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Abstract

Two models for the generation of self-oscillations of
reed conical woodwinds are presented. They use the
fewest parameters (of either the resonator or the ex-
citer), whose influence can be quickly explored. The
formulation extends iterated maps obtained for loss-
less cylindrical pipes without reed dynamics. It uses
spherical wave variables in idealized resonators, with
one parameter more than for cylinders: the missing
length of the cone. The mouthpiece volume equals that
of the missing part of the cone, and is implemented as
either a cylindrical pipe (first model) or a lumped el-
ement (second model). Only the first model adds a
length parameter for the mouthpiece and leads to the
solving of an implicit equation. For the second model,
any shape of nonlinear characteristic can be directly
considered. The complex characteristics impedance for
spherical waves requires sampling times smaller than a
round trip in the resonator. The convergence of the
two models is shown when the length of the cylindrical
mouthpiece tends to zero. The waveform is in semi-
quantitative agreement with experiment. It is con-
cluded that the oscillations of the positive episode of
the mouthpiece pressure are related to the length of
the missing part, not to the reed dynamics.

PACS: 43.75 Ef, 4375 Pq
Keywords: musical instruments, reed instruments, bas-
soon, oboe, saxophone

I. INTRODUCTION

Simplified models with a minimal number of param-
eters are helpful tools for the understanding of the
physical principles of the musical instruments. A fa-
mous example was given by the paper by Mc Intyre
et al1. In particular, they proposed in Appendix A
of their paper the relation between the functioning of
simplified clarinet-like instruments (a cylinder without
holes) and the iterated map theory. The corresponding
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model is based upon the assumption of the absence of
both losses and reed dynamics. Only three parame-
ters are needed: two parameters of the excitation (the
mouth pressure and a composite reed parameter) that
can be deduced from a static, nonlinear characteristic
of the reed-mouthpiece system, and one for the res-
onator (the length). Thus the radius does not appear
explicitly in the model and can be chosen arbitrarily
(in the limit of the one-dimensional theory). Concern-
ing the waveform of the acoustic pressure inside the
mouthpiece for periodic regimes, this model yields a
caricature in the form of square signals, therefore with
missing even harmonics. However the model makes
possible deducing several properties, such as the du-
ration of the transient and the nature, amplitude and
stability of possible regimes. This was done in several
papers, based upon the nonlinear characteristic pro-
posed in Ref. 2, and with a supplementary parameter,
corresponding to frequency-independent losses in the
resonator.3,4,5 Comparison with experiments shows a
good agreement for the bifurcation scheme.6 Therefore,
thanks to these extremely simplified models, basic fea-
tures of the sound production can be understood, while
refined details of the waveform, that are important for
the high frequencies and the external sound perception,
cannot be predicted.

The purpose is here to extend this kind of model to
simplified conical reed instruments, like bassoon, oboe
or saxophone, i.e., to diverging truncated cones, with-
out holes and but with a mouthpiece in order to un-
derstand the influence of the main parameters on the
waveform, not to provide useful synthesis schemes or
detailed spectral analysis as in Ref. 7. In Ref. 8, it was
shown that the pressure waveform in the mouthpiece
of a saxophone is rather similar to that of a stepped
cone or that of a “cylindrical saxophone”.10 Such an
instrument is a cylindrical tube excited by a reed at
the respective distances x1 and ℓ of the two extremi-
ties. By analogy with the bowed string, the excitation
point is defined by the ratio β = x1/(x1 + ℓ). For these
instruments the idealized waveform of the steady-state
regime in the mouthpiece was shown to be a rectan-
gle signal, equivalent to the pure Helmholtz motion
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for bowed-string instruments, and the extension of the
iterated map method is straightforward. For reed in-
struments, the Helmholtz motion is defined by a succes-
sion of two episodes of constant mouthpiece pressure.8

The ratio of the negative pressure time to the oscilla-
tion period is equal to β, while the pressure values are
−pm(1 − β)/β and pm, respectively, where pm is the
mouth pressure.
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Figure 1: (Color online) Comparison of the measured
mouthpiece pressure for a baritone saxophone on the
lowest note C2 (65.4Hz, dash-dotted line) with the
signal obtained using the second model presented in
the current paper (using ℓ = 2.272m, x1 = 30.8cm,
γ = 0.34 and ζ = 0.51, notations defined in Sec. IV,
solid line) and with the rectangle signal obtained us-
ing the “cylindrical saxophone ”model (same values of
ℓ, x1 and γ, see Ref. 10, dotted line). The numerical
result is discussed in Section V.D. Measurement done
by B. Gazengel.

However the measurement of a mouthpiece pressure
signal of a saxophone shows significant differences from
a rectangular signal, in particular the negative pres-
sure episode has the shape of a triangle (see Fig. 1),
and there is an increasing oscillation during the posi-
tive pressure episode. The reason probably lies in the
validity limit of the analogy, which supposes that the
missing cone is short compared to the wavelength. In-
terest in the measured waveforms is rather rare in the
literature, but similar shapes were found by several au-
thors for this kind of instruments.8,11,12,13

Therefore the question addressed in this paper is the
following: is it possible to find a waveform similar to
the measured ones with a model generalizing the iter-
ated map model to conical instruments, i.e., ignoring
both losses and reed dynamics? Fig. 1 shows an at-
tempt of comparison of a measured mouthpiece pres-
sure with the model studied in the present paper, and
with the corresponding pure Helmholtz motion (the
method used for this figure is detailed and discussed
in Section V).

Compared with a cylinder, at least one supplemen-
tary parameter is needed for such a model, e.g., the
length of the missing cone. It will be shown that this
is sufficient to introduce a great complexity. Notably,
the reed dynamics is not needed to reproduce the os-
cillation increase during the positive pressure episode.
We also remark that in order to provide the simplest

models, it is not sufficient to change the values of the
parameters in more complete existing digital schemes.
As examples, the suppression of losses can make some
schemes instable, and the scheme proposed in Ref. 14
accounts for a reed dynamics with a possibly huge but
still finite reed natural frequency.

The paper focuses on the waveform of regimes similar
to that shown in Fig. 1. Other types of regimes can
be found, such as octave regime, inverted Helmholtz
motion,8 or quasi-periodic regimes,15 but are not in-
vestigated here.

