N
N

N

HAL

open science

A Fully Probabilistic Extension of Event-B
Mohamed Amine Aouadhi, Benoit Delahaye, Arnaud Lanoix

» To cite this version:

Mohamed Amine Aouadhi, Benoit Delahaye, Arnaud Lanoix. A Fully Probabilistic Extension of
Event-B. [Research Report] LINA-University of Nantes. 2016. hal-01255753

HAL Id: hal-01255753
https://hal.science/hal-01255753
Submitted on 13 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01255753
https://hal.archives-ouvertes.fr

A Fully Probabilistic Extension of Event-B

Mohamed Amine Aouadhi, Benoit Delahaye, and Arnaud Lanoix

University of Nantes / LINA UMR CNRS 6241

Abstract. Event-B is a state-based formalism that enables the correct-by-cons-
truction development of systems. Several works have focused on the extension
of Event-B for the description of probabilistic systems. While these extensions
of Event-B allow replacing some non-deterministic choices with probabilities,
some sources of non-determinism are left untouched. In this paper, we propose a
fully probabilistic extension of Event-B where all the non-deterministic choices
are replaced with probabilistic ones. We present the syntax and the semantics of
this extension and illustrate our approach on a classical case study.

1 Introduction

As systems become more and more complex, it becomes necessary to add new mod-
elling features in order to take into account complex system properties such as reli-
ability [20], responsiveness [8l19], continuous evolution, energy consumption etc. In
particular, as soon as systems include randomised algorithms [15]], probabilistic proto-
cols [3]] or potentially failing components, probabilistic models are needed in order to
reason about them.

In this way, several research works have focused on the extension of Event-B to al-
low the expression of probabilistic information in Event-B models. Event-B [1] is a
formal method used for discrete systems modelling. It is equipped with Rodin [2]], an
open toolset for modelling and proving systems. The development process in Event-B
is based on refinement: systems are typically developed progressively using an ordered
sequence of models, where each model contains more details than its predecessor.

In [14], Abrial et al. have summarised the difficulties of embedding probabilities into
Event-B. This paper suggests that probabilities need to be introduced as a refinement
of non-determinism. In Event-B, non-determinism occurs in several places such as the
choice between enabled events in a given state, the choice of the parameters values
in a given event, and the choice of the value given to a variable through some non-
deterministic assignments. The ideal probabilistic extension of Event-B should thus
allow using probabilities in all these places. Unfortunately, to the best of our knowledge,
the existing works on extending Event-B with probabilities, which we recall in the next
paragraphs, have focused on refining non-deterministic assignments into probabilistic
assignments while leaving other sources of non-determinism untouched.

Qualitative probabilistic Event-B. In [11]], Hallerstede et al. propose to express proba-
bilistic properties in Event-B by focusing on a qualitative aspect of probability. In this
proposition, non-deterministic assignments can be refined into qualitative probabilistic

2 Mohamed Amine Aouadhi, Benoit Delahaye, and Arnaud Lanoix

assignments where the actual probability values are not specified. The Event-B seman-
tics and proof obligations are then adapted to this new setting. In [21], the same authors
study the refinement of qualitative probabilistic Event-B models and propose a tool
support inside Rodin.

Quantitative probabilistic Event-B. Other works [[16l/18/17] have extended the approach
presented above. The authors propose to refine non-deterministic assignments by quan-
titative probabilistic assignments where, unlike in [[L1]], the actual probability values
are specified. This new proposition is then exploited in order to assess several system
properties such as reliability and responsiveness.

Although these extensions of Event-B allow refining the non-deterministic assign-
ments into probabilistic ones, the other sources of non-determinism are left untouched.
While we agree that non-determinism is a very important feature in system modelling,
we consider that it is the responsibility of the developer to choose where to use non-
determinism and where to refine it into probabilities. Our aim is thus to pursue the exist-
ing works by allowing the refinement of all other potential sources of non-determinism
into probabilistic choices. In the long-term, we plan on developing a probabilistic exten-
sion of Event-B where probabilities can be introduced in each refinement step in order
to refine some (but not necessarily all) non-deterministic choices. This global objective
can be divided into many specific objectives. In particular, it is necessary to allow ex-
pressing probabilistic choices in the place of all potential non-deterministic choices in
Event-B. Another important point is to derive, study and adapt the proof obligations
specific to the probabilistic extension of Event-B. Finally, we will have to investigate
the refinement process between non-deterministic and (partially) probabilistic Event-B
models. Our global objective includes also studying some probabilistic properties that
can be expressed and verified on (partially) probabilistic Event-B models. Obviously,
this global objective is very ambitious and we can only achieve it by progressing on a
step-by-step basis.

As a first step toward this long term goal, we present in this paper a fully probabilistic
extension of Event-B where all non-deterministic choices are replaced with probabilis-
tic ones. As in [16/18l17], we replace non-deterministic assignments with quantitative
probabilistic assignments. Moreover, we propose to allow choosing the parameter val-
ues by using uniform probability distributions on their domain of acceptable valuations.
Finally, we annotate all the events with weights, these weights are expressions over the
variables of the models. As a consequence, the probability of choosing an event among
others in a given state can evolve according to the model states. In order to prove the
correctness of our approach, we express the semantics of our probabilistic Event-B
models in terms of Markov Chains. To illustrate our proposition of probabilistic Event-
B, we consider a case study of a landing gear system [7] by giving a specification of
this system using probabilistic Event-B.

