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ABSTRACT:

LIDAR sensors are widely used in mobile mapping systems. With the recent developments, the sensors provide high amounts of data,
which are necessary for some applications that require a high level of detail. Multi-beam LIDAR sensors can provide this level of
detail, but need a specific calibration routine to provide the best precision possible. Because they have many beams, the calibration of
such sensors is difficult and is not well represented in the litterature.
We present an automatic method for the optimization of the calibration parameters of a multi-beam LIDAR sensor: the proposed
approach does not need any calibration target, and only uses information from the acquired point clouds, which makes it simple to use.
For our optimization method, we define an energy function which penalizes points far from local planar surfaces. At the end of the
automatic process, we are able to give the precision of the calibration parameters found.

1. INTRODUCTION

Light Detection and Ranging (LIDAR) sensors are useful for many
tasks: mapping (Nuchter et al., 2004), localization (Narayana
K. S et al., 2009) and autonomous driving (Grand Darpa Chal-
lenge, 2007) are some of the applications in which such sensors
are used. Recently, multi-beam LIDAR sensors have appeared:
they are more precise and give point clouds with high densities
of points. In order to give correctly geo-referenced data with
sensors mounted on a mobile platform, additional information
from exteroceptive and proprioceptive sensors are needed. Also,
the calibration of the whole system is required; however, it is
mostly done with calibration targets, and needs human interven-
tion, as for example with the system presented in (Huang and
Barth, 2009). The calibration can take some time, and it is diffi-
cult to evaluate the precision of the method. The whole process
of acquisition and data geo-referencement is illustrated with fig-
ure 1, with the different representations of each acquired point.
In this article, we call calibration of the multi-beam LIDAR sen-
sor its extrinsic calibration: it consists in finding the rigid trans-
formation between the LIDAR sensor and the IMU, so that the
data acquired by the sensor are correctly projected in the naviga-
tion reference frame.
The solution we propose is, after the acquisition, to estimate the
parameters of the calibration that give the ”best” - depending on
some criteria - point cloud. We present an unsupervised extrinsic
calibration method for multi-beam LIDAR sensors, which does
not need any calibration target. We start with an initial calibra-
tion, which does not need to be close to the true one. With an iter-
ative process, we look for ”better” calibration parameters, which
improve the quality of the point clouds and minimize an energy
function we will define in section 3..This method does apply for
any multi-beam sensor mounted on a mobile platform (a vehicle
or a robot), and retrieves the six extrinsic parameters - three of
translation and three of rotation - of the transformation between
the sensor and the IMU.
This paper is organized as follow: in section 2., we present the
state of the art concerning the algorithms for the calibration of
multi-beam LIDAR sensors. Section 3. presents our calibration

Figure 1: Geo-referencement of the data

method. Section 4. shows some results obtained with our algo-
rithm, and section 5. gives a conclusion to this paper.

2. RELATED WORK

Figure 1 illustrates the transformations between the different rep-
resentations of an acquired point: this is our mobile mapping sys-
tem, with the Velodyne 32-beam LIDAR sensor. The different
steps for the data geo-referencement are the following:

• Raw data are acquired by the sensor mounted on the Vehicle.
For a multi-beam sensor, these data are the distance of the
point acquired to the sensor and two angles

• The raw data can be expressed in the sensor reference frame:
this is done using the intrinsic calibration parameters.

• The extrinsic calibration gives the geometric transformation
between the sensor and the IMU, and is needed to have co-
ordinates registered in the navigation reference frame. The
extrinsic calibration of a LIDAR sensor consists in finding



the transformation between the location on the mobile plat-
form of the entire unit and the inertial measurement unit,
also mounted on the mobile platform. There are six param-
eters to retrieve, three rotations and three translations. This
is the calibration we want to optimize, and in this article, we
will call calibration this extrinsic calibration.

• The data are geo-referenced by applying the transformation
between the navigation reference frame and the world refer-
ence frame to these data.