In Section II, the classical model of reed instruments,
based upon that of Wilson and Beavers,2 is summa-
rized. Sec. III discusses the general methods of compu-
tation of self-oscillations based upon either the impulse
response or the reflection function of the resonator for
an instrument with arbitrary shape. Then (Sec. IV) a
digital model for a truncated cone with a cylindrical
mouthpiece is given: it takes advantage of the spher-
ical wave decomposition and is built upon three geo-
metrical parameters. Furthermore, keeping the idea of
setting the mouthpiece volume, a second model, which
does not require any parameter for the mouthpiece, is
presented in Section V. A conclusion is given in Section
VI. Appendix A provides further details on the stabil-
ity of the impedances of the digital implementations.

The idea of these two models was already published
in Ref. 16, but the continuous and discrete-time equa-
tions were not written. No comparison of the conver-
gence of the two models was given, because the main
focus of this reference was on the difference between
wide and narrow reed opening, i.e., on the difference
between a double and a single reed mouthpiece.

II. CLASSICAL MODEL FOR REED IN-
STRUMENTS AND NONLINEAR QUASI-
STATIC CHARACTERISTIC

The simplified model used in this paper ignores the
reed dynamics (i.e. the inertia and damping of the
reed): when the reed does not beat, the reed displace-
ment is proportional to the pressure difference across
the reed. Moreover the flow produced by the reed
movement is ignored. The model is based upon two
acoustic unknowns at the input of the resonator, the
flow rate u(t) and the pressure p(t), and two equations:
the first one is the resonator input impedance relation-
ship (which is linear), and the second is a nonlinear
time-domain relationship:

u(t) = YcF [p(t)] , (1)

assumed to be quasistatic. Yc = Sin/(ρc) is the charac-
teristic acoustic admittance of a cylindrical resonator
having the cross section Sin (ρ is the density of air, c
is the velocity of sound).

In the quasistatic regime, the acoustic velocity in
the reed channel is approximated by means of the
steady Bernoulli equation2,17. It is proportional to
sign (∆p)

√

|∆p|, where ∆p = pm − p is the pressure
difference across the reed. p denotes the pressure at
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the output of the reed channel, equal to that at the
resonator input; pm is the pressure inside the mouth of
the player. Furthermore it is assumed that the cross
section area of the reed channel aperture depends lin-
early on the reed displacement. Therefore, when the
reed dynamics is ignored, it is proportional to the pres-
sure difference. When the pressure difference reaches
the closure pressure pM , the channel closes and the
flow is blocked. Therefore if ∆p ≤ pM the flow rate u
is proportional to sign (∆p)

√

|∆p|, while if ∆p > pM ,
the flow vanishes. Two dimensionless parameters γ and
ζ are defined:

γ =
pm

pM
and ζ =

cSop

Sin

√

2ρ

pM
. (2)

Sop is the cross-section area of the reed channel opening
at rest. ζ is inversely proportional to the square root
of the reed stiffness, contained in pM . In real single-
reed instruments, typical values of the parameters are
γ ∈ [0, 1.5] and ζ ∈ [0.1, 1], while for double reeds it can
exceed 2 (see Ref. 11). The function F (p) is piecewise
analytic with a singular point at p = pm (∆p = 0), and
not derivable at p = pm −pM (∆p = pM ). Fig. 2 shows
the function F (p). Notice that experiments showed
that for double reed instruments, this function is not
very different.18 Eventually the function F (p) is de-
fined by:

F (p) = ζpM

[

1 − γ +
p

pM

]+

sign

(

γ −
p

pM

)

√

∣

∣

∣

∣

γ −
p

pM
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∣

∣

∣

(3)
with the positive part [x]
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Figure 2: (Color online) Nonlinear characteristic F (p).
Solid line: ζ = 2.55. Dotted line: ζ = 0.95. The point
A indicates the beating limit; the point B indicates the
limit of negative flow rate. Between the dash-dotted
lines, Eq. (8) has 3 solutions when ζ > 1 (see Sec. III).

III. TWO GENERAL METHODS OF COM-
PUTATION FOR RESONATORS OF AR-
BITRARY SHAPE.

The present section states the problem of the compu-
tation of the response of resonators of arbitrary shape,
and enhances the major concerns: solvability and com-
putation cost expressed in terms of the time sampling
and of the duration of the history to consider.

A. The impulse response method

For a 1D, linear resonator, a general model is based
upon Eq. (1) and:

p(t) = (h ∗ u) (t) =

∫ t

0

h(t − t′)u(t′)dt′. (4)

The impulse response h(t), inverse Fourier transform
of the input impedance Z(ω), characterizes the res-
onator, which is assumed to be linear. Both h(t) and
u(t) are causal, therefore the integral is limited to the
interval [0, t]. As in Ref. 1, the time range on which
the knowledge of the flow rate u is needed in order to
compute p(t) defines the duration of the history. The
first method of computation of u(t) given p(t) is the
direct solving at each time t of Eqs. (1) and (4), the
former being instantaneous.

Then, for given initial conditions, the solvability re-
quires that the evaluation of Eq. (4) should not rely
on the knowledge of the flow at the current instant t.
This can be achieved numerically by subdividing the
integration range with time step ts, and approaching
the integrand by a piecewise constant function whose
value is h(t − tn)u(tn) for t ∈ [tn, tn+1). This is known
as the left rectangle rule, such as

p(tn) = ts

n−1
∑

m=0

h(tn − tm)u(tm) with tm = mts. (5)

Though more accurate than the left rectangle rule, the
trapezoidal rule may not be suitable, as the pressure
p(tn) could not be deduced explicitly from the history
of the flow u(tm < tn). Solving Eqs. (1) and (5) is di-
rect, without any inversion. Another concern is the fact
that the impulse response h should be well approached
by its sampled version h(tn). The time sampling, i.e.,
the time step ts, has to be adapted to the smoothness
of the impulse response h(t).

Finally the main drawback (see Ref. 1) is that the
history of h is in general unbounded, resulting in a
numerically expensive integration. In order to reduce
the duration of the history, Mc Intyre et al1 sug-
gested to slightly modify these equations, by using the
d’Alembert decomposition into traveling waves, as ex-
plained hereafter.