Outline. The paper is structured as follows. Section [2| recalls the necessary basis. In
Section (3] we start by introducing the syntax of our fully probabilistic extension of

A Fully Probabilistic Extension of Event-B 3

Event-B and then present the semantics of a fully probabilistic Event-B model in terms
of Probabilistic Labelled Transition Systems. We also present the new proof obliga-
tions specific to our proposition and we study the required modifications on the stan-
dard proof obligations. An example of a probabilistic Event-B model is given and com-
mented in Section[d] Section [5|concludes and presents hints for future work.

2 Background

We now briefly introduce the basic concepts used through this paper.

2.1 Event-B

Event-B [1]] is a formal method used for the development of complex systems. Sys-
tems are described in Event-B by means of models. To facilitate the notation, we as-
sume in the rest of the paper that an Event-B model is expressed by a tuple M = (v,
1(V),Evts,Init) where v = {v{,v2,...,v, } is a set of variables, I(¥) is the invariant, Evts
is a set of events and Init € Evts is the initialisation event. The invariant /() is a con-
junction of predicates over the variables of the system specifying correctness properties
that must always hold.

Events. An event has the following form:

’event e any 7 where G(7,v) then S(7,V) end

where e is the name of the event, 7 = {#1,1,,...,1,} represents a set of parameters of the
event, G(7,V) is the guard and S(7, V) is the action of the event. An event is enabled only
if the guard G(7,V) is satisfied. Parameters and guards are optional. The action S(7, V) of
an event may contain several assignments that are executed in parallel. An assignment
can be expressed in one of the following forms.

— Deterministic assignment: x:= E(7,7v) where x denotes a variable and E (7, V) de-
notes a set theoretic expression.

- Predicate (non-deterministic) assignment: x : |Q(7,7,x’) where x denotes a vari-
able and Q(7,7,x") represents a predicate that describes the relationship between
the values of variables before (¥) and after (/) the occurence of the assignment;
x non-deterministically takes a new value x’ such that the predicate Q(F,7v,x') is
satisfied.

- Enumerated (non-deterministic) assignment: x :€ {E;(7,V),...,E,(f,V)}, where
x denotes a variable and {E, (7,7V), ..., and E,(, V) } some set-theoretic expressions;
x non-deterministically takes a value from the set {E; (7, V),...,E,(7,7V)}.

Most of the time, when the set of values such that Q(7,7,x) is satisfied is finite, predi-
cate (non-deterministic) assignment can be equivalently reformulated in terms of enu-
merated (non-deterministic) assignment. In the rest of the paper, we thus assume that
no predicate (non-deterministic) assignment is present in our models. We also assume
that the initialisation event is always deterministic. We denote the guard of an event e

by grd(e).

4 Mohamed Amine Aouadhi, Benoit Delahaye, and Arnaud Lanoix

Proof obligations. The consistency of an Event-B model is ensured by means of proof
obligations (POs) which must be discharged. Formal definitions of all the standard POs
are given in [1]].

The most important PO is (event/INV) for invariant preservation which is expressed for
an event e with guard G(7,v) and action S(7, V) by:

I(V) ANG(F, %) AS(F,9,7) EI(V) (event/INV)

S(7,v,7') is a predicate that describes the relationship between the values of variables
before (¥) and after (7) the occurrence of the event e. It is automatically derived from
S(7,7v). This PO states that the invariant still holds after the execution of each event in
the Event-B model M.

LTS semantics. In [6], the authors express the semantics of an Event-B model M=(7,
1(¥), Evts, Init) in terms of a Labelled Transition System (LTS) M=(S, so, AP, L, Acts,
T) where S is a set of states, each state in S being uniquely identified by its label; Acts
is the set of actions (event names); sy € S is the initial state obtained by executing the
Init event; AP is the set of atomic propositions: a set of predicates that correspond to
the valuations of v and satisfy the invariant /(V); L: S — AP is a labelling function that
provides the valuations of the variables v in a given state; and T C § X Acts x S is the
transition relation corresponding to the actions of the events of M.

Given an expression E(v) over variables in v and a valuation ¥ of these variables, we
write [V]E () for the evaluation of E(¥) in the context of /. When it is clear from the
context, we write [V]E instead of [V]E (V). Given a variable x € ¥, we also write [V]x
for the current value of x in V. For an event e in Evts, we write Z, (x) for the set of all
expressions that can be assigned to x by the action of e. We say that an event e € Evts
is enabled in a state s of M if and only if [L(s)]grd(e) = true. Given a state s of M, we
denote the set of events enabled in this state by Acts(s) = {e € Evts | [L(s)]|grd(e) =
true}. The destination state s” of a transition (s, e,s’) € T performed by an event e must
satisfy the following property:

Vx € 9,3E € E,(x), [L(s')](x) = [L(s)|E (1)

2.2 Probabilistic Labelled Transition System

In Section [3] we introduce the semantics of a probabilistic Event-B model in terms of
Probabilistic Labelled Transition System (PLTS for short). A PLTS is a tuple M=(S,
P, so, AP, L, Acts) where S is a set of states, Acts is a set of actions, sy € S is the
initial state, AP is a set of atomic propositions, L: S — AP is a labelling function and
P: S x Acts x § — [0,1] is the transition probability function.

