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ABSTRACT

Context. Luminous blue variables (LBVs) are rare massive stars with very high luminosity. They are characterized by strong photo-
metric and spectroscopic variability related to transient eruptions. The mechanisms at the origin of these eruptions is not well known.
In addition, their formation is still problematic and the presence of a companion could help to explain how they form.
Aims. This article presents a study of seven LBVs (about 20% of the known Galactic population), some Wolf-Rayet stars, and massive
binaries. We probe the environments that surround these massive stars with near-, mid-, and far-infrared images, investigating potential
nebula/shells and the companion stars.
Methods. To investigate large spatial scales, we used seeing-limited and near diffraction-limited adaptive optics images to obtain a
differential diagnostic on the presence of circumstellar matter and to determine their extent. From those images, we also looked for
the presence of binary companions on a wide orbit. Once a companion was detected, its gravitational binding to the central star was
tested. Tests include the chance projection probability, the proper motion estimates with multi-epoch observations, flux ratio, and star
separations.
Results. We find that two out of seven of LBVs may have a wide orbit companion. Most of the LBVs display a large circumstellar
envelope or several shells. In particular, HD168625, known for its rings, possesses several shells with possibly a large cold shell at
the edge of which the rings are formed. For the first time, we have directly imaged the companion of LBV stars.

Key words. Stars: variables: S Doradus – Stars: Wolf-Rayet – Stars: imaging – binaries: general – Stars: winds, outflows

1. Introduction

Luminous blue variables (LBVs) are rare massive stars that
range in size from tens to more than 100 M�. Their luminosity
can reach or exceed the Humphreys-Davidson limit (Humphreys
& Davidson 1979) with log(L/L�)=5 to 7. They are surrounded
by massive envelopes created during major episodic eruptions

? Based on observations collected at the European Organisation
for Astronomical Research in the Southern Hemisphere, Chile, under
projects number 085.D-0625(C), 087.D-0426(C,D), and archival data
383.D-0323(A).
?? Deceased

with 0.1 to 20 M� ejected and mass loss rates of 10−4 to
10−5 M� yr−1 (Humphreys & Davidson 1994) suggesting super-
Eddington winds (van Marle et al. 2008) in active phase. They
have mass loss rates of 10−7 to 10−6 M� yr−1 during quiescence.

Luminous blue variables show luminosity variations with
different time-scales from days to decades (van Genderen 2001).
LBVs that show S Dor phase are fast rotators with velocities
reaching the critical regime in their minimum phase (Groh et al.
2009) and according to theoretical models, it is possible that they
have strong polar winds (Maeder & Desjacques 2001; Owocki
2011). Their surrounding nebulae are often axisymmetric, such
as the Homunculus nebula around η Car. However, Soker (2004)
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argues that a single-star model cannot reproduce these bipolar
nebulae.

Interestingly, several massive stars exhibit nebular rings. One
proposed way to form such rings is through the merger of a bi-
nary. The outer rings of SN 1987A in particular display a like-
ness with those around stars such as HD168625 and Sher 25
(Morris & Podsiadlowski 2009). This has led some to suggest
that these stars may be good candidates for Galactic supernovae
(Smith 2007, and references therein).

The cause of the major LBV eruptions is still debated. Dif-
ferent types of instabilities are proposed to explain them, among
which radiation and turbulent pressure instabilities, vibrations,
and dynamical instabilities (Humphreys & Davidson 1994). The
constant dense slow wind of LBVs could play a role as well
(Humphreys et al. 2014). Binarity with mass transfer (Kashi
2010; Kashi & Soker 2010) is also a promising explanation.

During their giant eruptive phase, extragalactic LBVs in the
early eruption stages can be confused with normal supernovae
(SNe). These events are sometimes called supernova impostors
(Van Dyk & Matheson 2012). According to theory, LBVs should
not explode as core-collapse SNe without passing through the
Wolf-Rayet (WR) phase. However, recent SN radio lightcurve
observations tend to demonstrate the opposite. They show the
SN ejecta interacting with large amounts of circumstellar mat-
ter. It appears to be related to strong mass-loss episodes that
occurred before the SN. LBVs during their S Dor phase with
their giant outbursts would best explain them (Kotak & Vink
2006). Other observations support this scenario, spectroscopi-
cally in SN 2005gj (Trundle et al. 2008), and with direct iden-
tification of the progenitor in images in the cases of SN 2005gl
(Gal-Yam & Leonard 2009) and SN 2010jl (Smith et al. 2011).
Moreover, Groh et al. (2013) recently found that models can ex-
plain some SNe IIb by direct explosion of a relatively low-mass
LBV star. This kind of LBV evolution could lead to the potential
ultra-powerful pair-instability supernova (for the more massive
of them with masses above 100 M�, see Fryer et al. 2001).

Smith & Tombleson (2015) argue that because the LBVs are
mostly isolated they probably result from binary evolution and
can be considered massive evolved blue stragglers. This would
imply that various types of massive stars could eventually be-
come LBVs through binary mergers.

At the other end of stellar evolution, the formation is still
not well understood, although models involving relatively distant
low-mass companions (Krumholz 2012) may offer a decisive
clue. Binarity may play a critical role in the formation of very
massive objects with some protostellar collisions (Baumgardt &
Klessen 2011; Tan et al. 2014). Moreover, it is expected that
fragmentation could lead to the presence of lower mass compan-
ions with separations of hundreds or thousands of au (Krumholz
et al. 2009; Krumholz 2012).

However, to date very few LBV stars are known with cer-
tainty to be binaries: in the Galaxy there is η Car (Damineli et al.
1997), MWC314 (Lobel et al. 2013), and HR Car (Rivinius et al.
2015). In addition, LBV1806-20 was found to be a double-lined
binary by Figer et al. (2004), but it still lacks a spectroscopic
follow-up to confirm its binary nature and to discard a contami-
nation by another star in this crowded field. With VLTI-AMBER
(Petrov et al. 2007) observations and with radial velocity varia-
tions, and the line shape modifications found in X-Shooter (Ver-
net et al. 2011) spectra, Martayan et al. (2012) indicate that the
Pistol Star could also be binary. In other galaxies only HD5980
is known as a binary (Foellmi et al. 2008; Georgiev et al. 2011).

It is therefore important to investigate in a deeper and homo-
geneous way the presence of potential companions around LBV

stars. So far, there has been no systematic search for companions
of LBVs.

With very large telescopes, seeing-limited imaging probes
scales ∼1′′, while with adaptive optics (AO) imaging the limit
decreases to 60 mas (Sana & Le Bouquin 2010). In this article,
we investigate the presence of potential companions in wide or-
bits with various imaging techniques mainly at IR wavelengths.
Future investigations will focus on smaller spatial scales to find
potential companions in closer orbits. Preliminary results can be
found in Martayan et al. (2012). The presence of a companion
provides constraints on models of star formation and evolution.
Furthermore, it also gives clues to the shaping of the surrounding
nebulae and possibly to the triggering of giant LBV eruptions.

In Section 2, we present our observational and archival data.
Section 3 deals with the methods (chance projection probability,
multi-epoch proper motion, etc.) used to determine whether the
nearby objects are bound to the main stars, and discusses the re-
sults. The presence of the shells around the stars of the sample is
reported in Section 4 with a detailed example from HD168625.
Section 5 provides a summary. In Appendix A, the images of the
stars of the sample are displayed and their remarkable environ-
ment structures are discussed. In Appendix B, small catalogues
of stars in the NACO field of view of HD168625 and the Pistol
Star are given.

Table 1. Stellar sample discussed in this paper, along with classifica-
tion and coordinates from Simbad. Candidate LBV stars are identified
with “cLBV”. They are ordered following their classification and right
ascension.

Star Classification Distance RA(2000) DEC(2000)
kpc h mn s ◦ ′ ′′

Pistol Star cLBV 81 17 46 15.24 -28 50 03.58
WR102ka LBV, WN10 81 17 46 18.12 -29 01 36.60
LBV1806-20 cLBV 11.82 18 08 40.31 -20 24 41.10
HD168625 cLBV, B6Ia 2.23 (2.84) 18 21 19.55 -16 22 26.06
HD168607 LBV, B9Ia 2.23 18 21 14.89 -16 22 31.76
MWC930 LBV, B5-B9e 3.55 18 26 25.24 -07 13 17.80
MWC314 LBV, B3Ibe 36 19 21 33.98 14 52 56.89
HD152234 O9.7Ia+O8Va 1.917 16 54 01.84 -41 48 23.01
WR102e WR, WC, “dustar”b 81 17 46 14.81 -28 50 00.60
HD164794 O3.5Vf++O5Vfc 1.1-1.88,9,10 18 03 52.45 -24 21 38.63

a: Classification from Sana et al. (2008).
b: Star is in the Pistol Star field, and is considered to be a WR-“dustar” by
Marchenko & Moffat (2007).
c: Classification from Rauw et al. (2012).
1: Reid (1993), 2: Figer et al. (2004), 3: Chentsov & Gorda (2004), 4:
Hutsemekers et al. (1994), Pasquali et al. (2002), 5: Miroshnichenko et al.
(2005), 6: Miroshnichenko et al. (1998), 7: Ankay et al. (2001), 8: 1.58
kpc,Sung et al. (2000), 9: 1.79 kpc,(Blomme & Volpi 2014, and references
therein), 10: 1.1 kpc,Bondar (2012).

2. Observations, archival data, and data reduction

The stars in our sample were selected for their properties to
investigate the binary nature of LBVs and to study the enve-
lope structure. On the one hand the Pistol Star, WR102ka, and
LBV1806-20 are stars located near the Humphreys-Davidson
limit (Humphreys & Davidson 1994), and on the other hand
MWC314, MWC930, and WR102e are close to the limit where
the rotational velocity reaches the critical velocity (Groh et al.
2009) for massive stars. HD168625 and HD168607 belong to the
low-luminosity LBVs. The massive binary stars HD164794 and
HD152234 were added for comparison purposes. The sample
contains around 20% of the Galactic LBV/candidate LBV stars
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Table 2. Summary of the NACO and VISIR observations. The service
mode (SM) or visitor mode (VM) is indicated in col. 3. The length of the
observations is given in hours or in nights in col. 4. Cols. 5 and 6 provide
the weather condition: R-band image quality and sky transparency.