B. The reflection function method

If a portion of cylindrical tube is considered at the
input of the instrument, two new unknowns are the
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incoming and outgoing plane waves (p−(t) and p+(t),
respectively) at the input of the tube:

p = p+ + p−; Zcu = p+ − p− (6)

(Zc = Y −1
c ). Using those, Eq. (4) is replaced by:

p−(t) =
(

r ∗ p+
)

(t) =

∫ t

0

r(t − t′)p+(t′)dt′, (7)

where r(t) is the reflection function (of planar waves).
Two advantages can be found. First, as soon as a cylin-
drical portion of finite length exists at the input of a
resonator of any shape, it introduces some delay in the
traveling waves so that r(0) = 0 and the incoming wave
is 0 at time t = 0. The problem then consists of solving
at each time simultaneously Eq (1) and

Zcu(t) = p(t) + ph(t), (8)

with ph(t) = −2p−(t) = −2 (r ∗ p+) (t) usually referred
to as the “history” of the acoustic pressure. This can be
solved using a graphical method19 as the intersection
in the (p(t), u(t))-plane between the nonlinear function
u = YcF (p) and the straight line defined by Eq. (8).
Equivalently, rotating the (p(t), u(t))-plane into the
(p−(t), p+(t))-plane, it is possible to look at the inter-
section of another straight line defined by Eq. (7) and
a function G, obtained by a change in variables from
the function F 20:

p+(t) = G
(

−p−(t)
)

. (9)

For the particular case of Eq. (3), the analytical ex-
pression of Eq. (9) is given in Appendix A of Ref. 4.
For ζ > 1, three solutions can exist for Eq. (9), and a
selection method needs to be defined, based upon the
continuity of the function p−(t).16

The second advantage is that the history of r(t) is
in general much shorter than that of h(t). For a purely
cylindrical instrument of length ℓ, without losses and
with zero radiation impedance, the reflection function
is a single delta function, r(t) = −δ(t − 2ℓ/c), and
the coarsest sampling time is a half round trip, ℓ/c,
at least when the initial condition can be discretized
with the same time step, for example for the case of the
excitation pressure γ being a simple step or a piecewise
constant function.

More generally, for any resonator having a cylindrical
section with length y at its entrance, accounting for
the propagation delay y/c of the traveling waves p± in
the cylindrical section, Eq. (7) can be replaced by the
following:

p−(t) =

∫ t−2y/c

0

ry(t′)p+(t − 2y/c − t′)dt′, (10)

where ry is the reflection function at the output of the
cylindrical part of the resonator. The upper limit of the
integral is t−2y/c because p+(t) is a causal signal. This
allows computing the integral with the trapezoidal rule,
ensuring a slightly smaller error that the left rectangle
rule.

IV. TRUNCATED CONE WITH A CYLIN-
DRICAL MOUTHPIECE (FIRST
MODEL)

The abovementioned methods can be used for trun-
cated cones, in particular the method using the plane
reflection function. However Refs. 24 and 25 show that
this function is of infinite extent, and this would require
the knowledge of the ab initio history to compute p−(t)
in Eq. (7). Therefore the present paper considers the
spherical reflection function as did Ref. 26.

For cylindrical instruments, simplified models can
include the mouthpiece in the resonator. For coni-
cal instruments, this is not possible, and in general
a truncated cone without mouthpiece can hardly pro-
duce periodic sounds. As it is known since Benade,21

the harmonicity of the truncated cone can be improved
by choosing a mouthpiece volume roughly equal to that
of the missing cone. Thus, if this volume is set by
means of a cylindrical mouthpiece, a new parameter is
introduced (either the length y of the mouthpiece or
its cross section area Sm) and this leads to the first
model, described in the present section. The match-
ing of the plane waves in the cylindrical mouthpiece
with the spherical waves in the cone can be done with
an excellent precision,22 but for the present purpose,
the continuity of the flow rate and mean pressure is
assumed between the output of the cylinder and the
input of the cone. Fig. 3 shows the main geometrical
parameters as well as an equivalent electrical circuit of
the model described hereafter.
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p−

0 x

ℓ

ℓ+ x
1

y

Truncated cone

input section S1

Mouthpiece

section Sm
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guide
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Truncated cone

Spherical

wave
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Figure 3: Geometry and equivalent circuit of the model
with a cylindrical mouthpiece. The geometry of the
truncated cone is described by 2 parameters only: x1

and ℓ.
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A. Equation at the input of the truncated cone

In the frequency domain (with k = ω/c the wavenum-
ber), the solution of the Helmholtz equation in the con-
ical tube with cross-section area S(x) can be written
as:

Pcone(x) = Q+(x) + Q−(x); (11)

Ucone(x) =
S(x)

ρc

(

Q+(x) − Q−(x) +
Pcone(x)

jkx

)

for x1 ≤ x ≤ x1 + ℓ, where x1 is the length of missing
cone. Q± = a± exp(∓jkx)/x are the incoming and
outgoing spherical pressure waves, corresponding to
the decomposition in traveling waves. For the remain-
der of the paper, capital letters discriminate frequency-
domain quantities (Pcone, Ucone, Q+ and Q−) from
their time domain counterparts (pcone, ucone, q+ and
q−), and quantities indexed by 1 refer to values at the
input of the truncated cone (x = x1): S1 = S(x1),
Q+

1 = Q+(x1), Q−
1 = Q−(x1), P1 = Pcone(x1) and

U1 = Ucone(x1). In addition P +
1 and P −

1 are defined
by

P +
1 = (P1 + ρcU1/S1) /2; (12)

P −
1 = (P1 − ρcU1/S1) /2; (13)

or, equivalently,

P1 = P +
1 + P −

1 and
ρc

S1

U1 = P +
1 − P −

1 . (14)

This resembles to a decomposition in planar, traveling
waves of the input pressure and flow (see Eq. (6)), but
is nothing more than the change in variables. Combin-
ing Eq. (11) at x = x1 and Eq. (14) and eliminating
U1 lead to:

P +
1 + P −

1 = Q+
1 + Q−

1 ; (15)

P +
1 − P −

1 = Q+
1 − Q−

1 +
P1

jkx1

, (16)

and then

Q−
1 − P −

1 =
P1

2jkx1

; (17)

Q+
1 − P +

1 = −
P1

2jkx1

. (18)

In the time domain, these expressions write down to

p−
1 (t) = q−

1 (t) −
c

2x1

∫ t

0

p1(t′)dt′; (19)

q+
1 (t) = p+

1 (t) −
c

2x1

∫ t

0

p1(t′)dt′. (20)

Assuming a lossless propagation in the cone and a
perfect reflection at its open end leads to:

q−
1 (t) = −q+

1 (t − τ), (21)

where τ = 2ℓ/c. It is possible to include a frequency-
independent radiation length correction. However, the
purpose of the paper is to ignore losses, so that a zero

radiation impedance is considered here. Finally the
following expression replaces Eq. (7):

p−
1 (t) = −p+

1 (t − τ) −
1

2

c

x1

∫ t

t−τ

p1(t′)dt′. (22)

This equation relates to the one given in Ref. 23
without introducing any cylindrical sections. Its major
interest lies in the finite duration of the integral, limited
to a round trip in the resonator.

