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Abstract

We investigate the following conjecture: all compact non-Kéhlerian complex surfaces admit
birational structures. After Inoue-Kobayashi-Ochiai, the remaining cases to study are essentially
surfaces in class VI I(]L . We show that Kato surfaces with a cycle and only one branch of rational
curves admit a special birational structure given by new normal forms of contracting germs in Cre-
mona group Bir(P?(C)). In particular all surfaces S with GSS and second Betti number satisfying
0 < b3(S) < 3 admit a birational structure. From the existence of a special birational structure
we deduce a developing meromorphic mappings S — P?(C) from the universal cover of S to P?(C)
which blows down an infinite number of rational curves. From this mapping we recover a GSS.

Résumé

On étudie la conjecture suivante: toute surface complexe compacte non kahlerienne admet une
structure birationnelle. D’apres Inoue-Kobayashi-Ochiai, les cas restant a étudier sont essentielle-
ment les surfaces de la classe VI I(;" . On démontre que les surfaces de Kato qui ont un cycle avec
un seul arbre de courbes rationnelles admettent une structure birationnelle spéciale définie par
de nouvelles formes normales de germes de contractions dans le groupe de Cremona Bir(P?(C)).
En particulier toute surface S contenant une coquille sphérique globale (CSG) et pour laquelle le
second nombre de Betti vérifie 0 < ba(S) < 3 admet une structure birationnelle. De D'existence
d’une structure birationnelle on déduit une application méromorphe développante S — P2(C) du
revétement universel de S dans P?(C) qui écrase une infinité de courbes rationnelles. Cette appli-
cation permet de reconstituer la CSG.
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1 Introduction

What is the best G-structure on a compact manifold ? The classification of Inoue-Kobayashi-Ochiai
[14, 18] shows that all compact complex non-Kéahlerian surfaces but some Hopf surfaces and sur-
faces in class VII§ (i.e. in class VI with by > 0) admit affine structures. In view of the explicit
construction of Kato surfaces (i.e. minimal surfaces S containing a global spherical shell (GSS)
with b3(S) > 0) and the particular cases of Enoki surfaces and Inoue-Hirzebruch surfaces the best
G-structure should be obtained for a subgroup of Bir(P?(C)). It justifies the following
Conjecture: All compact complex non-Kéhler surfaces admit birational structures.

The conjecture is clearly satisfied for all Hopf surfaces because they are defined by an invertible
contracting polynomial mapping. Remains the case of surfaces in class VII]. Since the only known
surfaces in class VIIBr are Kato surfaces and since it is conjectured that there are no others, this
article focuses on the following problem: Do compact surfaces with GSS admit a birational struc-
ture, i.e. is there an atlas with transition mappings in Cremona group Bir(P?(C)). As stronger



requirement, is there in each conjugation class of contracting germs of the form Ilo (or of strict
germs, following Favre terminology [12]) a birational representative ? Clearly Ilo is birational if
and only if ¢ is birational.

Known results:

e If S is a Enoki surface (see [7]) or a Inoue-Hirzebruch surface (see [4]) with second Betti
number by (S) = n, known normal forms, namely

n—1
F(z1,29) = (t"2125 + Z ait™ 2t ), 0< |t <1,
=0

and
N(21,22) = (2723, 2123),

respectively, are birational. Here < fj Z ) € GI(2,2) is the composition of n matrices

(on) o (51)

with at least one of the second type.

o If S is of intermediate type (see definition in section 2), there are normal forms due to C.Favre
[12]
F(z1,2) = (A\2125 + P(22), 25), AeCr, seN k>2,

where P is a special polynomial. These normal forms are adapted to logarithmic deformations
and show the existence of a foliation, however are not birational. In [21] K.Oeljeklaus and
M.Toma explain how to recover second Betti number n which is now hidden and give coarse
moduli spaces of surfaces with fixed intersection matrix,

e Some special cases of intermediate surfaces are obtained from Hénon mappings H or com-
position of Hénon mappings. More precisely, the germ of H at the fixed point at infinity is
strict, hence gives a surface with a GSS [13, 9]. These germs are birational.

Motivation:
Let S be a minimal compact complex surface with Betti numbers b, (S) = 1, n = ba(S) > 0, the
class of such surfaces will be denoted VII{. We consider the following conditions:

(A) S contains a global spherical shell (GSS),

(B) S contains ba(S) rational curves,

(C) S contains a cycle of rational curves,

(D) S admits a deformation into by(.S) times blown up Hopf surfaces.

GSS Conjecture: All these properties are equivalent, and any class VHSr surface possesses a
global spherical shell (GSS) i.e. an open submanifold biholomorphic to a standard neighborhood of
S3 in C? which does not disconnect the surface.

We have
(A) <= (B) = (C) = (D)

In fact (A) = (B) by the construction of GSS surfaces and (B) = (A) by [10],

(A) = (C) also by construction (see [3]) The implication (C') = (D) has been obtained by
I. Nakamura [19, 20].

The strategy developped in [23, 24] is aimed to show that any surface in VII(T satisfies condition
(C), therefore the solution to the following problem would be a step toward the conjecture:
Problem: Let S — A be a family of compact surfaces over the disc such that for every u € A*,
Sy contains a GSS. Does Sy contain a GSS ? In other words, are the surface with GSS closed in



families ?

To solve this problem we have to study families of surfaces in which curves do not belong to flat
families, the volume of some curves in these families may be not uniformly bounded (see [11]) and
configurations of curves change. Favre normal forms of polynomial germs associated to surfaces
with GSS, cannot be used because the discriminant of the intersection form is fixed. Moreover, if
using the algorithm of [21] we put F' under the form Ilo, o is not fixed in the logarithmic family,
depends on the blown up points and degenerates when a generic blown up point approaches the
intersection of two curves.

Therefore this article focuses on the problem of finding new normal forms of contracting germs in
intermediate cases of surfaces with fixed simple birational o, such that surfaces are minimal or not
and intersection matrices are not fixed. Since usual holomorphic objects, curves or foliations, do
not fit in global family, it turns out that these birational structures depending on a finite number
of parameters (in fact the number of parameters is exactly the dimension the local moduli spaces)
could be the adapted notion. Moreover, our construction gives a contracting map G = Ilo unique
up to conjugation by elements of a group L of diagonal linear mappings with coefficients equal to
roots of unity. The existence of our special birational structure gives rise to developing mappings
Dev; : S — P2(C) which contract an infinite number of rational curves onto a point P. The inverse
image of a small sphere by l/?\e/vj gives a spherical shell in S, hence a GSS in S. This observation
will be useful to prove the GSS conjecture.

This article is organized in the following way:

In section 2, we introduce general notions on G-structures when G' = Bir(P?(C)), developing
meromorphic mappings and recall known results on affine and projective structures, these being
particular cases of birational structures.

In section 3, we recall, in order to be self-contained, basic facts on surfaces with global spherical
shells (GSS) which will be used all along this article, large families of marked surfaces with GSS
which have been introduced in [6]. The proof of the main results hinge upon the fact that in all
conjugation class of contracting germs of the form Ilo there is a Favre germ. In order to be complete
and to have clear notations we recall results on Oeljeklaus-Toma logarithmic moduli spaces of Kato
surfaces with fixed intersection matrix of rational curves [21] with a slight modification (see Remark
3.18). Favre germs F' which correspond to Kato surfaces which have a cycle with p branches split
into p polynomial germs of simple type F' = Fyo---0 F,. Let F(s,k,j) be the family of Favre
germs of simple type (see Def. 3.17),

5
F(z1,20) = (Az125 + Z bizh 4 czg T, 28)
i=j

The associated surfaces have a cycle with exactly one branch.

In section 4 new germs are defined, obtained by composition of n blowing-ups (2n parameters)
and, if global twisted vector fields are expected to exist, of an extra invertible polynomial mapping
tangent to the identity (the extra parameter a;4 ). If the surface contains a cycle of rational curves
with only one branch this class of birational contracting germs is denoted by G = G(p, q,r, s,1) and
have the following form

e if the first blowing-up is not generic

-1

_ p+rl _g+sl - i+1 I+K+1

G(z) = (zl 25 4+ E ai(2723) 4 arpx (2123) 2125 |,
i=0

whereK:max{O, [Tj_;il}}, ap€eCa;€C,i=1,...,1-1,l+ K, and

e if the first blowing-up is generic

-1 1-1

. V4 . s

_ ! i+1 +x+1\7 g l i+1 I+K+1

G(z1,292) = <<2122—|— E a;zy " + a4 K 2o ) 2g, (z122+ E ;25" + Qrp K 2 ) z§>
i=0 i=0



Among the blowing-ups there are [ generic blowing-ups, and n — [ non generic, determined by the

matrix
< P4 ) € Gl(2,7).
ros

First, we establish a correspondance between both families F(s, k,j) and G = G(p, q,7,s,1) when
they correspond to the same sequence of blowing-ups giving the same intersection matrix of the
rational curves. We provide precise relations between the integers involved in the construction and
we explicit conditions which insure the existence of global vector fields.

We denote by ® = ®(p,q,7,s,1) the group of the germs of biholomorphisms ¢ : (C2,0) — (C2,0)
for which there exists G, G’ € G such that G’ = ¢ =!Gy € G. Let L := L(p,q,r,s,l) be the group
of diagonal linear mappings ¢ 4 p(21,22) = (Az1, Bz2) where A, B satisfy the condition

B =A"B®, A= Aptripatsl
Then the following holds (see Prop. 4.33 for a more detailed statement):
Proposition 1. 1 (unicity) There is an exact sequence
0-(C,+)—-®—-L—1Id
Moreover if ajrx = 0, then ® = L, i.e. the birational germ G is unique up to a conjugation by a
diagonal linear mapping whose coefficients are roots of unity.

Moving the parameters we have large families of surfaces with base Bj;. Is the canonical image
of a stratum B of surfaces with fixed intersection matrix M in the Oeljeklaus-Toma coarse
moduli space open ? Do we obtain all possible surfaces 7
We know by [6] that outside the hypersurface T, the family is versal. Here we show that T,
is a ramification hypersurface, in particular the canonical mapping from a stratum B to the
Oeljeklaus-Toma coarse moduli space is a ramified covering, the mapping is surjective and vanishing
of cohomology classes is due to ramification phenomena at Ty , N By ar. More precisely (see section
3.4) we have the existence theorem

Theorem 1. 2 (Main theorem) Denote s :=p+q+1—1 andd:= (r+s)— (p+¢q). We choose
ap € C* and € such that €1t5~1 = 1. Then
A) If r + s — 1 does not divide | —d or A # 1 there is a bijective polynomial mapping

fao,e . lel N (lel
a=(a1,...,aq-1) +— (bp+q+1(a)7 e 7bp+q+l71(a))

such that
-1 -1
G(z1,22) = ((zlzé + Zaizéﬂ) 23, (zlzé + ZaiZ§+1> Z;)
i=0 i=0

18 conjugated to the polynomial germ

5
F(z1,22) = ()\zlz§+ Z bz, 25“),

i=p+q

where \ depends only on ag by 4.35.
B)Ifl—d=K(r+s—1) and A = 1, there is a bijective polynomial mapping

fao,e: C-1xC — C-1xC
a=(al,...,a-1,0+K) +— (bp+q+1(a), o bptgri—1(a), c(a))
such that
-1 » -1 i,
i+1 2+K i+1 2+K\"
G(z1,22) = (zlzé—i— E aiz§+ —i—alJerz+ ) 23, (z1zé+ g aiz§+ +al+K22+ ) z5
i—0 i=0



s conjugated to the polynomial germ

s sk(S)
F(z1,20) = ()\zlzg + E br.zh + czf(s)*l,zg“).
k=p+q

Corollary 1. 3 Let S in class VIIT containing a GSS. Suppose that the dual graph of the rational
curves contains a cycle with only one branch, then S admits a birational structure. In particular
Kato surfaces admit birational structures provided that bs(S) < 3.

In there are p > 1 branches, there is for each intersection matrix M an open set in the moduli
space of Kato surfaces with intersection matrix M obtained by birational germs Gy o---0 G, (see
Cor. 1.3 in [6]).