Date Instrument Mode Length Seeing Transparency
17/06 + 01/08/2010 NACO SM 4 × 1 h 0.8′′ clear
17-18/07/2011 NACO VM 1 n 0.65′′-0.8′′ clear
18-19/07/20111 NACO VM 0.5 n 0.55′′-0.65′′ clear-thin
20/07/20112 VISIR VM 0.5 n 1.0′′-1.5′′ thin-thick

1: a NACO technical problem prevented observation of the star WR102ka.
2: a significant fraction of the planned observations were not performed owing
to the weather.

(cLBVs) as defined by Clark et al. (2005) and Nazé et al. (2012).
The sample is presented in Table 1 with information from Sim-
bad. Unfortunately, the parallax and proper motion values based
on the Hipparcos or Tycho missions are not reliable for these
very distant stars.

To study the binarity and the environment of the objects in
Table 1, two cameras with good spatial resolution were used.
The first one is NACO with its adaptive optics facility (Lenzen
et al. 2003; Rousset et al. 2003) and the second is VISIR (Lagage
et al. 2004). Both cameras allow near- to mid-IR observations.
Our observations are summarized in Table 2.

The NACO observations were reduced with the ESO NACO
pipeline version 4.3.31 under EsoRex using the shift-and-add al-
gorithm with dark and flat-field corrections. The VISIR observa-
tions were reduced using a new prototype pipeline version 4.0.0
under Reflex during beta-testing of the new interface (Freudling
et al. 2013). The images were also combined with a shift-and-
add algorithm using the object detection in each image. If the
object was not detected, offset values written in the fits header
of the raw data files were used to make the image. In some
cases, the covered field was not large enough to include the en-
tire surrounding nebula (the Pistol Star or HD168625). For the
Pistol Star our data did not have enough signal to properly re-
construct the image (all observations of this target were stopped
owing to windy observing conditions). Additional data were re-
trieved from ESO and other archives. In particular, we used
SINFONI (Eisenhauer et al. 2003; Bonnet et al. 2004) data for
WR102ka. We reduced the data using the Reflex interface and
the pipeline version 2.5.2.1. Moreover, we also used the GATOR
database images from Spitzer (Werner et al. 2004) and its instru-
ments IRAC (Fazio et al. 2004) and MIPS (Rieke et al. 2004),
and from WISE (Wright et al. 2010). Images from the MAST
database, HST NICMOS (Thompson 1994), and WFC (Rajan
2010) and also from other missions or instruments were ob-
tained for various stars in order to perform multi-imaging tech-
niques, multiwavelength and multi-epoch measurements. The
data from Herschel (Pilbratt et al. 2010), IUE (Boggess et al.
1978), SWIFT/UVOT (Roming et al. 2005), and EMMI (Dekker
et al. 1986) lack spatial resolution for detecting object proper
motion. The summary of the images is available in Table 3 (incl.
pixel sizes), while in Table 4 the central wavelength of the filters
used is mentioned.

The images of HD168625 are shown in Figs. 1 and 2, while
for the remaining objects of Table 1 the images are presented
in the Appendix in Figs. A.1 to A.8. They reveal the presence
of nebular shell(s) around the main star. Close neighbour(s) are
visible in the cases of the Pistol Star, HD168625, LBV1806-20,

1 ftp://ftp.eso.org/pub/dfs/pipelines/naco/naco-pipeline-manual-
1.1.pdf

Table 3. List of instruments used. The pixel size in angular units (mas
or arcsec) of the cameras is indicated. The filters and NACO cameras
(S13, S27, L27, L54) are mentioned. The central wavelength of each
filter is provided in Table 4.

Star NACO VISIR Spitzer archive
13,27,54 mas 75 mas (irac 0.6′′, MIPS 1.2′′)

Pistol Star K-S13/S27, Lp-L27 PAH2*, SiC*, NeII* irac1,2,3,4
WR102ka problem irac1,2,3,4
WR102ka MIPS24
LBV1806-20 K-S27, Lp-L27 irac1,2,3,4
LBV1806-20 MIPS24
HD168625 3.74/4.05/Lp-L54 PAH1, PAH2 irac1,2,3,4
HD168625 K-S27, Lp-L27 SiC, NeII MIPS24
HD168607 K-S27, Lp-L27 irac1,2,3,4
HD168607 MIPS24
MWC930 K-S27, Lp-L27*
MWC314 K-S27, Lp-L27 irac1,2,3,4
HD152234 PAH1, SiC, NeII
WR102e K-S13/S27, Lp-L27 irac1,2,3,4
HD164794 K-S27, Lp-L27 irac1,2,3,4
HD164794 MIPS24
Star WISE-archive HST-archive other

(1.38′′) 25,50,100 mas archive
Pistol Star 1,2,3*,4* yes 2MASS**
WR102ka 1,2,3,4 no SINFONI***
LBV1806-20 1,2,3,4 yes N/A
HD168625 1,2,3*,4 yes N/A
HD168607 1,2,3,4 yes N/A
MWC930 1,2,3,4 yes N/A
MWC314 1,2,3,4 no swift*, EMMI*
HD152234 1,2,3,4 no N/A
WR102e 1,2,3*,4* yes N/A
HD164794 1,2,3,4 yes* VISIR*

*: too faint, saturated, not used (insufficient resolution or not deep enough).
**: Skrutskie et al. (2006).
***: SINFONI, scale 250 mas × 150 mas, data presented in Oskinova et al.
(2013).

Table 4. Central wavelength in µm of filters used in this article.

Filter λ Filter λ Filter λ Filter λ
2MASS-Ks 2.15 NACO-K 2.19 WISE1 3.4 NACO-Lp 3.45
irac1 3.6 irac2 4.5 WISE2 4.6 irac3 5.8
irac4 8.0 VISIR-PAH1 8.59 VISIR-PAH2 11.25 VISIR-SiC 11.85
WISE3 12 VISIR-Ne2 12.81 WISE4 22 MIPS 24

MWC314, and HD152234. Basic PSF fitting was performed to
obtain their coordinates. The detection cut-off was set at a min-
imum of 3-σ over the background. The limiting magnitude de-
pends on the instrument setup and exposure times and it reached
19-20 in K band and 13-15 in Lp. More than a limiting mag-
nitude, the difference in magnitude (or the contrast at a given
separation) could be more suited to characterizing the detection
of a close companion. They are reported in Table 5.

3. Binarity

The binarity in massive stars is important because it might have
an impact on

– the way they form. Recent models of massive star formation
(Krumholz et al. 2009; Krumholz 2012, 2015) indicate that
the star is created in multiple systems with companions in
different orbital scales (including wide ones of hundreds to
tens of thousands of au);

– the way they evolve (mergers, matter exchange, close or-
bital scale, Baumgardt & Klessen 2011; Tan et al. 2014;
Krumholz 2015);
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Fig. 1. Star HD168625, NACO images: a) 28′′×21′′ Lp image with labels of the surrounding stars; b): 6′′×4′′ zoom in K on the pair HD168625a,b.
The SW companion is at 1.15′′ from the main star. c) 6′′ × 4′′ zoom in Lp of HD168625a,b.

– the triggering of eruptions (intermediate to nearby scale,
Kashi 2010; Kashi & Soker 2010);

– the shaping of the circumstellar environment (all orbital
scales).

In this first article, we focus on wide-orbit companions that
could provide some constraints on the star formation models and
could help with constraints on the massive star formation process
and on the shaping of the surrounding nebulae.

The first step in determining whether a star is in a potential
binary system is detecting a potential companion. To this aim,
one needs to probe different spatial scales. The largest scale is

checked with the imaging techniques, assisted or not with an
adaptive optics facility. NACO observations were mostly used
because this is the instrument with the best spatial resolution
with pixels of 13, 27, and 50 mas. Some HST images were used
as well. The closest neighbours found to the main stars are listed
in Table 5.

To determine the likelihood that a potential companion is
bound to the main star, we used a combination of different tech-
niques and criteria that are presented in the following sections.
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Table 5. Separation, magnitude difference (left), chance projection probability (middle) depending on the sample and method used, and proper
motion comment and binding status of potential companion to the main object (right). Blue values are larger than the defined limit (see text).
Details of the columns are indicated at the bottom of the Table.

Star Proj. sep. prob. sep. prob. sep.1 Max proj. ∆mag P(field)2 P(field)2 P′(field) P′cut-off P,P′,P′′(field)3 Comments Status
′′ ′′ au sep. ′′ for δmag<8.5m NACO trilegal% trilegal 2MASS Motion

