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Introduction

The objective of this paper is to build a suitable numerical scheme for hyperbolic systems of conservation laws which can be written under the following form:

(1)

∂ t U + div(F(U)) = γ(U)(R(U) -U), (t, x) ∈ R + × R 2 .
Here, the Jacobian of the flux F is assumed to be diagonalizable in R. The set of admissible states is denoted A. Moreover, R is a smooth function of U such that for all U ∈ A, R(U) ∈ A. Finally, γ(U) is a positive real function which represents the stiffness of the source term.

The system (1) is assumed to fulfill the properties required in [START_REF] Berthon | Late time/stiff relaxation asymptotic preserving approximations of hyperbolic equations[END_REF] so that it degenerates in long time and when the source term becomes stiff, more precisely when γ(U)t → ∞, into a parabolic system.

There are numerous examples of such systems and two of them will be used throughout this article as illustrations, namely the isentropic Euler equations with friction and the M 1 model for radiative transfer: † Isentropic Euler with friction:

(2)

U =   ρ ρu ρv   , F(U) =   ρu ρv ρu 2 + p(ρ) ρuv ρuv ρv 2 + p(ρ)   , γ(U) = κ(ρ), R(U) =   ρ 0 0   ,
where p is a smooth function such that p (ρ) > 0. The set of admissible states is:

(3) A = U = (ρ, ρu, ρv) ∈ R 3 / ρ > 0 .

The diffusion limit whenever κ(ρ)t → ∞ is (see [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF] for instance):

(4)

∂ t ρ -div 1 κ(ρ)
∇p(ρ) = 0. † M 1 model for radiative transfer: (see [START_REF] Dubroca | Entropic moment closure hierarchy for the radiative transfer equation[END_REF] for the derivation of the model and [START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF] for the present form) (5)

U =     E F x F y T     , F(U) =     F x
F y c 2 P xx c 2 P xy c 2 P yx c 2 P yy 0 0

    , γ(U) = cσ m (U), R(U) =       σ(U)aT 4 +σ1(U) σm(U) σ1(U)F x σm(U) σ1(U)F y σm(U) σ(U)E+σ2(U)ρCvT ρCvσm(U)      
where:

P = E 1 -χ 2 I d + 3χ -1 2 
F ⊗ F F 2 , χ = χ ξ = F cE = 3 + 4ξ 2 5 + 2 4 -3ξ 2 , F = (F x, F y) ,
and:

σ m = σ m (U) = σ(U) max 1, aT 3 ρC v , σ 1 (U) = σ m (U) -σ(U), σ 2 (U) = σ m (U) -σ(U) aT 3 ρC v ,
The set of admissible states is:

(6) A = U = (E, F x , F y , T ) ∈ R 4 / E > 0, T > 0, F ≤ cE .
When σ m (U)t → ∞, the M 1 model degenerates into the so-called equilibrium diffusion equation:

(7) ∂ t ρC v T + aT 4 -div c 3σ ∇aT 4 = 0.
The main difficulty when designing a numerical scheme for such systems is to enforce the correct degeneracy in the diffusion limit. In other words, the limit of the scheme when γ(U)t → ∞ shall be a consistent approximation of the limit diffusion equation (see [START_REF] Jin | Numerical schemes for hyperbolic conservation laws with stiff relaxation term[END_REF]). Obviously, this property is generally not fulfilled by numerical schemes hence the design of asymptotic-preserving (AP) schemes has been an important issue during the last decade.

For 1D applications, several asymptotic-preserving schemes were proposed in this context. The most explored way to do so is to use a modified HLL scheme [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF] and cleverly control the numerical diffusion in the spirit of the work of Gosse and Toscani for the telegraph equations [START_REF] Gosse | Asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF]. This technique has been widely used for the M 1 model for radiative transfer and Euler equations with friction (see for instance [START_REF] Buet | An asymptotic preserving scheme for hydrodynamics radiative transfer models[END_REF][START_REF] Buet | Asymptotic preserving and positive schemes for radiation hydrodynamics[END_REF][START_REF] Berthon | An HLLC scheme to solve the m1 model of radiative transfer in two space dimensions[END_REF][START_REF] Chalons | Godunov-type schemes for hyperbolic systems with parameter dependent source. The case of Euler system with friction[END_REF]) and extended to general cases [START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF]. Other techniques have also been used, such as [START_REF] Bouchut | Upwinding of the source term at interfaces for euler equations with high friction[END_REF][START_REF] Chalons | Large time-step and asymptotic-preserving numerical schemes for the gas dynamics equations with source terms[END_REF] in the framework of Euler equations with friction, or [START_REF] Aregba-Driollet | Time asymptotic high order schemes for dissipative BGK hyperbolic systems[END_REF] where the knowledge of the convergence rates towards equilibrium is extensively used.