Definition 1 (Discrete Time Markov Chain (DTMC) [13])). A Discrete Time Markov
Chain is a PLTS where for each state s € S, we have Y.y cs aencts P(5,a,5") =1.

We prove in Section [3] that the semantics of a probabilistic Event-B model is in fact a
DTMC. We now move to our extension of Event-B.

A Fully Probabilistic Extension of Event-B 5
3 Probabilistic Event-B

We begin by presenting the notations for probabilistic Event-B. After that, we present
the semantics in terms of PLTS and we study the new POs related to our proposition.

3.1 Notations

The typical way of defining a probabilistic Event-B model from a classical Event-B
model M is to go through M and replace all occurrences of non-deterministic choices
with probabilistic choices. We call this process the probabilisation of M. In this sec-
tion, we therefore explore all the potential sources of non-determinism in Event-B and
explain how to turn them into probabilistic choices. We also present some new POs
specific to our extension and some modifications on the standard POs.

In Event-B, a non-deterministic choice can appear in three places:

1. Choice of the enabled event. When several events are enabled in the same state,
the event to be executed is chosen non-deterministically.

2. Choice of the parameter values. When an event contains some parameters, the
value taken by these parameters are chosen non-deterministically from the set of
values satisfying the guard of the event.

3. Non-deterministic assignment. When the action of an event contains non-determi-
nistic assignments, the value to be assigned to the concerned variable is chosen
non-deterministically.

We now show how we replace each such non-deterministic choice with probabilities.

Choice of the enabled event. In order to resolve this non-deterministic choice, the
most intuitive solution is to annotate each event with a probability value. However,
since the set of enabled events can vary from one state to another in Event-B, this
solution can be incorrect. Indeed in some states, the sum of probabilities of all enabled
events might end up being above or below one. We therefore annotate each event with
a weight instead of a probability value. The weight W, (v) of a probabilistic event e is
an expression over the variables v of the Event-B model; this expression is evaluated in
each state according to the current values of the variables.

In a given state, the probability of each enabled event is then computed as the ratio of
the value of its weight in this state against the total value of the weights of all enabled
events in this state. In order to simplify notations, we impose that the weight of each
probabilistic event must be a natural. A probabilistic event is allowed to be executed
only if i) its guards is fulfilled and i) its weight is strictly greater than O.

Choice of the parameter values. For a probabilistic event e with a set of parameters
f, we replace the non-deterministic choice of the values of the parameters in 7 by a
uniform choice over the set of combination of all potential values of parameters in 7.
More precisely, each parameter #; € f takes its value from a set 7;. This set 7; must
be finite and not empty. Then, the parameters values are chosen non-deterministically

6 Mohamed Amine Aouadhi, Benoit Delahaye, and Arnaud Lanoix

from the set 71 X ... X T, in such a way that the guard of the event is fulfilled. In a
state s, we denote by T, the set of combinations of the different parameters values that
make the guard of the event fulfilled in s. Formally, we have T, ={f, = {1,,12,,...,tn, } €
Ti X ... x T, | [L(s)]G(#,7V) |= true}. We replace the non-deterministic choice of the
parameter values by an uniform choice over the set 7,,. We associate a probability

function Py, such that for each combination #, € T,,, we have Pr, (f,) = W.

Non-deterministic assignment. Recall that we limit ourselves to enumerated (non-
deterministic) assignments which are written:

’x:E {E1(E,7),...,En(f,7)} ‘

We propose to replace this assignment by a probabilistic assignment written as follows.

’xZ:El(f,‘j)@p] @"'@Em(fv‘;)@pm ‘

If m > 1, then this new assignment assigns to the variable x an expression E; with
a probability p;. The probability of choosing the expression E; among all the others
expressions is denoted by P, (E;)= p;.

For each E;, the probability P,(E;) must be strictly greater than 0 and smaller or equal to
1. If m = 1, then the assignment is deterministic and written x := E/ (7, V). In this case,
we have P, (E|) = 1. We note that the sum of the probabilities of the expressions that
can be assigned to the variable x must be equal to 1.

3.2 Probabilistic Event-B model

The general form of a probabilistic event is then:

’ event ¢ weight W, (v) any 7 where G(7,7v) then S(7,7) end ‘

where S(7,7v) contains several probabilistic or deterministic assignments executed in
parallel. Remark that a probabilistic event can be without parameters or a guard and its
action must contain only probabilistic or deterministic assignments. We also note that,
like in the standard Event-B, the initialisation event must be deterministic.

We present below the formal definition of a probabilistic Event-B model.

Definition 2 (Probabilistic Event-B Model). A probabilistic Event-B model is a tu-
ple M = (v,1(v), PEvts,Init) where v = {v{,va,...,v, } is a set of variables, I(V) is the
invariant, PEvts is a set of probabilistic events and Init € PEvts is the initialisation
event.