B. Modeling the mouthpiece as a cylindrical pipe

The mouthpiece volume Vm is chosen equal to that
of the missing part of the truncated cone, i.e., Vm =
x1S1/3 (this choice is not discussed in this paper, see,
e.g., Ref. 27). The length y of the mouthpiece (or
the cross section area Sm = Vm/y) is a supplementary
parameter that controls the cross-section area ratio:

µ = Sm/S1 = x1/(3y). (23)

By enabling any positive value of y and allowing a
cross-section discontinuity, this model generalizes the
"cyclone" model defined by Refs. 28 and 29. The in-
coming and outgoing plane waves at the input of the
mouthpiece, p±(t), relate to the pressure p1 and the
flow u1 at the input of the truncated cone accounting
for the propagation delay y/c in the cylinder and for
the assumed continuity of flow rate and pressure at the
change in cross section. The continuity equations can
be expressed using the variables p±

1 (see Eq. 14):

2p+
1 (t) = (1 + µ)p+(t − y/c) + (1 − µ)p−(t + y/c);

2p−
1 (t) = (1 − µ)p+(t − y/c) + (1 + µ)p−(t + y/c).

(24)
Replacing p±

1 and their sum p1 by these expressions in
Eq. (22) and shifting time by y/c lead to the formula-
tion of p−(t) as a function of the history only:

p−(t) = D(t) −
1

x1(1 + µ)
I(t), (25)

where, defining K = (µ − 1)/(µ + 1),

D(t) =K
(

p−(t − τ) + p+(t − 2y/c)
)

− p+(t − τ − 2y/c).

I(t) =c

∫ t

t−τ

p+(t′ − 2y/c) + p−(t′)dt′;

(26)
These equations enable the evaluation of the incoming
plane wave using only quantities defined at the input
of the mouthpiece.

C. Discretization

For the algorithm, the following symbols are used: xs

and ts are the sampling length and time, respectively,
related by xs = cts and:

τ =
2ℓ

c
; ℓ = Mxs and y = Nxs. (27)
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Taking advantage of the existence of the cylinder at
the input of the truncated cone, the outgoing pressure
p+ appears only in past terms in D(t). Conversely,
the integral I(t) has t as an upper bound and involves
p−(t). It is approached using the trapezoidal rule:

I(t = nts) ≃
xs

2
(p−

n + p+
n−2N )

+ xs

2M−1
∑

m=1

(p−
n−m + p+

n−m−2N )

+
xs

2
(p−

n−2M + p+
n−2M−2N )

= Jn +
xs

2
p−

n

(28)

defining Jn after isolation of p−
n . Jn is equivalently

defined from the following recursive equation

Jn = Jn−1 +
xs

2

(

2p−
n−1 + p+

n−1−2N + p+
n−2N

)

−
xs

2

(

p−
n−2M + p−

n−1−2M

+ p+
n−2M−2N + p+

n−1−2M−2N

)

.

(29)
The discretization of Eq. (25) is then written as:

p−
n = Dn −

1

x1(1 + µ)

(

Jn +
xs

2
p−

n

)

with Dn = K
(

p−
n−2M + p+

n−2N

)

− p+
n−2M−2N + .

(30)
Finally, the solution of Eq. (30) is simply:

p−
n =

(

Dn −
Jn

x1(1 + µ)

)(

1 +
xs

2x1(1 + µ)

)−1

. (31)

At each time step, the following quantities are com-
puted successively: Dn, Jn and p−

n . When coupling
them with the excitation, the computation of p+

n relies
on the modified function G (Eq. (9)), i.e., the nonlin-
ear characteristic adapted to wave variables p±. The
dimensionless parameter ζ in Eq. (2) is defined with
Sin equal to the input cross-section area S1 of the trun-
cated cone, disregarding the cross-section area Sm of
the mouthpiece that will vary in the simulations pre-
sented hereafter while a fixed value of ζ is maintained.

As already mentioned in Sec. III, for ζ > 1, G is
multi-valued. A suitable choice is detailed in Ref. 16: it
imposes to discard discontinuities of p+(t) when several
solutions of Eq. 9 are possible. Gokhstein11 observed
that this difficulty appears for double reed instruments.
This is one reason of the choice of a second model,
which also avoids the addition of one parameter for
the mouthpiece (see Sec. V).

D. Numerical results

For the simulation, the chosen initial condition is the
following: the mouthpiece pressure is zero for nega-
tive times, then its value jumps to a fixed constant γ.
Therefore for t < 0, p1 = Zcu1 = p+

1 = p−
1 = 0, and

p−
1 (0) = 0; then p+

1 (0) = p1(0) = Zcu1(0) = G(0). The
sampling length is xs = 1mm (this is the shortest pos-
sible length for the mouthpiece) so that the sampling
frequency, fs = c/xs, is 340kHz.
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Figure 4: (Color online) Steady-state signals, for a
very short length y = 1mm. From top to bottom:
the dimensionless mouthpiece pressure p(t)/pM ; the
flow rate at the input of the mouthpiece u(t) times
ρc/(S1pM ); the outgoing spherical wave q+

1 (t) (arbi-
trary scale); the external pressure pext(t) (arbitrary
scale). The geometrical parameters are similar to those
of a baritone saxophone (ℓ = 1m, x1 = 0.3m), the non
dimensional mouth pressure and reed opening param-
eters are γ = 0.4, ζ = 0.95, and the sampling length
is xs = 1mm. The dashed lines represent the result of
the second model (see Section V).