The situation is much more difficult for 2D applications however. While it is quite straightforward in the case of Cartesian grids (see [START_REF] Berthon | A free streaming contact preserving scheme for the M 1 model[END_REF] for example), the situation is way more complex on unstructured grids. One of the reasons is that the classical two-point flux scheme (or FV4 [START_REF] Eymard | Finite Volume Methods[END_REF]) which is the target of many AP schemes is not consistent anymore. The only exception is the MPFA-based AP scheme for Friedrich systems developed in [START_REF] Buet | Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes[END_REF].

Our goal is therefore to propose an AP finite volumes scheme for any system of the form (1). This scheme is a natural extension of the 1D scheme proposed in [START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF]. It will be proved to be consistent and stable under a natural unrestrictive CFL condition. Moreover, it is also possible to enforce the preservation of the set of admissible states provided a geometrical property is satisfied by the mesh.

The paper is organized as follows. In the first paragraph, the notations used throughout the paper are defined. Then, the scheme is introduced in the case where the mesh is admissible. This additional property indeed allows to simplify several expressions. In this case, the scheme is proved to be consistent and to preserve the set of admissible states under a natural CFL condition. We explain how the AP property can be enforced. Then, the scheme is extended for general meshes. Once again, it is proved to be consistent and AP. Since the target scheme in the diffusive regime is the diamond scheme [START_REF] Coudière | Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem[END_REF] -which does not preserve the maximum principle-, it does not preserve the set of admissible states on general meshes. However, we show that this feature can be recovered under some geometric constraint on the mesh. Finally, the scheme is benchmarked on numerical examples and a few words on the optimization and parallelization of the code conclude this work.

Notations

Since we intend to provide a finite volumes scheme which may be used in either cell-centered or vertex-centered (or cell-vertex) contexts, we will use the following denominations:

• The primary mesh M is the set of all control volumes (or cells) effectively used in the scheme. As a consequence, the primary mesh is the primal mesh in the context of cell-centered schemes and the dual mesh in the context of vertex-centered schemes. • The secondary mesh is a set control volumes defined around the nodes of the primary mesh. Practically, the secondary mesh is the dual mesh in the context of cell-centered schemes and the primal mesh in the context of vertex-centered schemes. For the sake of clarity in the following, the primary mesh is simply called the mesh whenever no confusion is possible.

The notations used throughout this paper are summarized on figure 1: • N K is the number of nodes (and interfaces) of the cell K ∈ M.

x K A 1 A 2 A 3 A 4 x 4 x 1 x 2 x 3 D i τ i n i x K x i A i A i+1 Figure 1.
Local mesh notations (l) one cell and the local notations (r) the diamond cell associated with the i th interface of the cell K ∈ M.

• x K is the centroid of the cell K.

• The nodes of the cell K are locally denoted {A i } i=1...N K with the convention

A 0 = A N K and A N K +1 = A 1 .
• The neighboring cells of the cell K (i.e. cells that share an edge with K) are locally numbered from 1 to

N K such that K ∩ L i = [A i A i+1 ]. Their centroids are locally denoted {x i } i=1...N K . • d K i := x K x i .
• e i := A i A i+1 is the length of the i th interface of the cell K.

• The unit outward normal to the i th interface of the cell K is denoted n i .

• The unit normal to x K x i is denoted τ i . As a convention, it is chosen such that (n i ∧ τ i ).Oz > 0. • The characteristic length r K is defined by r K := |K|/p k where p k = i e i is the perimeter of K. Let us remark that for example, r K = h/4 in a square cell of size h. For the sake of clarity, we recall that:

F • n x n y = F x F y • n x n y = n x F x + n y F y
1. An AP scheme on admissible meshes

In this paragraph, the scheme is introduced on admissible meshes (see definition below). This property indeed allows to simplify the notations and to prove the preservation of admissible states. The extension on general meshes is described in the next paragraph. Let us mention that this scheme is explicit but an implicit version can be obtained straightforwardly using the same technique.

Definition 1.1. The mesh is said to be admissible as soon as ∀K, ∀i ∈ [1, N K ] we have:

x K x i • A i A i+1 = 0, i.e. all interfaces are orthogonal to the lines which join the cells' centroids.