Given a probabilistic event e, we write Var(e) for the set of variables in v that are mod-
ified by the action of e, i.e all the variables that appear on the left side of an assignment
in S(7,7). For a variable x in Var(e) and an expression E € E,(x), we write P¢(E) for
the probability that the action of the event e assigns to the variable x the expression E.

A Fully Probabilistic Extension of Event-B 7

DTMC semantics. The semantics of a probabilistic Event-B model M = (v,1(v), PEvts,
Init) is a PLTS where the states, labels, actions, atomic propositions and initial state are
similarly obtained as for the standard LTS semantics of Event-B. Only the transitions
are equipped with probabilities.

Let e € PEvts be a probabilistic event, x € 7 be a variable and s,s" be two states of
the corresponding PLTS such that (s,e,s') is a transition. Let 7, = {f1,,f2,, ...,z } be a
valuation of the parameter values associated to the event e. We write Z,(x) it} for the
set of expressions in %, (x) such that their evaluation in the state s with parametér values
fy =A{t1,,t2,,...,1, } returns the value of x in the state s’. Formally,

To(x)[}; = {E € Be(x) | [L(s)x = [L(s) URJ(E(F, 7))}

If ¢ is not equipped with parameters, then this subset is written Z, (x)|* .

The probability of a transition (s, e, s’) is then equal to the product of (1) the probability
that the event e is chosen from the set of enabled events in state s, (2) the probability
of choosing the parameter values 7,, and (3) the overall probability that each modified
variable is assigned the value given in [L(s")]. Formally, the semantics of M is defined
as follows.

Definition 3 (Probabilistic Event-B Semantics).
The semantics of a probabilistic Event-B model M=(v, I(v), PEvts, Init) is a PLTS
[M] = (S,s0,AP,L,Acts, P) where:

— S is the set of states. Each state is uniquely identified by its label.

— 8o € S is the initial state. This state is obtained after the execution of the Init event.

— AP represents the valuations of all variables that satisfy the invariant of the model.:
AP = {P € [l,es Dom(x) | P =1(V)}.

— L:S — AP is a labelling function. It assigns to each state the corresponding valu-
ation of the variables.

— Acts is the alphabet of actions (event names)

— P: S X Acts x S — [0,1] is the transition probability function such that for a given
state s, ¥ e,s' € Acts x S we have P(s,e,s') = 0 if Acts(s) = 0 or Ix € X\{Var(e)}
st [s]x # [s']x and otherwise

[s]We (7) _)
Yercaces(s)[S]Wer (V) x Y (Pr,)< T Y, PUE)

€Ty 7 xevar(e) g, (x)Y

S.ly

P(s,e,s') =

(D
3)

Depending on the form of the event e, this expression can be simplified in several ways:

— If e has no parameter and its action is deterministic then:

N W
P(S,e,s) - Ze’EAaS(A‘) [S]VV(" (‘7)

— If e has some parameters and its action is deterministic then:

S|W, (v -
Pls.e.s) = g s * Eaen, P (6)

8 Mohamed Amine Aouadhi, Benoit Delahaye, and Arnaud Lanoix

— If e has no parameter and its action is probabilistic then:

AL pe
Ples) = srtiem < I (Epen oy PEE)

Lemma 1. Given a probabilistic Event-B model M, the semantics [M]| of M is a DTMC.

Proof. We prove that [M] is a DTMC by showing that the sum of the outgoing tran-
sitions from each state s in [M] is equal to one. The full proof can be found in the
appendix.

After presenting the semantics of a probabilistic Event-B model, we present in what
follows some new POs related to our extension.

3.3 Proof Obligations

Event-B and its dedicated tool Rodin use POs to validate Event-B models. In the long
term, we will have to study the associated POs for probabilistic Event-B reasoning and
derive the required modifications on the standard Event-B POs. For now, we propose
some new POs specific to our extension.

The first PO concerns the weight of a probabilistic event. To facilitate notations, this PO
ensures that under the invariant and the guard of a probabilistic event, its weight must
be of natural type.

IVMANG(E, V)W, (v) eN (event/WEIGHT)

The second new PO concerns well-definedness of a probabilistic assignment, it ensures
that the probability of assigning an expression E; to a variable x by a probabilistic as-
signment is a correct probability value, i.e. strictly greater than 0 and smaller or equal
to 1:

FO<P(E) <1 (event/assign/pWD1)

The third new PO is also about well-definedness of a probabilistic assignment, it ensures
that the sum of probabilities of expressions that can be assigned to a variable x is equal
to 1.

FYR P(E) =1 (event/assign/pWD2)

Our extension to Event-B implies some modifications on the standard POs. In fact, in
the standard Event-B, an event is enabled only if its guard is fulfilled. For a probabilistic
event, it occurs only if its guard is fulfilled and in addition, its weight is strictly greater
than 0. As a consequence, some standard POs must be modified by adding a predicate to
the guard that indicates that the weight of a probabilistic event must be strictly greater
than 0. As an example, the invariant preservation PO (event/INV) will be expressed by:

I(P)ANG(7,7) AWe(V) > OAS(E,v,7) HI(V) (event/pINV)

In future work, we continue our investigation in order to derive the modifications or the
new POs specific to our extension.