10,000 au % all,±2m, ±1m % % %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Pistol Star_4 0.75 1.21 9698 0.77 3.1 - 2.3 11 100, 9, 5 46 42 5,4,5 A borderline
Pistol Star_3 1 1.61 12931 0.77 4.1 - 3.7 20 100, 40, 15 66 42 9,9,9 B field
Pistol Star_1 1.39 2.24 17974 0.77 5 - 4.9 39 100, 100, 71 88 42 16,15,16 C field
Pistol Star_2 1.44 2.32 18620 0.77 5 - 5 42 100, 100, 77 90 42 17,15,15 C field
WR102ka_b 1.35 1.49 11920 0.77 ∼5 90 25, 0, 0 22 42 13,12,13 D field
WR102ka_c 1.98 2.19 17520 0.77 3.5 100 52, 0, 0 41 42 29,25,25 D field
LBV1806-20b 0.76 1.23 14495 0.52 6.6 20 5, 5, 4 18 62 3,3,3 field
LBV1806-20c 0.9 1.45 17166 0.52 6.6 28 8, 8, 5 24 62 4,4,4 field
LBV1806-20d 1.3 2.1 24795 0.52 6.6 59 15, 15, 13 44 62 9,9,9 field
HD168625b 1.15 1.86 4089* 2.81 4.6 - 4.4 5 2, 1, 1 <1 12 3,3,3 E bound
HD168625b real4 1.15 1.33 2927** 3.94 4.6 - 4.4 5 2, 1, 1 <1 12 3,3,3 E bound
HD168607b 2.02 3.26 7183 2.81 10.1 100 8, 7, 7 65 12 7,6,7 field
HD168607c 4.19 6.76 14899 2.81 9.1 100 31, 31, 16 99 12 29,25,25 field
HD168607d 5.19 8.37 18455 2.81 10.1 100 45, 45, 35 100 12 45,36,36 field
MWC930b 2.88 4.65 16293 1.77 7.2 100 2, 2, 2 79 18 14,13,13 field
MWC930c 1.31 2.11 7411 1.77 >8 46 1, 1, 0 27 18 3,3,3 B field
MWC314b <1 mas 1.22 2.06 <1 16 <1,<1,<1 F bound
MWC314c 1.18 1.9 5722 2.06 3.3 - 4.2 29 2, 1, 1 8 16 4,4,4 bound
HD152234b 0.51 0.83 1590 3.24 14 7, 7, 0 12 10 1,1,1 G borderline
WR102e_b 0.71 1.15 9181 0.77 2.6 - 2.6 10 100, 94, 51 43 42 4,4,4 B field
HD164794b 2-8 mas 14 4.48 <1 8 <1,<1,<1 H bound
HD164794c 2.4 3.87 6129 3.92 7.7 86 100, 100, 100 57 8 16,15,15 field
HD164794d 3.5 5.65 8938 3.92 8.5 100 100, 100, 100 83 8 35,29,30 field
HD164794e 4.6 7.42 11748 3.92 8.7 100 100, 100, 96 96 8 61,45,45 field

Column details:
col. 1: star ID, col. 2: projected separation as measured in the image, cols. 3 and 4: probable deprojected separation in arcsec or in au, col. 5: maximum projected
separation in arcsec corresponding to 10,000 au, col. 6: magnitude difference, col. 71: chance projection probability P(field) in NACO images, col. 8: P(field) using
the trilegal model results and with counting from no restriction to ±1m difference with the main star, col. 9: chance projection probability P′(field) following the
formula of Correia et al. (2006) with trilegal data, col. 10: cut-off probability limit for P′ (see text), col. 112: chance projection probability comparison P(field),
P′(field), with P′′(field) following the formula of Ciardullo et al. (1999) and using 2MASS data. Col. 12: Proper motion comment, col. 13: status of the potential
companion: “bound”, “borderline”, “field”.
Table notes:
1: Probable separation should be ≤10,000 au.
2: P(field) ≤10%.
3: Probabilities should be ≤5%.
4: “real” stands for companion in the disk plane with an inclination angle of 60◦ (O’Hara et al. 2003; Smith 2007) corresponding to a deprojection of 30◦.
*: the separation goes up to 5205 au if the largest distance is considered. **: the separation goes up to 3725 au.
A: no motion estimates, B: large motion indicating a foreground object, C: small motion, D: only SINFONI “image”, E: small motion, low projected speed, F: see
Lobel et al. (2013), G: only VISIR image, H: see Rauw et al. (2012).
The error in the chance projection probability estimates is usually lower than 1% (see text).

3.1. Method of chance projection probability

With a single epoch image, one can obtain an indication of
whether a companion is bound to the main star by using the
chance projection probability as previously performed by Oud-
maijer & Parr (2010) with NACO for B and Be stars.

As inputs for this determination, it is necessary to know

1. the projected distance of the potential companion to the main
star in arcsec. It gives the projected area s. The probability of
having an apparent stellar association is related to the possi-
bility that a star randomly falling in the area s can obtain the
same image of the main star with a companion;

2. the projected size of the field of view that provides the total
projected area S of the field of view. The ratio between S and
s gives the number of area components N of the system;

3. the magnitudes of the stars in the field of view or their flux
ratio to the main star;

4. the Galactic coordinates of the main star;
5. the extinction coefficient Av of the main star;
6. the number of stars n in the field of view.

There are two ways to determine n. The first is a simple
counting in the NACO (or another instrument) images. The sec-
ond is to use a model of the Galactic star population, here we
used the “trilegal” model (Girardi et al. 2005). With the trilegal
code, it is necessary to know point number 3 to provide a cut-off
in magnitude, point 4 for the location in the Galaxy, point 5 to
provide the corresponding extinction, and point 2 for the size of
the field to consider. The magnitude cut-off (20-21) in the K or
Lp band is provided by the faintest star detected in NACO (aper-
ture magnitude obtained with Sextractor). We used different Av
values in order to determine a range of solutions.

When K and Lp NACO images are available the results with
the trilegal model with the K or Lp cut-off were compared and
found to be identical. However, we also found that this model
is not perfectly able to reproduce the star population in a few
cases by comparing with the counting in the NACO images. For
instance in the field of the Pistol Star, the trilegal model appears
to be too optimistic with excessive numbers of stars. Changing
the value of Av does not help to diminish the number of stars. In
the case of MWC314 and MWC930, the results appear too pes-
simistic with insufficient stars with respect to the NACO images.
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Indeed, changing the values of Av or the magnitude cut-off did
not improve our comparison.

We consider the possibility of randomly finding a star in the
area determined in point 1. This defines the probability of chance
projection that the potential companion is a field object and is
not bound to the main star. This probability P(event=k) with the
previously defined parameters uses the combinatorics and the
hypergeometric distribution (Brandt 2014) of the available stars
once projected in the field

P(e = k) =
C1 ×C2

C3
(1)

with C1=Ck
m, C2=Cn−k

N−m, and C3=Cn
N . The variables are m= num-

ber of companions visible in the image, k=number of events for
being a binary (corresponding to the number of stars to be added
in the multiple system), N= number of area components, and n=
number of objects to distribute in N. The combinatorics function
C corresponds to

Cb
a = (a

b) =
a!

b!(a − b)!
(2)

The chance projection probability with the different input
sets is provided in Table 5 in columns 7 and 8. An estimate of
the errors was performed considering a 5% uncertainty on the
counting of the number of stars in the field and/or in the area. It
usually results in an uncertainty of less than 1% in the chance
projection probability. However, this error follows the separa-
tion as it increases, but this does not affect the interpretation of
the probability results.

We list the projected separation of the main star to the poten-
tial companion in arcsec. The NACO image is a projection and
the potential companion stars can be above or below the plane
of projection. Thus, we account for the deprojected distance by
correcting the projected distance with the most probable angle
for the random distribution of the orbital plane inclination an-
gle (arcsin(π/4)). In the case of HD168625 the inclination angle
is known and we present both estimates using the known angle
(real) and the most probable angle. We adopt a significance level
of 10% for the probability of random association to consider that
a companion is physically bound to its central star. This thresh-
old of 10% corresponds to a slightly significant result (1.7 σ),
while 5% would be considered more significant (2 σ).

In addition to the formula we used, the probability P′(field)
that a star is a field object can be computed following Correia
et al. (2006). For PMS objects they consider that a probability of
1% is not negligible and the nearby star should be considered as
a field star (the association only results by a chance alignment).
However, the distance to Earth of the objects is not taken into
account by their formula. The objects in their article are at a dis-
tance below 190 pc. Therefore, by scaling this formula, and the
cut-off for being bound or not to the distance of the star to Earth,
we compute a cut-off probability ranging from 8% at 1,580 pc to
62% at 11,800 pc. In Table 5 in columns 9 and 10, we also re-
port the probability of a chance projection following the method
of Correia et al. (2006) and the scaled cut-off probability. We
also note that our formula is usually more pessimistic (70% of
the time), i.e. providing a higher probability value than the for-
mula by Correia et al. (2006) using the same type of counting
with the trilegal data.

To obtain another estimate, we used the probability P′′(field)
defined by Ciardullo et al. (1999), which is given in col. 11 in

Table 5. We compare the results of this method with the proba-
bilities obtained with our formula and with the method of Cor-
reia et al. (2006) using the same 2MASS raw data. The result
is also provided in col. 11 following the order: our formula, the
Correia et al. (2006) formula, and the Ciardullo et al. (1999) for-
mula. The results are comparable even though, as already noted,
their probability of chance projection is often a bit lower than the
one determined with our method. Ciardullo et al. (1999) consider
two objects bound if the probability of a chance superposition
is less than 5%. However, as illustrated with the Pistol Star in
Fig. A.1 for very far objects, non-AO (2MASS-K) images result
in a lower number of visible stars than with AO-assisted images
(NACO-K). As a consequence, chance projection probability de-
termination should be performed with high angular resolution
images or adequate catalogues for those distant stars.

3.2. Multi-epoch observations and proper motions

Multi-epoch images can be used to determine potential proper
motions of the objects and eventually an orbit, or to detect
whether the star is a background or foreground star. If the mo-
tion of the “neighbour” star is larger than the motion of the main
object then it is considered to be a foreground field object. If the
motion is of the same order of value or smaller than the main star,
then the neighbour is considered to be at the same distance of the
main star or to be a background object. However, the proper mo-
tion of the main star is usually not known or is uncertain. The
difference in right ascension and declination, but also in sep-
aration between the main star and the potential companion, is
considered in order to detect any proper motion. We mainly con-
sidered the separation difference because in most of the cases
the sampling or the signal-to-noise ratio is not high enough to
safely estimate a position to within a fraction of pixel. We only
consider valid a proper motion larger than the size of the biggest
pixel in the sample for each star. The absolute-coordinate com-
parison was discarded to avoid systematics and shifts between
the World Coordinate System (WCS) calibration of images orig-
inating from different cameras. Considering the large distance to
the stars, providing an orbit goes beyond the possibility of the
data.

To perform a multi-epoch analysis, we require good spatial
resolution and a pixel size that is as small as possible. For in-
stance, considering a displacement of 10 mas at the speed of 10
km s−1 at 2 kpc, both epochs should be separated by an interval
of 10 yrs. With a displacement of 50 mas at the speed of 100
km s−1 at 8 kpc, the two epochs should be separated by an inter-
val of 19 yrs. Both examples consider the best possible case with
a motion parallel to the projection plane.