Obviously, the property required for a mesh to be admissible restricts the generality of this class of meshes. However, it includes Cartesian grids and it is possible to consider unstructured admissible meshes for reasonable geometries. For instance, a mesh consisting of triangles which centroids are the circumcenters is often a valid possibility. On admissible meshes, we propose to consider the following scheme:

U n+1 K = U n K - ∆t |K| N K i=1 e i α K i F n K,i • n i + ∆t |K| N K i=1 e i α K i F(U n K ) • n i + ∆t |K| N K i=1 e i b K i (1 -α K i ) R(U n K ) -U n K . ( 8 
)
where α K i is defined by: ( 9)

α K i = b K i b K i + γ K i r K
, and the numerical flux is given by: (10)

F n K,i = F(U n K ) + F(U n i ) 2 - b K i 2 (U n i -U n K ),
where b K i > 0 is a parameter larger that all characteristic speeds to be defined depending on the form of (1). This scheme is designed to keep the numerical diffusion in the normal direction to the interfaces in order to stay consistent in the diffusion limit. It is also designed to be a convex combination of 1D schemes that enter the formalism of [START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF]. As we will see in the proofs, this feature allows it to automatically inherit the preservation of admissible states under a suitable CFL condition.

Remark 1.1. For the M 1 -model, since the physical flux is equal to zero in the last equation (therefore, the temperature T is only coupled through the source term), the corresponding component of the numerical flux is also set to zero. Theorem 1.1. Assume that γ K i = γ > 0 is a constant, then the scheme ( 8)-( 10) is consistent with (1).

Proof. Let us consider a sequence of regular meshes so that:

lim η K →0 r K = 0,
where η K is the radius of the largest circle inside the cell K. This immediately implies that: lim

η K →0 α K i = 1. Moreover, the divergence formula gives: i=1,N K e i F(U n K ) • n i = 0.
Therefore, the first two terms of (8) are consistent with the hyperbolic part of (1). Now, the third term is consistent with the source term. Indeed,

(1 -α K k ) = γr K b K i + γr K , then: 1 |K| N K i=1 e i b K i (1 -α K i ) R(U n K ) -U n K = 1 |K| N K i=1 e i b K i γr K R(U n K ) -U n K b K i + γr K → γ(R(U n K ) -U n K when η K → 0.
Finally, the scheme ( 8)-( 10) is consistent with (1).

Remark 1.2. This consistency result may be extended to include the case of nonconstant γ. Indeed, γ only appears in the scheme inside α K i . When γ is not constant, one can perform a Taylor expansion of α K i and the above proof is still valid up to high-order terms which tend to zero with η K .

Theorem 1.2. The scheme preserves the set of admissible states as soon as the following CFL condition holds: [START_REF] Buet | An asymptotic preserving scheme for hydrodynamics radiative transfer models[END_REF] max

K,i b K i ∆t |K| p K ≤ 1
Proof. To prove this result, we establish that the scheme ( 8)-( 10) can be written as a convex combination of 1D schemes. These 1D schemes are nothing but the ones proposed in [START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF] with a Rusanov flux for the hyperbolic part.

Let U n+1 K,i be an intermediate state given by such a 1D scheme in the normal direction to the interface A i A i+1 and considering a space length r K . It is therefore given by:

U n+1 K,i = U n K,i - ∆t r K α K i F n K,i • n i -α K K F n K,K • n i - ∆t r K (α K i -α K K )F(U n K ) • n i (12) + b K i ∆t r K (1 -α K i ) + (1 -α K K ) R(U n K ) -U n K ,
where α K i is given by ( 9) and α K K = 1. According to [START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF], such a scheme preserves the convex set of admissible states A under the CFL condition: [START_REF] Buet | Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes[END_REF] max

K,i b K i ∆t r K ≤ 1 2 .

Now, we set:

ω K,i := e i p K , so that ω K,i is positive and:

N K i=1 ω K,i = 1.
Equipped with this choice, we consider the following convex combination of the 1D schemes [START_REF] Buet | Asymptotic preserving and positive schemes for radiation hydrodynamics[END_REF]:

N K i=1 ω K,i U n+1 K,i = N K i=1 ω K,i U n K,i - N K i=1 ω K,i ∆t r K α K i F n K,i • n i -α K K F n K,K • n i - N K i=1 ω K,i ∆t r K (α K i -α K K )F(U n K ) • n i + N K i=1 ω K,i b K i ∆t r K (1 -α K i ) + (1 -α K K ) R(U n K ) -U n K . Since: ω K,i r K = e i |K| ,
this convex combination is nothing but the scheme (8) i.e.