Multi-beam LIDAR sensors appeared recently, and calibration
techniques for this kind of LIDAR sensors already exist. If we
take a look at the Velodyne sensor, some intrinsic calibration
methods exist, like (Glennie and Lichti, 2010) and (Muhammad
and Lacroix, 2010), which propose an optimization of the in-
trinsic parameters of the 64-beam version, or (Chan and Lichti,
2013), which proposes an intrinsic calibration for the 32-beam
model.
In this paper, we are only interested in the extrinsic calibration of
multi-beam LIDAR sensors. In (Zhu and Liu, 2013), the authors
propose a method to optimize the 3 parameters of rotation into
two steps: first, the roll and pitch angles by estimating ground
planes, and after, the yaw angle by matching pole-like obstacles.
This method is unsupervised and does not need a calibration tar-
get, as it uses only information from the data gathered; but, the
limitation is that it only estimates the rotation parameters, and
does not take into account the translation ones. In (Huang et al.,
2013), the authors propose a full extrinsic calibration of a multi-
beam LIDAR sensor, but they use calibration targets and infrared
images to do this task. Also, in (Elseberg et al., 2013), the au-
thors want to optimize the calibration of the whole system they
use, which is composed of several LIDAR sensors. The energy
function is a sum of Point Density Functions, which measures the
compactness of their point clouds. They use an unsupervised and
target-free method in post-processing, where an energy function
they defined is minimized. The energy function was constructed
in order to measure the compactness of the point clouds acquired.
Finally, some approaches optimize both the intrinsic and the ex-
trinsic calibration of a LIDAR sensor at the same time. This is the
case in (Levinson and Thrun, 2010), where the authors present
an intrinsic calibration and an extrinsic calibration method which
uses the same energy function to minimize. For both calibrations,
the authors chose an energy function which penalizes points that
are far away from planar surfaces extracted from the acquired
data. As in (Elseberg et al., 2013), this is a post-processing op-
timization, which is unsupervised and target-free. In (Levinson
and Thrun, 2010), the authors start from an initial extrinsic cal-
ibration estimate, and iteratively compute values of their energy
function by modifying the six extrinsic parameters in the neigh-
borhood of the initialization. They use a grid search to optimize
the parameters - for the minimization process, they alternatively
test the translation parameters and the rotation parameters be-
cause of the difference of dimensionality -, and reduce the size
of the neighborhood at each iteration. The main problem is that
the minimization can be long if a high precision is required. Also,
because the neighborhood is a discrete space, we possibly do not
reach the optimal solution.
To optimize the calibration parameters of the multi-beam sensor,
we use an energy function only using information extracted from
the acquired point clouds.
No calibration target is used, and the process is unsupervised.
The defined energy function is also minimized iteratively, as it
will be explained in section 3.2.2. However, the differences with
respect to existing methods are manyfold:

• First, the energy is defined as the sum of the squared dis-
tance of each points to the closest plane it should belong to,

Figure 2: Example of a point cloud

and its expected optimal (minimum) value is related to the
global covariance of the point cloud noise.

• We also introduce in the energy weights which exploit the
local planarity of data.

• Our method leads to a more accurate calibration for the point
cloud.

• The numerical resolution is faster than existing methods,
and is done in acceptable times.

• Finally, we also give an analysis of the precision obtained
for the calibration parameters with the resolution. It will be
explained with more details in section 3.3.

3. PROPOSED OPTIMIZATION METHOD

We use a mobile mapping system to do our acquisitions, as pre-
sented in Figure 1. Many sensors are embedded on the vehicle,
such as a BEI DHO5S odometer and an iXBlue LANDINS IMU
to follow precisely the movement of the vehicle. We also have a
Novatel FlexPak 6 GPS to retrieve the global position of the ve-
hicle when possible, and finally a multi-beam LIDAR sensor, the
32-beam Velodyne, which is mounted on top of the vehicle, as
shown on figure 1. The Velodyne sensor provides up to 700000
points/s, and covers a vertical field of view of 40◦ - from -8◦ to
32◦ - and an horizontal field of view of 360◦. Also, we know
the vehicle global pose at each control point, which allows us
to project the acquired points in the global coordinate system.
For our need, we only use the Multi-beam sensor to acquire data,
and for geo-referencing the data, we use information given by the
proprioceptive sensors and the GPS: the global position of the ve-
hicle is retrieved by fusioning data from the IMU, the GPS and
the odometer, which are measured during the mobile mapping.
By taking a closer look at the point clouds, we can see that the
acquired points tend to lie on surfaces, and most of these surfaces
are locally planar: the lasers of the sensor reflect on many sur-
faces, like it is shown in figure 2. Indeed, during the motion of
the vehicle, adjacent beams on the sensor will acquire points that
belong to the same surface, but only if the extrinsic calibration of
the sensor is good. This is what is illustrated in Figure 3, which
can be seen as a side view of a planar surface, like a facade: with a
wrong calibration, points acquired by neighbor beams will not be
co-linear, where with a good calibration, lines of points acquired
by close beams will overlap.