Figure 4 shows four quantities of interest: the
mouthpiece pressure p(t)/pM ; the flow rate at the input
of the mouthpiece u(t)ρc/(S1pM ); the outgoing spher-
ical wave q+

1 (t); and the external pressure pext(t) (dis-
cussed in Sec. IV.E). Some observations can be made:
first, the V-shaped negative pressure episode is related
to the vanishing of the flow, i.e., the beating of the
reed on the lay. It is important to highlight that the
V-shape of the negative pressure episode is induced
neither by losses in the acoustic resonator, nor by a
progressive beating of the reed (due to, e.g., the curva-
ture of the mouthpiece lay) that is not included in the
model of Eq. (3). A preliminary study shows that the
oscillations during the positive pressure episode are es-
sentially related to the length of the missing cone, x1.
The same applies to the duration of the beating of the
reed. Finally, the flow rate becomes negative during a
non negligible fraction of the period, contrary to the
behavior of a cylindrical reed instrument.4

Fig. 5 shows how the result depends on the length y
of the mouthpiece (for a given volume). When y tends
to 0, the waveform converges to that obtained for the
second model (described in Sec. V). This is enhanced in
Fig. 6 in terms of spectral characteristics of the simu-
lated pressure signals: the fundamental frequency and
the magnitudes of the first coefficients of the Fourier
series of the steady parts show the asymptotic behav-
ior when increasing the mouthpiece cross section (i.e.,
decreasing its length y). For high values of y, the spec-
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Figure 5: (Color online) Steady-state mouthpiece pres-
sure p(t) for various mouthpiece lengths y (the param-
eter values are the same as those of Fig. 4). In ab-
scissa, the number of samples. From top to bottom,
the solid lines represent: y = 1mm (N = 1, µ = 100);
y = 10mm (N = 10, µ = 10); y = 70mm (N = 70,
µ = 1.43, value close to that of a real baritone sax-
ophone); and y = 100mm (N = 100, µ = 1). For
all plots the dashed line is the same: it represents the
result of the second model.

tral characteristics do not exhibit monotonic behaviors.
This may be related to the fluctuation that appears
in the inharmonicity of the resulting resonators for y
increasing above the value of 50mm (µ below 2), as
shown in Fig. 7. Fig. 5 also shows that when the length
y increases towards the case µ = 1 used in Ref. 29, the
waveform becomes less smooth. The smoothest wave-
form seems to correspond to short lengths, which is
confirmed on Fig. 6 with the amplitude increase of the
harmonics for y > 60mm (N > 60). Here a mouthpiece
is “short” when its cross-section is wide compared to
that of the cone input. In comparison with values from
Ref. 31, the inharmonicity of the present resonator re-
mains, for µ > 1, below the thresholds of quasi-periodic
regimes. This does not hold for thin and long mouth-
pieces (i.e., µ < .5 ⇔ y > 200mm): they do not
always produce sound of the first register as do the
larger and shorter mouthpieces.
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Figure 6: (Color online) Fundamental frequency (up-
per axes) and magnitude of the Fourier coefficients
(lower axes) of the steady-state pressure signal as func-
tions of the mouthpiece length y. The corresponding
cross-section ratios values µ are also reported on the
top of the upper axes. C1 relates to the fundamental
tone and Cn≥2 to the higher harmonics. All the other
parameters values are the same as in Fig. 4.
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Figure 7: (Color online) Inharmonicity relative to the
first resonance frequency of the first model, with re-
spect to the mouthpiece length y (all other parameters
values are the same as Fig. 4).

E. Radiated sound

For a cylinder, the use of a monopole model for the
radiation at the open end transforms a square signal
in its derivative, i.e., in an alternate Dirac comb. This
simplified shape is confirmed by experiment.30 There-
fore it is interesting to use the same model for coni-
cal tubes, even if their radius is in general wider. If
the monopole has a source-strength amplitude given
by the output flow rate Ucone(x1 + ℓ), the far-field ra-
diated pressure can be approached with the following
formula:

Pext(ω, r) = jωρUcone(x1 + ℓ)
e−jkr

4πr
(32)

where r the distance to the monopole. More sophis-
ticated models are possible, see for example Ref. 32
accounting for the spherical wavefronts. Because the
pressure at the cone outlet Pcone(x1 + ℓ) is assumed to
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be zero, Eq. (11) leads to the simple result:

Ucone(x1 + ℓ) = 2
S2

ρc
Q+(x1 + ℓ) ∝ e−jkℓQ+

1 , (33)

where S2 = S(x1 + ℓ) is the output area. The focus
is given on the waveform and not on the magnitude.
The waveform of pext is derived from the two previous
equations: in the time domain, it is proportional to the
(delayed) time derivative of the quantity q+

1 (t):

pext(t, r) ∝
dq+

1

dt

(

t −
ℓ + r

c

)

. (34)

Notice that the waveform of pext does not depend on
the area S2. It is thus not necessary to define this
latter in the model. Using Eqs. (18), q+

1 is eliminated
in favor of p+

1 and p1, and a finite difference approaches
the derivative operation, so that the digital radiated
pressure is computed as

pext
n (r) =

x1

xs

(

p+
1n − p+

1 n−1

)

−
p1n

2
, (35)

where the propagation delay equal to (ℓ + r)/c is ig-
nored.

In comparison to the simple monopole model for
cylinder, the term p1n/2 appears to be due to
the spherical waves in the duct. Digital experi-
ments are performed with this definition, and the re-
moval/inclusion of this term does not change visibly
the waveform of the radiated pressure. This is due to
the main contribution of the higher frequencies, which
can be observed in the complicated shape of the signal
(see Fig. 4). Secondly, the convergence of the external
pressure waveform when increasing the sampling fre-
quency (or, equivalently, decreasing xs) is slower than
for the internal pressure. This appears to be related to
the high-pass filtering of the monopole model. This fil-
tering is limited by the finite sampling frequency and
the finite difference approximation of the derivation,
and higher sampling frequencies are required to pre-
serve the high-frequency spectral content. Finally, con-
cerning the convergence when the mouthpiece length
tends to 0, it appears to be also slower than that for
the internal pressure.