U n+1 K,i = N K i=1 ω K,i U n+1 K,i ,
and the choice of r K implies that the CFL condition (13) becomes the condition [START_REF] Buet | An asymptotic preserving scheme for hydrodynamics radiative transfer models[END_REF]. Therefore, if all

U n K ∈ A, this condition insure that all U n+1 K,i ∈ A and therefore U n+1 K ∈ A since A is convex.
At this point, the scheme still doesn't preserve the asymptotic. Hopefully, this property may be easily recovered in the same way it was enforced in [START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF]. Indeed, as mentioned in [START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF], for any γ such that γ + γ > 0 the scheme (8) may be applied to the system:

∂ t U + div(F(U)) = (γ + γ) R(U) -U , (14) 
where:

R(U) = γR(U) + γU γ + γ . ( 15 
)
In fact, this system is equivalent to (1) but using the scheme (8) on it allows to consider γ as a free parameter which can be used to recover the asymptotic limit. The asymptotic limit of the scheme ( 8) is formally obtained by performing a Chapmann-Enskog expansion. A small parameter ε is introduced and the following rescalings are made:

∆t ← ∆t ε , γ ← γ ε ,
therefore we have:

α K i ← εb K i εb K i + (γ K i + γ K i )r K , 1 -α K i ← (γ K i + γ K i )r K εb K i + (γ K i + γ K i )r K .
Using these rescalings in [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], an identification gives:

terms in ε -1 : R(U n K ) = U n K , (16) 
terms in ε 0 :

U n+1 K = U n K - ∆t |K| N K i=1 e i b K i (γ K i + γ K i )r K F(U n K ) • n i -F(U n K ) • n i |R(U n K )=U n K . ( 17 
)
The parameters γ K i are then fixed by imposing a given scheme for the diffusion limit. As examples, we propose two corrections that allow to recover the classical two-point flux scheme in the asymptotic regimes of the M 1 model for radiative transfer and Euler system with friction.

Remark 1.3. Let us underline that the Chapmann-Enskog expansion is nothing but a tool to obtain the correct asymptotic limit in the diffusion regime. It has to be handled with care for other purposes since it assumes that both γ and ∆t are large (with the same order in ε), while the degeneracy is indeed governed by γt (see for instance [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF]). However, techniques that avoid rescalings which can be used in the continuous case (for instance [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF]) cannot be extended to the discrete level.

AP correction for the M 1 model. In the case of the M 1 model for radiative transfer (5) b K i = c and the equilibrium [START_REF] Coudière | The discrete duality finite volume method for convectiondiffusion problems[END_REF] gives F x = F y = 0 and E = aT 4 . The sum of the first and fourth equations of (17) hence become:

(ρC v + aT 4 ) n+1 K = (ρC v T + aT 4 ) n K + ∆t |K| N K i=1 ce i 2(σ K m,i + σK i )r K (aT 4 ) n i -(aT 4 ) n K .
This scheme is not consistent in general with the equilibrium diffusion equation [START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF] but it is possible to choose σ in order to recover the consistency in the diffusive limit. For example, if we take:

(18) (σ K m,i + σK i ) = σ K m,i 3|D i | 2r K e i > 0.
then the limit scheme in the diffusion regime is:

(19) (ρC v T + aT 4 ) n+1 K = (ρC v T + aT 4 ) n K + ∆t |K| N K i=1 ce 2 i 3σ K i |Di| (aT 4 ) n i -(aT 4 ) n K ,
which is nothing but the classic FV4 scheme (see [START_REF] Eymard | Finite Volume Methods[END_REF]) for the diffusion equation ( 7) on admissible meshes.

AP correction for Euler equations with friction. Now we consider the case of Euler equations with friction (2). In this case, the equilibrium [START_REF] Coudière | The discrete duality finite volume method for convectiondiffusion problems[END_REF] gives ρu = ρv = 0 and the first equation of ( 17) hence becomes:

ρ n+1 K = ρ n K + ∆t |K| N K i=1 e i (b K i ) 2 2(κ K i + κK i )r K (ρ n i -ρ n K ).
Once again, this scheme is not consistent in general with the limit diffusive regime (4), however it is also possible to choose κ in order to recover the consistency in this limit. For instance if we take:

(20) (κ K i + κK i ) =        2κ K i (b K i ) 2 |D i | r K e i ρ n i -ρ n K p(ρ n i ) -p(ρ n K ) , if ρ n i = ρ n K , 2κ K i (b K i ) 2 |D i | r K e i p (ρ n K )
otherwise, then the limit scheme in the diffusion regime is:

(21) ρ n+1 K = ρ n K + ∆t |K| N K i=1 e 2 i κ K i |D i | p(ρ n i ) -p(ρ n K ) ,
which is consistent with the diffusion equation ( 4) on admissible meshes since it is once again nothing but the FV4 scheme in this context.