A Fully Probabilistic Extension of Event-B 9
4 Example: Landing Gear System

We consider the case study of the Landing Gear System [7] to demonstrate the use-
fulness of Probabilistic Event-B in a practical problem. We first give an overview of
the case study. Then, we propose a first non-deterministic specification of the system
in Event-B and we show its limitations before deriving a probabilistic specification to
demonstrate the interest of our proposition.

4.1 Overview of the Landing Gear System

The landing gear system of an aircraft is in charge of manoeuvring landing gears sets,
i.e gears and associated doors. We only consider the basic behaviour of this landing
gear system. To command the retraction and outgoing of gears, an "up/down" handle is
provided to the pilot. When the handle is switched to "up", the retraction sequence is
performed. When the handle is switched to "down", the outgoing sequence is executed.
The outgoing sequence consists in #) opening the doors, ii) extending the gears and iii)
closing the doors. The retraction sequence consists in i) opening the doors, ii) retracting
the gears and iii) closing the doors.

Some requirements constrain the model:

R1 The pilot cannot command the handle more than a fixed number of times before
one of the sequences begins;

R2 Each consecutive use of the pilot command must decrease the priority of using it
again and increase the priority of starting the outgoing/retraction sequence instead;

R3 Failures can occur: external measures fix to 10% the risk that gears or doors do not
react correctly to their command.

4.2 Non-deterministic Event-B model

The model "landing_gear" given in Fig.[T|presents an Event-B specification of the Land-
ing Gear System. We consider four variables handle, door, gear and cmd constituting
the state of the modelled system.

The event pcmd models the pilot command, i.e. switching the handle to "up" or "down".
The variable cmd counts the number of times this event is triggered consecutively. The
guard of this event limits its enabling (cmd < F_CMD) to take into account R1, but we
are not able to consider the requirement R2 about priorities.

The event extend models the extending of the gears; it is enabled when the handle is
down, the doors open and the gears retracted; in order to take into account possible fail-
ures, we use a non-deterministic assignment gear :€ {extended, retracted} saying that
the gears are extended (attempted behaviour) or remain retracted (failure). We cannot
be more precise about the measured risk of failure as expressed in R3.

The event retract models the gears retraction whereas the events open and close model
the opening or closing of the doors respectively: they are similarly specified as the
event extend. When one of the event of the sequences is triggered, then the counter cmd
is reset.

10 Mohamed Amine Aouadhi, Benoit Delahaye, and Arnaud Lanoix

model
landing_gear
constants
F_CMD
axioms
F_CMD € N;
variables
handle
door
gear
cmd
invariants
handle € {up, down}
door € {open, closed}
gear € {extended, retracted }
cmd € N

events

event initialisation
then

handle := up

door := closed
gear := retracted

cmd :=0
end
event pcmd
any cc
where

cc € {up,down} A cmd < F_CMD
then

handle :=cc

cmd := cmd+1
end

event extend

when

handle=down A door=open A gear=retracted
then

gear :€ {extended, retracted }

cmd :=0
end
event retract
when

handle= up A door=open A gear=extended
then
gear :€ {extended, retracted }

cmd =0
end
event open
when

door=closed A
((handle=downAgear=retracted)
V (handle=upAgear=extended))
then
door :€ {open,closed}

cmd :=0
end
event close
when

door=open A
((handle=downAgear=extended)
V (handle=up A gear= retracted))
then
door :€ {closed,open}
cmd ;=0
end

Fig. 1: Event-B model of the Landing Gear System

4.3 Probabilistic Event-B model

The model "proba_landing_gear" given in Fig.[2] presents a probabilistic version of the

"landing_gear" model.

To resolve the non-determinism between events that are enabled in the same states, we
annotate the events by weights. To express that the more the pilot uses the "up/down"
handle, the less this command will be taken into account — with a limit of F_CMD
times — we annotate the event pcmd by the weight F_CMD — cmd and the events open,
close, extend and retract by F_CMD + cmd. The weight of the event pcmd therefore
decreases each consecutive time it is executed whereas the weight of the other events
increases. As a consequence, the more this event is activated in a consecutive sequence,
the higher the chance that this sequence will end and that another event open, close,

extend or retract will be activated instead (Requirement R2).

A Fully Probabilistic Extension of Event-B 11

model
proba_landing_gear
probabilises
landing_gear
events
event
then
handle :=up
door := closed
gear := retracted
cmd :=0
end
event pcmd
probabilises pcmd
weight
F_CMD — cmd
any
cc
where
cc € {up,down} A ecmd < F_CMD
then
handle :=cc
cmd :=cmd + 1
end
event extend
probabilises extend
weight
F_CMD + cmd
when

initialisation

then
gear:= extended @9/10 @ retracted@1/10
cmd :=0

end

handle=down A door=open A gear=retracted

event retract
probabilises retract
weight
F_CMD + cmd
when
handle= up A door=open A gear=extended
then
gear:= extended@1/10 @ retracted@9/10
cmd ;=0
end
event open
probabilises open
weight
F_CMD + cmd
when
door=closed
A ((handle=downAgear=retracted)
V (handle=upAgear=extended))
then
door:= open@9/10 @ closed@1/10
cmd ;=0
end
event close
probabilises close
weight
F_CMD + cmd
when
door=open
A ((handle=downAgear=extended)
V (handle=up A gear=retracted))
then
door:= open@1/10 & closed@9/10
cmd ;=0
end

Fig. 2: Probabilistic model of the Landing Gear System

Failures are then described by means of probabilistic assignments. The event extend
assigns probabilistically to the variable gear the value extended with probability 1%

and the value retracted with probability % (probability of failure) as required in R3.
Similarly, we model failures in the events retract, open and close.

