et al., 1991).

Net calcification, photosynthesis and respiration

Calcification and respiration of L. glaciale were determined in

control and low, stable pH treatments after 80 days exposure

to experimental conditions. Data are not available for the low,

abrupt pH treatment. Live thalli (n = 3 per treatment) were

incubated in 170 ml chambers for ca. 20 min during the day

(PAR: ca. 90 photons lmol m�2 s�1) and at night (>1 h after

sunset). Dead thalli (n = 3 per treatment) were incubated in

170 ml chambers for ca. 10 h spanning both day and night.

Water motion was maintained using magnetic stirrers. AT and

dissolved oxygen concentrations were determined at the start

and end of each experimental incubation. Calcification was

determined using the total alkalinity anomaly technique

(Smith & Key, 1975). Oxygen consumption / production was

determined following the technique of Martin et al. (2013)

using an oxygen electrode (1302 Oxygen Electrode; Strathkel-

vin Instruments) attached to a calibrated oxygen meter (Oxy-

gen Meter 781; Strathkelvin Instruments). Comparisons were

conducted using one and two-way general linear models

(assumptions of normality and heterogeneity of variance were

met).

Results

Bicarbonate presence

Bicarbonate was not present in live L. glaciale coralline

algal thalli cultured under control conditions, but was

present in increasing proportions within live thalli

cultured under stable low pH and abruptly changing pH

conditions (Fig. 1). All dead thalli contained HCO3
�

(Fig. 1).

Carbonate ion positional disorder

There were no significant differences in V1 lattice mode

(symmetric stretch at ca. 1089 cm�1 frequency) between

treatments within live (F2, 14 = 0.15, P = 0.865) or dead

thalli (F1, 14 = 3.01, P = 0.105) (Fig. 2).

Composition

In live coralline algae, we observed no significant

change in peak frequency (Mg content) between indi-

viduals cultured in control, low pH and low, abruptly

changed pH (F2, 12 = 1.28, P = 0.313) (Fig. 2). In the

low, abrupt pH treatment, live coralline algae had a sig-

nificantly reduced peak frequency (lower Mg content)

compared to dead thalli in the same treatment

(F1, 12 = 6.39, P = 0.026) (Fig. 2).

Net calcification, dissolution, respiration and
photosynthesis in live thalli

Lithothamnion glaciale calcified during the day in both

control and low, stable pH treatments (Fig. 3a). At

night, L. glaciale calcified in the control treatment but

dissolved in the low pH treatment (Fig. 3a). Under low,

stable pH, L. glaciale calcified significantly more during

the day than they dissolved at night, they also calcified

marginally more in low pH than control treatments

during the day (F1, 54 = 50.78, P < 0.001) (Fig. 3a) (calci-

fication was not measured in low but abruptly chang-

ing pH). There were no significant differences in the

photosynthesis (F1, 22 = 1.33, P = 0.261) or respiration

(F1, 24 = 0.60, P = 0.446) of L. glaciale between the

control and low, stable pH treatments (Fig. 3b)

© 2013 John Wiley & Sons Ltd, Global Change Biology, 19, 3621–3628
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Dissolution in dead thalli

Dead thalli in low, stable pH conditions dissolved fas-

ter than control thalli (Fig. 3a) (F2, 42 = 4.59, P = 0.016).

However, dissolution of dead thalli over the whole

diel period was not significantly different from the

dissolution of live thalli at night (F1, 24 = 0.13,

P = 0.721) in the low, stable pH treatment (Fig. 3a).
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Discussion

We observed rate-dependent pH impacts on the physi-

cal molecular-level structure of red coralline algae

(L. glaciale) after exposing thalli to low pH, low but

abruptly reduced pH, and control conditions for 80 days.

Bicarbonate presence

All dead thalli contained HCO3
�, indicating that disso-

lution took place even under control pH conditions

(Fig. 1). We suggest that the presence of HCO3
� indi-

cates a chemical breakdown of the thallus skeletal

material, possibly indicating the first stages of major

physical breakdown. The higher percentage of individ-

uals containing HCO3
� (Fig. 1) in the thalli exposed to

the abrupt change in pH indicates that faster rates of

change increase dissolution. The observed HCO3
� is

unlikely to be from an external source as it was present

in dead, but not live, thalli from the control treatment;

an external source would have introduced the bicar-

bonate to both live and dead thalli.

As Raman spectroscopy was conducted on thallus

calcite that was within each algal annual growth band,

rather than calcite directly exposed to the sea water on

the outer surface of the thallus, this suggests that

damage was, at least, internal. In live algae this may be

via (i) seawater ingress through low pH-damaged epi-

thelium (Burdett et al., 2012), explaining the absence of

damage in live thalli from the control treatment; or (ii)

disruption of the calcification process at the centres of

calcification.

Carbonate ion positional disorder

While we observed no significant differences in V1

lattice mode (symmetric stretch at ca. 1089 cm�1 fre-

quency) between treatments within live or dead thalli,

we believe it is reasonable to attribute the modest fall of

FWHM in live algae exposed to low, abrupt pH to a

decrease in positional disorder (Fig. 2). Less positional

disorder indicates longer, and thus weaker, Mg-O bond

lengths (Bischoff et al., 1985). Thus despite the differ-

ences not being statistically significant, the longer,

weaker Mg-O bonds indicate that live algae exposed to

abrupt reductions in pH also show evidence of weaken-

ing at the molecular bonding level, an effect not

observed in thalli exposed to control or low, stable pH

treatments.