Using the Kepler and Newton laws for different mass ranges
of a circular orbit with different star separations (up to 10,000
au), we obtain a range of possible orbital velocities and peri-
ods. From the simulations, the orbital velocities should be less
than 10 km s−1 with periods of thousands or tens of thousands of
years. It is believed that higher velocities indicate field objects.

To obtain larger time intervals, we searched in the ESO and
MAST archives. The best archival images in terms of spatial
resolution and pixel size are those from the HST-NICMOS and
WFC for the objects of our sample. HST images were retrieved
for the Pistol Star, WR102e, HD168625, HD168607, MWC930,
LBV1806-20, and HD164794. In the last case, the images are
not used because they are underexposed for our purpose. The
proper motion of objects found in the field of LBV1806-20 and
HD168607 are not discussed here because they are too distant
(>10,000 au) or too faint (δmag=10m) to be bound. Unfortu-
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nately, there is no HST data for MWC314 and the EMMI images
do not show the nearby star at 1.18′′. For the stars HD168625,
the Pistol Star, WR102e, and MWC930, the characteristics of
their multi-epoch observations are provided in Table 6. Table 7
compiles the proper motion information and the implied bi-
nary status for stars HD168625, the Pistol Star, WR102e, and
MWC930.

Table 6. Summary of the characteristics of the multi-epoch observations
for several stars in our sample. The epochs in MJD and the civil date are
provided at the bottom of the table.

Star Epoch Instrument Time int. Pixel size Limiting
displacement,

yr mas velocity
Pistol Star 1a∗-2a NICMOS-NACO 12.76 13-50 50 mas
and 2a-3a NACO-NACO 1.08 150 km s−1

WR102e 1a-3a NICMOS-NACO 13.84
HD168625 1b-2b HST/WF-WF 0.19 27-50 50 mas

2b-3b WF-NICMOS 1.07 40 km s−1

3b-4b NICMOS-NACO 12.88 at 2.2 kpc
1b-4b WF-NACO 14.14

MWC930 1c-2c HST/ACS∗∗–NACO 5.15 25-27 27 mas, 80 km s−1

*: Epoch 1a from Figer et al. (1998), **: Ubeda (2014)
Epochs “a”: 1a=50705.41-14/09/1997, 2a=55364.23-17/06/2010,
3a=55760.05-18/07/2011.
Epochs “b”: 1b=50597.59-29/05/1997, 2b=50666.80-06/08/1997,
3b=51056.06-31/08/1998, 4b=55761.17-19/07/2011.
Epochs “c”: 1c=53880.35-25/05/2006, 2c=55761.06-19/07/2011.

Table 7. Summary of the proper motion estimates and inferences about
possible membership in a binary system of potential companion as de-
fined in Table 5.

Star Neighbour Displacement Comments Conclusion
mas

Pistol Star P4, P2 not enough data
P3 250 too large foreground
P1 27 smaller than pixel
P8,P9,P10,P13 > 50 too large foreground
P14,P15,P16 > 50 too large foreground

WR102e b > 50 too large foreground
HD168625 b < 27 approaching a bound

d, k, m 51 to 161 too large foreground
j, h <50 small background
c 50 away from a not bound

MWC930 c > 80 too large foreground

The motion found for HD168625b at 1.15′′ (see Fig. 1) is
smaller than the NACO pixel size. If true, it gives a projected
velocity in the image of less than 10 km s−1. Its motion could
indicate that it is approaching HD168625a. This is one of the rare
cases where we can actually obtain an estimate of a fraction of a
pixel for the position of the star. However, this was not possible
in some HST images. Recently, Aldoretta et al. (2015) confirmed
by interferometric observations the presence of this companion.

Star c has a motion of the order of 50 mas going away from
HD168625. The other stars are only visible in our “wide” NACO
image.

3.3. Star separation and flux ratio tests

Because the separation is projected in the images, we de-project
to derive the proper distance of the potential companion to the
main star. For this purpose the deprojected distance is obtained
using the most probable angle in the case of random distribution
of the orbital inclination angle (corresponding to arcsin(π/4)). If

the distance of the main object to Earth is known, the separation
in au of the potential companion to the main star can be deter-
mined. For wide binaries it can range up to 20,000 au (Lépine
& Bongiorno 2007; Longhitano & Binggeli 2010) or even larger
(Shaya & Olling 2011), but we use a conservative distance of
10,000 au. It corresponds to about 90% of the binary star dis-
tribution shown in Lépine & Bongiorno (2007). Krumholz et al.
(2009) and Krumholz (2012) also indicate that companions can
be expected at a distance of 5,000 au or more. Sana et al. (2014)
show that at a separation of 8′′, the cumulative multiplicity fre-
quency reaches 91%. It would correspond to a distance of 16,000
au at a typical distance of 2 kpc. For deprojected distances above
10,000 au the neighbour star is probably not bound to the main
star (Sana et al. 2014, actually indicate that at large separation
only the brightest companions are bound to the main star). The
maximum projected separation in arcsec corresponding to the
linear separation of 10,000 au in the image is also provided
(see Table 5). The results are indicated in Table 5, cols 3 to 5.
Stars P4; HD168625b; HD168607b; MWC314b,c; MWC930c;
WR102eb; HD152234b; and HD164794b,c,d are separated from
the main component by less than 10,000 au. This test eliminates
50% of the potential companions visible in the images as bound
in a binary system.

According to the study by Sana et al. (2014) among massive
stars, it is not rare to find binaries with a magnitude difference in
K or Lp of ∼8-8.5m. The limiting magnitude would ensure that
almost all potential companions are caught. In addition, they also
used NACO to find binaries in O stars, as this threshold would
be adequate for LBV stars and corresponds to a late B-type star
(using the models from Schaller et al. 1992). The results are
provided in Table 5, col. 6, while we give the angular projected
separation corresponding to 10,000 au as an indication in col. 5.
This test allows us to discard 30% of the potential companions
visible in the images as bound in a binary system. The results are
discussed in Section 3.4.

3.4. Binarity assessment and discussion

To summarize, a companion is bound to the main star if it com-
plies with the following criteria:

– The deprojected/probable separation must be smaller than
10,000 au. This value is given in Table 5, col. 4. The pro-
jected separation (from col. 2) is corrected with the most
probable angle of projection to provide a more realistic an-
gular separation (col. 3) converted to au in column 4.

– The difference in magnitudes must be δmag<8.5m (Table 5,
col. 6).

– The chance projection probability P(field) must be smaller
than 10%, P′(field) smaller than the cut-off probability, or
P′′(field) smaller than 5%. In column 7 we indicate the
chance projection probability for the potential companion
considering the stars counted in the NACO images (except
for WR102ka for which SINFONI image is used). In column
8, we provide the chance projection probability for the poten-
tial companion considering the stars counted in the results of
simulations with the trilegal code (Girardi et al. 2005). They
differ by the magnitude ranges used: all trilegal stars, stars
with a maximum difference of ±2m and ±1m.
In column 9, the chance projection probability following the
formula of Correia et al. (2006) is provided and the scaled
cut-off probability is given in column 10. In column 11,
the chance projection probabilities P(field), P′(field), and
P′′(field) respectively following our formula, the formula of
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Correia et al. (2006), and the formula of Ciardullo et al.
(1999) are provided using the same set of 2MASS data. The
same 5% limit is applied to the result of P(field) and P′(field)
in col. 11 for consistency with the result of P′′(field). When
they show contradictory results, we consider the majority of
results as a better trend of the probability.

– The multi-epoch analysis must yield a small motion (Table 5,
col. 12).

The conclusion about the status of the potential companion,
bound, not bound, or borderline is given in the last column of
Table 5.

– Therefore, HD168625 and MWC314 have a companion in
a wide orbit. The latter is known to host a close compan-
ion at less than 1 mas (Lobel et al. 2013) that is beyond the
capability of the imaging technique. MWC314 could be a
triple hierarchical system like HD152234 (Sana et al. 2008).
HD168625b being bound to HD168625a would imply that
it is in the equatorial plane of the system inclined by 60◦
with respect to the observer. The role of this star is question-
able for shaping the inner shell, which appears somewhat
distorted. Could this companion help to clear the material
ejected by the central star in the inner cavity?

– P4 is a borderline companion for the Pistol Star, similarly
for HD152234b with HD152234a. HD152234b is probably
bound to the main star because the separation is small, the
magnitude ratio is 2.5 according to Mason et al. (2009), and
the chance probability is low but at the limit. Based on the
observations of Mason et al. (2009), Sana et al. (2008) also
concluded that this companion is probably bound to the main
star. Together with the central spectroscopic binary it com-
poses a triple system.

In addition, some stars are known to host a close compan-
ion not resolved by the imaging techniques. This is the case for
the Pistol Star (Martayan et al. 2012); MWC314, see above; and
LBV1806-20, whose spectrum showed a double line signaling
a close companion (Figer et al. 2004) estimated by Eikenberry
et al. (2004) to orbit at less than 450 au (representing much
less than 1 mas). However, there is currently no spectroscopic
monitoring to confirm the binary nature. In addition, Rauw et al.
(2012) found a close companion at ∼10 mas of HD164794, while
Sana et al. (2014) resolved the system with the VLTI-PIONIER
(Le Bouquin et al. 2011) and found a separation of 5 mas. Al-
doretta et al. (2015) estimated the separation to be ∼19 mas.
These companions are not ruled out by our criteria. Overall,
about two out of seven of the LBV stars in our sample are found
to host a companion in a wide orbit.