Proof Obligations. The consistency of the given probabilistic Event-B model requires
to discharge some POs. The POs (event/assign/oWD1) and (event/assign/pWD2) obvi-
ously holds for all the events having probabilistic assignments:

9

1

1
FO<—<1, FO<E§1 and Fng—*l

10

0 10

12 Mohamed Amine Aouadhi, Benoit Delahaye, and Arnaud Lanoix

We have to demonstrate that the PO (event/WEIGHT) holds for the event pcmd. As hy-
potheses, we have F_CMD € Nj and cmd € N (invariant), and cmd < F_CMD (guard).
We show that the goal F_CMD — cmd € N holds.

The PO (event/WEIGHT) for the other events is similarly demonstrated.

Fig. 3: DTMC part of the probabilistic LGS with F_CMD =9

DTMC semantics. Fig. [3| presents a part of the DTMC corresponding to "proba_
Landing_gear". We only present this part of DTMC to show the semantics of our model
and to prove the correctness of our approach, this DTMC will not be used within the
design process in probabilistic Event-B. The states of this DTMC correspond to the
valuations of the variables handle, door, gear and cmd. The transitions between the
states correspond to the possible occurrence of the events, labelled with their probabil-
ity value. We have to fix a value for the F_CMD constant, 9 for the example below.

In the state (d,c,r, 1) only two events can be enabled: open and pcmaﬂ The event open

leads to the state (d,0,r,0) with a probability % = % X %, where -2 corresponds

0+8
to the probability of choosing the event open rather than the event pcmd while % corre-
sponds to the probability of assigning the value open rather than the value closed to the
variable door; Similarly, the event open leads to the state (d,c,r,0) with a probability
11—8 = % X 11—0. The event pcmd leads to (d,c,r,2) or (u,c,r,2) with the same proba-
bility % = ﬁig X % where 102ﬁ corresponds to the probability of choosing pcmd rather
than open while % is the probability of choosing up (respectively down) as value for the
event parameter cc. Note that % + % + % + % =1, i.e. the sum of probabilities of the

outgoing transitions from the state (d,c,r, 1) is equal to one, as expected.

The probabilities of all the transitions in the DTMC could be similarly computed.

!'In the state (d,c,r, 1), the weight of open is 10 whereas the weight of pcmd is 8.

A Fully Probabilistic Extension of Event-B 13

=) Event-B - Landing_gear_System/proba-landing-Gear0.bum - Eclipse Platform

i R || Qi v LIRS |i| ¥ [EyResource 47Debug | B Event-B|
I EventB Explorer & =] E # ¥ = 8 @ probalanding-Gear0 = A 9
J [| J = actl: handle=up 3 o.
act2: door=closed o

> (Zaa ° act3: gear=retracted -
> (= EBsystem END 2
¥ & landing_gear_System ° pcmd: not extended ordinary standard Rl
» @ ctx0 PROBABILISE S|

7 landing-gear | > pemd

WEIGHT |
> @ landing-gear0 b= ' PY =

» @ proba-landing-Gear er ANY :
» @ proba-landing-Gear Prove interactively P — &
Open With 3 WHERE i

= grdl: cmde{up,down} not theorem
Copy ctrl+C THEN
actl: handle=cmd
Rename END
Refine
extend: not extended ordinary probabilistic

Retry Auto Provers PROBABILISE
Recalculate Auto Status ° extend
Proof Replay on Undischarged POs WEIG:T

IO DRSS END

Simplify Proof(s)
Purge Proofs...
@ 1item selected Show Properties

Fig. 4: Probabilistic plugin to the Rodin platform

5 Conclusion

In this paper, we present an extension to Event-B that allows us to specify fully prob-
abilistic systems. Previous works combining probabilities and Event-B [14/11116l17]]
have focused in refining non-deterministic assignments into probabilistic ones while
leaving other sources of non-determinism untouched. This work extends these previ-
ous works by replacing all the non-deterministic choices by probabilistic ones. More
precisely, we extend the syntax of Event-B to add probabilistic informations and we
derive some new POs specific to our extension: each event is annotated with a positive
weight, parameters values are uniformly chosen and non-deterministic assignments are
replaced with quantitative probabilistic assignments as in [[16l17]. Then, we show that
the semantics of our fully probabilistic Event-B models are, as expected, Discrete Time
Markov Chains.