In last section we show how to recover GSS from the existence of developing mappings D\e/vj 08—
P2(C).

2 Birational structures on complex manifolds

2.1 preliminaries

Here are classical definitions as in [14, 15], in the context of complex manifolds. Notice that
dimX =dimY.

Definition 2. 4 Let Y be a complex manifold, G a Lie group acting holomorphically on'Y on the
left and X a complex manifold of dimension n. A (G,Y)-structure on X is a mazimal atlas of X,
¢; : U; = Y such that transition maps

(bij = (bz o (b;l : ¢j(U’L N Uj) — ¢1(Uz N UJ)

are locally elements of G.

Given two (G,Y)-manifolds, a (G,Y)-morphism f : X1 — X5 is a holomorphic mapping such that
for any charts ¢; : Uy — Y, ;1 V; =Y of X1 and Xy respectively and every connected component
C of U; N f~1(V;), there exists g € G such that

fie =t og06:

An affine structure (resp. a projective structure) on X is a (G,Y)-structure where Y = C" and G
is the affine group A(n,C) = Gl(n,C) x C" (resp. Y =P"(C) and G =PGi(n+1,C)).

If f: X; — X5 is a local diffeomorphism and X5 is a (G, Y')-manifold, there exists a unique (G,Y)-
structure on X such that f is a morphism of (G, Y)-manifolds. In particular if f is a non ramified
covering, X; has a canonical (G, Y)-structure.

Taking now Y = P"(C) and G = Bir(P"(C)), G is neither an algebraic group nor a finite dimen-
sional Lie group [2]. Therefore we extend the previous definition:

Definition 2. 5 Let X be a complexr manifold of dimension n. We say that X admits a birational
structure if there is an atlas (U;, ;)icr such that holomorphic transition maps b;; = ¢; o ij_l :
0 (U; NU;) — i(U; NU;) are the restriction of birational mappings of P™(C).

Affine or projective structures are birational structures. If X admits a birational structure and II :
X' — X is a blowup, then X’ admits a unique birational structure such that Il is a (Bir(P™(C), P"(C))-
morphism.

Example 2. 6 Let X be compact riemann surface, then X admits a birational structure. In fact,
if 9(X) > 2, X is the quotient of the upper half-plane H = {z € C | Sz > 0} by a Fuchsian group,

. a b  azib
hence a subgroup of PSL(2,R) which acts on H as (c d) 2=




As when G is a Lie group we have a developing mapping Dev : X — P” (C), however Dev is
now meromorphic.

Lemma 2. 7 Let X be a complex manifold endowed with a birational structure (Uy, p;)icr and
p: X — X its universal covering space. Let x € X, T' = m (X, z) be the fundamental group with
base point x. Then for each xo € p~*(x) there is a I'-equivariant meromorphic developing mapping
Devy, : X — P™(C), in other words there is a group morphism h : T — Bir(P"(C)) such that

Vy €T, Devy, oy = h(y)o Devy,.

Moreover Devy, is holomorphic in a neighbourhood of xg.
Proof: It is sufficient to prove the extension along any path with base point z¢ € p~i(z). Let
z1 € X and v : [0,1] — X a path joining zo = v(0) to 1 = (1). We cover ([0, 1]) by open
domains of charts (Up, ¢o),- .., (Up, ¢p), such that U; NU; # 0 if and only if 0 < i < p— 1 and
j =i+ 1. We prove by induction on 1 < j < p that ¢o : Uy — P*(C) admits a meromorphic
extension Dev,, on Uy U ---UU;. For j = 1, setting DevIoW0 = g and DevIO‘U1 = bp1 0 1. Let
bii+1 = 0iowit 1 @is1(Uiis1) — ¢i(Uiip1). By assumption b; ;41 extends birationally to P"(C).
We suppose that Dev,, has been extended along Uy U --- U U;_; for j > 1 setting

Devmo‘UF1 :Uj—1 = P*(C), x> Devyy(x)=Dbpro---0bj_gi_10p;_1(x)
and we define

Devayy, : Uy = P*(C), @+ Devyy(x) =bor 0 -+ 0bj_1,; 0 ¢;(x)

For z € Uj—1 NUj, we have Devg, ;. (x) = Devg,yy, (2). O

From the lemma we obtain immediately

Proposition 2. 8 If X is compact simply connected of dimension n and admits a birational struc-
ture then the algebraic dimension of X is equal to n.

Corollary 2. 9 A non projective K3 surface has no birational structure.

2.2 Birational structures on non-Kahler complex surfaces

Theorem 2. 10 ([1, 16, 17]) Any compact complex non-Kdhlerian surface has a unique minimal
model X in the following classes

e Class VIy, b1(X) is odd and geometric genus satisfies p; > 0. X is an elliptic surface and
admits, by [14], an holomorphic affine structure.
o Class VIly, b1(X) =1, pg =0, and Kodaira dimension x(X) < 0.
(i) If k(X) = —o0, ba(X) = 0 and X contains a curve, then X is a Hopf surface [16]
and admits a finite covering by a primary Hopf surface. Any primary Hopf surface is
isomorphic to C?\ {0}/H where H is an infinite cyclic group generated by a contraction

g:(21,22) = (az1 + Az3", B22), 0<|a|<[Bl<1, (B"—a)A=0, m>1

If (m — D)X = 0, X admits a holomorphic affine structure [18], p93. In all cases the
contraction is an invertible polynomial mapping hence birational, therefore X admits a
birational structure.

(i1) If K(X) = —o0, ba(X) =0 and X contains no curve, then X is a Inoue surface by [22]
and admits a holomorphic affine structure [14).

(iii) If K(X) = 0, then X is a secondary Kodaira surface [1], bo(X) = 0. By [14], X admits
an affine holomorphic structure.

(iv) Surfaces with ba(X) > 0. The only known surfaces are Kato surfaces.

All compact non-Kéhler surfaces admit affine structures but some Hopf surfaces and surfaces in
class VIIS‘ .
Conjecture: Any compact non-Kéhler complex surface admits a birational structure.



3 Surfaces with Global Spherical Shells

3.1 Basic constructions

Definition 3. 11 Let S be a compact complex surface. We say that S contains a global spherical
shell, if there is a biholomorphic map ¢ : U — S from a neighbourhood U C C?\ {0} of the sphere
S3 into S such that S\ ¢(S3) is connected.

Hopf surfaces are the simplest examples of surfaces with GSS.

Let S be a surface containing a GSS with n = by(S). It is known that S contains n rational
curves and to each curve it is possible to associate a contracting germ of mapping F = Ilo =
o -, _y0: (C%0) — (C2,0) where Il = Iy ---II,,_; : B — B is a sequence of n blowing-ups
and o is a germ of isomorphism (see [3]).

Definition 3. 12 Let S be a surface containing a GSS, with n = ba(S). A Enoki covering of S
is an open covering U = (U;)o<i<n—1 obtained in the following way:

e Wy is the ball of radius 1+ ¢ blown up at the origin, Co = I *(0), By, CC By are small balls
centered at Oy = (ag,0) € Wy, Uy = Wy \ By,

e Forl <i<n-—1, W; is the ball B;_1 blown up at O;_1, C; = H;l(Oi_l), B! CcC B, are
small balls centered at O; € W;, U, = W; \ B..

The pseudoconcave boundary of U; is patched with the pseudoconvex boundary of U;y+1 by I1;, for
1=0,...,n—2 and the pseudoconcave boundary of U, _1 is patched with the pseudoconvex boundary
of Uy by olly, where
oc: B(l+e¢ — -1
z=(21,22) — o(z)

is biholomorphic on its image, satisfying 0(0) = Op—_1.

If we want to obtain a minimal surface, the sequence of blowing-ups has to be made in the
following way:

e Il blows up the origin of the two dimensional unit ball B,
e II; blows up a point Og € Cy = HO_I(O),. ..
e II;; ;1 blows up a point O; € C; = 1’[;1(01-,1)7 fori=0,...,n—2, and

e 0 : B — B sends isomorphically a neighbourhood of B onto a small ball in B™ in such a
way that 0(0) € Cy—1.

7, v}) in which IT; writes IT; (u;, v;) =
(u;v; + a;j—1,v;) and IL; (u}, v}) = (v} 4+ a;—1, u;v}). In these charts the exceptional curves has always
the equations v; = 0 and v} = 0.
A blown up point O; € C; will be called generic if it is not at the intersection of two curves. The
data (S, C) of a surface S and of a rational curve in S will be called a marked surface.

We assume that S is minimal and that we are in the intermediate case, therefore there is at
least one blowing-up at a generic point, and one at the intersection of two curves (hence n > 2).
If there is only one branch i.e. one regular sequence and if we choose Cj as being the curve which
induces the root of the branch, we suppose that

Each W; is covered by two charts with coordinates (u;, v;) and (u}, v]

e II; is a generic blowing-up,
e II, 1 blows-up the intersection of C),,_o with another rational curve and
e o(0) is one of the two intersection points of C,,_; with the previous curves.

The Enoki covering is obtained as in the following picture:
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where
e 1 <[<n-—1andn > 2. Ifall, but one, blowing-ups are generic, then l =n — 1

e Fori=1,...,1—1, II;(u;,v;) = (ujv; + a;—1,v;) are generic blowing-ups,

I (uy, v)) = (v] + a;—1,ujv;) is also generic, but Oy is the origin of the chart (uj,v]),

Fori=1+1,...,n—1, I;(u;,v;) = (uw;v;,v;) or I;(ul, v}) = (v}, u;v}) are blowing-ups at the
intersection of two curves.

3.2 Large families of marked surfaces

With the previous notations, we consider global families of minimal compact surfaces with the
same charts, parameterized by the coordinates of the blown up points on the successive exceptional
curves obtained in the construction of the surfaces and such that any marked surface with GSS
(S, Cp) belongs to at least one of these families. More precisely, let F(z) = Iy ---1I,,_10(z) be a
germ associated to any marked surface (S,Cp) with ¢r(S) = 0. In order to fix the notations we
suppose that Cy = II; ' (0) meets two other curves (see the picture after definition 3.12), hence o(0)
is the intersection of C,,_; with another curve. We suppose that

610’2(0) =0.



We denote by I.(Cp) C {0,...,n — 1} the subset of indices which correspond to blown up points
at infinity, that is to say,

Io(Co) == {i | O; is the origin of the chart (uj, v})}.
Each generic blow-up
L (ug, v;) = (wjv; + ai—1,v;) or ILi(ul,v)) = (V) + a;_1,u;v))
may be deformed moving the blown up point (a;—1,0). If we do not want to change the configuration

we take
foral k =0,...,p—1 (with ng =0),

A4 4n, S (C*7
\V/i, 1<i<l, — 1, Apyteodn,+i € (C,

Vjv 0< ] < Ng4+1 — Il — 1, Unydoodne+Hlo+j = 0.

The mapping o is supposed to be fixed. We obtain a large family of compact surfaces which contains
S such that all the surfaces S, have the same intersection matrix

M = M(S,) = M(S),
therefore are logarithmic deformations. For J = I,(Cy) we denote this family
Pine Sime — By
where
Biwm
= C* x Cho=l x {0}l x .. x C* x Clrm b x {O}e+17le x oo x CF x Clo—171 x {0} e —le1
~C*x Clomlx .. xC*x Clvml x oo x C* x Clo—1 71
and ny +---+n, =n.
In 8; a0 there is a flat family of divisors D C S with irreducible components
Dy, i=0,...,n—1,

such that for every a € Byay, M = (D;q.Dja)o<ij<n—1. We may extend this family towards
smaller or larger strata which produce minimal surfaces:

e On one hand, towards a unique Inoue-Hirzebruch surface: Over
(Clo X {0}”17l0 X oo X (ClN X {0}nn+1*ln X oo X (Clpfl X {0}"97%*1 ~ (ClO Xooe e X (Cl'€ Xoee e X (Clﬁfl’

Q)J)U:S‘LU;)(CIOX...x(clnx...xClﬁfl.

