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TESTING CAYLEY GRAPH DENSITIES

G. N. ARZHANTSEVA, V. S. GUBA, M. LUSTIG, AND J.-PH. PRÉAUX

Abstract. We present a computer-assisted analysis of combinatorial properties
of the Cayley graphs of certain finitely generated groups: Given a group with a
finite set of generators, we study the density of the corresponding Cayley graph,
that is, the least upper bound for the average vertex degree (= number of adjacent
edges) of any finite subgraph. It is known that an m-generated group is amenable
if and only if the density of the corresponding Cayley graph equals to 2m. We
test amenable and non-amenable groups, and also groups for which amenability
is unknown. In the latter class we focus on Richard Thompson’s group F .

The sign means that we would like you to check our changes here.♠

1. Introduction

Let G be a group with a finite set of generators X of cardinality m. There is an
associated Cayley graph C = C(G, X) (see §2), which has vertex set in bijection to
G, and at every vertex there are precisely 2m adjacent edges. The combinatorial
properties of the Cayley graph reflect the algebraic structure of the group G. In this
paper we investigate the density of Cayley graphs, introduced first in [5]. This is a
numerical parameter δ(C), defined below, which takes values between 0 and twice
the number of group generators. It strongly depends on the isoperimetric properties
of the Cayley graph and hence on those of G, which are often expressed in terms
of the graph isoperimetric constant ι∗(C) (see §2 for the definition). It is known
that ι∗(C) + δ(C) = 2m, see [5]. A group is amenable if and only if ι∗(C) = 0, or,
equivalently, δ(C) = 2m.

In order to estimate the density of a Cayley graph, one can compute densities
of certain of its finite subgraphs. We propose a simple algorithm to construct an
optimized subgraph (i.e. with a greater density) from any given finite subgraph
of the Cayley graph. We apply the algorithm to amenable groups, non-amenable
groups, and to groups for which it is not known whether they are amenable. More
specifically, we investigate finitely generated free abelian groups, Baumslag-Solitar
groups (amenable and non-amenable ones), the restricted wreath product Z o Z,
and Richard Thompson’s group F . We analyze empirical data obtained by a C++
implementation of our algorithm.

We quote here only one of the numerical results obtained from our algorithm,
which we find particularly interesting:

Sample result: There is a subset of cardinality 10169678 in Thompson’s group F
that has density 2.89577 with respect to the classical generating system of cardinality
m = 2.

This work was supported by the Swiss National Science Foundation, No. PP002-68627.
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2. Amenability and Følner families

Let G be a group generated by a finite set X. Let C = C(G, X) be the corre-
sponding (left) Cayley graph. Recall that the set of vertices of C is G, and that the
set of oriented edges is X±1 ×G. For any edge e = (x, g) the initial vertex is g, and
the terminal vertex is xg. The inverse of the edge e, considered here separately from
e, is the edge e−1 = (x−1, xg). The label of e = (x, g) is defined to be the generator
x ∈ X. The group G acts canonically on C from the right (by right multiplication
of the vertices of C).

Throughout the paper we consider finite graphs A which are typically subgraphs
of C. We always require that with any edge e also the inverse edge e−1 belongs to
A.

The density of a finite graph A is defined by

δ(A) =

∑
v∈V (A) deg(v)

#V (A)
,

where deg(v) denotes the number of oriented edges with initial vertex v, V (A) is
the set of vertices of A, and #V (A) is the cardinality of V (A).

We define the density of the Cayley graph C = C(G, X) as supremum

δ(C) = sup
A

δ(A),

where A runs over all finite subgraphs of C.
Similarly, for any subgraph A of C one defines the isoperimetric constant

ι∗(A) =
#∂A

#V (A)
,

where ∂A denotes the set of vertices of A that have adjacent edges in both, A and
C − A. The infimum of the values of ι∗(A), over all finite subsets of C, is called the
isoperimetric constant of the graph C, and is denoted by ι∗(C).

Lemma 1. For every finite subgraph A of C one has:

2m− (2m− 1)ι∗(A) ≤ δ(A) ≤ 2m− ι∗(A).

Proof. Note that for any finite subset A ⊂ C the complement of ∂A in A con-

sists entirely of vertices of degree 2m. Hence δ(A) =
∑

v∈V (A) deg(v)

#V (A)
=

∑
v∈∂A deg(v)

#V (A)
+∑

v∈V (A)−∂A 2m

#V (A)
. But a vertex in ∂A has at least degree 1 and at most degree 2m− 1

in A, which shows #∂A
#V (A)

+ 2m#V (A)−#∂A
#V (A)

≤ δ(A) ≤ (2m− 1) #∂A
#V (A)

+ 2m#V (A)−#∂A
#V (A)

and hence 2m− (2m− 1)ι∗(A) ≤ δ(A) ≤ 2m− ι∗(A). �

Isoperimetric properties of graphs play an important role in the study of amenable
groups. There are many equivalent characterizations of amenability in the literature,
see for example [4] and the references given there. We use the following one.
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Theorem 1. A finitely generated group G is amenable if and only if for some
(or, equivalently, for any) finite generating set X the Cayley graph C = C(G, X)
satisfies:

ι∗(C) = 0

A family of finite subsets An of C is called a Følner family (or a family of Følner
sets if

lim
n→∞

ι∗(An) = 0 .