Remark 1.4. It is required for the hyperbolicity of the system that p is an increasing function of ρ. Therefore, the choice [START_REF] Droniou | Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations[END_REF] provides positive values for (κ K i + κK i ), as required in robustness theorems.

Extension to more general meshes

When the mesh is not admissible, there is an additional difficulty since the classical two-point finite volume scheme (a.k.a FV4 [START_REF] Eymard | Finite Volume Methods[END_REF]) is not consistent with the diffusion equation anymore. The target scheme in the diffusive limit must therefore properly take into account the whole gradient. For the sake of consistency and simplicity, we choose to use the same gradient discretization in the hyperbolic part. Among the possible choices available in the literature, we adopt the diamond scheme strategy [START_REF] Coudière | Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem[END_REF] but other strategies could be considered such as DDFV schemes [START_REF] Hermeline | Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes[END_REF][START_REF] Domelevo | A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids[END_REF] (see also [START_REF] Andreianov | Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations[END_REF][START_REF] Andreianov | Discrete duality finite voilume schemes for Leray-Lions-type elliptic problems on general 2D meshes[END_REF][START_REF] Boyer | Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities[END_REF][START_REF] Coudière | The discrete duality finite volume method for convectiondiffusion problems[END_REF]) or hybrid strategies (see [START_REF] Droniou | A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods[END_REF][START_REF] Droniou | Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations[END_REF][START_REF] Eymard | Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces[END_REF] and references therein). With the diamond scheme to approximate the gradients, it is possible to propose a natural extension of the scheme for admissible meshes ( 8)-( 10) into the following generalized scheme:

U n+1 K = U n i + ∆t |K| N K i=1 e i α n K,i F n K,i • n i + ∆t |K| N K i=1 e i α n K,i F(U n K ) • n i + ∆t |K| N K i=1 e i (1 -α n K,i )b K i (R(U n K ) -U n K ), (22) 
where:

F n K,i = F(U n K ) + F(U n i ) 2 - b K i θ K i 2 ∇ K i U n K • n i , (23) 
∇ K U n K • n i = U n i -U n K 2|D i | e i + U n Ai+1 -U n Ai 2|D i | d K i n i • τ i , (24) 
where θ K i > 0 is a parameter to be specified later and U n Ai is the value of the solution at the node A i (see figure 1). This value is obtained as a mean value of the solution in the cells which share A i as a node (see [START_REF] Coudière | Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem[END_REF]). With this definition, we immediately see that the scheme for admissible meshes (8)-( 10) is recovered if θ K i = 2|Di| ei .

Theorem 2.1. Assume that γ K i = γ > 0 is a constant and θ K i → 0 when η K → 0, then the scheme ( 22)-( 23) is consistent with (1).

Proof. As it was pointed in the introduction of the scheme ( 22)-( 23), the only difference compared to the scheme designed for admissible meshes ( 8)- [START_REF] Boyer | Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities[END_REF] lies in the definition of the discrete gradient in the numerical flux. But if θ K i → 0, this difference between the two schemes converges to zero when η K → 0. Therefore, the arguments in the proof of theorem (1.1) can still be applied to obtain the consistency.

The preservation of the set of admissible states A is all the more difficult since most finite volumes schemes for parabolic problems do not preserve the maximum principle. Only a few examples ensure this property [START_REF] Potier | A nonlinear correction and maximum principle for diffusion operators discretized using cell-centered finite volume schemes[END_REF][START_REF] Droniou | Construction and convergence study of schemes preserving the elliptic local maximum principle[END_REF]. It is therefore expected that the extension of theorem (1.2) either does not hold for non-admissible meshes or is very difficult to prove. Interestingly, it is sometimes possible to recover the maximum principle under some geometric condition on the mesh. Definition 2.1. The mesh is said to be δ-admissible if there exists a constant δ > 0 such that the following property holds:

∀K ∈ M, ∀i ∈ [1, N K ], 1 + e i-1 d K i-1 e 2 i |D i | 3|D i -1| - e i+1 d K i+1 e 2 i |D i | 3|D i + 1| > δ,
where:

d K i = d K i n i • τ i .
Remark 2.1. With this definition, an admissible mesh is δ-admissible for all δ ≤ 1 since all d K i are then equal to 0. While all meshes are obviously not δ-admissibles, this condition turned out to be satisfied by most of the meshes generated with reasonable constraints on the angles we tested.