If for an index K, ap,4...4n, = 0, there is a jump in the configuration of the curves. For
instance, if for all kK, kK =0,...,p—1

Apytogne =0 = Onyfoogmtl—1 = 0
we obtain a Inoue-Hirzebruch surface. To be more precise the base
(Clo X ...X(Clh‘ X e X(Clpfl

splits into locally closed submanifolds called strata



— the Zariski open set C* x Clo=1 x ... x C* x Ct+~1 x ...C* x Cle—1—1,

—p= C; codimension one strata
C*xColx .. x{0}xC*xCHx2x...xC*xCl171 0<k<p—1,

- C§+p71 codimension p strata, 1 <p:=pg+---+po—1 <lo+---+1,1,

{0}P0 x C* x ClomPo=b 5. 5 {0}P= x C* x Cl7Pr=d 5o 5 {0}Pr=t x C* x Clo—17Pe-171

e On second hand, towards Enoki surfaces. If for all indices such that O; is at the inter-
section of two rational curves, in particular for ¢ € J, the blown up point O; is moved to
O; = (a;,0) with a; # 0, all the blown up points become generic, the trace of the contracting
germ is different from 0. We obtain also all the intermediate configurations.

Proposition 3. 13 ([6] Prop.2.6) There is a monomial holomorphic function t : CC47 —
C depending on the variables a;, j € J such that over By := {|t(a)| < 1} C C", the family
Dy, : Sy — By may be extended and for every a € By, t(a) = tr (S,).

Remain non minimal surfaces: we still extend the previous family on a small neighbourhood B\] of
By, moving the blown up point transversally to the exceptional curves C; = {v; = 0} U {v] = 0},
introducing n new parameters

L (u, vi) = (wiv; + ai—1,v; + bi—1), or ILi(uj,v)) = (v + a1, uiv) + bi—1), |bim1| << 1,

we obtain
®;,:850 — By,

with dim By = 2n = 2b,. Since for any (a,b) € By, h*(Sa.b; Oub) = 2b2(Sa.p) +h(Sap; Oup), there
are some questions:

e Are the parameters a;,b;, i = 0,...,n — 1, effective ? By [6], they are generically effective.
e Which parameter to add when h'(S,,0,4) = 2b2(Sap) + 1 in order to obtain a complete
family 7

e If we choose 0 = Id or more generally an invertible polynomial mapping, we obtain a birational
polynomial germs. Does this families contain all the isomorphy classes of surfaces with fixed
intersection matrix M 7

Remark 3. 14 It is difficult to determine the mazimal domain B\J over which (T’J,U may be defined.
When the surface is minimal, i.e. when b= (bg,...,bn—1) =0, Fy4(0) = 0. However, when b # 0,
the fized point ¢ = ((1,(2) moves and the existence condition for the corresponding surface is that
the eigenvalues A1 and Ay of DF, ,(C) satisfy |Ni| <1,i=1,2.

3.3 Oeljeklaus-Toma logarithmically versal family

The goal is to compare the Oeljeklaus-Toma logarithmic families of surfaces with the strata in large
families of surfaces ® a6 @ Syn,e — Bjam which have the same intersection matrix M. In the
case of surfaces with only one branch it turns out that we obtain all the surfaces.

We recall the results of [21] used in the sequel with a small correction described in the remark 3.18.
All surfaces of intermediate type may be obtained from a polynomial germ in the following normal
form obtained by [12] and improved by [21].

sk
%—

(CaG) F(21,22) = (A\2125 + P(29) + czg 1, 25)
where k,s € Z, k> 1,5 >0, A € C*,

i )+1
P(z) = ¢z +cj1zh 4+ 25
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is a complex polynomial satisfying the conditions
0<j<k, j<s, ¢ =1 c¢eC, ged{k,m|c,#0}=1

with ¢ = 0 whenever k%kl gZor \#1.
Lemma 3. 15 ([21],84) Two polynomial germs F and

~ - - Sk -
F(z1,22) = ()\zlzé + P(z2) + 25", zk>,
in normal form (CG) are conjugated if and only if there exists ¢ € C, €~ =1 such that

~ sk

k=Fk s=s5 A=¢€)\ P(n)=c’Plen), &c=c-ic

Intermediate surfaces admitting a global non-trivial twisted vector field or a non-trivial section
of the anticanonical line bundle are exactly those for which (k — 1) | s. When moreover A = 1 we
have a non-trivial global vector field.

Definition 3. 16 Let S be a surface containing a GSS. The least integer y > 1 such that there
exists k € C* for which
HO(S, K" @ L") # 0

is called the index of S.
If S is defined by the polynomial germ

sk
%—

(CG) F(z1,22) = (A\2125 + P(29) + czg ', 25)
then by [21] Remark 4.5,
; k-1

Notice that these germs show the existence of a foliation whose leaves are defined by {zo =
constant}, however they are not birational.
The set of polynomial germs

F(z1,22) = (\a173 + P(2), 25)

with ¢ = 0 are called in pure normal form.

Definition 3. 17 ([21] Def 4.7) For fized k and s and for a polynomial germ
sk

(CG) F(21,22) = (A\2125 + P(29) +czg 1, 25)

we define inductively the following finite sequences of integers

j=mi <---<m,<s, and kE>i1>i3> - >1,=1,

by:
(i) mqy := 73, i1 := ged(k,mq),
(”) Mq = mln{m > Me-1 | Cm 7é Oang(iaflam) < Z-afl}; ioz = ng(kvmla“-yma) =

ged(ia—_1,Mq),
(i11) 1 =i, = ged(k,mq,...,mp—1,m,) < ged(k,mi,...,my_1).

We call (mq,...,m,) the type of F' and p the length of the type. If p =1, we say that F is of
simple type.

By [21], §6, the length of the type is exactly the number p of branches previously introduced.

11



Remark 3. 18 1) If the length is p = 1, then ged(k,j) = 1 and there is no extra condition on
the coefficients cji1,...,cs, therefore the parameter space of polynomial germs in pure form with
integers k,s and type j is

Uk,s,j =C* x C5J.

If the length of the type is p > 2, notice that by definition, we have ¢y,, € C*, a =1,...,p, and

Cm, = ¢j = 1, however between ¢, and ¢y, ., the coefficients

Cmg+ins Cma+2igs-+ - C ma+1*ma]i cC
— |t

T

ma+[

may take any value, but all the other coefficients from ¢y, 41 to ¢pm, ., —1 should vanish. Let

2

p—1
e(k,s,mq,...,mp) = Z [maﬂma} +t—m,
a=1

then the parameter space of all the germs F with the same integers s,k and of the same type
(m1,...,mp,) in pure form are parameterized by

(C*)P x Celkssmas-mp)
There exists a family of surfaces
koo, — (C*)P x Clhsmamy)
such that for every u € (C*)P x Ce(F:smismo) G g associated to the germ F,. We have

Theorem and Definition 3. 19 ([21], thm 7.13) With the above notations we have:
o [fk—1 does not divide s, the family

* e(k,s,m1,....mp) __.
Sk,ﬁ,mh-u,ms - ((C )p xC ( ! °) = Uky57m11“~7mp

is logarithmically versal at every point and contains all surfaces with parameters s, k and type
(m1,...,m,).

o If k— 1 divides s, the family
Sk,s,ml,..‘,mp N ((C*)p % Ce(k,s,mh.“,mp) % C =: Uk,s,ml,...,mp

e is logarithmically complete at every point,

e s logarithmically versal at every point of

U)\zl ((C*)p—l % (Ce(k,s,m],...,mp) % C

k,s,ma,...,mp "

and its restriction
A=1
Sk,ﬁ,ml,»--,mp — Uks,ma,...m,

contains all surfaces with parameters s,k and type (ma,...,m,) admitting a non-trivial
global vector field,

Moreover its restrition

Sk,s,ml,...,mp ~C \ {07 1}_ % (C*)P—l % Ce(k,ﬁ,mh...,mp) = UA#LCZO

k,s,m1,...,m,

is logarithmically versal at every point and contains all surfaces with parameters k, s and type
(m1,...,m,) without non-trivial global vector fields.

We shall call this family the Oeljeklaus-Toma logarithmic family of parameters k, s and
type (mi,...,m,).

12



By lemma 315, for fixed k,s and type (ma,...,m,), Z/(k — 1) acts on the germs in pure normal
form. By [21] (7.14),

o Misimy,om, = Uk,ﬁ’ml,m’mp/(Z/(k — 1)) if kK — 1 does not divide s,

A#1l,e=0 . 77A#Le=0
Mo oy = Uk, (2 (k = 1)
° if K —1 divides s,
Mﬁ:}ml,...,mp = Ul?:,lml,...,mp/(z/(k - 1))7

are coarse moduli spaces, moreover the canonical mappings are ramified covering spaces. By lemma

) ; . . A#£1,c=0 A=1
3.15, the ramification set is the union T s m,,....m, (resp. T,M’mh__an7 k,s,ml,.‘.,mp) of hypersur-

faces {¢; = 0}, with j + 1 <4 < s such that ¢; € C, in particular

U)\;é17C:0 \ T)\;é17C:0 N MA;&LC:O
2

k,s,m1,...,m, k,s,m1,....,m k,s,m1,..., mp

A=1 A=1 A=1
Uk,s,ml,...,mp \Tk,s,ml,...,mp - Mk,s,ml,.“,mp
are non ramified covering spaces having k — 1 sheets.

Remark 3. 20 When k — 1 divides s, all the surfaces over the fiber (X, a,b) x C with (A, a,b) €
C\ {0,1} x (C*)P=1 x CPsmimo) qre jsomorphic. Moreover

Uiy e,/ (B (R = D)) OURT 0 (2 (= 1))
s not separated. In fact, denote by
Fyo(z1,22) = (A\2125 + P(22) + cz;?kl,zg)
Then any neighbourhood of F . with ¢ # 0 meets any neighbourhood of Fy o because if A # 1,
Fyc~ Fyp.
Proposition and Definition 3. 21 If k — 1 divides s, the restriction
Sl(c),s,ml,...,mp s (CF)P x Celksimasemy) Ulgz?ml,u.,mp

of the family
Sk,s,ml,.“,mp - (C*)p X (Ce(k,s,ml """ ™) x C:= Uk,s,ml,...,mp

will be called the Oeljeklaus-Toma family of pure surfaces. It is versal at every point of
C\ {0,1} x (C*)P~1 x Celk:smusimy)
and effective at every point of
{1} x (C*)P~1 x Cekom,myp)

Since the hypersurface (C*)? x Ce(F-s:m1m0) 5 {0} is invariant under the action of Z/(k — 1) by
(15), the projection

pr: ((C*)p % (Ce(k,s,ml,...,mp) % C — ((C*)p % Cs(k,s,ml,...,mp) % {0}
induces a holomorphic mapping

p i (C)P x Cheminame) o C/(Z)(k — 1)) — (C*)F x CPRsmumo) 5 L0} /(Z/(k — 1)).
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4 Special birational structures on compact surfaces and bi-
rational germs

4.1 Birational germs associated to marked surfaces with one branch

4.1.1 Invariants and geometric properties

In this section we define new normal forms of contracting germs, then we determine geometric
properties and conditions for the existence of global vector fields.

Let (S,Cp) be a marked surface with GSS and let M be the intersection matrix of the rational
curves. We suppose that Cy is the root of the unique branch (see picture in section 3.1). Then we
have

I - - 1—’[n71(u//7 ’UN) _ (u//pvl/q +ap_q, u//rv//s)
where (u”,v") = (u,v) or (v, v") = (u/,v), <f Z ) is the composition of matrices A =

< é } > or A = ( (1) i ), the last one being equal to A’. We set

6 :=ps—qr==l1,

1<d:=(r+s)—(p+q) <r+s.

Moreover
Mo - T0 1 (u,v) = <uv +Zaz : )

Hence

G(z) =lo(z) = (01 (2)PH oy (2)1Fst 4 Zaz (01 "oa( z)s)i+1701 (z)rog(z)s> ,

where o is a germ of biholomorphism.