Because more than 75% of O stars are binaries according to
Chini et al. (2012) and Sana et al. (2012, 2014), it is expected
that LBVs are binaries as well, but very few LBVs are known
to host a companion (Rivinius et al. 2015; Lobel et al. 2013;
Damineli et al. 1997). Following Sana et al. (2014), about 30-
35% of the binaries are found with a large projected separation
(as in this paper). In this study, two (HD168625, MWC314) out
of the seven LBVs (29%) in the sample with high angular res-
olution images are binaries with a companion in a wide orbit.
Because of the huge luminosity of the LBVs, it is quite difficult
to detect the surrounding companions. It implies that the mutli-
plicity rate found is certainly a lower limit.

The Pistol Star, WR102ka, MWC930, HD168607, and
LBV1806-20 do not seem to have a companion on a wide or-
bit, even if P4 is borderline for the Pistol Star. However, the sta-
tistical analysis was performed on a small number of stars and

should be extended to more LBV/cLBVs, although the sample
we use already represents 20% of the stars of this type (con-
sidering the sample of 35 LBVs + cLBVs defined by Clark
et al. 2005). Recently, Aldoretta et al. (2015) resolved or par-
tially resolved a companion around three out of nine Galactic
LBVs, producing a binary rate of 33% in their sample. Among
the LBVs, only HD168625 is shared by both studies. Joining the
two studies, the sample results in 4 binaries among 15 LBVs. It
corresponds to a 27±17% binary fraction with a confidence rate
of 95%.

What could be the impact of a companion in a wide orbit on
the evolution of the central star and its eruptions? With a separa-
tion of at least 1500 au, unless with a highly eccentric orbit, they
appear too distant to trigger any eruption by mass transfer or to
have any impact on the day-to-day stellar evolution of the main
star. In such a case, their main role would be to allow the forma-
tion of the star and the nebula (see Krumholz 2012) in addition to
the possible shaping of the nebula. However, according to Kaib
& Raymond (2014), despite a large separation of thousands of
au, collisions could occur between the components of a binary
system on average every 1,000 to 7,500 yrs in our Galaxy. If this
is true it could imply that despite a large separation, companions
in a wide orbit could still trigger cataclysmic events or eruptions.

4. General circumstellar environment description

Table 8. Detected nebular shells, their semi-minor and semi-major di-
mensions in arcsec and in pc. In the case of a round shell, only one
extent is provided. The extent size is defined using the convention of
10% of the peak surface brightness (Tylenda et al. 2003).

Star shell radii shell radii λ Figure shell radii
arcsec × arcsec pc × pc µm pc × pc

Weis (2011)
Pistol Star 25.5 × 24 0.99 × 0.93 8 A.1 0.8 × 1.2
WR102ka 58 × 55 2.25 × 2.13 22 A.2
LBV1806-20* _ _ 3.4-22 A.3
HD168625 int1 19 × 14 0.20 × 0.15 22 1, 2 0.17 × 0.13
HD168625 imd1 46 × 41 0.49 × 0.44 22 2
HD168625 ext1 80 : ×70 : 0.85 × 0.75 22 2
HD168625 ring1 33 × 40 0.35 × 0.43 8 2
HD168607 9.5 0.10 22 A.4
MWC930 59 × 54 1.00 × 0.92 22 A.5
MWC314 26 0.38 22 A.6
HD152234 16-20 0.15-0.19 3.4-22 A.7
HD164794 11 0.06-0.10 5.6 A.8

The distance of the stars to the Earth is available in Table 1.
*: There is no indication for the star LBV1806-20 because it is deeply
embedded in a complex with other WR stars and it is not possible to determine
to which star the nebula belongs.
The last column provides the measurements performed by Weis (2011) in pc.
1: The outer radius measured along the axes ESE-WNW and NE-SW of the
internal (int), the intermediate (imd), and the external (ext) shells are given for
HD168625. As a reference, the dimensions of the NE ring are also indicated.

In the infrared images, all stars in the sample exhibit sur-
rounding nebular shells. Their size was measured in the images
using the convention of 10% of the peak surface brightness as
defined in planetary nebula studies (Tylenda et al. 2003). Taking
into account their distance to Earth, the shell size in parsec (pc)
is listed in Table 8. The Pistol Star, HD168625, MWC930, and
WR102ka all exhibit large shells with a diameter of at least 1
pc. MWC314 presents an intermediate-size shell of about 0.8 pc
diameter, but we cannot detect in the infrared the large bipolar
structure found by Marston & McCollum (2008) in Hα. For ref-
erence, η Car’s shell “radius” is about 0.5 pc. We do not provide
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any measurement for LBV1806-20 because it is deeply embed-
ded in a complex nebular environment with several WR stars. It
is therefore not possible to safely assign shell membership to a
given star. In some cases, the envelope is smaller than 0.2 pc and
might result from another mechanism than matter ejected by gi-
ant LBV eruption. This is the case for the non LBVs HD152234,
HD164794, and possibly for the LBV HD168607. In Section 4.1
the environment of HD168625 and its multiple shells is dis-
cussed as an example, while in Appendix A the main environ-
mental structures of the remaining stars of the sample are pre-
sented along with their corresponding infrared images.

4.1. HD168625: shells and rings

In the infrared images (Figs. 1, 2), HD168625 clearly shows two
different shells and possibly an additional fainter third compo-
nent. Their sizes (in arcsec and in pc) are listed in Table 8. The
internal shell is well known and we observed it with NACO
(Fig. 1). Depending on the wavelength, different extents of the
same shell can be observed (i.e. NACO versus WISE). The dy-
namical age of the internal shell ranges from 4,000 to 5,700
yr according to Nota et al. (1996), Pasquali et al. (2002), and
O’Hara et al. (2003).

By doing a cut of the WISE4 image or using the flux gradi-
ent, a break in the latter can be seen with two different slopes.
The steeper one corresponds to the known “intermediate” shell
(Hutsemekers et al. 1994, their “outer shell”), while the other
one in the outer part could correspond to a fainter redder exter-
nal shell. Its inner part would be blended with the intermediate
shell (see Fig. 2). A forthcoming study will present this external
shell in detail; in particular, careful comparison with the WISE4
extended PSF2 and features3 was performed to confirm the pres-
ence of this external shell. Interestingly, the famous rings dis-
covered by Smith (2007) in the IRAC4 image coincide with the
inner border of the external shell (see Fig. 2). He indicates that
the internal equatorial ring and the intermediate shell are coeval
with an age of a few thousand years. The intermediate and ex-
ternal shells probably result from previous eruptions or stellar
phases with wind expansion.

Ghost patterns in the MIPS image prevent us from properly
finding the extent of the external shell. The ratio of the semi-
major to the semi-minor axis ranges from 1.1 to 1.2 for the ex-
ternal and intermediate shells, respectively, while it ranges from
1.4 to 1.5 for the internal shell.

If the external shell is confirmed, it could indicate that the
rings of HD168625 are possibly formed by the collision of a
fast wind with a slower and previously ejected material. This ob-
servation supports the scenario proposed by Chita et al. (2008).
According to these authors, the formation of such rings could be
the result of the collision of an anisotropic wind created during
the blue supergiant phase of a fast rotating star with a shell cre-
ated by the star in a previous red supergiant phase. Smith et al.
(2007) proposed that the rings are formed in the blue supergiant
phase. Smith et al. (2013) suggested that the collision with the
fast wind of a blue supergiant is not needed to form the rings. An
expanding equatorial ring may be ejected by a blue fast rotating
supergiant star with a clearing of the caps. This scenario does
not require the presence of another older shell.

2 http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/
sec4_4c.html#psf
3 http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec2_4bii.html
#conspicuous_PSF_ring

Other objects like SN1987A or Sher 25 also reveal similar
rings. Hendry et al. (2008) ruled out the presence of a binary
companion and found that the rings of the blue supergiant Sher
25 were formed during the blue loop evolutionary phase. The
rings of SN1987A have shown brightening episodes explained
by the collision of matter with different velocities (Larsson et al.
2011).

Another alternative scenario is proposed by Morris & Pod-
siadlowski (2009) who invoked the merger model to explain the
creation of the rings during the red supergiant phase. However,
it only explains co-eval shells.

The exact nature of stellar fast and slow outflow is unknown.
Do they originate from a normal stellar wind of a red or blue
supergiant or from LBV eruption? HD168625 could become a
template star that explains the other stars with similar rings such
as Sher 25.

5. Conclusions

This study, based on multiwavelength imaging techniques, al-
lowed the environment of LBVs and other massive stars to be
probed on a scale of ∼0.1′′. Our conclusions are the following:

1. In our sample, two out of seven of the LBVs could have a
companion in a wide orbit.

2. Several stars could be a triple hierarchical system with
a close and a wide binary system (possibly MWC314 or
HD152234).

3. For the first time LBV companions were directly imaged.
4. The presence of a companion in a wide orbit is an indica-

tor of the way the star formed: as a group of stars. It also
contributes to constraining models of massive star formation.
However, the actual contribution of the wide orbit compan-
ion to the main day-to-day stellar evolution of the central star
is questionable.

5. All stars are surrounded by circumstellar matter, ejected in
outbursts, by a wind, or both.

6. The creation of the nebular rings of HD168625 is possibly
due to the collision of fast material with a previous slower
shell, which is presented here for the first time but needs to
be confirmed.

7. The companions can act on the shaping of the surrounding
nebula. HD168625b could be at the origin of the clearing
of the internal cavity and of the asymmetric structure of the
internal ring.

Other spatial scales must be probed with other techniques (inter-
ferometry and spectroscopy) to infer the presence of close com-
panions and to analyse the circumstellar matter structure close to
the star.
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Fig. 2. Star HD168625, Spitzer and WISE images: a) WISE 10′ × 10′ tricolour image R=WISE4, G=WISE2, B=WISE1. The intermediate and
external nebulae are visible. The star ' 1′ west of HD168625 is HD168607. b) 2.75′ × 2.75′ Spitzer-irac4 image. The image shows the nebular
rings reported by Smith (2007). c) WISE channel 4 image at 22 µm of HD168625 with labels of the internal, intermediate, and external shells
(shown by ellipses). The position of the NE ring reported by Smith (2007) is also indicated. It matches the outer border of the intermediate shell
and the inner border of the external shell. In these images, it is just possible to see a local flux minimum between the intermediate and external
shell. This flux minimum is used to define the limits of both shells.
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Appendix A: Description of the circumstellar
environment

In the following sections, the infrared images of the stars with
their main circumstellar environment structures are discussed.