Equipped with this definition, we can obtain a generalization of theorem (1.2) for the scheme ( 22)-( 23) applied on a δ-admissible mesh where the secondary mesh is made of triangles (e.g. vertex-centered schemes of a triangular mesh). Theorem 2.2. Assume that the mesh is δ-admissible and that the secondary mesh is made of triangles. Let us also assume that

α K i is constant inside each cell K ∈ M (α K i = α K ) and let us set θ K i = 2|D i | δe i .
Then, the scheme ( 22)-( 23) preserves the set of admissible states A as long as the following CFL condition holds:

(25) max K∈A,i≤N K {b K i θ K i δ K i } ∆t |K| p K ≤ 1 2 .
Proof. We consider here secondary meshes made of triangles. This characteristic allows to give a simple expression from the extrapolated solution at the vertices of the primary mesh (see figure 1):

U Ai = 1 3 (U K + U i + U i-1 ).
Then, from the expression of the numerical flux [START_REF] Eymard | Finite Volume Methods[END_REF], we obtain:

N K i=1 e i F n K,i • n i = N K i=1 e i F(U n K ) + F(U n i ) 2 • n i - N K i=1 e i b K i θ K i 2 U n i -U n K 2|D i | e i + U n i+1 -U n K + U n K -U n i-1 6|D i | d K i ,
then, summing by parts to reorganize the terms

U n i±1 -U n K into U n i -U n K we get: N K i=1 e i F n K,i • n i = N K i=1 e i F(U n K ) + F(U n i ) 2 • n i - N K i=1 e i b K i θ K i δ K i 2 (U n i -U n K ),
where:

δ k i = e i 2|D i | + e i-1 e i d K i-1 6|D i -1| - e i+1 e i d K i+1 6|D i + 1|
.

With the choice θ

K i = 2|D i | δe i and since the mesh is δ-admissible, θ K i δ K i ≥ 1, ∀K ∈ M, ∀i ∈ [1, N K ].
Moreover, the numerical flux can be expressed as:

F n K,i • n i = F(U n K ) + F(U n i ) 2 • n i - b K i θ K δ K i 2 (U n i -U n K ).
Hence the scheme ( 22)-( 23) can be recast as a convex combination of 1D schemes as in the proof of theorem 1.2. These 1D schemes are Rusanov schemes with a speed of b

K i θ K i d K i ≥ b K i from which the CFL condition follows: max K∈A,i≤N K {b K i θ K i δ K i } ∆t |K| p K ≤ 1 2 .
Remark 2.2. Several comments have to be done concerning this theorem:

• The choice of θ K i tends to 0 when η K → 0 as it was requested for the sake of consistency.

• A similar theorem may be obtained on more general meshes. However, the geometrical condition (equivalent to the definition of δ-admissible meshes above) quickly becomes cumbersome. • The main restriction is to consider α K i that are constant per cell. As one can guess from the α K i chosen to obtain AP schemes in the previous section, it is not always possible to select a correction γ K i such that γ K i + γ K i > 0 and does not depend on i.

• Other choices of θ K i allow to recover the same result. For instance, one can consider

θ K i = max i≤N K 2|D i | 2δ .
The scheme ( 22)-( 23) is also not asymptotic preserving in general but the procedure previously used can still be considered in order to recover this property. Indeed, a formal Chapmann-Enskog expansion will lead to the same two relations ( 16) and [START_REF] Coudière | Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem[END_REF]. Of course, in the last relation, the numerical flux is given by [START_REF] Eymard | Finite Volume Methods[END_REF]. Now, the correction is once again illustrated in the example of the M 1 model for radiative transfer and Euler equations with friction. The objective is to recover an extension of the schemes obtained in the diffusive limit in the case of admissible meshes.