If there is no global vector fields the number of parameters given by the blown up points is 2n as
the expected number of parameters of the versal deformation, therefore the question arises to know
if with 0 = Id we obtain locally versal families. If there are non trivial global vector fields we need
(at least) an extra parameter. We add this parameter by the composition 611g - - - II; 1 II; - - - TI,, 1 Id
where

F(u,v) = (u+ ap gv' 75T 0), K >0,

where K will be chosen in proposition 23. We obtain a new mapping (denoted in the same way)

G(z) = olly---IL41I; - - I,,_11d(2)

p+rl q+sl +1 I+K 1
( +§:az 428) "+ any ke (523) T e )

We obtain large families S J.ays =B and we shall prove that the stratum Bj s is a ramified
covering over the OT moduli space of marked surfaces with GSS and intersection matrice M.

Lemma 4. 22 Let

=0

-1
!
G(z) =To(z) = (zf+leg+Sl + Zai (2723)" iy aip (2173) * +1,z71"z§> ,
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then the associated surface S = S(G) admits a non trivial global twisted vector field if and only if

p+s+ri—1-9 r+q+sl—14+9
u = , U= , where 0:=ps—qr
r+s—1 r+s—1

are positive integers. Moreover this twisted vector field is a global vector field if and only if
dagk(S) = 1.
Proof: We have by a straightforwad computation
det DG(z) = (ps — qr)zfﬂ'(lﬂ)_lzg+s(l+1)_1.

By [8], there exists a non trivial global twisted vector field # € H°(S,0 ® L*) on S if and only if
there is a global twisted section of the anticanonical bundle w € H°(S, K~! ® L*). Moreover the
twisting factors satisfy the relation A = k(S)x. The section 6 is a global vector field if A =1 i.e.

1
- 1
£S5 (1)
Such a section exists if and only if there is a germ of 2-vector field (denoted in the same way)
w v 0 0
w(z) = 2{ 2'214(2)8—21 A E

where A(0) # 0 such that w(G(z)) = k det DG(z)w(z), or equivalently,
(@02} 25 + - )" (27 25)  A(G(2)) = K(ps — qr)zf+r(l+l)*1+uzg+s(l+1)*l+vA(2).
Comparing terms of lower degree, we obtain the necessary condition
r._s p+r(+1)—14u _g+s(+1)—14v
<2

af(2125)"T = k(ps — qr)z]

therefore u and v satisfy the linear system

r(u+v) p+r(l+1)—1+4+u

s(u+v) g+s(l+1)—1+4w

The determinant of the system is A = —r — s+ 1 < 0 and the solution is

l—1-9 l—149
u:p+s+r , v:T+Q+S + ,  where §:=ps—qr==41.
r+s—1 r+s—1

Since uw and v are the vanishing orders of w along the curves, a necessary condition for the existence
of w is that v and v are positive integers. Cancelling the common factors we obtain
ag = Ko
and with relation (1)
1
k(S)

— (L —
Kk =day =

If w and v are integers,

(a0 +-- )" A(G(2)) = rOA(2),

with ag # 0. Setting
KO
PO G

we have

A(G(2)) = (1 + f(2))A(2)
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Therefore

A(0)
Alz) = = ;
[T+ (G (2))
j=0
the infinite product converges because G is contractant. This proves the existence of w. O

Proposition 4. 23 Let

G(z) =1lo(z) = (szl gtsl 4 Zal 2723)" "Yak (leQ)HKH ZIZ§> ;

and let S = S(G) be the associated surface. Then the surface S(G) admits a non trivial global
twisted vector field if and only if there exists an integer k > 0 such that

l=d+k(r+s—1),
If this condition is fulfilled, we choose

K=k
. . . . s+rli—1-4§
and S(G) admits a non trivial vector field if and only if for u = WT e N*,
dagk(S) =

Proof: With notations of lemma 4.22, we have to show that u and v are integers if and only if
l=d+k(r+s—1).

If u and v are integers,

p+qg+l—1

ut+v=I0+1+ e N,
r+s—1
where p 4+ ¢ < r+ s. Therefore, | = d + k(r + s —1). Conversely, if | = d+ k(r + s — 1), it is easy
to check that u and v are positive integers and the proof is left to the reader. O

Proposition 4. 24 Let

G(z) =1o(z) = <1Hrlq+“4§:azzp@ +%m+K(qzzy+K+lz{£>,

and S = S(G) the associated surface. Then
kE(S)=r+s.

Proof: The dual graph of the curves is composed of a cycle with (here) only one chain of rational
curves called the tree or the branch. The proof is achieved by induction on the number N > 1 of
singular sequences. We denote as in [3]

a(S) = (Skl "'Sker%

where for any k& > 1, si is the singular k-sequence s = (k + 2,2,...,2) and r; is the regular
l-sequence 1, = (2,...,2). We have

p g\ _(0 1 (01
r s ) \1 k 1 kyn
and for any 1 <1i < N we set
pi @\ _ ( pilkr,.. ki) qi(ky,.. k) Y _ (0 1) (0 1
ri S ri(ky, oo ki) (R, k) 1 Kk 1 k)7
therefore
Pi G\ _ [ @G-1 pi-1tkigioa (2)
i S; Si—1 Ti—1 +kisi—1

If N =1, dual graph of the curves is
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the (opposite) intersection matrix of the (unique) branch is the matrix of a chain of length &

2 -1 0o ... ... 0
-1 2 -1
5, = 0 —1 2
0
: oo —1
o ... ... 0 -1 2

We have ¢ = k + 1 and by [5] thm 3.20, k(S) is equal to ;. Now here

(r5)=(V %)

therefore the result is checked for N = 1.
If N = 2, the sequence of opposite self-intersections of the curves in the branch is

2.2 (ky+2)
klfl

p g\ _ (0 1 0 1Y\ (1 ko
r s o 1 kK 1 ko o ki 1+ kike

On second hand, the order of the (opposite) intersection matrix of the branch is k;. By [5] thm
3.20,

On one hand

2 -1
-1 . e
k(S): :k1k2+k1+1:T+S.
' 2 -1
-1 ky+2
e If N = 2v, the sequence of opposite self-intersections of the curves in the branch is
2.2 (kp+2) 22 oo 2.2 (ko +2)
—— —— ——
ki—1 kg—l ko, _1—1

e If N =2v + 1, the sequence of opposite self-intersections is

2.2 (kg +2) 2002 ceeennn 2.2 (ko +2) 2--22
ki—1 ks—1 k2y—1—1 k2y 41

o If N =2v, we have
p g\ _(0 1 (0 1
ros ) \1 k 1 ko

the determinant of the opposite self-intersection matrix of the branch is

D

0(k1,... ko) =
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where D = D(kq,...,ka,—1) is the block corresponding to

92...9 D e
(ke +2) 2---2 2---2
k‘l—l k3—1 kgy_l—l

We have by [5], the induction hypothesis and relations (2),

k(S) = 8(ki,... ko) = koydet D(ki, ... kay_1) +det D(k1, ... ka1 +1)
= ko (r(kl, e kouykoyy — 1)+ s(kr, .. kouo, Koyt — 1))
(ke koy1) + skt kay—1)
- kQV(r(kh...,kQV,Q,kQV,l)+s(k17...,k2,,,2,k2y,1)—s(kh...,kz,,,z))
(ks k1) + s(k1y- . kop1)
= kavs(kny e koo kou) 1 (k1s e Rope1) 4 8(k1, e Kau_1)

= r(k17"'7k211)+S(k1,...7k/'2u):T+s_

o If N =2v+ 1, we follow similar arguments:
Let D be the matrix of the chain

9...9 9 9. .. 9...9 49
(k2 + 2) (kav—2+2)
ki—1 kg—1 Ko —5—1

then by [5}, k(S) = (S(k’h N .,k2V+1) and

1
D
-1 SV ke
-1
2 -1
-1
6(k17...,k21,+1): 2 1
ko, + 2 S kaia
-1 2
.o =1
-1 2 S k2
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1
D
1 £ ke
;’;11 kai—1+1
= k2u(k2u+1 + 1) -1 2 -1
-1
.o =1
-1 2 Do k211

-1 S ki
pDr ST

-1 2 2oi=1 k2t

= koy(kovp1 +1)0(k1,. .. kav—o,kov—1 — 1)+ (k1 ..., kav_2, kov—1 + kavy1)
= ko(kovt1+1) (7“21/71 + Su—1 — 821/72) + Sop—2 +T2—2

+(kav—1 + kovt1)S20—2.

A straightforward computation show that this last expression is equal to 79,41 + S2,41-

Corollary 4. 25 The indez of the surface S(G) is

r+s—1
Index(S) = .
ndex(S) ged{r+s—1,p+q+1-1}

Corollary 4. 26 Suppose that | = d+ k(r + s — 1), then S admits a non trivial global vector field
if and only if

1—0(r+ s)aékﬂ)’u’”r1 =0.

Proof: If I = d + k(r + s — 1), it is easy to check that

p+s+ri—1-90
u =

=(k+1)r— 1.
r+s—1 (k+1)r—p+

By propositions 4.23 and 4.24, we have the result. O

Notations 4. 27 We denote by G = G(p, q,1,s,1) the family of contracting birational mappings

1-1
G(z) = (ﬁ*rlzg“‘ + Y ai(2r2) T ane (552) T, z;zg> ,
i=0
r+s—1
the group of germs of biholomorphisms ¢ : (C2,0) — (C2,0) for which there exists G,G' € G
such that G' = ¢~ 'Gy € G. Let L := L(p,q,r,s,1) be the group of diagonal linear mappings
wa,B(21,22) = (Az1, Bzo) where A, B satisfy the condition

B=ATB®, A= Avtripitst

whereszaX{O,[ l—d }}, ag €C*, a; €C,i=1,...,1-1l+ K, and by ® = ®(p,q,r,s,l)
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Lemma 4. 28 1) The group L is a subgroup of Uptsyri—s—1 X Uptsyri—s—1, where for any m € N*,
U,, is the group of m-roots of unity.
2) The group L operates on G; more precisely if pa.p € L and

-1
+1 I+ K+1
G(z) = (szrrlngrSl + Zai (z{zj)Z+ + arx (2123) R ,z{z§> ,

=0

then
_ 1 l + I+ K+1
G’(z) = @A}BG¢A7B(’Z) — < p+r q+s + z 17;2 —+ al—i—K(ZlZQ) IZ;) s
where

Ad, = Bitla;, for i=0,...,1—1,1+K.

In particular L is an abelian subgroup of ®.

The proof is easy and left to the reader. |

4.1.2 Moduli spaces of birational mappings

We want to determine the equivalence classes of the birational mappings G, or, that is equivalent,
the fibers of the canonical morphism to the OT moduli space. Let

-1

I+K

G(z) =To(2) = <z'f+”z3+sl+2ai(zfz5) Tt ax (7)) “,zfz;>,
=0

T S l TS
G'(z)=Td(2) = ( vl gtsl 4 Z 2122 +al+K(zlz2) +K+1721z2>

be two such birational germs and suppose that there exists a germ of biholomorphism ¢ such that
G' o = o G. Since the degeneration set {z129 = 0} is invariant and ¢ cannot swap the rational
curves, ¢ has the form

p(21,22) = (A21(1 4 6(2)), Bza(1+ p(2))).

We have

»(G(2)) = A(szrlengSl + Z a; (lez)wl) (1+60(G(2))), Bz1 25 (1 + u(G(2)))

1€{0,...,l-1,1+K}

o) = ([an@+oe)] [Baa(+ )]
s(i+1)

f Y a(ana o) (Baiuen)

i€{0,...,l-1,I+K}
ATBE 231+ 0(2))7 (1 + p(2))°)

Second members give the equality

(1) B(1+ u(G(2))) = A”B*(1+0(2))" (1 + p(2))*
Therefore .
B=A"B* and 14 u(z)= ﬁ(l + e(Gf(z)))T/Sm . 3)
§=0
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First members of the conjugation give

A(zf-&-rl gtsl Z ai(z{zg’)iﬂ) (1+0(G(2)))

i€{0,...,l-1,l+K}

(1) = (an+ o))" (Bt + u2))"

+ Y d(ana+ 9(2))>T<1—+1> (B0 + u(z)))s(i“)

i€{0,..,l—-1,l+K}

Setting 0 = ps — qr = £1, we obtain with (3),
A(zf+leg+Sl + Z a; (zle)lH) (1+6(G(2)))
i€{0,...,1— 11+ K}
—(gq+si)

r/sitt

_ Ap+rqu+lef+TlZg+Sl(1 + 9(2,))6/5

—

(146G (=)

1

J

—s(i+1)

+ Z a BH-I T s (z+1) ﬁ(1+0 G] )T‘/Sj+1

1€{0,...,l-1,l+K}

Lemma and Definition 4. 29 With the previous notations, given p,q,,s,l, the positive integral
solutions (i, ) of the system

p+ri+i = ry
E .
(B) {q—i—sl—i—j = sv
for which there exists v > 1 are all of the form
{? = hrer gy
J = ks—q

We have then v =k +1. In particular the least solution is (r — p,s — q). When (E) has a solution
we shall say that there is a resonance.