3.1 Definition of the energy function

To optimize the extrinsic parameters, we consider points which
belong to planar surfaces and we exploit the previous observa-
tion, which is that these surfaces are not exactly planar with a



Figure 3: Side-view of a planar surface

wrong calibration. We start with an initial calibration, and only
use information extracted from the point clouds. Eq. (1) gives the
energy function we defined for the optimization of the extrinsic
calibration parameters:

J(R, T ) = K ∗
B∑
i=1

i+N∑
j=i−N

∑
k

wi,j,k ∗ d2i,j,k(R, T ) (1)

where:
K = 1

Nt−6

di,j,k(R, T ) = ni,k · (pi,k(R, T )−mj,k(R, T ))
pi,k(R, T ) = Rnav(p

′
i,k) ∗ (R ∗ p′i,k + T ) + Tnav(p

′
i,k)

mj,k(R, T ) = Rnav(m
′
j,k) ∗ (R ∗m′j,k + T ) + Tnav(m

′
j,k)

In equation 1, the other terms are:

• K = 1
Nt−6

is a parameter of normalisation of our energy.
Nt is the number of paired points pi,k. The energy we de-
fined has a relation to physics: indeed, the energy unit is
the cm2 because it is a sum of the square of the distance
between two points. Also, the distance measured with the
quantity (pi,k−mj,k) represents the noise between the two
points, which is equal to 0 in the ideal case: figure 3 il-
lustrates this problem, where with a good calibration, there
should be no noise and the energy should be close to 0. We
suppose that this noise is independant for each point taken
into account in the calculation of the energy J, centered, re-
duced and normal: with these hypothesis, the energy J fol-
lows a chi-squared distribution withK constraints. Energy J
gives an estimate of the variance σ2 of the point cloud noise
when Nt is big enough, which is the case with our point
clouds.

• B is a sample of the Velodyne sensor beams, with B ⊂
J0; 31K

• N is half the number of neighbor beams to beam i taken into
account

• k iterates on the considered points of beam i

• wi,j,k is a weight, which value is between 0 and 1 depending
on the local planarity.

• ni,k is the normal to the tangent plane to point pi,k. The
normal is computed considering 2D information.

• pi,k and mj,k are respectively the kth point of beam i, pro-
jected in the global reference frame and its nearest neighbor
on beam j, also projected in the same reference frame.

• p′i,k and m′j,k are respectively the kth point of beam i, pro-
jected in the sensor coordinate frame and its nearest neigh-
bor on beam j, also projected in the same coordinate system.

• Rnav and Tnav are respectively the rotation matrix and trans-
lation vector from the navigation reference frame to the global
reference frame. These matrix and vector depend on the
time of the acquisition, thus they change from a point to an-
other.

• Finally, R and T are respectively the rotation matrix and the
translation vector from the sensor coordinate system to the
navigation reference frame. R is represented with the three
Euler angles, which are the calibration parameters of rota-
tion roll, pitch and yaw, id est α, β and γ. The transla-
tion T, tx, ty and tz represent the three translation param-
eters of the calibration we want to optimize. Thus, we have
R(α, β, γ) and T(tx, ty, tz).

3.2 Minimisation of the energy

3.2.1 Linear approximation

The energy function we use is penalizing points that are far from
the local planar surfaces defined by points from the point cloud.
If we have the optimum calibration parameters, the energy should
be at a global minimum: this is not the case, because we start with
an initial calibration different from the optimal one. We do not
know how to solve energy J from equation (1), because the en-
ergy is not linear due to the calibration parameters of rotation. We
change our problem by looking for little variations of the calibra-
tion parameters which reduce the energy J: starting from known
parameters (tx, ty, tz, α, β, γ), we look for small variations of
the parameters (δtx, δty, δtz, δα, δβ, δγ), which give the follow-
ing result:
J(R(α+ δα, β+ δβ, γ+ δγ), T(tx+ δtx, ty + δty, tz + δtz)) <
J(R(α, β, γ), T(tx, ty, tz))
We replace the matrix R(α+ δα, β + δβ, γ + δγ) by an approx-
imation R(α, β, γ) + Rα ∗ δα + Rβ ∗ δβ + Rγ ∗ δγ, by using
the fact that the variations we are looking for are small.