Appendix A.1: Pistol Star

In Fig. A.1, we present infrared images of the Pistol Star and
its surrounding environment including WR102e, among others.
The comparison between 2MASS and NACO images illustrates
the adaptive optics capability. The WISE and Spitzer-IRAC im-
ages show the large shell ejected by the Pistol Star. Our NACO
images show the nearby stars of the Pistol Star (with a zoom)
and WR102e. We also note in this image the resolved double
star V4644 Sgr.

Appendix A.2: WR102ka

The infrared images in Fig. A.2 show that the star is embedded in
a complex ambient nebula, but the WISE image also shows that
the star is surrounded by an almost spherical shell. The bottom
part of the figure is the reconstructed image (median) over the
SINFONI cube in the K band. See the main text of the article for
the discussion of the nearby stars.

Appendix A.3: LBV1806-20

The Spitzer and WISE images in Fig. A.3 show that the star
LBV1806-20 lies in a complex region with massive stars and
with filaments and nebulae. None of these structures is centred
in LBV1806-20, but with the other two WR stars, it probably
shapes this surrounding environment. The NACO image shows
the nearby stars of LBV1806-20 discussed in the main text.

Appendix A.4: HD168607

In Fig. A.4, the surrounding environment of HD168607 appears
bluer (warmer) than in the LBV neighbour HD168625. The
shells of the latter reach the vicinity of HD168607.

Appendix A.5: MWC930

Fig. A.5 presents the large circular shell of MWC930 visible
in the WISE images. The objects next to MWC930 seen in the
NACO image are discussed in the main text.

Appendix A.6: MWC314

Fig. A.6 presents the infrared images of MWC314. The Spitzer
and WISE images show the circumstellar nebula that appears
less bright than in other LBVs. In the NACO-Lp image, the wide
companion discussed in the main text can be seen.

Appendix A.7: HD152234

Sana et al. (2014) indicate that HD152234 is a complex system
with a close binary system called Aa and Ab that they resolved
with PIONIER (Le Bouquin et al. 2011). As shown in Fig. A.7-
right, we resolved the B companion at 0.5′′ with VISIR data. The
nebular envelope of the system is shown in Fig. A.7-left.

Appendix A.8: HD164794

Fig. A.8 shows the infrared images for HD164794. The IRAC
and WISE images display the circumstellar shell, but it also
looks as if a filament is crossing this star. Is it actually a fore-
ground nebular filament or a jet of this binary system? With the
data that we have it is not possible to safely infer the nature of
this structure, but this structure appears too large to be a jet. The
MIPS24 image is unfortunately saturated around this star, but it
reveals the large complex ambient nebula. In the NACO-K im-
age, the nearby stars previously discussed are visible.
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Fig. A.1. Multiband images of the Pistol Star. Top row: a) 28′′ ×25′′ 2MASS K-band image, the red crosses correspond to 2MASS known objects;
b) 1.12′ × 1.12′ Spitzer irac4 image treated to enhance the surrounding nebula of the Pistol Star; c) WISE 2′ × 2′ “tricolour” image R=WISE2,
G=WISE2, B=WISE1, the channels 4 and 3 are saturated and cannot be used. This image shows the large nebula surrounding Pistol Star. Bottom
row: d) NACO 28′′ × 25′′ K image, the red circles correspond to 2MASS stars; several known stars are identified in the image. It illustrates the
adaptive optics capability in the field; e) zoom (7′′×5′′) of image d where the surrounding stars are numbered. The white circle has a 5.5′′ diameter.
The objects labelled “u” are possible artefacts. For all images, the orientation is north-top, east-left.

Appendix B: Catalogues of stars surrounding
HD168625 and the Pistol Star in NACO images

This section gives the catalogue of surrounding objects in the
NACO Lp-band field of HD168625 in Table B.1 and in the
NACO K-band field of the Pistol Star in Table B.2. They are
provided for archive purposes and as an astrometric reference for
any future proper-motion analysis. The magnitudes in the table
are indicated without guarantee for the Pistol Star due to a possi-
ble zeropoint offset of 1 magnitude. This results from the lack of
usable reference stars with the same instrumental setup as used
for the Pistol Star. Other known stars in the observed field are
variable as well, preventing an accurate photometric calibration.

Table B.1. Catalogue of objects surrounding HD168625 in a radius of
18′′ as shown in Fig. 1. The NACO Lp magnitude is provided as an
indication.

Star ID RA(2000) DEC (2000) Lp mag.
h mn s ◦ ′ ′′

HD168625a 18 21 19.49 -16 22 26.16 3.56 ± 0.00
HD168625b 18 21 19.46 -16 22 27.23 7.59 ± 0.00
starD 18 21 19.57 -16 22 19.23 8.91 ± 0.00
starL 18 21 18.58 -16 22 19.03 10.96 ± 0.03
starM 18 21 18.71 -16 22 17.32 11.10 ± 0.03
starC 18 21 19.22 -16 22 23.58 11.17 ± 0.03
starJ 18 21 20.55 -16 22 29.76 11.61 ± 0.05
starH 18 21 19.42 -16 22 13.35 12.04 ± 0.07
starK 18 21 18.71 -16 22 20.08 >13 ± N/A
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Fig. A.2. Multiband images of WR102ka. a) 2.75′ × 2.75′ Spitzer tricolour image R=irac4, G=irac3, B=irac2; b) WISE 2′ × 2′ tricolour image
R=WISE3, G=WISE2, B=WISE1. c) Spitzer-19′ × 19′ MIPS-24 µm image; d) reconstructed image from SINFONI in K (8′′ × 8′′). The object
labelled “d” is possibly an artefact.
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Fig. A.3. Multiband images of LBV1806-20. a) 2.75′ × 2.75′ Spitzer tricolour image R=irac4, G=irac2, B=irac1; b) WISE 2′ × 2′ tricolour image
R=WISE3, G=WISE2, B=WISE1; c) Spitzer-10′ × 12′ MIPS-24 µm image. In this image the LBV1806-20 is on the left side of the central
tri-structure; d) 28′′ × 21′′ NACO image in the K band.
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Fig. A.4. Multiband images of HD168607. a) 2.75′ × 2.75′ Spitzer tricolour image R=irac4, G=irac2, B=irac1; b) WISE 2′ × 2′ tricolour image
R=WISE3, G=WISE2, B=WISE1; c) NACO 28′′ × 21′′ Lp image.
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Fig. A.5. Multiband images of MWC930. Left: a) WISE 2′×2′ tricolour image R=WISE4, G=WISE2, B=WISE1. It shows the nebula surrounding
MWC930. Right: b) NACO 7′′ × 5′′ K-band image; there are several nearby objects.
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Fig. A.6. Multiband images of MWC314. a) Spitzer-6′×2′ MIPS-24 µm image; b) 2.75′×2.75′ Spitzer tricolour image R=irac4, G=irac2, B=irac1,
the blue and red spots close to the central object are artefacts due to the high flux levels of MWC314 in those channels; c) WISE 2′ × 2′ tricolour
image R=WISE3, G=WISE2, B=WISE1. It shows the nebula surrounding MWC314; d) NACO 8′′ × 6′′ Lp image. The nearby star is at 1.18′′
NNW.

Fig. A.7. Multiband images of HD152234. Left: WISE 2′ × 2′ tricolour image R=WISE4, G=WISE3, B=WISE1. Right: VISIR-SiC 4.2′′ × 2.9′′
image. There is a fainter star indicated by a red arrow at 73◦ NE and at 0.5′′ from the main object.
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Fig. A.8. Multiband images of HD164794. a) WISE 10′×8.5′ tricolour image R=WISE4, G=WISE3, B=WISE1; b) 2.75′×2.75′ Spitzer tricolour
image R=irac4, G=irac3, B=irac2; c) NACO 6′′ × 4′′ image in K.
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Table B.2. Catalogue of objects surrounding the Pistol Star within a
box of 14′′ × 14′′ as defined in Fig. A.1-d. The NACO K magnitude is
provided as an indication. An offset of the zeropoint may exist (magni-
tudes may have to be corrected by about +1 mag). Entries with K mag
values of 99 indicate there are no reliable measurements. Stars with (+)
are blended and their magnitude is not accurate (indicated with :).