We have started the development of a new plugin to the Rodin Platform, this plugin al-
lows the specification and verification of probabilistic Event-B models. The current fea-
tures are listed in Tab. [T where v denotes the supported functionalities and ~ the func-
tionalities currently under development. This plugin allows the specification of fully
probabilistic Event-B models and the probabilisation of an Event-B model as shown in
Fig. @]

As argued in the.introduction, our aim Annotating events with weights

in the long term is to develop a proba- Checking new PO (eventWEIGHT)
bilistic extension of Event-B where the Introducing new probabilistic assignments
developer can choose at his convenience Checking new PO (event/assign/pWD)
where to refine non-deterministic choices Checking new PO (event/assign/pWD2)
with probabilities and where to keep non- Updating standard POs

deterministic choices intact. This paper is Implementing the probabilisation process
a first step towards this long term goal. Table 1: Probabilistic Plugin features

N

14 Mohamed Amine Aouadhi, Benoit Delahaye, and Arnaud Lanoix

About refinement. As the development in Event-B is intrinsically based on a refinement
process, we plan on studying the refinement of fully probabilistic Event-B models. In
this paper, we have only considered a (kind of) refinement step consisting to move from
a purely non-deterministic Event-B model to a purely probabilistic Event-B model (the
probabilisation process). We obviously intend to study and develop refinement between
probabilistic Event-B models.

In Event-B, introducing new events by refinement implies the proof of the convergence
of these new events (i.e. a decreasing of a given variant). Probabilities can facilitate the
proof as shown in [11]].

About properties verification. Most of the properties of interest that are verified in
classical Event-B are safety related. They are most of the time expressed by means of
invariants and discharged as POs. In addition, a critical system must also satisfy some
liveness properties.

In [5], Abrial and al. have proposed a way to express some dynamic constraints in B.
In [10], the authors have extended this work and have proposed a solution to verify
some temporal properties expressed in LTL on Event-B models. In this direction, the
work in [9] adresses the verification of PLTL properties by model checking. In [12],
the authors have proposed a set of proof rules for reasoning about some liveness prop-
erties (existence, progress, persistence). In [4], the authors have expressed and proved
reachability within the refinement process in Event-B.

Based on these works, we will investigate in the future how we can verify some proper-
ties expressed in some probabilistic logic like PLTL or PCTL on probabilistic Event-B
models.

In parallel to the reporting work, we intend to improve our probabilistic plugin by im-
plementing new features such as probabilistic properties and refinement of probabilistic
Event-B models.

References

1. J.-R. Abrial. Modeling in Event-B: system and software engineering. Cambridge University
Press, 2010.

2. J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin. Rodin: an open
toolset for modelling and reasoning in event-b. International journal on software tools for
technology transfer, 12(6):447-466, 2010.

3. J.-R. Abrial, D. Cansell, and D. Méry. A mechanically proved and incremental development
of ieee 1394 tree identify protocol. Formal aspects of computing, 14(3):215-227, 2003.

4. J.-R. Abrial, D. Cansell, and D. Méry. Refinement and reachability in event-b. In H. Tre-
harne, S. King, M. Henson, and S. Schneider, editors, ZB 2005: Formal Specification and
Development in Z and B, volume 3455 of Lecture Notes in Computer Science, pages 222—
241. Springer Berlin Heidelberg, 2005.

5. J.-R. Abrial and L. Mussat. Introducing dynamic constraints in b. In D. Bert, editor, B9S:
Recent Advances in the Development and Use of the B Method, volume 1393 of Lecture
Notes in Computer Science, pages 83—128. Springer Berlin Heidelberg, 1998.

6. D. Bert and F. Cave. Construction of finite labelled transition systems from b abstract sys-
tems. In Integrated Formal Methods, volume 1945 of LNCS, pages 235-254. Springer, 2000.

10.

11.

12.

14.

15.

16.

17.

18.

20.

21.

A Fully Probabilistic Extension of Event-B 15

F. Boniol and V. Wiels. The landing gear system case study. In ABZ 2014: The Landing
Gear Case Study, pages 1-18. Springer, 2014.

. W. W. Chu and C.-M. Sit. Estimating task response time with contentions for real-time

distributed systems. In Real-Time Systems Symposium, 1988., Proceedings., pages 272-281.
IEEE, 1988.

. C.Darlot, J. Julliand, and O. Kouchnarenko. Refinement preserves pltl properties. In D. Bert,

J. Bowen, S. King, and M. Waldén, editors, ZB 2003: Formal Specification and Development
in Z and B, volume 2651 of Lecture Notes in Computer Science, pages 408—420. Springer
Berlin Heidelberg, 2003.

J. Groslambert. Verification of 1tl on b event systems. In J. Julliand and O. Kouchnarenko,
editors, B 2007: Formal Specification and Development in B, volume 4355 of Lecture Notes
in Computer Science, pages 109—124. Springer Berlin Heidelberg, 2006.

S. Hallerstede and T. S. Hoang. Qualitative probabilistic modelling in event-b. In Integrated
Formal Methods, pages 293-312. Springer, 2007.

T. Hoang and J.-R. Abrial. Reasoning about liveness properties in event-b. In S. Qin and
Z. Qiu, editors, Formal Methods and Software Engineering, volume 6991 of Lecture Notes
in Computer Science, pages 456—471. Springer Berlin Heidelberg, 2011.

. J. G. Kemeny and J. L. Snell. Finite markov chains, volume 356. van Nostrand Princeton,

NJ, 1960.

C. Morgan, T. S. Hoang, and J.-R. Abrial. The challenge of probabilistic event b—extended
abstract—. In ZB 2005: Formal Specification and Development in Z and B, pages 162—171.
Springer, 2005.