V. TRUNCATED CONE WITH A LUMPED
MOUTHPIECE (SECOND MODEL)

A. Continuous-time model

The results of the previous model suggest another
approach of the mouthpiece role: the mouthpiece
can be considered as a simple compliance in parallel,
Vm/(ρc2), with Vm = S1x1/3, as shown in Fig. 8. This
means that the mouthpiece does not add any geometri-
cal parameter to the two of the truncated cone. In the
frequency domain, the equations for the mouthpiece
are:

P = P1 and U = U1 + jω
Vm

ρc2
P, (36)

where P and U are the pressure and the flow rate
at the mouthpiece input. They can be decomposed

in the variables P + = (P + ρcU/S1)/2 and P − =
(P − ρcU/S1)/2. Then, using Eqs. (11), P1 and U1

are eliminated:

P + + P − = Q+
1 + Q−

1 ;

P + − P − = Q+
1 − Q−

1 +
P

jkx1

+
jkx1P

3
.

(37)

The spherical wave variables write down, in the time
domain, to:

q−
1 (t) = p−(t) +

c

2x1

∫ t

0

p(t′)dt′ +
x1

6c

dp

dt
(t), (38)

q+
1 (t) = p+(t) −

c

2x1

∫ t

0

p(t′)dt′ −
x1

6c

dp

dt
(t); (39)

and the lossless propagation and reflection at the open
end of the cone q−

1 (t) = −q+
1 (t − τ) gives

dp

dt
(t) =

dp

dt
(t − τ) −

6c

x1

(

p−(t) + p+(t − τ)

+
c

2x1

∫ t

t−τ

p(t′)dt′

)

.

(40)

Truncated cone

Spherical

waveguide

(q+, q−)

ρx1

S1

Vm

ρc2

u u1

p p1

Figure 8: Equivalent circuit of the model with a
lumped mouthpiece.

B. Discretization

As in Sec. IV.C, the integral term c
2x1

∫ t

t−τ p(t′)dt′ in
Eq. (40) is approached by In using the trapezoidal rule:

In = In−1+
xs

4x1

(

pn+pn−1−pn−2M−pn−1−2M

)

. (41)

In addition, the derivative terms are estimated by the
finite differences:

dp

dt
(t) ≃

pn+1 − pn

ts
, (42)

so that the following result is obtained:

pn+1 =pn + pn−2M+1 − pn−2M

−
6xs

x1

(

p−
n + p+

n−2M + In

)

.
(43)

For the ab-initio calculation, the following quanti-
ties are evaluated sequentially at each time step: In
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(Eq. (41)), pn+1 (Eq. (43)), un+1 using the nonlinear
characteristics F (Eq. (3)) for the coupling with the
excitation, and at last p±

n+1.
The external sound is derived from Eqs. (34)

and (39):

pext
n =

x1

xs

(

p+
n − p+

n−1

)

−
pn

2

−
1

6

(

x1

xs

)2

(pn+1 − 2pn + pn−1) .

(44)

C. Discussion

This algorithm computes the minimum model of reed
conical instruments, generalizing the iterated map al-
gorithm for cylindrical instruments, with only one ad-
ditional parameter, the distance to the apex x1. The
model considers only two parameters for the definition
of the truncated cone, the lengths of the missing part,
x1 and of the truncated cone, ℓ. This means that only
the ratio of the input and output radii is fixed, and
therefore the apex angle is not fixed.

Figs. 4 and 5 compare the results with those of the
first model. The results of the two models are consis-
tent when the length of the cylindrical mouthpiece y is
very short (y ≤ 10mm) for all the quantities but the
external pressure. This is intuitive: if the length y be-
comes very short in comparison with the wavelength,
the mouthpiece can be represented by two lumped ele-
ments: a fixed shunt acoustic compliance, Vm/ρc2, and
an acoustic mass in series Mm = ρy/Sm = ρy2/Vm

that tends to 0. Therefore the remaining effect when
decreasing y is due to the compliance only, which does
not depend on the length y.

For the external pressure, a correct superposition of
the waveforms is found after the compensation for the
delay. However there are small differences from the re-
sult of the first model. Some peaks can be observed.
Several expressions for the derivatives (of first and sec-
ond order) involved in Eq. (40) have been empirically
tested, and the expression chosen ensures the weakest
peaks. The stability of this algorithm is studied in Ap-
pendix A.2.

A major interest of this second algorithm is the di-
rect use of the nonlinear function F (Eq. (1)). The
problem can be solved without any kind of ambigu-
ity that affect the rotated function G. It is a useful
tool to study the effect of the nonlinear characteristic
on the sound production. When several solutions exist
with the first model (Sec. IV), i.e., when ζ > 1, the
second model allows understanding how the selection
of the solution could be done (see Ref. 16). Figure 9
shows for the same geometry the influence of the reed
opening ζ: when ζ increases, the minimum value of the
pressure diminishes, and the oscillations of the positive
pressure increase. This corresponds to an enrichment
of the spectrum. For very small values of ζ, the wave-
form becomes very different from a Helmholtz motion.
Notice that other algorithms can avoid the inversion
or simplify to the solving of a quadratic equation, for
instance, taking the reed dynamics into account.14,33
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Figure 9: (Color online) Influence of the parameter ζ
on the mouthpiece pressure p(t) for the second model.
Solid line: ζ = 0.35. Dashed line: ζ = 0.95. Dash-
dotted line: ζ = 1.50. Dotted line: ζ = 2.5. The other
parameters are the same as those of Fig. 4.