Proof: We have v =1+ pTH =1+ ‘HJ Since 2 and 2 are integers, there exists k, &’ € N such

S

that p+¢=kr and g+ 7 = K’s. Moreover k= pjl = Jsr = k’ which gives the result. The other
assertions are evident. O

Comparing monomial terms 2" 24*" in (I) we obtain thanks to lemma 4.29
A= Ap+rqu+sl (4)

By lemma 4.28, A, B are roots of unity.
Let Aut(C2,0) be the group of germs of biholomorphisms of (C?,0) and Aut(C?, H,0) be the
subgroup of Aut(C2,0) whose germs leave each of the components of the hypersurface H = {212 =
0} invariant, i.e. ¢ € Aut(C?, H,0) has the form

o(z) = (Az1(1 4 0(2)), Bzo(1 + p(2))).

Notice that ® C Aut(C?, H,0).
Let Autry(C2,0) (resp. Autrq(C% H,0)) be the subgroup of Aut(C? 0) (resp. Aut(C?, H,0)) of
germs of biholomorphisms ¢ tangent to the identity, i.e. ¢ € Autrq(C?, H,0) if

p(2) = (21(1+0(2)), 22(1 + pu(2)))-
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Lemma 4. 30 Leta : Aut;q(C?, H,0) — Aut(C%, H,0) the canonical injection and 3 : Aut(C% H,0) —
L defined by B(¢) = @ap the linear part of p. Then, Autrg(C?, H,0) is a normal subgroup of
Aut(C?, H,0) and we have the exact sequence

(Id} — Aut;q(C?, H,0) % Aut(C%, H,0) 2 L — {1d}.

Replacing ¢ by gogog}B we obtain an automorphism tangent to the identity, therefore we have
to determine equivalence classes of the equivalence relation on G

G~G «— 13 e Autld((CQ,H,O), G/QOZQOG.

The equation (I) becomes

(szrleng‘Sl + Z ai (2] 22)1“) (1+60(G(2)))
i€{0,0 - 1,1+ K}
, —(g+sl)
> r/sd Tt
P A
—s(i41)
0 ) r/sitt
+ Y dE ] (1 + e(GJ(z)))
i€{0, - 1,1+ K} j=1

Notice that we obtain immediately ag = ag.
The question is to determine the quotient G/ ~. We shall see at the end of this section that the
equivalence relation is generically trivial.

In the following lemma the maximum is due to the fact that we may have I — d < 0.

l—d .
Lemma 4. 31 Let n = max{d,l—l— |:W:|} and 9(2) = Zi+j21 t’L]Z;]L_Z% [f tl] =0 fOT
i+ 35 < pu, then

=0
and ¢ s linear.
Proof: By hypothesis we have
0G=) = | > abty | (:1z5)"" mod MUFHTVH
it+j=p+1

hence

= r/s’ T )

H (1 +0(G (2 ) =1+ 2 Z apti; | (2725)"" mod p(r+s)(pt1)+1

i=1 i+j=p+1

We show by induction on k =44 j > pu+ 1 that ¢;; = 0.
We consider the terms of degree p+q+ (r+s)l +p+1

p+rl _q+sl 6 i ]
z1 29 3 tijz1 2y

i+j=p+1

and we are looking for other terms of the same degree or bidegrees in (I).
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The inequalities
pHa+(r+s)l+p+1<p+q+(r+s)l+(+s)(u+l),

pHg+(r+s)+pu+l<r+s+r+s)(p+1)

show that there is no other term of the same degree when axy; = 0. If axy; # 0, | =
d+ K(r+s—1) and it is easy to check that (r+s)(I+ K) #p+q+ (r+s)l+ p+1, hence t;; =0
ifi+j=p+1.
Suppose that for k > p + 2,
0(z) = Y tiziad,
it+j>k

then the similar inequalities show the result. O

r+s—1
Then, the coefficients t;j, for i +j < p, with a; and a;, i =0,...,1 — 1,1+ K, determine uniquely
0 hence also .

Lemma 4. 32 Let 4 = max {d, l+ {ld} }

Proof: We show by induction on k£ > 0 that the coefficients ¢;; for i+ j < u determine uniquely
the coefficients t;; for i+j > p+k. It is sufficient to show that if the coefficients ¢;;, for i+j < p+k
are determined by coefficients t;; for ¢ + j < p then the coefficients ¢;; for i +j = p+ k + 1 are
determined by coefficients ¢;; for i + j < u+ k. On that purpose we consider homogeneous part of
degree p+ g+ (r+s)l + p+ k+ 1 in (I) which contains the part

p+rl q+sl6 ]
Z1 29 3 E tijz1%
iti=p+k+1

In order to prove that all other terms with such degree involve only #;; with ¢ + 7 < p +k, it is
sufficient to prove that if i + j > p+ k + 1 then

r+s+(+5)r+s)>p+g+r+s)+p+k+1,
and it is sufficient to prove that
r+s+(p+k+1)(r+s)>p+qg+(r+s)l+p+k+1.
o If [ <d, u=d, and we have to check that
r+s+(d+Ek+1)(r+s)>ptq+(r+s)d+d+k+1

which is clear;
e fd+K(r+s—1)<l<d+ (K+1)(r+s—1), then p =1+ K. We have to check

r+s+(I+K+k+1)(r+s)>p+qg+(r+s)l+I+K+k+1
However this inequality is equivalent to
d+ (K+k+D(r+s—1)>1

which is satisfied by assumption.
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Proposition 4. 33 Let G = G(p,q,r,s,1) the family of contracting birational mappings
G(z) = ( prlgtsl Zaz 2123) +1 + a4k (z{zS)HKH,z{zS) ,

where K = max{O [Hsdl}}, a€C*a;,€C,i=1,....l - 1|+ K.
1) The group Autrq(C% H,0) N @ is isomorphic to (C,+) and 0 is determined by exactly one

coefficient of the homogeneous part of degree | + K.
2) Suppose that —=% is a non negative integer, i.e. | =d+ K(r +s—1), then

a) If there are global vector fields, Autrq(C%, H,0) N ® acts trivially on G, in particular aj,f is
an effective parameter,

b) If there are no global vector fields, Autrq(C?, H,0) N @ acts transitively on Carres t-e. the
complex structure on S(G) does not depend on ajyx.

3) Suppose that 1 is not a mnon negative integer, then Autrq(C?, H,0) N ® acts transitively on

Caryxcr ive. the complem structure on S(G) does not depend on a4 .

Proof: Suppose that 6 # 0 and let v = min{i +j > 1 | ¢;; # 0}. By lemma 31, v < p. The
homogeneous parts of lower degree in (I) which involve ¢;; with v =i+ j are

o Casevy<l—lory=Il+K,

(A) apz1 %5 Z tijad | (2725)7 + ay (27 25)7H,
i+j=
(B) Arigghail - D tysd,
z+J 2l
T - :
© —aoriz | 3ty | (25" + e ()"
i+j=y

e Casey>land v #1+ K, (A) is replaced by

(A) aiz | Y tyah | (125)",
i+j=

and (C) by

(") —caozias | Y tyah | (5
itj=v

o If there is no resonance, the bidegrees of the terms (A) and (C) (resp. (A’) and (C”)) are all
distinct of those in (B), therefore we obtain readily

Z i,J
ti]‘2’122 = O,

itj=y

hence a contradiction

24



o Therefore there is a resonance and there exists a unique coefficient ty,—pxs—q # 0 with
k(r+s)—(p+¢) =+. Then
— Casey<l—lory=I[+K,

kr—p 1
027 23tk —pks—qly  (2123)7 + ay(2723)7F

_ _p+rl_g+slg kr—p _ks—q ! (o7 s\ Y+1 T TS kr—p/_r s
=21 2y Glhr—pks—qZ1 %o +ay(z122)7 — 5021 25t kr—p ks—qy  (2123)7

— Casey >, v#I+ K
kr—
021 25tk —p,ks—qQg  (2123)7

_ ptrl_g+sl§ kr—p _ks—q ; kr—p X
=21 23 Slhr—phs—q?1 23 | = 5002 Z3tkr—pks—qly  (2173)"

The equality of degrees implies that { = d 4 (k — 1)(r + s — 1), i.e. the surface has twisted vector
fields and v =1+ (k — 1) = I+ K (and the second case never appears). After simplification (recall
that § = £1), we obtain

] -
Qyg = AUtk — tkr—p,ks—q; (1 —6(r+ S)Ggr p+1>
Let M = (21, 22). Since 0(z) = 0 mod MHE | (1) gives
a; =a;, for i=0,...,1—1,

therefore, applying corollary 4.26,
e If there are global vector fields, 1—5(r+s)a§r7p+1 = 0and aj, x = a4k, hence Aut;q(C?, H,0)N
® acts trivially;
e If there are no vector fields, 1 — §(r + s)algrﬂwr1 # 0, and Gy N ® acts transitively on the line
aj+g € C.
By lemma 4.32, t = t(x41)r—p,(K+1)s—g € C determines the formal series 6. It remains to prove
that 6 is convergent hence Aut;q(C? H,0)N® ~ C.

e If there are global vector fields, there exists a 1-parameter group of automorphisms, therefore
there are such 6 and conversely, any 6 defines an automorphism of S(G) which is in the
identity component of Aut(S(G));

e If there is no global vector fields, a;1  is a superfluous parameter and all surfaces are isomor-
phic, therefore there are such isomorphisms.

O

4.1.3 The twisting coefficient

We want to compare birational germs and Favre polynomial germs of the form

k o

F(z1,22) = (An12§ + P(22) +cz3 ", 25), P(zm)= > bizh

given in [21] (see section 3.3). The parameter A determines the twisting coefficient x such that
HO(S, K " ® L") # 0. In birational germs this role is played by the position of the blown-up point
(a0,0), ap # 0, on the root of the branch when there is only one branch. The condition j < k (or
p—+ g < r+ s in our notations) implies that the first blowing-up is of the form (u',v") — (v',u'v’)
hence we have to consider the germ II; - - - II,, _1 61y - - - II;_; at the point (ag, 0). After a change of
coordinates u = zy + a;_1, v = 25 we obtain

-1 -1
. P . s
1 I+K+1 1 I+K+1 :
G(Zl,;;2) = <<zlzé+ E aiz? +al+K22+ + ) zg7 (zlzé—i— E aingr —l—aHKz;r +) z;)
i=0 i=0
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In case there is no global vector fields, a;1 k is a superfluous parameter, hence we shall
suppose that a;x = 0.

Remark 4. 34 1) If index(S) = 1, we have A= = k(S)k, i.e. the invariant used here is the
inverse of the invariant A = \(S) in [8].
2) If index(S) # 1, A(a) is defined up to a (k — 1)-root of unity.

Proposition 4. 35 Let S be a surface with GSS associated to the germ

-1 -1
. P . T
l 1 I+K+1 l +1 I+K+1
G(z1,22) = ((zle + E aizg' + Q14K %5 + ) zg, (2122 + g a2y + ary K2 + ) z§> , ag#0
i=0 i=0

Let pp = index(X) be the index of S. Then on the corresponding base By of the family @y o
Sime — By, the holomorphic function

k=KMo C"—C*

such that HO(SQ,KS_a” ® LF() £ 0 is a monomial holomorphic function of ag, where Oy = (ag, 0).
More precisely, if § =ps —qr ando=p+q+1—1,

ro

a1 P+l
K,M,0(a0) =6"ag( ey ), 'u(r—l—s—l

—p+ 1) € N*.
In particular k is surjective.