With this approximation in eq. (1), we get a linear least squares
problem, with the following objective function to minimize:

S(δX) =

B∑
i=1

i+N∑
j=i−N

∑
k

wi,j,k ∗ (Di,j,k + Ci,j,k · δX)2 (2)

where:

δX = (δtx δty δtz δα δβ δγ)T

Di,j,k= ni,k·

 Tnav(p′i,k) − Tnav(m′j,k)

+
[
Rnav(p′i,k) ∗ (R(α, β, γ) ∗ p′i,k + T (tx, ty, tz))

]
−
[
Rnav(m′j,k) ∗ (R(α, β, γ) ∗m′j,k + T (tx, ty, tz))

]


Ci,j,k= ni,k·



[
Rnav(p′i,k) − Rnav(m′j,k)

]
∗
[
1 0 0

]T[
Rnav(p′i,k) − Rnav(m′j,k)

]
∗
[
0 1 0

]T[
Rnav(p′i,k) − Rnav(m′j,k)

]
∗
[
0 0 1

]T
Rnav(p′k,i) ∗ Rα ∗ p

′
i,k − Rnav(m′j,k) ∗ Rα ∗m′j,k

Rnav(p′i,k) ∗ Rβ ∗ p
′
i,k − Rnav(m′j,k) ∗ Rβ ∗m

′
j,k

Rnav(p′i,k) ∗ Rγ ∗ p′i,k − Rnav(m′j,k) ∗ Rγ ∗m′j,k


The solution which minimizes the objective function (2) is the
solution of the following linear system:

C × δX = −V (3)

with:{
C =

∑B
i=1

∑i+N
j=i−N

∑
k wi,j,k ∗ Ci,j,k ∗ C

T
i,j,k

V =
∑B
i=1

∑i+N
j=i−N

∑
k wi,j,k ∗Di,j,k ∗ Ci,j,k



3.2.2 Optimization approach

To find the optimal calibration parameters, we compute δX it-
eratively, until the calibration parameters converge. At each new
iteration n+1, the calibration parameters are defined as follow:

txn+1 = txn + δtxn
tyn+1 = tyn + δtyn
tzn+1 = tzn + δtzn
αn+1 = αn + δαn
βn+1 = βn + δβn
γn+1 = γn + δγn

(4)

As it is presented in the next section 3.3, C is an important matrix
which helps us get an estimate of the precision of the calibration
parameters retrieved through optimization.
We start the optimization process with initial calibration param-
eters (tx0 , ty0 , tz0 , α0, β0, γ0), and at each iteration, to find the
new variations δX , we minimize the objective function (2). We
will see in section 4. that the initial calibration can be far from the
true one, and that we do not need a precise estimate to start with.
The complete algorithm is presented in algorithm 1.
The stop criterion we chose concerns the variation of δX dur-
ing the iterations: the algorithm stops when ‖δX‖max is under a
threshold δ, or after a certain number of iterations.

3.3 Precision of the calibration parameters

In the state of the art of the calibration of mobile mapping sys-
tems, there is no value given to measure the precision of the
optimized parameters: the authors generally compare their re-
sult point clouds to a ground truth, which can be hard and time-
consuming, because the ground truth cannot be done with an au-
tomatic process; human supervision is needed to validate the pro-
cess. In our method, we give values to measure the precision of
the parameters retrieved with our optimization process: we have
an estimate of the precision for each parameter, given by the fol-
lowing terms:

{
For translations: σx(m) =

√
(C−1)1,1

For rotations: σα(rad) =
√

(C−1)4,4
(5)

The remaining precisions are defined the same way for the trans-
lations and rotations parameters. C is the matrix defined in eq.
(3), and its inverse C−1 = Cov(δX). With the square roots, we
have the precisions of each parameter.
These precision depend on the structure of the point cloud and
the trajectory of the vehicle. For example:

• a point cloud with some features, such as turns or a variation
of altitude, will give a better precision for the calibration
parameters.

• a trajectory which goes straight, without changes, will not
give a good precision for the parameters.