AP correction for the M 1 model. We first consider the M 1 model for radiative transfer [START_REF] Berthon | A free streaming contact preserving scheme for the M 1 model[END_REF]. We recall that in this case b K i = c and the equilibrium [START_REF] Coudière | The discrete duality finite volume method for convectiondiffusion problems[END_REF] gives F x = F y = 0 and E = aT 4 . The sum of the first and fourth equations of ( 17)-( 23) hence become:

(ρC v + aT 4 ) n+1 K = (ρC v T + aT 4 ) n K + ∆t |K| N K i=1 c 2 e i 2(σ K m,i + σK i )r K ∇ K i (aT 4 ) n .
Once again, this scheme is not consistent in general with the equilibrium diffusion equation ( 7) but it is possible to choose σ in order to recover the consistency in the diffusive limit. For example, if we take:

(26) (σ K m,i + σK i ) = σ K m,i 3cθ K i
2r K > 0. then the limit scheme in the diffusion regime is:

(ρC v T + aT 4 ) n+1 K = (ρC v T + aT 4 ) n K + ∆t |K| N K i=1 ce i 3σ K i ∇ K i (aT 4 ) n i ,
which is consistent with the diffusion equation ( 7) and a clear extension of [START_REF] Droniou | A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods[END_REF]. Moreover, if σ is a constant and θ K i = θ K then σK i = σK and theorem 2.2 can be applied. In order to meet such a requirement, one may choose the form of θ K i already mentioned earlier:

θ K i = max i≤N K 2|D i | 2δ .
AP correction for Euler equations with friction. If we consider Euler equations with friction (2), the equilibrium [START_REF] Coudière | The discrete duality finite volume method for convectiondiffusion problems[END_REF] gives ρu = ρv = 0 and the first equation of ( 17)-( 23) hence becomes:

ρ n+1 K = ρ n K + ∆t |K| N K i=1 e i (b K i ) 2 θ K i 2(κ K i + κK i )r K ∇ K i ρ n • n i .
As previously, this scheme is not consistent in general with the limit diffusive regime (4), however it is possible to choose κ in order to recover the consistency in this limit. For instance if we take:

(27) (κ K i + κK i ) = 2κ K i (b K i ) 2 θ K i r K ∇ K i ρ n • n i ∇ K i p(ρ n ) • n i ,
then the limit scheme in the diffusion regime is:

ρ n+1 K = ρ n K + ∆t |K| N K i=1 e i κ K i ∇ K i p(ρ n ) • n i ,
which is consistent with the diffusion equation ( 4) and a direct extension of (21).

Remark 2.3. The choice ( 27) also provides positive values for (κ K i + κK i ) since p is required to be an increasing function of ρ for the sake of hyperbolicity. However, this choice generates an α K i which is not constant per cell and therefore, theorem 2.2 cannot be applied here. 

(E, F x , F y , T ) (0, x) = (aT 4 L , cf x,L aT 4 L , 0, T L ) , if x < 1, (aT 4
R , 0, 0, T R ) , otherwise. In the following, T L = 10000, T R = 300 and f x,L = 0 unless otherwise specified and ρC v = 10 -2 . We also recall that c = 3.10 8 . All tests are performed at least with σ = 0 and σ = 1. Indeed, when σ = 0, the model turns out to be an hyperbolic system and the preservation of admissible states is expected to be more difficult than in the presence of the (regularizing) source-term. The associated final times of the simulations are t = 2.10 -9 when σ = 0 and t = 1.10 -8 when σ = 1. The approximated solutions are computed on two different meshes: a coarse one (5152 triangles) and a fine one (132 006 triangles). Both of these meshes are δ-admissible and the corresponding optimal δ are δ 1 = 1.095 for the coarse grid and δ 2 = 5.59910 -2 for the fine one. From a practical point of view, these meshes should rather be called "very coarse" and "coarse" since there are only respectively 35 and 160 cells in the x direction. These choices are made in order to easily visualize the errors made by the schemes on the graphs. Finally, the solutions are compared to reference solutions. When σ = 0, the reference solution is the exact solution of the corresponding 1D Riemann problem (see [START_REF] Sarazin-Desbois | Méthodes numériques pour des systèmes hyperboliques avec terme source provenant de physiques complexes autour du rayonnement[END_REF]). When σ = 0, the exact solution is not available anymore, therefore the reference solution is given by the grid-converged 1D asymptotic-preserving scheme described in [START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF].

Figure 2 shows the computed solutions along x = 1 2 compared with the exact solution in the case σ = 0. Here, the conservation of admissible states is enforced by using θ K i = max i≤N K 2|Di| 2δ where δ = δ 1 on the coarse mesh and δ 2 on the fine one.