Proof: Let k := Ky m,, be the holomorphic function given by [6] prop.4.24.

Setting
( ) = zlzé + Z aiz?’l and
i€{0,...,l-1,l+ K}
H = i( ) =zt 4 Z ai(i+ 1)z
0z9 2 .
1€{0,...,I-1,l+ K}
p—1 p—1 P
() a () [ () et
DG(z) =
r—1 r—1 T
() s () s ()
and

+r—1
det DG(2) = (ps — qr)( )p Zhrats=1,

Let 6 € H°(S, Kg" ® L"), then there exists an invariant germ in a neighbourhood of the origin of
the ball still denoted by 8 which vanishes only on the curve {z3 = 0},

N o o\
such that A(0) # 0. This germ satisfies the condition
0(G(z)) = r(det DG(Z))HG(Z),

which is equivalent to

ar u(p+r—1) s—1D)ta
( ) 295 A(G(2)) = K(ps — qT)u( ) splars—D+a )
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where ¢ := ps — qr = +1. Considering the homogeneous part of lower degree of each member, we
obtain

(1) a(r+s—1)=pulp+qg+l—-1+r+s—1)=plo+r+s—1)
r— +r—1
(2). k= (ps — qr)ag’ P

By [6] proposition 4.24, k vanishes on smaller strata, i.e. when ag = 0, therefore ar—pu(p+r—1) > 0.
We derive the value of x from (1) and (2). O

4.1.4 Representation of surfaces with one branch and without twisted vector
fields by birational germ

We suppose that ] —d Z0 mod v+ s —1, a;4x = 0.
Given F(z1,29) = ()\zl 23 + Zf:pﬂ b2, z§+s), there exist germs G which have the same twisting

coefficient A as F' by the surjectivity of £ (Prop. 4.35). The aim of the sequel of this section is to
prove

Theorem 4. 36 Given \, we choose suitably ag € C* and ¢, €5~ = 1, in such a way that any
G € G(p,q,r,s,l) with parameter ag is conjugated to a germ F € F(o,k,j) with parameter A. Let
c=p+q+1—1. Then
A) If r+ s — 1 does not divide l —d or A # 1 there is a bijective polynomial mapping

fao,e . Cl_l _ (Cl_l

a=(ar,...,q-1) +— (bp+q+1(a)7 . 7bp+q+l—1(a)>
such that
-1 -1,
G(z1,22) = ((zlzé + Zaizéﬂ) 23, (zlzé + Zaiz§+1> z§>
i=0 i=0

18 conjugated to the polynomial germ

F(Zl,ZQ) = (}\leg -+ Z bizé, Z£+S),

i=p+q

where A as k depend only on ag by 4.35 and bpiq = 1.
B)Ifl—d=K(r+s—1) and A = 1, there is a bijective polynomial mapping

fag,e: C1xC — Ci-1xC
a=(at,...,a-1,0+K) +— (bp+q+1(a), oy bptgri—1(a), c(a))
such that
-1 » -1 ,
i+1 K+1 i+1 K+1
G(z1,22) = (zlzé +Zaiz§+ + ap g bTE ) 23 (zlzé —|—Zaiz;+ + a2y KT ) 25
i=0 i=0

18 conjugated to the polynomial germ

ok(S)

[ea
F(z1,22) = | A212§ + E bz +czg @7 28t |
k=p+q

where bpyq = 1.
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Proof: Let ¢(z) = (¢1(2),Cz2(1 4+ u(z))) be a germ of biholomorphic map which preserves the
degeneration set {z2 = 0}.

P(G(2)) = <¢1(G( ). € {zlzﬁzaz l“} 25(1+M(G(Z))>,

Fle(2)) = | Ap1(2)C723 (1 + pu(2) Z OO 25 (14 p(2))*, CTF° 254 (1 + p(2))+
k=p+q

Comparing the right members we have

(I1) {z122 + Zal,@} (14 m(G()) = CH 7 (14 pu(2))" .

Constant parts give the condition
G’S — Cr+s—1 (5)

r4+s—1

therefore C' is determined up to a root of unity € such that e = 1. In other terms if we choose

a local determination of the (r + s — 1)-root al/(rJrs 2

C = 6a(r)/(?”ksfl)7 6r+s—1 - 1. (6)

Moreover the equation

(II) {1 + . (Z aizh + 2125 ) } (1 + u(G(z)) = (1+p(z))"*=.
i=1

has the solution

oo -1 [CwirEay
1+N(Z)—H{1+<ZazGJ 2))' + G (2)(GL(2))! 1)}
0 i=1

Left members give the equality

-1 P -1 "
1 . 1
1 (ag {1 +— < E aizh + 212571 A% 1+ - E a;izh + 212571 zte
0 \i=1 0 \i=1

pg+l— 1 p+q+i—1
:)«pl(z)(sz(l—Fu(z)) Z b C 25 (1 + p(2)"

k=p+q

()

We want to express the coefficients by, with the a;’s, however the coefficients A;; of the series
1(21, 22) ZAZlezQ

depend also on a;’s. For example, considering homogeneous parts of bidegree (0,p + ¢), we have,

(RO) Awaé’ — bp+qcp+q CPta
hence with (5),
Arp = el T, (7)
Ifp>0,r+s>p+q+1andl > 2 homogeneous part of bidegree (0,p + g+ 1) gives
Aloagflpal = p+q+1cp+q+1 + CPta 7(;11—:_1)7“ %
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therefore by (Ry),

5&1

R b =
(R1) P G 1 s)
Comparing terms of bidegree (1,p+ ¢ + [ — 1) we obtain

_ Cprta
Agopall™" = N CPrati=l 4 rlptq) €71

r+s ap
therefore with (7) and (6), and since k = k(S) =r + s,
0  pol-g=
A= E (ZO k=t . (8)

where § = ps — gr (with formula A\~ = kk, notice that we recover the result of Prop 4.35) .

In order to express the coefficients b4+, 7 > 1, as polynomials of variables aq,...,a;—1, it is
also necessary to express the coeflicients A;; involved in the relations as polynomials of the same
variables ay,...,a;—1. Therefore we have to determine the set of points (4, j) € N x N which occur
as indices of the A;;’s in the relations.

Let Ey be the subset of indices (¢, j) which occur in homogeneous part of bidegree (0, k) for p+ ¢ <
k<p+qg+1—1inequation (/). We have
Ey={(,j) Ip+a<ilp+q)+ij(r+s)<p+qg+i-1}
Then we define a translation

T(i,j)=(,j+p+q+1—1)

and we want to determine which coefficients A,g are involved on the homogeneous part of bidegree
T(i,7). On that purpose we define a sequence (E,,)m,>—1 of increasing subsets of N x N, starting
with E_; =0,

Emz{u;j)|i<p+q>+j<r+s>s<p+q+z—1>(1+rj9+---+m>}, m=0,

and

By = {(i,j)|i(p+Q)+j(T+5)<(P+(I+l_1)7“:-—:il}'

For any polynomial expression Q(z1,22) we denote by (Q(z1, 22)),,» the homogeneous
part of bidegree (a,b).

Lemma 4. 37 Supposel —d #0 mod r+s—1. Let (i,j) € E,,, m > 0.
1) If i > 2 then for any («, 3), the homogeneous parts of bidegree (i,5 +p+q+1— 1) satisfy

pa+rp
<Aa af* e {1 T (Z aizh + 212y ) } z§(p+"’+ﬁ"“+"’)> =0.
0 \i=1 dj+ptati-1

2) If i = 1, and homogeneous part of bidegree (i, + p+ q+ 1 — 1) satisfies

potrf3
<A pa+rﬂ {1 + — (Z azz2 + 2122 > } Z2oc(p+q)+ﬂ(r+8)> £0
0 \i=1 ij+p+a+i-1

then (o, B) € Ej.
Moreover
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e Ifm =0, then (a,3) € Ey,

o Ifa=1, then 8 <j/(r+s), in particular if j # 0, then 8 # j,

e I[fa=0, then B < j or {(i,j) =(1,1) and (o, 8) = (0,1)}.
3)Ifi=0 and

rg
<A05 ag {1 + — (Z aizh + 2125 ) } z§(T+S)> # 0,
0,j+p+q+i-1

the following two conditions cannot be fulfilled at the same time

e i=a=0, and j =0,

o f(r+s)=j+p+q+1—-1,
i.e. if the coefficient Ay ; appears two times when considering homogeneous part of bidegree (0, j +
p+q+1—1), one occurrence is multiplied by a non constant polynomial in a1, ..., a;.
4) If (i,7) € En and i > 2, then A;; = 0.
5)If (0,7) € Eyy \ Em—1, m >0 and («, B) satisfies

alp+q) +0(r+s)=j+p+ta+i-1,

then
L4 (Oé7ﬁ) S Eerl \Em

e a=0o0ra=1 and (a, ) is unique.

In other words, in homogeneous part of bidegree (0,5 +p+ g+ 1 — 1), there are, modulo M =
(a1,...,a1—1), at most two coefficients which occur: Ay ; and perhaps another Ayg with a = 0 or
a=1.

Proof: If

pa+rf
<A ab*tp {1 + - (Z aizh + 2125 ) } z§<p+q>+ﬂ“+s>> £0
? \i=1 i,j+ptati=1

then, pa + r(3 > ¢, and the least degree in 25 is
(= Di+ap+aq)+B(r+s).
Since (.)ij+p+q+i-1 # 0,
(%) (=Ditalp+g+0r+s)<j+pt+q+i-1
however by assumption (i,7) € E,, C Ex,

ptatl-1 .ptq
r+s—1 r+s

therefore

(xx) (l—l)i-l—ifiz—i—a(p-l—q)-i-ﬁ(r—ks)<(p+q+l—1) <1+1)

r+s—1
1) If i > 2, we have, by (),

Ptq

2(1 -1 2
( )+ r4+s

+a@+Q)+MT+@<Jp+Q+lU(1+r+i_1>
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Since p+q <r+s,

1 2 1
(=1 <1_r+sl)+(p+q)(r+s_r+s1+a+6_1) <0

which is impossible.
2) Suppose that (i,j) € E,,, and ¢ = 1 then

1-1 1
jobtat (1+ >_p+q

r+s r+s—1 r+s
and by (x)
(l—l)+m+a(p+q)+ﬂ(r+s)<(p+q+l—1) 1+ ! + !
r+s r+s (r+s)(r+s-—1)

which is equivalent to

1 1 1
(=1 <1— (r+s)(r+s—1)> +(p+q)<r+s_ (r+s)(r+s—1)>+a(p+q)+ﬂ(T+S)

<(p+q+1i-1)(1+ !
pT4 r+s

hence

alp+q) +p(r+s)<(p+qg+li-1) (“Wis)

and (o, B) € Ej.

If m = 0, the result derives from the definition of Ey and (x).
Ifin (%), a =1, B(r+s) <j.

Ifin (%), «a =0, B(r+s) <j+ (p+ q). If moreover 8 > j, then

e j=0and B(r + s) < p+ ¢ which is impossible because o = 0,
e j=1 and g=1.
3) Let (0,7) € E,,, with m > 0 is minimal. We have

i(r+s)<(+qg+l-1)(1+ ! + -+ !
AT = r+s (r+s)m)"

Ifjir+s)=j+p+qg+1—1, then

. 1 1
J<(p+q+i-1) T+S+'”+m

hence

1 1
j < -1 (1 e —— ).
jlr+s)<(P+a+ )< trs T +(r+8)m_1)

and (0,7) € E,,—1 which is contradictory.
4) Let (4,4) € E,, with ¢ > 2 and consider part of bidegree (i,5+p+¢—+1—1). By 1), left member
of (I) gives no contribution, we show now that

(bC* 25 (1 + p(2))*) 0.

igtptar—1

In fact, the monomials which contain z{ contain 2 at the power at least k + i(l — 1) with p+ ¢ <
k<p+4+q+1—1 and it is sufficient to show that

j+pt+g+l—-1<k+il-1).
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Moreover, k > p+q and 7 > 2, hence it is sufficient to prove that j+p+qg+Ii—1<p+qg+2(l—1),
ie.