3.4 Validity of the calibration

We defined in the previous sections an energy function that, with
an optimization process, should gives better calibration parame-
ters for our points clouds. We will discuss in this section about the
condition that validate a calibration obtained with our optimiza-
tion process. The value of the energy J should be small enough,
under a threshold: as said in section 3.1, our energy follows a
chi-squared distribution with Nt − 6 constraints. A validation
threshold at 97% is 3σ2, with σ2 the variance of the point cloud
noise. For example, for real data, the noise comes from the acqui-
sitions, but also the IMU and the GPS which give the trajectory

Algorithm 1: Iterative linear optimization for the parameters of
the extrinsic calibration

Data: A point cloud, with an initial calibration, and a known
trajectory

Result: A point cloud, with optimized calibration parameters
Reading and sub-sampling of the point cloud;
Initial extrinsic calibration;
repeat

Global referencing of the points acquired with the actual
calibration (txn , tyn , tzn , αn, βn, γn);
Selection of the points pi,k;
Construction of the pair of points pi,k from beam i and
mj,k, their closest neighbor from beam j;
Computation of the normals to each planes at points pi,k;
Construction of equation (3), and resolution which gives the
variations (δtxn , δtyn , δtzn , δαn, δβn, δγn);

until ‖δX‖max < δ, or niter ≥ nmax;
Saving of the modified point cloud with the optimized
calibration;

of the vehicle; with our mobile mapping system, we have a good
precision, with a standard deviation for the noise around 5cm. It
gives us a threshold of around 75 cm2 for the value of energy J.

4. EXPERIMENTS

4.1 Datasets

In our experiments, we used two types of data: synthetic and
real point clouds. The difference between them concerns the way
the point cloud is ”created”: for synthetic data, we simulated an
acquisition in a urban area, with vertical planes as walls and an
horizontal plane as the ground. For real data, we used our mobile
mapping platform to acquire point clouds in a city. But, other
than that, we use the same informations for both data. We have
raw informations from the sensor, which is composed of:

• the position of the vehicle at each acquisition instant. This is
the position of the IMU in the world reference frame, fused
with other informations from proprioceptives sensors, such
as the GPS and the odometer.

• the coordinates of each acquired point in the spherical coor-
dinate system of the sensor reference frame.

• the ”beam” which acquired each point, since we work with
a multi-beam sensor.

These informations give us the position of the vehicle and its tra-
jectory with a high precision: indeed, we only work on the cal-
ibration of the LIDAR sensor, and to have a well reconstructed
point cloud at the end of the optimization, the trajectory has to be
known precisely.

4.2 Implementation and algorithm parameters

The algorithm we presented was implemented in C++. The EIGEN
library (Eigen library, 2014) was used for all the operations on
matrices or vectors, and the FLANN library (FLANN library,
2014) (Fast Library for Approximated Nearest Neighbor) was
used for the nearest neighbors search. The algorithms runs on
a computer with a Windows 7 - 64 bits os, 32 GB of RAM and an
intel core-i7 processor, with a clock up to 3.40 GHz.
Our algorithm was tested with synthetic and real urban data: for
the synthetic data, the parameters were known precisely. For the
real data, we didn’t know the true calibration: for both data, we



tx(cm) ty(cm) tz(cm) α(◦) β(◦) γ(◦)
Initial calibration -200.00 240.00 -150.00 5.00 -37.00 -5.50

Difference between the ground truth and the state-of-the-art optimization 0.00 400.00 -50.00 -0.25 0.00 -0.25
Difference between the ground truth and our optimization 0.00 0.02 0.02 0.00 -0.01 0.06

Table 4: Optimization of the calibration of synthetic point cloud #1

tx(cm) ty(cm) tz(cm) α(◦) β(◦) γ(◦)
Initial calibration -200.00 240.00 -150.00 5.00 -7.00 -5.50

Difference between the ground truth and the state-of-the-art optimization 240.23 640.23 190.23 0.01 0.01 6.09
Difference between the ground truth and our optimization 0.01 -0.13 -200.00 -0.01 0.00 -0.00

Table 5: Optimization of the calibration of synthetic point cloud #2

σtx (cm) σty (cm) σtz (cm) σα(◦) σβ(◦) σγ(◦)
Synthetic point cloud #1 1.49 3.43 5.58 0.97 0.05 0.10
Synthetic point cloud #2 0.78 3.51 1.00 ∗ 1020 0.04 0.05 0.05