D. An attempt of comparison with experiment

The measurement of the mouthpiece pressure of a bari-
tone saxophone has been performed by B. Gazengel us-
ing the experimental device presented in Ref. 34. The
ability of the second model to reproduce the waveform
of the lowest note (C2, 65.4Hz) is tested here. The lack
of the values for the excitation parameters pM and Sop

in the measurement prohibits a direct sample-based
comparison. Instead a Fourier analysis of the steady
part of the measured signal is used to estimate the
oscillation frequency fmeas

osc and the coefficients Cmeas
k

of the Fourier series. These latter are normalized with
respect to the fundamental coefficient and the DC com-
ponent (k = 0) is ignored as the static component has
not been measured by the microphone. fmod

osc and Cmod
k

can be similarly obtained by simulation using the sec-
ond model. An nonlinear least-squares optimization
then seeks for the values of the parameters ℓ + x1, x1,
γ and ζ of the second model that minimize the com-
pound function cost F :

F(ℓ + x1, x1, γ, ζ) =

(

1 −
fmod

osc (ℓ + x1, x1, γ, ζ)

fmeas
osc

)2

+ α
10
∑

k=1

∣

∣Cmod
k (ℓ + x1, x1, γ, ζ) − Cmeas

k

∣

∣

2
. (45)

The weighting parameter α is set so as to balance the
relative error on the oscillation frequency, and the error
on the first ten coefficients Ck of the Fourier series (i.e
the r.m.s. value of the difference of the synchronized
signals, due to the Parseval’s identity). The cost func-
tion appears to be a globally smooth function of the
parameters but with some deep narrow valleys, so that
the results shown on Fig. 1 (obtained for α = 4×10−4)
may only correspond to a local optimum.

Nevertheless, the triangle-shaped negative episode
and the oscillation increase in the positive episode in-
dicate that the presented model is able to reproduce
the features of the measured signal, which is not the
case for the results of the cylindrical saxophone model
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(also shown in Fig. 1, for the same values of parameters
γ, ℓ and x1). The excitation parameters are found to
be plausible, as well as the geometrical ones: the latter
could be obtained by measurements, but this would re-
quire the use of accurate models for closed toneholes,
changes in taper, bends, radiation, etc.

E. Regularized nonlinear characteristic

It is interesting to look at a more “realistic ”model,
avoiding the two discontinuities in the nonlinear char-
acteristic. The second model allows doing the compu-
tation easily. As discussed in Sec. II, Eq. (3) exhibits
two singularities. The regularization (i.e. the increase

of derivability) of the first one,
[

1 − γ + p
pM

]+

, makes

sense considering the results in Ref. 3 (Fig. 3) which
shows that the flow smoothly vanishes when the mouth
pressure exceeds the “beating reed pressure”. The fol-
lowing regularization is suggested:

[x]+ → H1(x) =
1

π
+

x

Oa

(

1

2
+

arctan (x/Oa)

π

)

,

(46)
that is tunable by means of the parameter Oa (here
set to 0.1) and ensures that the flow remains a non-
negative monotonic C∞ function of the aperture 1 −
γ + p

pM
.

The singularity of the flow at the vanishing pressure
difference corresponds to the term sign (∆p)

√

|∆p|,
i.e., the change in sign of the acoustic flow. The flow
derivative becomes singular and therefore no sampling
would theoretically be possible without aliasing. Nev-
ertheless, the second regularization

sign (x)
√

|x| −→ H2(x) = sign (x)
√

x tanh (x/Va),
(47)

(with default value 0.05 for the parameter Va) guar-
antees a bounded flow derivative. Finally, a smoothed
nonlinear characteristic writes down to:

F (p) = ζpM H1

(

1 − γ +
p

pM

)

H2

(

γ −
p

pM

)

. (48)

The non-regularized model given in Eq. (3) can be re-
covered by giving very small values to Oa and Va (typ-
ically 10−10). As shown in Fig. 10, the effect is not
negligible, but a zoom is useful in order to exhibit it.
The abrupt angles in the flow rate signal disappear,
due to the first regularization. The effect of the regu-
larization near zero flow appears in the negative part
of the flow rate curve. Concerning the external pres-
sure, the regularization suppresses small peaks in the
signal, and allows the amplitude to diminish at higher
frequencies.
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Figure 10: (Color online) Effect of the regularization
on the signal shapes for the second model. The param-
eters are those of Fig. 4. Thin solid line: result for the
two regularizations. Thick dashed line: result for the
regularization at the beating limit. Thin dotted line:
result without regularization.

VI. CONCLUSION, FURTHER WORK

The waveforms found using the two models which have
been investigated are similar to measured ones for var-
ious conical instruments, with the condition, for the
first model, that the length of the cylindrical mouth-
piece is not too long (µ > 1.5). The second model gives
the same results as the first one for small lengths, with
small differences in the radiated sound. This was not
obvious, because the algorithms are rather different. It
appears that the main characteristic of the waveform
produced by conical reed instruments depends neither
on the reed dynamics nor on the losses. These charac-
teristics only rely on the two geometrical parameters
of the second model, i.e., x1 and ℓ. In this model, the
geometry is not fully defined, as the value of the apex
angle (and thus the input and output radii of the trun-
cated cone) need not to be defined. It would only get
involved when accounting for losses in the bore. This
means that the apex angle is a parameter of minor im-
portance in comparison with the length of the missing
cone.

The second model can be used for a more system-
atic study with respect to the excitation and geomet-
rical parameters: obviously one limit of the existence
of this kind of waveform is that the ratio x1/ℓ remains
small enough, because if this ratio tends to infinity, the
resonator tends to a cylinder, with a different wave-
form. Studies of the different regimes with bifurcation
schemes or regime maps can be done in a way gener-
alizing previous works on cylindrical resonators. This
can be easily done, with a possibility to modify the
nonlinear characteristic. The sampling frequency can
be very large, in particular for higher instruments (re-
quiring small sampling length), but this drawback is
not crucial for the above purpose.

The first model fills the gap between the model with
a lumped mouthpiece and the "cyclone" model.28,29.
By allowing the cross-section area of the cylindrical
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mouthpiece to vary, it can be used to study the role of
the resonance inharmonicity on the functioning: indeed
By tuning the length y of the mouthpiece (see Fig. 7),
it is possible to go continuously from a positive to a
negative inharmonicity.
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A. STABILITY ANALYSIS OF THE TWO
ALGORITHMS

The implementations of the two models are analyzed
in order to study the stability of the digital schemes,
using the z-transform framework (see, e.g., Ref. 35).