The solution computed on the coarse grid is comparable to a 1D Rusanov scheme with a similar number of cells. On the other hand, since δ 2 δ 1 , the numerical diffusion of the scheme is way larger on the fine mesh than on the coarse one. As a consequence, the approximation is better on the coarse grid in this case. Now, if we set δ = δ 1 on the fine mesh, the quality of the approximation behaves as expected, i.e. the approximation is better on the fine grid (see Figure 3). Here, even if the condition required to preserve the set of admissible states is violated, the setup is not stiff enough to beget unphysical values in the scheme. The same conclusions can be made when σ = 1 (see Figure 4), though the overall quality of the the scheme is better than when σ = 0. Indeed, the scheme is designed to recover the diamond scheme in the limit, which is a better approximation of the equilibrium diffusion equation than the Rusanov scheme for the hyperbolic part. This is particularly true when θ K i is large. Therefore, the quality of the approximation is expected to increase with σ. Finally, the asymptotic-preserving property is enlightened in a last validation example. This time, we fix σ = 1000 and t = 2.10 -9 and the results showed on figure 5 are compared with a grid-converged 1D approximation of the equilibrium diffusion equation. The tests are performed with and without the asymptotic-preserving correction on the fine grid to see the impact of the asymptotic preservation. We immediately see that with the AP correction, the scheme provides an approximation which is nearly indistinguishable from the reference solution. On the other hand, at expected, if the AP correction is turned off (i.e. γ K = 0), there is a large discrepancy between the computed and the reference solution. Let us emphasize that this case is numerically very challenging and that it is all the more critical to preserve the set of admissible states here since very small numerical errors may yield negative values for E or values of F > cE, which immediately cause the code to crash. Indeed, several values of θ K i were tested in order to investigate the optimality of the conditions in theorem 2.2 and even a value 5% larger than the choice stated in the theorem produces unadmissible results. In this sense, it seems that the condition of theorem 2.2 is optimal. 

Optimization and parallelization.

Let us conclude this work with a few words on the implementation of the scheme. First, in order to reduce the distance between a given element of the mesh and its neighbors, a renumbering procedure should be considered. We used a classic Reverse Cuthill-McKee procedure as a pre-processing. Since it greatly reduces the L2 data cache misses, a significant gain may be observed. As an example, on the mesh used in the previous simulation, the code ran for 293s without the renumbering and 235s when renumbering was activated. This time included the Cuthill McKee algorithm, so the gain is even better if another run is made on the same mesh. Furthermore, since the scheme is explicit, the updates of the unknowns are independent from one another. Therefore, it is quite straightforward to parallelize the algorithm using OpenMP instructions (see http://openmp.org/wp). On the one hand, such a strategy isn't suitable for massively parallel computations but on the other hand it is very efficient on shared memory units and hence well adapted to multicore processors which are nowadays well spread even on personal computers. All the computations described above were run on a hexacore biprocessor node and a speed-up of 10 was obtained using all 12 cores of the machine. Figure 8 shows the scalability of the code on an example.

Finally, as it is classical for finite volumes scheme, a loop on the edges is used (rather than on the elements for instance). In order to optimize the balance of work asked to each thread, we used an edge-based domain decomposition. This choice may save 20% time or more compared with an element domain decomposition since the number of edge per element is not constant. 
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 2 Figure 2. Exact and computed solutions along x = 1 2 with σ = 0. (l) E; (r) F .

Figure 3 .

 3 Figure 3. Reference and computed solutions along x = 1 2 with σ = 0. (l) E; (r) F -Same expression of δ for both schemes.
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 4 Figure 4. Reference and computed solutions along x = 1 2 with σ = 1. (l) optimal choice of δ to enforce the preservation of A; (r) same choice of δ for both schemes.
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 56 Figure 5. Reference and computed solutions with and without AP correction along x = 1 2 with σ = 1000. (l) E; (r) T .
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 7 Figure 7. Radiative flow in a channel (top) E (bottom) χ.
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 8 Figure 8. Scalability of the code.

Table 1

 1 

	Thread # elements (I) # edges (I) # elements (II) # edges (II)
	0	5550	33879	5492	33303
	1	5550	34713	5293	33303
	2	5551	31906	5806	33301
	3	5550	34391	5378	33300
	4	5550	32865	5588	33304
	5	5551	34282	5448	33299
	6	5550	37032	4967	33301
	7	5550	35200	5197	33304
	8	5551	33475	5461	33300
	9	5550	31999	5715	33305
	10	5550	30538	6004	33299
	11	5551	29338	6285	33299

shows the impact of such a choice on a representative example. Here, thread 6 has roughly 25% more work to do than thread 11.

Table 1 .

 1 Impact of the domain decomposition strategy. (I) element-based, (II) edge-based decompositions.