Table 6: Precision of the parameters found for the simulated data

Figure 7: Synthetic point cloud #1: on top, with the initial cali-
bration; middle, with a state of the art optimization; at the bottom,
with our optimization. The three images have the same point of
view.

started with an initial calibration arbitrarily chosen.
In our algorithm, we have some parameters to set. We start with
sub-sampling the data about 1 point out of 2, because the point
clouds have a high resolution and in order to reduce the com-
putation times and the use of memory. The number of neigh-
bor beams for a beam bi was fixed to 4 (N=2). Concerning the
weights wi,j,k, a threshold of 20 cm was chosen for the maximal
distance between a point pi,k and its nearest neighbormj,k on the
neighbor beam. We also considered that all the points belonged
to planar surfaces, because the real point clouds presented in this
section were acquired in a urban environment. Finally, the num-
ber of closest neighbors Ncn taken into account for the search of
the neighbor mj,k of point pi,k was set to 100.
The parameters were fixed for all the tests which were done: dif-
ferent values were tested, but the ones presented give the best
optimization results and computation times.

4.3 Comparison to the state of the art

We compared our approach and results with the optimization pre-
sented in (Levinson and Thrun, 2010), where the calibration of

Figure 8: Synthetic point cloud #2: on top, before optimization of
the calibration; middle, with a state of the art optimization; at the
bottom, after our optimization. The three images have the same
point of view.

a Velodyne sensor is also being optimized automatically. The
energy function used and the optimization method are different:
their method is a discrete search of the optimal parameters in the
neighborhood of their starting calibration. They try several com-
bination of parameters value to find the optimal calibration for
the sensor, and repeat the process iteratively with reducing the
space of search. They also separate the search for the translation
parameters first, and then for the rotation parameters.
They set various parameters in their algorithm, which are:

• the size of the neighborhood for the optimization; it reduces
with each iteration, until they have the needed precision for
the parameters.

• a step of discretization - different or not from a parameter
to an other -, which is the ”number” of values tested in their
neighborhood for each parameter.



Figure 9: Evolution of the energy of synthetic point cloud #1

Figure 10: Evolution of the energy of synthetic point cloud #2

• the number of iterations, which determines the precision of
the calibration parameters.

In section 4.4, we present a comparison between our algorithm
and the one presented in (Levinson and Thrun, 2010). For these
tests, we set some parameters for this optimization method: we
used a step value of 5 for the grid search of each parameter, and
our research was done between -3 and 3 meters around the start-
ing values for the translation parameters, and between -7 and 7
around the starting values for the rotation parameters. We also
did 10 iterations for the optimization: at each iteration, the neigh-
borhood size was divided by two, and this number of iterations
led us to a good precision for the parameters.

4.4 Results on synthetic data

The synthetic data are point clouds which simulate acquisitions
in urban zones, created specifically for our tests: the scenes are
composed of planes and the vehicle describes some trajectory.
In this section, we will present two synthetic point clouds, with
different features. The point clouds were composed of around
4.5 Mpts. For these data, the true calibration is known, and is
used to validate the results of our optimization. Several tests were
performed on other data, giving similar results. The initial cali-
brations are set by adding a bias of some meters for the transla-
tion parameters and some degrees for the rotation parameters to
the true calibration parameters. We will show two optimization
results, both with a comparison between the results of our opti-
mization and the one presented in (Levinson and Thrun, 2010).
The first tests we present are done on a point cloud composed
of a ground and two orthogonal planes. There is also a variation
of altitude, and the vehicle is making a turn. Figure 7 presents
the same point cloud, with the same point of view, but with three
different calibrations:

• Top, this is the point cloud with an initial calibration.

• Middle, the point cloud with the calibration results of state-
of-the-art method.

• Bottom, the point cloud with the optimized calibration pa-
rameters given by our method.