(x) j<i-1.

By assumption, (i,j) € E,,, therefore

1
j<——@+q+1-1) (1+--~+(

1 _ bty
r—+s

r 4 s)™ r+s
and condition (MX) is satisfied if

1

1 p+q
[ - (1 + i — —1 i
(p+q+1 )( + +(r+8)m><(l )+ s

r+s
which is clearly satisfied since r + s > 2. Finally we obtain

0= /\Aijcp+q+lflzi‘zé+p+q+l*1

and Aij =0.
5) If (0,j) € By \ Em—1,

I—1)(1
(p+aq+ )( t T

1 1
< (14—
s(p+a+ )< Jrr+sJr Jr(7‘—1—3)’")
By hypothesis, (a, 3) satisfies
ap+q)+p(r+s)=j+pt+a+i-1

therefore the following holds

<alp+q)+B(r+s)

(p+q+l—1)<1+ris (r+1s)m)

1 1
< I—1 (1 e ——— =
<(p+q+ )( tot +<r+8)m+1)

ie. (a,0) € Emy1 \ Em- By4),a=00r a=1.
Iftk=(p+q) +B(r+s)=0(r+s)then p+ q is a multiple of r + s which is impossible, therefore

we have the unicity of («, 3). O
Lemma 4. 38 The linear system with coefficients in Clay, ..., a;—1] and unknowns
bptgt1s--sOprgri-1 and A, (i,7) € B

is a Cramer system of order | — 1+ Card (E). More precisely, modulo 9, its determinant is

A = ortatl. . ortati=l\gprati-1)Card B £ mod M := (ay,...,a1_1)

and by, = %, k=p+q+1,....,p+q+1—-1, Al‘j = BAU, (Z,j) € F, with Bk,Bij S C[al,...,al,l].

In particular, fa, . is rational.

Proof: We order the unknowns in the following way: First unknowns bpiq+t1,...,bpyq+1—1, after
coefficients Ag; # 0, with (0, j) € Ey then (0,j) € E1 \ Eo, ...(0,7) € Epq1 \ B, exhausting Fo..
Finally coefficients A;;, with j in the decreasing order. We have the same number of equations and
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of unknowns, therefore we have a linear system of order | — 14 Card (Ew). Let 9 = (ay,...,a1-1).
In order to prove that we have a Cramer system it is sufficient to prove that modulo 9T the
determinant A is nonzero. Therefore we consider the equation (I) modulo 9, i.e.

(Iom)

! p 2 T
p 2 p+q 2 +
w1 |ag 1+ o zg 1 apgq 1+ ” 25ts

ptg+i-1

prati=1 k_k k
= A1 (2) (022(1 + u(z)) + Z biC% 25 (1 + p(z)) mod M
k=p+q
where, in the infinite product 1 + u(z),
G(z1,22) = ((zlzé +apz)Pzd, (2124 + a()ZQ)TZS)

-1\ 7P —1\"
Z1Z Z1Z
(1 + 2) 221 ap (1 + 2) z£+s> mod M
ag ag

1 D) (1+ zlzgfl)p”(l_l) prat(r+s)(-1) (r+)?
{1+2122 } 14— % :

|
S
o

which provides

1
+ pu(2) o

-1 ptr(i—1)—1
- 1 T A%z rag Sprat(rts)(i=1)

r+s ap (r+s)? 2

r(l—1)—2
rlp+r(l — 1)]ag+ (=1

(r+s)?

leg+q+(r+s+1)(l*1) + .-+ mod M

in particular, in the development of 1 + u(z) the least degree in z5 is p+ g+ (r +s)(I — 1).

By construction, the diagonal of the matrix is
Cp+q+l’ e Cp+q+l71’ )\Cp+q+l717 . ACPTati-1
and the square submatrix, of order [ — 1 corresponding to the unknowns
bprgris t=1,...,1—-1,

is diagonal because p +q+ (r +s)({ —1) > p+ ¢+ 1 — 1 and no term comes from (1 + p(z)).
We shall show that after some linear combinations of the lines, we obtain an upper triangular
matrix, which yieds A # 0.
Let (0,7) € Ey \ Epp—1 (E—1 :=0). Since Ag ; # 0, the homogeneous part of bidegree (0,5 + p +
q+1—1) is by lemma 37, 5)

Aaﬁa8a+7-ﬁzg(p+Q)+ﬁ(7’+S) — )\Aojzg(cz2)p+q+l—l7 mod M
with (a, 8) € Epmt1 \ En, if such (a, () exists, or

0= AAg;25(Cz)PHoH=1 mod M

otherwise. A term b;25(1 + u(2))* has no part of homogeneous bidegree (0,m) because j +p + ¢+
I—1<2(p+q)+ (r+s)(—1). Therefore, with the chosen order on the unknowns, all coefficients
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of the linear equation are over the diagonal of the matrix.
Remain homogeneous parts of bidegree (1,j +p+ ¢+ 1 — 1) involving A; ; for j > 1. We have

ir_ 2zt araTYT e
1 R— 1 prq—(rT—s)(t—
(1+ p(2)) + r+s ag + (r +s)2 22

. +r(l—1)—2
irlp+ T(l(—’l—)}c)lg (=1 le§+Q+(T+s+1)(l_1) L. mod M
r+s

It is easy to check that for i > p + g,

i+p+q+(r+s+1)(I-1)>j+(p+qg+1-1),

therefore the only terms which may be involved in homogeneous part of bidegree (1, j+p+g+1—1)

are

o2 zé_ 1

biClzy—— , where p+g<i<p+qg+l-1
r+s ap
therefore
i=j+p+q.
We have still to check that j <1 —1. Since j > 1,1 > 2. If (1,j) € E, then
r+s
) < l—1)—
prat(rts)i<ptatl-1) ———
This equivalent to
p+q -1

) <
=0 s Do ts) Traso1

As -1 ] 1—1
p+q -1 _ Ll

(r+s=1r+s) r+s—-1"r+s r+s-—1
taking if necessary the integral part of the last member, the inequality j <[ — 1 is still fulfilled.

Now, there are two possibilities

1. There is no («, 8) such that a(p+ q) + B(r +s) = j + p + q. Therefore

- -1
0 = AAy;2125(Crp)PTIHI 4by gy CPTITI LDTAH UAs i_+ D217, mod M
r+s ao

The j-th equation (which gives the j-th line L; of the matrix) is
0= bp+q+jcp+Q+j mod M

therefore substracting MLJ- we remove the coefficient by, 44, CP 4TI @Eati)r which was

ag(r+s) ag(r+s)
under the diagonal.

2. There exists (o, 8) such that a(p+q) + B(r +s) = p+ ¢+ j. By lemma 37, 4), there is at
most two such coefficients (0, 3) and (1, ). By the choice of the ordering, and lemma 37, 2),
Ay > Ay and the coefficient of A; g

T 4 )

is over the diagonal.
Then mod 9, the homogeneous part of bidegree (1,j+p+q+1—1) is

-1 -1
o ] / 217 ’
Aoﬁ agﬁ rf3 172,22'6(%%) + Alﬁ’ ag"’""ﬁ (p + Tﬁ') 17225p+q)+,8 (r+s)
ap ao
- -1
‘ - prati P+ A+ 21z
= )\Aljzlzg(CZQ)p+q+ 1 bp+q+jcp+q+g pati - az
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hence

(p+g+jr 1

Agag’ ™ 1B+ Arg af T (p 4 r) = ML CPRIT by O r+s  a

where perhaps one of the coefficients Agg = 0 or A = 0. The j-th equation derived from
the homogeneous part of bidegree (0,p + g + j) is

Aogagﬁ =+ Alg/ag+rﬁ/ = bp+q+jcp+q+j mod D:n

and if Apg = 0, it remains to substract (prati)r
ag(r+s)

we have two coefficients under the diagonal: Agg and bpq4;. However (miracle !)

L; to obtain a triangular matrix. If Agg # 0,

(p+q+J)r

rh = r+Ss

(Zﬂiﬂ)rlj» = "8 L. we remove both coeflicients, obtaining the desired
o(r+s) 7 ag 7

upper triangular matrix.
We conclude that A = CPFatl...optati=l(\Crtati-1)CardEe £ () The second member of the
Cramer system is nonzero and involves Ajg and b,4, = 1, therefore solutions of the system are
rational fractions in variables aq,...,a;_1. g

therefore substrating

Consider the restriction of the equivalence relation defined by L. Since aq is fixed, lemma 4.28
shows that we have the extra condition A = B and

a=(a1,...,aq1_1) ~d =(d},...,a,_ ) < ad, = Bla;, for i=1,....,1—1,1+K,

where
kal — BrJrsfl =1

and
B° = prtati-1 _ pptat(r+s)i-1 _ 1

Let II;, : C'=! — C!'"!/L be the canonical mapping (when there are twisted vector fields, o =
(K+1)(r+s—1)and L = Z_1). Similarly, consider the restriction to C'~! of the equivalence
relation of Favre germs given by lemma 3.15. We have ¢*~! = 1 and if we fix A (recall that by
Prop. 35, A depends on ag) then e?T9H =1 = ¢ = 1 and

/ / / / 3 .
b= (bp+q+17- . ~7bp+q+l—1) ~b = (bp+q+17' .. 7bp+q+l—1) <~ bp+q+i == E,pr_l’_q_i'_i,l S (3 S [—1.

We see that the equivalence relations a ~ a’ and b ~ b’ on C'~! are equal.

4.1.5 Explicit construction of the isomorphic polynomial mapping (no global
twisted vector fields)

In this section we show that f,, . is polynomial. We still suppose that there is .

Proposition 4. 39 We choose ag € C* and € such that €5 ' = 1. Letc =p+q+1—1 and
suppose that r+s—1 does not divide | —d. Then there is a bijective triangular polynomial mapping

fao,e . lel N lel
a= (a1, sa1) = (bprga(a), o bprgiia())
such that for j=1,...,1—1,

daj
bptq+j(a) = m + Rj(ay, ..., a;-1),
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G(z1,22) = ((zle—&—Zaz l+1) 23, (2132""2@1 Z+1) )

s conjugated to the polynomial germ

F(z1,290) = ()\2132 + Z bizh, H_S),

i=p+q

where \ depends only on ag by lemma 4.35.

Proof: Denote by fq,  be the rational mapping of lemma 4.38.
For 1 < j <1 —1, the homogeneous part of bidegree (0,p + g + j) is

j—1
(p+a+i ptaty L ptHati’ p+<1+] R
bptq+;C 2y + bptq+iC Py, (a,. .., a]_j/)zQ
J'=1
1 -1 ap+pr
a(p+q)+8(r+s ;
— E : Aaﬁagzpﬂi’rzz(p )+8( )<{1+a E aizé} >
0 “ )
(e 2)2(1,0) i=1 (’p+q+J a(p+q) B(TJrS))
+B(r+s)
<p+g+j

-1 p
1 i
B AlOZé)ﬂ <a€ {1 " CTO z;aiZQ} >(0 j) B Cp+ng+q<(1 * “(z))p+q>(0,j)
= 2J

After cancellation of 257%™/ and recalling that Ajgal = CP*9, we obtain the j-th equation

j—1
p+ati Loptati'p. o
bptq+5C + E , bp+q+5'C Pjj(ay, ... a;-5)
j'=1
= aptpr
< {1 + — E aizé} >
agp <
Z A pqPtBr i=1 (07p+q+j—a(p+q)—ﬂ(r+8))
— a -
af% Sptati—alpte)—p(r+ts)
(e, 8)#(1,0) 2
a(p+aq)
+B(r+s)
<p+taq+j

{1+ xias)’) o~ (@raEy)

_ oo g
%
We show that for j =1,...,1—1,
(5aj .
bp+q+j = bp+q+j(a1, RN (Lj) = m + Rj(al, ceey aj,l) with Rj S (C[al, - ,aj,l].