R. Motwani and P. Raghavan. Randomized algorithms. Chapman & Hall/CRC, 2010.

A. Tarasyuk, E. Troubitsyna, and L. Laibinis. Reliability assessment in event-b development.
NODES 09, page 11, 2009.

A. Tarasyuk, E. Troubitsyna, and L. Laibinis. Towards probabilistic modelling in event-b. In
Integrated Formal Methods, pages 275-289. Springer, 2010.

A. Tarasyuk, E. Troubitsyna, and L. Laibinis. Integrating stochastic reasoning into event-b
development. Formal Aspects of Computing, 27(1):53-77, 2015.

. K. S. Trivedi, S. Ramani, and R. Fricks. Recent advances in modeling response-time distri-

butions in real-time systems. Proceedings of the IEEE, 91(7):1023-1037, 2003.

A. Villemeur. Reliability, Availability, Maintainability and Safety Assessment, Assessment,
Hardware, Software and Human Factors, volume 2. Wiley, 1992.

E. Yilmaz. Tool support for qualitative reasoning in Event-B. PhD thesis, Master Thesis
ETH Ziirich, 2010, 2010.

16 Mohamed Amine Aouadhi, Benoit Delahaye, and Arnaud Lanoix

Proof of Lemma 1

Given a probabilistic Event-B model M, the semantics [M]] of M is a DTMC.

Proof. We must prove that for each state s in [[M], the sum of probabilities of the
outgoing transitions from s is equal to one. Let M be a probabilistic Event-B model,
V= (x1,x2,...,X,) the set of variables of M and s € S a state of [M]]. We assume that
each variable x; in v take its value from a set X;.

Recall that the probability of a transition (s,e,s") is 0 if Acts(s) =0 or Ix € vV\{Var(e)}
st [s]x # [s']x and otherwise:

P(s,e,s') = [sIWe (¥) < Y [Pr,(m)x] Y PE)]

Yo '€Acts(s) [S} We (7) €Ty xeVar(e) Ee, (x)ls

We must therefore show that Ypcpers(s) Lyes P(5,€,8") = 1.

Z P(s,e,s") = Z ZH—M)eX Z [Pr, (7) % H Z P{(E)]

s'eS,ecActs(s) ecActs(s)s'eS Ze/EACU (s) I HET,, xeVar(e) e, (X)‘A/,

P(s,e,s") = Z %X Z[PT\@(@)XZ H Z P{(E)]

s'eS.ecActs(s) ecActs(s) ZE/EAC[S(S> [S] We (V) €Ty s’eSerar(e)Eefe(x)‘.:’ﬂ
Let S; = {s' € S|Vx € v\Var(e).[s]x = [s]x}.

P(s,e,s’) [S}We(‘j) (_) ~ 72 [PTVX ([_v) % Z H Z PE(E)}

'S ecActs(s) ecAats(s) Ze 'EActs(s) [S}We’ 4 feT s'eS) xeVar(e)Eeﬂ()‘s

5.1y

First, we remark that E, (x)\z_t-v does not really depend on s’ but only depends on v, =
[¢']x (As " corresponds to the valuations of the variables x; in the state s”).

Given x € v and v, € X, we therefore write F’ e (V) = ZEGZg(x)ﬁ/ﬁ P{(E)if x € Var(e).

For v = {x1,...,x,}, we have S; = {(vy,,...,Vx,) vy, = [s]x; if x; € Var(e) and vy, € X;
otherwise}.

We assume that Var(e) = {x1,...,x;} withk <n,

Then for all expression o with ot = [vy, | < [s]Xky 1, ..., Vi, ¢ [8]x,] we have:

Yo=Y (Y (-} o)

s'eSy vy €X1 Ve €Xo Vi €Xy

As a consequence, we have:

Y I k= X (X (- X HF ()

s'eS xi€Var(e) vy €X1 vy €X2 Vi EXg i=

= val ¢ (Zvl2 €X, (..):"’*k X, (F;flwe (Vxl)~Flgz7twe(v)62)° F)éi’t"’e(vxk))))
[ZV’VI X F;lt e(v)q)] [ZL X X FS e (sz)] [ZVXA Xk F‘ e (ka)]

A Fully Probabilistic Extension of Event-B

= HxiEVar(e) [vai €X; F)gi’twe (VXi)]

By construction,for x; € Var(e), we have ¥, cx, F"(vy,) = 1

Therefore, ZS/€S| HxEVar(e) F;7IV76([S/]X) =1L
Asa consequence,

Z P(s,e,s') = Z [s|We (V). Xser,, Pri, ()

s'€S e€Acts(s) ecActs(s) Ze/GActs(S) [S] W, (‘7)

_ ZeeActs(s) [S} We(ﬁ)' (Zt}ETvx PTv,; (t:/)))
Ze’GActs(s) [S]We (‘7)

By construction, we have Y.z <7, Pr, () = 1 and thus:

ZeGActs(s) [S] We (‘7)
P(s,e,s) = -
s'€S,e€Acts(s) () Ze’EActs(s) [S]We/(v)

=1

As a conclusion, we have that Vs, Y.y s ccacrs(s) P(s,e,s') =1 and then M is a DTMC O

	A Fully Probabilistic Extension of Event-B