With table 4, we have the initial calibration for the point cloud,
and the difference after the optimization between the calibration

parameters found with the two optimizations, and the true ones
- which are known -. We can see that the results give the same
conclusion as before: with the optimizations, we have parame-
ters closer to the true ones, but we have globally the smallest dif-
ference between the parameters found with our optimization and
the true parameters. The state-of-the-art optimization tests many
values in a restricted neighborhood around the initial calibration.
Since this is a discrete optimization, the best optimization is ob-
tained when the initial calibration is close to the true one; but,
for the tests we performed, the initial calibrations are far from the
true ones, and with this method, the optimization can be stuck in
a local minimum, which seems to be the case.
Figure 9 gives the evolution of our energy during the optimiza-
tion process. The energy starts from a value of 197.04 cm2, and
reaches a value of 1.48 cm2 with our optimization; at the op-
posite, the energy reaches a value of 7.87 cm2 with the other
method. For the optimization using Levinson method, we did 10
iterations for the optimization: after 10 iterations, our optimiza-
tion gives an energy value of 5.05 cm2, which is still smaller
than with Levinson method. We have the same conclusion before,
which is that our optimization gives better results than the state-
of-the-art method. We also measure the precision of our calibra-
tion parameters retrieved with our optimization: they are given
for the point cloud #1 in the first line of table 6. At the opposite,
in the state of the art, no indicator of the precision of the results
of an optimization is presented. As we could expect, we have a
good precision for all the parameters, which goes along with the
observations made with table 4, that the difference between the
true calibration and the one retrieved with our optimization pro-
cess is small. We can also notice that the parameters of rotation
have a better precision than the ones of translations, which means
that these parameters are correctly retrieved more easily.
We can also present the computation times of both optimizations
method, for the total number of iterations: our optimization took
about 1 minute and 15 seconds to give the result presented pre-
viously, where Levinson’s optimization took nearly 36 minutes
with the parameters chosen for the test.

We also present another test on a synthetic point cloud, with dif-
ferent features. Visually, on figure 8, we can see the improve-
ments in the structure of the point cloud, which is the result of a
closer calibration to the true one. The planes are correctly recon-
structed in the end of the optimization.
Table 5 presents the initial calibration for the point cloud, and the
difference after the optimization between the calibration param-
eters found with the optimization, and the true ones - which are
known -. Like for the other point cloud, we can see that with
our optimization, we have parameters closer to the true ones; we
just have a difference for the translation parameter in z which is
high. This problem comes from the structure of the point cloud
and the trajectory of the vehicle: we have two parallel planes and
the trajectory of the vehicle is an oscillation, which gives good
precisions for nearly all the parameters. But, unlike the previous
point cloud, there is no movement in z for the trajectory of the ve-
hicle, which explains the problem of precision for the translation
parameter in z.

Figure 10 gives the evolution of our energy during the optimiza-
tion process. The energy starts from a value of 217.41 cm2, and
reaches a value of 4.18 cm2; at the opposite, the energy reaches a
value of 19.41 cm2 with Levinson’s method, which is also higher
than with our method. After 10 iterations, our optimization gives
an energy value of 13.85 cm2, which is smaller than the energy
with Levinson method. But, unlike the evolution of the energy of
the previous point cloud, this time, the energy decreases by steps.
It can be explained by the structure of our algorithm: as illus-
trated with 3, with our optimization process, we want to adjust



Figure 11: Real point cloud #3: left, before optimization of the parameters; right, after optimization. The two images have the same
point of view.

Figure 12: Real point cloud #4: left, before optimization of the parameters; right, after optimization. The two images have the same
point of view.

the data acquired by neighbor beams of the sensor, which gives
better calibration parameters. This problem is close to the adjust-
ment of two datasets with an Iterative Closest Point algorithm:
the energy J we constructed is also similar to the kind of energy
minimized in an ICP approach. It has been proven in (Besl and
McKay, 1992) that if for each iterations, the same number of pairs
of points is taken into account for the calculation of the energy,
the energy is always decreasing. But, in our case, the number of
pairs of points taken into account increases with the iterations,
as shown with the red curve, which explains the fact that our en-
ergy is not strictly decreasing: indeed, we take into account more
pairs of point which are not relevant because the planes we want
to adjust are too far from each other. When there is a peak in
the number of pairs of points used, the planes are closer to each
other, and the energy decreases. We also measure the precision of
our calibration parameters retrieved with our optimization: they
are given for the point cloud #2 in the second line of table 6. As
we could expect, we have a good precision for all the parameters
but the parameter of tanslation in z, which goes along with the
observations made with table 5: the differences between the true
parameters and the ones retrieved with our optimization process
are small, except for the translation in z.
We also have a computation time for the total number of iterations
of around 2 minutes for our optimization: it is longer than for the
other synthetic point cloud presented, but still fast in comparison
to the state-of-the-art optimization.