In fact
e Forj'=1,...,5—1, ij/G(C[al,...,aj_l],
e Since p+q+j—alp+q) —p(r+s) <y,

ap+pr
{1+a ZZ 1a122} >
< ’ (0,P+q+j—a(p+q)—5(r+s))

z§+q+j—a(p+q)—ﬂ(r+8) € Clay,.., a5,
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o Clearly mod ;1 := (al, e ,aj_l),

P . )P
1+ L l—ilaizz} > <{1+i I aiz’} >
({1 ZZ‘? RIACE) 20 ZZ‘? 2 g _ pa

J J
Zy 2y Qo

e From the definition of 1, mod 9M;_1,

r(p+9)
1\ il Tt
1+ P p+q> <{1+a22_1a122} ...>
<( ) o _ ’ _rp+a)gy
2 2 (r+ s)ag
Therefore modulo 9t;_1,
- da;
b )= —
pt+qt+j (T’ + S)ao
and there exists a polynomial R;(a1,...,a;-1) € Clai,...,a;_1] without constant term such that
(SG,J‘
(1) bp+q+j = bprqrilar, ... a;) = Ci(r + s)ao + Rj(ay,...,a;-1).

O

Corollary 4. 40 We choose ag € C*, € such that €+t~ = 1. Let 0 = p+q+1— 1 and suppose
that r + s — 1 does not divide | — d. Then

fa076
—_—

4

Clil/Zk—l

lel (lel

where
fao’e :CH (Cl_1> (CL1, ) alfl) = (bp+q+1’ ) bp+q+l*1)

is a commutative diagram and fo, ¢ is an isomorphic polynomial mapping.

4.1.6 Explicit construction of the isomorphic polynomial mapping (there ex-
ists global twisted vector fields)

We suppose that | —d = K(r + s — 1) i.e. there are non trivial global twisted vector
fields. We have

I+ K=d+KEkS), oc=p+qg+1i—-1=(k(S)-1)(K+1), k((jslf)(‘s_v)l =k(S)(K +1).
We denote by
-1
(Z) = (Z aizé + A+ K zé"'K + zlzé_1>
the equation (I) is now -
1 (ag {1 + ailo (Z) }ngﬂ, ag {1 + aio (Z) }T z§+s>
(1) o , o
=201 (Coal+ ()" + 3 bi(Coa1 +0(2))) +e(Coalt+(20)

i=p+q
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If m > %5, then (0,m) ¢ E, in fact

ok r+s
(pta+ )r+s—r

>
m(r—+s) > 1

therefore the coefficients a; g and ¢ doesn’t occur in the previous calculations and we obtain by
similar arguments a polynomial mapping fo -

Lemma 4. 41 Suppose l=d+ K(r+s—1). Let M =M1 = (a1,...,a—1) and (4,7) such that

. . _ _ pitry 7 j(r+s
<Aijagz+m {1 + % (an:l1 amzy" + al+KZé+K + Z1Zé 1)} Z2(p+q)ﬂ( * )> #0,
(0,729)
mod M

then, (i,75) = (1,0) or (i,5) = (0, 7). More precisely homogeneous part of bidegree (0, :75) s
cOFT = Argpabra i + Ap, 2. C?(1—=X) mod M.
In particular if there are global vector fields, i.e. X =1,
O™ = Alopag_laHK mod M.

Proof: 1) If (i,5) € Ex, then i(p+ q) + j(r + s) < ;2 and i < 1 by lemma 4.37 4).

e Case ¢ = 1: Since

k k
I+ K+ (p+a)+i(r+s) = = +jk >

we have equality if j = 0 hence (¢,7) = (1,0).
e Case?1=0: then 1 < j < %5 and mod M,

_ I N
<A0ja6j {1 + aH_KZQ} z%(7'+s)> # 0,mod M
(0,375

ao

In the left member the possible powers of z9 are of the form «(l + K) + jk with « > 0 and
J > 1 such that

ok
I+ K ik = .
all+ K) +jk = 1—
Since a(l + K) + jk = (d + Kk)a + jk, we derive that o > 1 is impossible, therefore a = 0
and j = Z5.
2) From 1) we deduce that there exists a polynomial P in variables ai,...,a;—1 such that the
k

coefficients of z; ' in (I) give the equality
_ 2z _ok_
Alopag 1CL1+K + A()Qﬁaéﬂfl = )\AoﬁC" +cC*1 + P(al, R 70,[,1).

By equation (5),
ag”t —AC7 =C7(1—-\)
which gives the result. O

Proposition 4. 42 Ifl —d = K(r + s — 1) and A = 1, there is a bijective triangular polynomial
mapping

Gag e Ci-1xC — C-1'xcC

a=(ai,...,0-1,0+K) +— (bpﬂﬂ(a), ey bprgri—i(a), c(a))
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such that,
6 aj

bptq+j(a) = Cilr+ 8)an + Rj(a1,...,a;-1), j=1,....0-1,

_ ok —
c(a) = C™*=1 Ajg pag lal+K + R(ay,...,a;—1),

-1 -1
. p . T
l 1 I+K+1 l 1 IHK+1Y)
G(217Z2) = ((z1z2 + E aiz;r +al+Kz2+ + ) zg, (z1z2 + g aiz;r +al+Kz2+ + ) z;)
i=0 i=0
18 conjugated to the polynomial germ

ak(S)

g
F(z1,22) = | Az129 + g bz 4+ czg 7 20t
k=p+q

Proof: We have a bijective polynomial map
fao,e : (Clil - Clila a—b= fao,e(a)~

From lemma 5.41, when a = (ay,...,a;—1) is fixed and a;yx € C, the mapping ¢ : C — C,

_ ok —1 . . . .
aipix — ¢ = clayg) = C*1Ajgpal™ a4k is linear hence bijective.
O

Corollary 4. 43 Any surface with GSS with one branch admits a special birational structure.

Corollary 4. 44 The intersection A := Aut(C%, H,0)N® is the trivial group or a group isomorphic
to (C,+). Moreover

e if k—1 does not divide s =p+ q+ 1 — 1, the canonical mapping
9:G/A=Gp,q,7,5,0)/A = Uks.m,/Li—
to the Oeljeklaus-Toma coarse moduli space of marked surfaces (S,Cy) with one branch
Uk.omy /Zp—1 = C* x C'71 /7y
is isomorphic and there is a polynomial lifting
(\b):C*xC1 - x !
which is a covering such that

(A b

C* x Cl—l C* x (Cl_l

G/A 9% Uksm/Zr-1

18 commutative,

o if k—1 dividess =p+q+1—1, we have similar results for
UXr0e=0 7, and URTL /7y 1.

k,s,mq k,s,mq

Corollary 4. 45 Let S;, — By be a large family with o = Id. Let T, the hypersurface where
cocycles [0°] and [u'] are not independent. Then for each stratum By, the trace Ty, N By on
B is equal to the inverse image of the ramification set by the lift of the canonical mapping i.e.

e If k—1 does not divide s,
Ty0 N By = (A 0) " (Thsm, )
o Ifk—1 divides s
Ty N By = (A b) HTRZL=0).

k},ﬁ,ml

In particular in By there is no curve over which the surfaces are isomorphic.
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4.2 Special birational structures on Kato surfaces

Let S be a Kato surface with b3(S) = n, let Dy, ..., D,_1 be its rational curves, p : S — S its
universal cover, Cy a lift of Dy, C;, i € Z, the rational curves in S in the canonical order and
U = (U;)o<i<n—1 an Enoki covering of S such that Uy contains Cy with a deleted disc (see the
construction of these surfaces). If S is associated to a germ F' = Ilo where o is birational, then S
is endowed with a birational structures as well as S and p is a (Bir(P%(C)),P?(C))-morphism.

Definition 4. 46 A birational structure on a surface with GSS S will be called special if there is
a contracting germ F = o with F or equivalently o birational and S = S(F).

This definition is independent of the numbering. Each open set U; is covered by two charts U] and
U!" with local coordinates ¢} = (uj,v}) : Ul — C? and ¢} = (u}/,v]) : U/ — C? respectively. We

7 ’L
denote by ¢; = (u;,v;) the local coordinates whose domain contains the blown-up point O; € C;.

Here ¢; = Id. Then, with the identification
i:C%~{[zg: 21 : 2] € P?(C) | 29 = 1} C P*(C),

biit1 (wir1, vig1) = @i0@i )y (Uis1, vig1) = Wig1 (wig1,viga), i =0,...,n—=2,  Bn_10(uo,v0) = oolly(ug,vo).-
If S contains a GSS but is not minimal the order on the curves is no more total.

Lemma 4. 47 Let S = S(II, o) be a surface containing a GSS (not necessarily minimal) such that

n = by(S). If o is birational, there exist for any j € Z

e a meromorphic developing map EE)J- : S’cj — P2, locally biholomorphic outside the rational
curves, such that 5&;]- (C;) is the rational curve {z; = 0} C P?(C) and O, := Ea)j (Ocj) =
[aj : b; : 1,

e a birational mappings G; : P*(C) — P?(C), holomorphic in a neighbourhood of Ocj.

such that the following diagrams are commutative:

N}
U

4 S S

S
l pCj+¢L pCJ pCJ
j+n Y Y
g A Fo, 4
C % Cjtn SCJ‘ — SCJ‘
Dev; Dev;
Dek\ /%'Uj+n / /
Y Y
p2(C) i p2(C)

Moreover if S is minimal (i.e. if S is a Kato surface) then O; is a fized point of G;.

Proof: To simplify the notations we may suppose that ;7 = 0. Recall that by construction Wy C 5'00
and then we apply lemma 2.7. Since all birational transition functions are isomorphic outside the
curves, the developing map Dev is a local biholomorphism outside the rational curves. We denote
a blowup Il; 11 : U;41 — B; C W; by

i1t (Ui, viga) = (Wi Vi + as, vig) = (ui,v7),

gy : (UQ’HWQ’H) = (Uz{l-f—l + ai,u;'_Hv;’_H) = (u4,v;)

with inverse

— U; — a;
Hz+1 : (uivviv) = (u;—&-lvvg—i-l) = ( : l?”i) )

Vg
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-1 " " _ Vi
HZ-Jrl : (ui,vi,) — (qu,le) = (u 7al,ui - ai)
? K2

On Uy, Devy is defined in the following way: If Oc, is in the chart (u),v}),

— — 1 2
Devg(ug, vy) = [ug : vy : 1],  Devo(ug,vy) = [? cuguy 1) =[1:ug o) ug).
0

The construction is similar if O¢, is in the chart (ufj, v{).
On U, Uk, we have

Devy : Uy — P%(C)
(ug,vg) — Devo(ug,vi) =i0bg,—1 0+ 0bgy1 k(uk, Vk)

ie. fork>-n—1,
N . -1 -1 -1 -1
Devo(ug,vg) =iolly ooy ollZy ool (ug, vk)

and oglly : Uy — U_1 is the composition of IIy : Uy — B and of 0g : B — U_1 which is birational
induced by o. The image ooIly(Up) is a ball in W_q; opIly being birational II; 100_ L extends to
U_;.

The points (ax,0) € W, are indeterminacy points of H,;il however do not belong to Uy. Therefore

H;il(Uk) has an empty intersection with Cxy; and 1’)&)0 is holomorphic.

The upper parts of the diagrams are commutative by [3], p30; to see the commutativity of the lower
parts it is sufficient to check it on the chart (ug,vp). O The following theorem shows that we
recover a GSS in S thanks to a small sphere centered at ﬁe\vj(OAj).

Theorem 4. 48 Let S = S(Il,0) be a Kato surface such that n = ba(S). If o is birational,
there ezist for any j € Z a meromorphic developing map l/)\e/vj . 8 — P2, locally biholomorphic
outside the rational curves, such that B\e_;)j (C;) is the rational curve {z; = 0} C P?(C) and O; :=
[)E;j (pE:(OACJ)) =[a; : bj : 1], i.e. lf)\e;j blows down an infinite number of curves. Moreover for

any small ball B; centered at O;, p(l/)\e/vjil(aBj) is a GSSin S.

Proof: ﬁc;)j = BE;J- o pc, has the expected properties. O
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