Mg content

Absence of treatment induced differences in Mg content

(peak frequency) suggests that, while alive, L. glaciale

thalli were capable of buffering against the rate and

magnitude of external carbonate chemistry changes,

enabling them to continue to deposit high Mg calcite.

Reduced peak frequency of live over dead algae in

the low, abrupt pH treatment indicates that live L. glaci-

ale thalli were capable of lowering the Mg content of

their calcite, making it less reactive to acidified condi-

tions. A similar process may also occur in Neogoniolithon

sp., another red coralline alga, which reduces the Mg/

Ca ratio of the high Mg-calcite deposited at high pCO2

concentrations (>2000 latm) (Ries, 2011). Thus,

although epithelial damage may allow dissolution of

the high Mg skeleton (Fig. 3), this does not appear to

preferentially dissolve out Mg. This absence of Mg dis-

solution in the low, abrupt pH treatment could be due

to the incorporation of Mg into the calcite crystal lattice

(Kamenos et al., 2009) rather than being associated

organic material.

Calcification, dissolution, respiration and photosynthesis
in live algae

When calcifying, L. glaciale appears to be able to

compensate for OA-induced dissolution at night by

increasing its calcification rate during the day. In fact,

in low, stable pH conditions, L. glaciale up-regulated its

calcification rates. Day-time (light) calcification rates in

low pH were twice the rate required to maintain calcifi-

cation in control conditions (Fig. 3). This suggests that,

under OA conditions, L. glaciale may not only persist,

but also increase their calcification, a phenomenon that

has been observed in other algal and invertebrate

species (Findlay et al., 2011, Martin et al., 2013, Rodolfo-

Metalpa et al., 2011).

However, enhanced calcification in low, stable pH

conditions was not supported by a change in photosyn-

thesis (Fig. 3b), and thus an increase in available

energy. While it was expected that coralline algae

would obtain a photosynthetic benefit under OA (Ries

et al., 2009), we observed no differences in photosynthe-

sis or respiration of live L. glaciale between the control

and low, stable pH treatments (Fig. 3b). Thus, live

L. glaciale neither became metabolically challenged

(which would have led to increased respiration), nor

obtained photosynthetic benefits from changes in car-

bonate chemistry projected for 2100. We suggest that,

during the day, energy usage required for enhanced

calcification in thalli exposed to low, stable pH may

limit photosynthetic efficiency, while at night the rate

of dissolution may not be high enough to induce an

increase in respiration. Over the whole diel period it is

possible that the high energy requirement of day-time

calcification in low pH conditions leads to energy real-

location away from night-time respiration. This may

© 2013 John Wiley & Sons Ltd, Global Change Biology, 19, 3621–3628
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explain the absence of an up-regulation in respiration

by individuals from the low, stable pH treatment. How-

ever, respiratory CO2 may not be exported as efficiently

in low pH conditions, due to the higher CO2 concentra-

tion in the surrounding acidified water, potentially

further enhancing night-time dissolution.

Dissolution in dead algae

In dead thalli there is no protective epithelium and they

cannot therefore buffer against changes in OA-associ-

ated carbonate chemistry, explaining their susceptibil-

ity to dissolution.

Wider implications of coralline algal damage

Calcifying algae are particularly important for ecosys-

tem function in both temperate and tropical ecosystems

through their roles in (i) carbon cycling; (ii) provision

of habitats and associated biodiversity hotspots, (iii)

association with recruitment processes; and (iv) being

major structural components of coral reef systems (Nel-

son, 2009). Thus, any change in the three dimensional

structure and structural integrity of coralline algae may

have significant effects on the ecosystem functions with

which they are involved. For example live, structurally

complex red coralline algae host high macro-organis-

mal diversity (Biomaerl Team, 1999), and their ability

to act as a nursery area is hierarchically controlled by

the presence of a live epithelium and their complex

three dimensional skeletal heterogeneity (Kamenos

et al., 2004a). Thus, while we and others (e.g., Martin

et al., 2013) show evidence of increased calcification

under OA, this does not necessarily result in repair of

damaged skeletons, or mean that the newly calcified

skeleton is as physically strong as that deposited under

higher pH conditions. Weaker structural integrity may

make coralline algae more prone to fragmentation, thus

impacting their role in ecosystem function; this will

likely vary among species and geographic locations.

When producing historical climate records from red

coralline algae there is a requirement that no material is

lost from the algal thallus post-deposition (Burdett

et al., 2011, Kamenos, 2010). Such loss, for example due

to grazing, significantly lowers the resolution of the

reconstructed record, as the temporal constraints of

material loss is unknown. In particular, this makes con-

structing a time series chronology particularly difficult.

Our results suggest that while red coralline algae are

alive, OA is not likely to affect the records they lay

down at >1 day resolution due to enhanced day-time

calcification.

We show that the extent of damage caused by low

pH conditions is dependent on the rate of change in

carbonate chemistry and live / dead status in algal bio-

mineralisers. This is of major concern as both live and

dead coralline algae are critical in service provision due

to their complex three-dimensional skeletal heterogene-

ity (Kamenos et al., 2004a) and coral reef stabilization /

recruitment roles (Webster et al., 2013). In dead algae,

the absence of post-dissolution repair mechanisms

under projected OA conditions place the services they

provide at significant risk. In addition, historical cli-

mate records held by dead algae within deposits are at

risk from increased thallus dissolution, which is of par-

ticular concern as fossil deposits contain the longest

palaeoclimatic records due to their age (Kamenos,

2010). It is thus likely that the ability of marine biomin-

eralisers to cope with projected changes in marine car-

bonate chemistry and their ability to continue to

provide services will be determined by the rate at

which future pCO2 enrichment occurs.
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