Star ID RA(2000) DEC (2000) K mag.
h mn s ◦ ′ ′′

The Pistol Star 17 46 15.10 -28 50 3.58 6.75 ± 0.00
P1 17 46 15.09 -28 50 2.20 11.73 ± 0.01
P2 17 46 14.99 -28 50 3.40 11.68 ± 0.01
P3 17 46 15.03 -28 50 3.90 10.85 ± 0.01
P4 17 46 15.07 -28 50 4.22 9.86 ± 0.00
P5(+P6) 17 46 15.17 -28 50 2.45 12.44: ± 0.02
P7 17 46 15.24 -28 50 2.51 13.53 ± 0.04
P8 17 46 15.25 -28 50 2.36 13.74 ± 0.05
P10(+P9+P16) 17 46 15.01 -28 50 4.95 13.11: ± 0.03
P11 17 46 14.93 -28 50 4.94 14.17 ± 0.07
P12 17 46 15.18 -28 50 5.08 13.01 ± 0.03
P13 17 46 15.17 -28 50 5.96 13.65 ± 0.04
P14 17 46 14.89 -28 50 3.66 13.96 ± 0.06
P6 17 46 15.19 -28 50 2.24 99.00 ± 99.00
P9 17 46 15.02 -28 50 4.68 99.00 ± 99.00
P15 17 46 14.93 -28 50 1.17 99.00 ± 99.00
P16 17 46 14.99 -28 50 5.11 99.00 ± 99.00
WR102e 17 46 14.67 -28 50 0.63 9.71 ± 0.00
(WR102e)b 17 46 14.70 -28 50 0.03 12.26 ± 0.02
V4644Sgr 17 46 14.26 -28 50 2.61 8.46 ± 0.00
[FMG99]4 17 46 14.89 -28 49 53.01 10.49 ± 0.01
[FMG99]6 17 46 14.25 -28 49 56.48 10.41 ± 0.00
LHO5 17 46 15.82 -28 49 51.09 13.68 ± 0.05
MLB_PS 1 17 46 15.43 -28 50 17.62 13.08 ± 0.03
MLB_PS 2 17 46 15.80 -28 49 50.39 13.93 ± 0.05
MLB_PS 3 17 46 14.44 -28 49 50.17 12.99 ± 0.02
MLB_PS 4 17 46 14.46 -28 49 50.31 12.77 ± 0.02
MLB_PS 5 17 46 14.92 -28 49 50.48 14.23 ± 0.07
MLB_PS 6 17 46 15.11 -28 49 50.53 13.82 ± 0.05
MLB_PS 7 17 46 14.89 -28 49 50.62 14.50 ± 0.09
MLB_PS 8 17 46 15.86 -28 49 50.70 17.27 ± 1.12
MLB_PS 9 17 46 15.25 -28 49 50.84 12.05 ± 0.01
MLB_PS 10 17 46 15.61 -28 49 50.91 12.27 ± 0.02
MLB_PS 11 17 46 14.99 -28 49 50.94 11.76 ± 0.01
MLB_PS 12 17 46 15.80 -28 49 51.02 14.83 ± 0.12
MLB_PS 13 17 46 15.59 -28 49 51.14 12.14 ± 0.01
MLB_PS 14 17 46 14.56 -28 49 51.67 13.30 ± 0.03
MLB_PS 15 17 46 14.83 -28 49 52.04 11.37 ± 0.01
MLB_PS 16 17 46 14.69 -28 49 52.35 14.84 ± 0.12
MLB_PS 17 17 46 14.64 -28 49 52.45 13.23 ± 0.03
MLB_PS 18 17 46 15.58 -28 49 52.46 99.00 ± 99.00
MLB_PS 19 17 46 14.35 -28 49 52.53 13.63 ± 0.04
MLB_PS 20 17 46 15.76 -28 49 52.79 12.27 ± 0.02
MLB_PS 21 17 46 15.23 -28 49 52.93 14.14 ± 0.07
MLB_PS 22 17 46 15.92 -28 49 53.02 11.74 ± 0.01
MLB_PS 23 17 46 15.49 -28 49 53.00 15.93 ± 0.33
MLB_PS 24 17 46 15.12 -28 49 53.14 14.59 ± 0.10
MLB_PS 25 17 46 14.63 -28 49 53.30 13.46 ± 0.04
MLB_PS 26 17 46 15.69 -28 49 53.36 12.88 ± 0.02
MLB_PS 27 17 46 14.67 -28 49 53.42 13.82 ± 0.05
MLB_PS 28 17 46 15.40 -28 49 53.51 13.37 ± 0.04
MLB_PS 29 17 46 15.16 -28 49 53.54 13.53 ± 0.04
MLB_PS 30 17 46 15.70 -28 49 53.56 13.11 ± 0.03
MLB_PS 31 17 46 15.62 -28 49 53.69 12.20 ± 0.01
MLB_PS 32 17 46 15.18 -28 49 53.83 13.43 ± 0.04
MLB_PS 33 17 46 14.34 -28 49 53.84 14.96 ± 0.14
MLB_PS 34 17 46 15.82 -28 49 53.88 14.09 ± 0.06
MLB_PS 35 17 46 14.83 -28 49 54.12 13.84 ± 0.05
MLB_PS 36 17 46 15.40 -28 49 54.37 11.59 ± 0.01
MLB_PS 37 17 46 15.58 -28 49 54.31 17.13 ± 0.99
MLB_PS 38 17 46 16.15 -28 49 54.43 13.74 ± 0.04
MLB_PS 39 17 46 15.14 -28 49 54.54 14.75 ± 0.11
MLB_PS 40 17 46 14.09 -28 49 54.58 14.06 ± 0.06
MLB_PS 41 17 46 14.87 -28 49 54.76 11.69 ± 0.01
MLB_PS 42 17 46 14.62 -28 49 54.87 13.25 ± 0.03
MLB_PS 43 17 46 16.14 -28 49 54.91 14.10 ± 0.06
MLB_PS 44 17 46 15.38 -28 49 55.00 12.73 ± 0.02
MLB_PS 45 17 46 16.10 -28 49 55.04 14.76 ± 0.11
MLB_PS 46 17 46 14.82 -28 49 55.07 13.87 ± 0.05
MLB_PS 47 17 46 15.87 -28 49 55.05 16.33 ± 0.47
MLB_PS 48 17 46 14.05 -28 49 55.18 13.19 ± 0.03
MLB_PS 49 17 46 15.42 -28 49 55.21 13.00 ± 0.03
MLB_PS 50 17 46 15.81 -28 49 55.20 13.47 ± 0.04