A.1. Model with cylindrical mouthpiece

From Eqs. (25)-(26), it is straightforward to check that
the continuous-time formulation is associated in the
frequency domain to the reflection coefficient:

R(ω) =
P −(ω)

P +(ω)
= e−2jky µ − Ycone(ω)

µ + Ycone(ω)
(49)

with Ycone(ω) =
1

j tan (kℓ)
+

1

jkx1

. (50)

Ycone(ω) is the dimensionless input admittance of the
truncated cone. Taking the z-transform of Eqs. (29),
(30) and (31), the discrete-time transfer function is ob-
tained replacing Ycone by its discrete counterpart:

Yd(z) =
1 + z−2M

1 − z−2M
+

xs

2x1

1 + z−1

1 − z−1
. (51)

Restraining to the unit circle z = e
jω
fs (fs is the sam-

pling frequency),

Yd(z = e
jω

fs ) =
1

j tan
Mω

fs

+
1

j
2x1

xs
tan

ω

2fs

(52)

directly relates to Eq. (50) considering a low-frequency
approximation of the last term. The digital reflection
coefficient is guaranteed to have a modulus equal to 1,
as the admittance Ys is purely imaginary. Thus the
proposed algorithm provides a stable implementation
of the first model.

A.2. Model with lumped mouthpiece

Eq. (37) gives the dimensionless input admittance of
the truncated cone with a lumped mouthpiece:

Y ′(ω) =
U(ω)

P (ω)
=

1

j tan (kℓ)
+

1

jkx1

+
jkx1

3
. (53)

Denoting D(z) and I(z) the z-transform of the digital
implementation of the derivation and integration,35 the
discrete transfer function is

Y ′
d(z) =

1 + z−2M

1 − z−2M
+

c

x1

I(z) +
x1

3c
D(z). (54)

The passivity of this model is given by the sign of the
real part of the input admittance on the unit circle
z = ejω/fs :

Re
(

Y ′
d(e

jω

fs )
)

=
c

x1

Re
(

I(e
jω

fs )
)

+
x1

3c
Re
(

D(e
jω

fs )
)

,

(55)
which has to be positive.

Several choices are possible for the operators D(z)
and I(z). While implicit methods (right rectangle inte-
gration rule and/or implicit Euler derivation) tend to
be stabilizing (leading to a positive real part of the ad-
mittance), explicit ones are destabilizing (left rectangle
integration rule and/or explicit Euler derivation) and
zero-phase operators (trapezoidal integration and bilin-
ear or centered derivation) are neutral. The combina-
tions induce stability properties (stable/unstable) that
may be unconditional (on the whole frequency range)
or not. The choice made in Sec. V with an explicit
Euler derivation and a trapezoidal rule integration

D(z) = fs
1 − z−1

z−1
and I(z) =

1

2fs

1 + z−1

1 − z−1
(56)

is known to produce an unstable acoustic resonator
whose impulse response has a slowly increasing non-
causal component. However this still allows the simu-
lation of self-sustained oscillations when coupling with
the excitation, without supplementary features such as
for example reed dynamics. The oscillation thresholds
may be altered but this is beyond the scope of the
present paper. It is also worth noticing that impulse
responses obtained with conservative approximations
of the lumped elements may also suffer from digital
instabilities due to the non–vanishing of the reflection
coefficient at the Nyquist frequency.
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Figure Captions

Fig. 1 (Color online) Comparison of the measured mouthpiece pressure for a baritone saxophone on the lowest
note C2 (65.4Hz, dash-dotted line) with the signal obtained using the second model presented in the current
paper (using ℓ = 2.272m, x1 = 30.8cm, γ = 0.34 and ζ = 0.51, notations defined in Sec. IV, solid line) and
with the rectangle signal obtained using the “cylindrical saxophone ”model (same values of ℓ, x1 and γ, see
Ref. 10, dotted line). The numerical result is discussed in Section V.D. Measurement done by B. Gazengel

Fig. 2 (Color online) Nonlinear characteristic F (p). Solid line: ζ = 2.55. Dotted line: ζ = 0.95. The point A
indicates the beating limit; the point B indicates the limit of negative flow rate. Between the dash-dotted
lines, Eq. (8) has 3 solutions when ζ > 1 (see Sec. III)

Fig. 3 Geometry and equivalent circuit of the model with a cylindrical mouthpiece. The geometry of the truncated
cone is described by 2 parameters only: x1 and ℓ

Fig. 4 (Color online) Steady-state signals, for a very short length y = 1mm. From top to bottom: the dimension-
less mouthpiece pressure p(t)/pM ; the flow rate at the input of the mouthpiece u(t) times ρc/(S1pM ); the
outgoing spherical wave q+

1 (t) (arbitrary scale); the external pressure pext(t) (arbitrary scale). The geomet-
rical parameters are similar to those of a baritone saxophone (ℓ = 1m, x1 = 0.3m), the non dimensional
mouth pressure and reed opening parameters are γ = 0.4, ζ = 0.95, and the sampling length is xs = 1mm.
The dashed lines represent the result of the second model (see Section V)

Fig. 5 (Color online) Steady-state mouthpiece pressure p(t) for various mouthpiece lengths y (the parameter values
are the same as those of Fig. 4). In abscissa, the number of samples. From top to bottom, the solid lines
represent: y = 1mm (N = 1, µ = 100); y = 10mm (N = 10, µ = 10); y = 70mm (N = 70, µ = 1.43, value
close to that of a real baritone saxophone); and y = 100mm (N = 100, µ = 1). For all plots the dashed
line is the same: it represents the result of the second model

Fig. 6 (Color online) Fundamental frequency (upper axes) and magnitude of the Fourier coefficients (lower axes)
of the steady-state pressure signal as functions of the mouthpiece length y. The corresponding cross-section
ratios values µ are also reported on the top of the upper axes. C1 relates to the fundamental tone and
Cn≥2 to the higher harmonics. All the other parameters values are the same as in Fig. 4

Fig. 7 (Color online) Inharmonicity relative to the first resonance frequency of the first model, with respect to the
mouthpiece length y (all other parameters values are the same as Fig. 4)

Fig. 8 Equivalent circuit of the model with a lumped mouthpiece

Fig. 9 (Color online) Influence of the parameter ζ on the mouthpiece pressure p(t) for the second model. Solid
line: ζ = 0.35. Dashed line: ζ = 0.95. Dash-dotted line: ζ = 1.50. Dotted line: ζ = 2.5. The other
parameters are the same as those of Fig. 4

Fig. 10 (Color online) Effect of the regularization on the signal shapes for the second model. The parameters
are those of Fig. 4. Thin solid line: result for the two regularizations. Thick dashed line: result for the
regularization at the beating limit. Thin dotted line: result without regularization
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