4.5 Results on real urban data

For the real point clouds, an acquisition was done in a city: be-
cause of the big size of the data, the whole acquisition was di-
vided in several point clouds. Several tests were done, but the re-
sults are globally the same. We present two point clouds, which
are made of 60 Mpts, and for which the true calibration is not

Figure 13: Evolution of the energy for real point cloud #3

Figure 14: Evolution of the energy for real point cloud #4

known: to validate the results of our optimization, we use the
conditions defined in section 3.4. The two point clouds represent
different acquistions of the same city.
Figures 11 and 12 show the real point clouds: the circled areas
give an idea of the improvements made with our optimization on
the data. We can see that the façades are more planar after our
optimization of the calibration parameters. Figures 13 and 14
give the evolution of the energy for each optimization, which are
the blue curves: we can see that in the end of the optimizations,
we have better values of the energies. But, the energies are not
strictly decreasing; the red curves represent the evolution of the
number of paired points taken into account in the calculation of
energy Jat each iteration. The increase can also be explained the



tx(m) ty(m) tz(m) α(◦) β(◦) γ(◦)
Initial calibration 0.00 0.00 0.00 0.00 -45.00 90.00

Calibration after optimization 0.01 -1.37 -0.32 -8.11 -61.25 99.78

Table 15: Calibration of real point cloud #3

tx(m) ty(m) tz(m) α(◦) β(◦) γ(◦)
Initial calibration 0.00 0.00 0.00 0.00 -45.00 90.00

Calibration after optimization -0.23 -1.39 -2.80 0.99 -62.03 91.79

Table 16: Calibration of real point cloud #4

σtx(cm) σty(cm) σtz(cm) σα(◦) σβ(◦) σγ(◦)
Real point cloud #3 20.07 11.04 100.00 1.75 0.14 1.52
Real point cloud #4 2.41 1.81 47.51 0.34 0.05 0.29

Table 17: Precision of the parameters for the real point clouds

same way as in section 4.4.
For the point cloud #3, the energy starts at a value of 125.27 cm2

and ends at a value of 67.67 cm2. For the point cloud #4, the
energy goes from 110.88 cm2 to 63.37 cm2. The values are ac-
ceptable, because we have noise from different sources, which
increases the value of the energy: we are still able to improve the
quality of the point clouds.
If we take a look at tables 15 and 16, we can see that the cal-
ibration parameters retrieved through optimization are different;
but, as said before, the two point clouds are part of the same ac-
quisition. The difference comes from the structure of the point
clouds: indeed, point cloud #3 contains more elements which are
not planar - like trees or poles - than point cloud #4. Thus, the
optimization performs better on the second point cloud: table 17
gives the precisions of the parameters after optimization for both
point clouds, which are different between the point clouds; but
we see that the calibration parameters of point cloud #4 have in
general a better precision than the ones of #3. Also, the energy
of point cloud #4 is smaller than the one of #3: we can conclude
that the calibration parameters of point cloud #4 are closer to the
true calibration than the ones of #3.
The precisions are better for the rotation parameters than for the
translation ones, which is the same observation than for the syn-
thetic data: in general, the rotations are more easily correctly re-
trieved than the translations. We can also see that the precisions
of the parameters of point cloud #3 are not really good: this is
because the point cloud doesn’t have many turns, and there are
some non planar elements, such as trees, from which we take
points into account for the optimization. This is the limit of our
simplification hypothesis, which was that we considered all the
points taken into account to belong to planar surfaces, such as
stated in section 3.1.
We also have some computation times for the total number of
iterations, which are for point cloud #3 and #4 respectively of
7min and 8min: we did not try to optimize these point clouds
with state-of-the-art methods because, as shown in the previous
section 4.4, the computation times are too high in comparison.

5. CONCLUSION

This paper presented a new and efficient optimization method for
the calibration of point clouds. The optimization process is fully
automatic, and can perform on small point clouds, or on point
clouds with a large amount of points as well, in reasonable com-
putation times. The results presented showed the efficiency and
robustness of our algorithm, which only uses information from
the point clouds.
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