Table B.2. continued

MLB_PS 51 17 46 14.68 -28 49 55.81 12.65 ± 0.02
MLB_PS 52 17 46 14.48 -28 49 55.84 14.09 ± 0.06
MLB_PS 53 17 46 14.04 -28 49 55.86 14.56 ± 0.07
MLB_PS 54 17 46 14.37 -28 49 55.86 13.78 ± 0.05
MLB_PS 55 17 46 15.67 -28 49 56.11 12.65 ± 0.02
MLB_PS 56 17 46 14.94 -28 49 56.18 13.42 ± 0.04
MLB_PS 57 17 46 15.42 -28 49 56.22 14.28 ± 0.08
MLB_PS 58 17 46 14.34 -28 49 56.42 13.63 ± 0.04
MLB_PS 59 17 46 14.94 -28 49 56.46 13.54 ± 0.04
MLB_PS 60 17 46 15.95 -28 49 56.71 14.70 ± 0.11
MLB_PS 61 17 46 15.16 -28 49 56.84 13.74 ± 0.05
MLB_PS 62 17 46 14.90 -28 49 57.38 13.40 ± 0.04
MLB_PS 63 17 46 14.54 -28 49 57.41 14.33 ± 0.08
MLB_PS 64 17 46 14.99 -28 49 57.40 99.00 ± 99.00
MLB_PS 65 17 46 16.00 -28 49 57.47 14.81 ± 0.12
MLB_PS 66 17 46 14.90 -28 49 57.56 13.87 ± 0.05
MLB_PS 67 17 46 15.55 -28 49 57.61 18.11 ± 2.42
MLB_PS 68 17 46 14.66 -28 49 57.82 16.33 ± 0.47
MLB_PS 69 17 46 14.78 -28 49 57.85 16.22 ± 0.43
MLB_PS 70 17 46 16.13 -28 49 57.86 15.45 ± 0.20
MLB_PS 71 17 46 14.04 -28 49 58.22 10.89 ± 0.01
MLB_PS 72 17 46 16.10 -28 49 58.33 14.07 ± 0.06
MLB_PS 73 17 46 15.03 -28 49 58.42 99.00 ± 99.00
MLB_PS 74 17 46 14.44 -28 49 58.48 13.33 ± 0.03
MLB_PS 75 17 46 15.78 -28 49 58.54 13.35 ± 0.03
MLB_PS 76 17 46 14.11 -28 49 59.20 13.94 ± 0.06
MLB_PS 77 17 46 15.38 -28 49 59.21 13.76 ± 0.05
MLB_PS 78 17 46 15.51 -28 49 59.22 13.63 ± 0.04
MLB_PS 79 17 46 14.74 -28 49 59.24 13.46 ± 0.04
MLB_PS 80 17 46 14.89 -28 49 59.33 13.60 ± 0.04
MLB_PS 81 17 46 15.87 -28 49 59.48 14.03 ± 0.06
MLB_PS 82 17 46 14.06 -28 49 59.63 13.14 ± 0.03
MLB_PS 83 17 46 14.95 -28 49 59.66 14.54 ± 0.10
MLB_PS 84 17 46 15.09 -28 49 59.78 13.45 ± 0.04
MLB_PS 85 17 46 15.82 -28 49 59.81 14.29 ± 0.08
MLB_PS 86 17 46 14.16 -28 49 59.96 11.27 ± 0.01
MLB_PS 87 17 46 14.37 -28 49 59.99 14.35 ± 0.08
MLB_PS 88 17 46 15.77 -28 50 0.01 14.47 ± 0.09
MLB_PS 89 17 46 15.01 -28 50 0.09 14.23 ± 0.07
MLB_PS 90 17 46 15.46 -28 50 0.12 14.54 ± 0.09
MLB_PS 91 17 46 16.06 -28 50 0.84 12.56 ± 0.02
MLB_PS 92 17 46 15.15 -28 50 0.94 13.99 ± 0.06
MLB_PS 93 17 46 15.62 -28 50 0.94 11.40 ± 0.01
MLB_PS 94 17 46 15.63 -28 50 1.07 10.57 ± 0.01
MLB_PS 95 17 46 15.64 -28 50 1.22 11.26 ± 0.01
MLB_PS 96 17 46 14.14 -28 50 1.07 13.77 ± 0.05
MLB_PS 97 17 46 14.39 -28 50 1.05 14.15 ± 0.07
MLB_PS 98 17 46 15.35 -28 50 1.10 13.97 ± 0.06
MLB_PS 99 17 46 16.00 -28 50 1.35 13.28 ± 0.03
MLB_PS 100 17 46 15.48 -28 50 1.39 10.93 ± 0.01
MLB_PS 101 17 46 14.28 -28 50 1.44 12.88 ± 0.02
MLB_PS 102 17 46 15.56 -28 50 1.44 12.82 ± 0.02
MLB_PS 103 17 46 16.08 -28 50 1.75 13.85 ± 0.05
MLB_PS 104 17 46 15.60 -28 50 1.84 11.33 ± 0.01
MLB_PS 105 17 46 14.11 -28 50 1.84 12.57 ± 0.02
MLB_PS 106 17 46 14.15 -28 50 1.94 11.57 ± 0.01
MLB_PS 107 17 46 15.93 -28 50 2.64 12.66 ± 0.02
MLB_PS 108 17 46 14.72 -28 50 2.78 14.84 ± 0.12
MLB_PS 109 17 46 15.63 -28 50 2.88 14.55 ± 0.10
MLB_PS 110 17 46 14.26 -28 50 2.99 9.47 ± 0.00
MLB_PS 111 17 46 15.97 -28 50 3.26 15.71 ± 0.27
MLB_PS 112 17 46 15.04 -28 50 3.60 9.89 ± 0.00
MLB_PS 113 17 46 14.29 -28 50 3.69 12.66 ± 0.02
MLB_PS 114 17 46 14.09 -28 50 3.72 13.22 ± 0.03
MLB_PS 115 17 46 16.05 -28 50 3.84 14.48 ± 0.09
MLB_PS 116 17 46 14.17 -28 50 3.96 11.01 ± 0.01
MLB_PS 117 17 46 15.80 -28 50 4.05 13.78 ± 0.05
MLB_PS 118 17 46 15.50 -28 50 4.24 14.60 ± 0.10
MLB_PS 119 17 46 14.78 -28 50 4.44 13.95 ± 0.06
MLB_PS 120 17 46 15.54 -28 50 4.57 14.30 ± 0.08
MLB_PS 121 17 46 14.69 -28 50 4.77 14.79 ± 0.12
MLB_PS 122 17 46 14.11 -28 50 4.99 14.50 ± 0.09
MLB_PS 123 17 46 14.80 -28 50 5.25 13.96 ± 0.06
MLB_PS 124 17 46 15.48 -28 50 5.25 99.00 ± 99.00
MLB_PS 125 17 46 15.37 -28 50 5.39 14.89 ± 0.13
MLB_PS 126 17 46 14.47 -28 50 5.74 13.08 ± 0.03
MLB_PS 127 17 46 14.26 -28 50 5.76 18.40 ± 3.17
MLB_PS 128 17 46 14.71 -28 50 5.79 13.31 ± 0.03
MLB_PS 129 17 46 16.00 -28 50 5.78 14.51 ± 0.09
MLB_PS 130 17 46 15.62 -28 50 5.94 13.93 ± 0.06
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MLB_PS 131 17 46 15.38 -28 50 6.04 13.27 ± 0.03
MLB_PS 132 17 46 14.50 -28 50 6.14 10.89 ± 0.01
MLB_PS 133 17 46 14.70 -28 50 6.13 12.84 ± 0.02
MLB_PS 134 17 46 14.39 -28 50 6.15 11.90 ± 0.01
MLB_PS 135 17 46 15.51 -28 50 6.19 13.90 ± 0.05
MLB_PS 136 17 46 14.90 -28 50 6.26 14.27 ± 0.08
MLB_PS 137 17 46 15.46 -28 50 6.33 13.12 ± 0.03
MLB_PS 138 17 46 15.49 -28 50 6.44 12.99 ± 0.03
MLB_PS 139 17 46 15.41 -28 50 6.50 14.24 ± 0.07
MLB_PS 140 17 46 14.04 -28 50 6.68 12.13 ± 0.01
MLB_PS 141 17 46 15.28 -28 50 6.66 13.95 ± 0.06
MLB_PS 142 17 46 15.59 -28 50 6.74 12.40 ± 0.02
MLB_PS 143 17 46 15.81 -28 50 6.95 12.18 ± 0.01
MLB_PS 144 17 46 14.61 -28 50 6.96 14.45 ± 0.09
MLB_PS 145 17 46 15.24 -28 50 7.00 12.98 ± 0.03
MLB_PS 146 17 46 15.56 -28 50 6.97 12.00 ± 0.01
MLB_PS 147 17 46 15.36 -28 50 7.12 16.08 ± 0.38
MLB_PS 148 17 46 15.67 -28 50 7.19 12.50 ± 0.02
MLB_PS 149 17 46 15.43 -28 50 7.26 14.43 ± 0.09
MLB_PS 150 17 46 15.54 -28 50 7.36 10.93 ± 0.01
MLB_PS 151 17 46 16.10 -28 50 7.41 11.75 ± 0.01
MLB_PS 152 17 46 15.56 -28 50 7.60 10.33 ± 0.00
MLB_PS 153 17 46 14.93 -28 50 7.60 15.73 ± 0.27
MLB_PS 154 17 46 15.09 -28 50 7.65 13.63 ± 0.04
MLB_PS 155 17 46 15.47 -28 50 7.71 12.19 ± 0.01
MLB_PS 156 17 46 15.72 -28 50 7.89 13.89 ± 0.05
MLB_PS 157 17 46 15.64 -28 50 8.04 13.96 ± 0.06
MLB_PS 158 17 46 16.06 -28 50 8.17 14.50 ± 0.09
MLB_PS 159 17 46 15.07 -28 50 8.26 14.35 ± 0.08
MLB_PS 160 17 46 15.84 -28 50 8.46 14.38 ± 0.08
MLB_PS 161 17 46 15.54 -28 50 8.52 13.52 ± 0.04
MLB_PS 162 17 46 14.91 -28 50 8.79 99.00 ± 99.00
MLB_PS 163 17 46 14.50 -28 50 9.02 14.21 ± 0.07
MLB_PS 164 17 46 14.33 -28 50 9.23 16.98 ± 0.86
MLB_PS 165 17 46 15.45 -28 50 9.35 14.10 ± 0.06
MLB_PS 166 17 46 15.52 -28 50 9.34 14.08 ± 0.06
MLB_PS 167 17 46 16.11 -28 50 9.56 14.92 ± 0.13
MLB_PS 168 17 46 15.80 -28 50 9.71 14.78 ± 0.12
MLB_PS 169 17 46 15.20 -28 50 10.10 14.44 ± 0.09
MLB_PS 170 17 46 14.39 -28 50 10.13 14.65 ± 0.10
MLB_PS 171 17 46 15.31 -28 50 10.26 13.10 ± 0.03
MLB_PS 172 17 46 16.07 -28 50 10.67 14.18 ± 0.07
MLB_PS 173 17 46 15.37 -28 50 10.70 13.89 ± 0.05
MLB_PS 174 17 46 15.57 -28 50 10.76 14.49 ± 0.09
MLB_PS 175 17 46 14.52 -28 50 10.78 14.31 ± 0.08
MLB_PS 176 17 46 14.35 -28 50 10.92 14.52 ± 0.09
MLB_PS 177 17 46 15.07 -28 50 11.00 13.91 ± 0.06
MLB_PS 178 17 46 15.74 -28 50 11.19 12.18 ± 0.01
MLB_PS 179 17 46 15.50 -28 50 11.29 14.31 ± 0.08
MLB_PS 180 17 46 14.63 -28 50 11.38 10.64 ± 0.01
MLB_PS 181 17 46 14.70 -28 50 11.46 13.31 ± 0.03
MLB_PS 182 17 46 15.03 -28 50 11.95 11.92 ± 0.01
MLB_PS 183 17 46 15.00 -28 50 12.05 11.34 ± 0.01
MLB_PS 184 17 46 14.78 -28 50 12.02 15.09 ± 0.16
MLB_PS 185 17 46 15.50 -28 50 12.17 14.53 ± 0.09
MLB_PS 186 17 46 15.79 -28 50 12.25 14.53 ± 0.09
MLB_PS 187 17 46 15.21 -28 50 12.29 13.88 ± 0.05
MLB_PS 188 17 46 16.14 -28 50 12.59 10.72 ± 0.01
MLB_PS 189 17 46 14.38 -28 50 12.82 11.19 ± 0.01
MLB_PS 190 17 46 15.34 -28 50 12.79 13.85 ± 0.05
MLB_PS 191 17 46 15.33 -28 50 12.84 13.92 ± 0.06
MLB_PS 192 17 46 15.64 -28 50 12.98 12.86 ± 0.02
MLB_PS 193 17 46 15.02 -28 50 13.18 15.80 ± 0.29
MLB_PS 194 17 46 14.68 -28 50 13.71 14.32 ± 0.08
MLB_PS 195 17 46 15.52 -28 50 13.93 13.05 ± 0.03
MLB_PS 196 17 46 15.94 -28 50 14.07 12.43 ± 0.02
MLB_PS 197 17 46 15.47 -28 50 14.15 10.63 ± 0.01
MLB_PS 198 17 46 15.33 -28 50 14.24 13.86 ± 0.05
MLB_PS 199 17 46 15.62 -28 50 14.27 12.51 ± 0.02
MLB_PS 200 17 46 15.36 -28 50 14.39 13.46 ± 0.04
MLB_PS 201 17 46 15.44 -28 50 14.40 11.45 ± 0.01
MLB_PS 202 17 46 14.60 -28 50 14.42 14.21 ± 0.07
MLB_PS 203 17 46 14.69 -28 50 14.52 14.01 ± 0.06
MLB_PS 204 17 46 15.42 -28 50 14.58 12.63 ± 0.02
MLB_PS 205 17 46 15.13 -28 50 14.77 14.17 ± 0.07
MLB_PS 206 17 46 15.31 -28 50 15.20 14.15 ± 0.07
MLB_PS 207 17 46 15.67 -28 50 15.40 12.74 ± 0.02
MLB_PS 208 17 46 15.95 -28 50 15.68 13.87 ± 0.05
MLB_PS 209 17 46 15.60 -28 50 15.85 12.85 ± 0.02
MLB_PS 210 17 46 15.56 -28 50 16.53 13.37 ± 0.04
MLB_PS 211 17 46 15.66 -28 50 16.50 14.85 ± 0.12
MLB_PS 212 17 46 14.90 -28 50 16.82 13.96 ± 0.06
MLB_PS 213 17 46 14.86 -28 50 16.96 15.04 ± 0.15
MLB_PS 214 17 46 15.84 -28 50 17.05 13.47 ± 0.04
MLB_PS 215 17 46 14.30 -28 50 17.26 14.08 ± 0.06