In light of Lemma 1 this is equivalent to

lim
n→∞

δ(An) = 2m .

Hence, the group G is amenable if and only if there exists a family of Følner sets
An ⊂ C.

For certain classes of groups there are well known Følner families. For example, if
G is of polynomial growth, then one knows that with respect to any finite generating
system X of G the set of balls B(n), which consists of all points in C of simplicial
distance smaller or equal to n from the neutral element 1 ∈ G, is a Følner family [7,
Proposition, Ch.VII.C.34]. Here we mean by simplicial distance the distance in the
metric space obtained from C if one gives to every edge the length 1. Examples for
groups of polynomial growth are free abelian groups and certain Baumslag-Solitar
groups, which will be considered below.

However, many Baumslag-Solitar groups are of exponential growth, but some of
them (not all !) are still amenable. The same is true for the wreath product Z o Z,
also considered below. In this case a Følner family exists in C, but the balls B(n)
will not constitute such a family: There is a uniform upper bound strictly smaller
than 2m to the density of every B(n). Of course, this last statement is true also if
G is non-amenable.

3. Group presentations and normal forms

In order to compute in a finitely generated group G, one needs a normal from for
the elements of G: For example, in Z× Z = 〈a, b | aba−1b−1 = 1〉 the element (2, 1)
can be written as a2b, aba, baa, but also as aba−1bab−1a or a−69ba71. It is an essential
restriction on the class of groups G considered here that we require the existence
of a uniquely determined normal form for the elements of G, and that this normal
form can be recursively calculated. Notice that the generating set of G used in the
normal form may well differ from the system X which is used to build the Cayley
graph; in some cases this discrepancy is a rather convenient from a computational
point of view.

3.1. Free abelian groups. The free abelian group of rank m is defined by the
presentation:

〈x1, x2, . . . , xm | xixj = xjxi for all i, j = 1, 2, . . . ,m〉
A word in the canonical generators x1, x2, . . . , xm and their inverses is in normal

form if and only if it is of the form

xp1

1 xp2

2 · · ·xpm
m

for some p1, p2, . . . , pm ∈ Z.
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3.2. Baumslag-Solitar groups. Let p, q ∈ Z \ {0}, and let BS(p, q) denote the
Baumslag-Solitar group defined by the presentation:

〈a, b | abpa−1 = bq〉
A word in a±1, b±1 is in normal form whenever it is written in a reduced form (in
the sense of HNN extensions [8]):♠

bp0aq1bp1 · · · aqnbpn

with n ≥ 0 and p0, p1, . . . , pn ∈ Z, q1, q2, . . . qn ∈ Z \ {0}, and such that for i =
1, 2, . . . , n − 1 one has pi > 0, and pn ≥ 0. Furthermore, if qi > 0 then one has
pi < |p|, and if qi < 0 then pi < |q|.

3.3. The restricted wreath product ZoZ. We define this group by the non-finite♥
presentation:

〈a, x0, x1, . . . | xa
i = xi+1, xixj = xjxi for all i, j > 0〉

A word in the generators or their inverses is in normal form whenever it is of the
form

anxp1

i1
xp2

i2
· · ·xpn

in
,

where n ∈ Z, 0 ≤ i1 < i2 < · · · < in, and p1, p2, . . . , pn ∈ Z \ {0}.
In fact, this group can be generated by a and x0. We will refer to this as the

canonical set of generators.

3.4. Thompson’s group F . Thompson’s group F [3] is the group of all piecewise-
linear orientation preserving self-homeomorphisms of the unit interval such that (i)
singular points are on dyadic numbers, and (ii) all slopes are integer powers of 2.

The group F admits the following infinite presentation:

〈x0, x1, x2, . . . | xjxi = xixj+1 if i < j〉
It turns out that it has a finite presentation on two generators x0, x1. We will use
this canonical set of generators in our computations. The generators x0 and x1 are
given by the following functions, see also Figure 1.

x0(t) =

 t/2 0 ≤ t ≤ 1/2
t− 1/4 1/2 ≤ t ≤ 3/4
2t− 1 3/4 ≤ t ≤ 1

x1(t) =


t 0 ≤ t ≤ 1/2
t/2 + 1/4 1/2 ≤ t ≤ 3/4
t− 1/8 3/4 ≤ t ≤ 7/8
2t− 1 7/8 ≤ t ≤ 1

We will consider two kinds of normal forms for the Thompson group F . The first
one is given by words

xp0

0 xp1

1 · · ·xpn
n x−qn

n · · ·x−q1

1 x−q0

0

where n, p0, p1, . . . , pn, q0, q1, . . . , qn are non-negative integers such that
(i) exactly one of pn or qn is non-zero, and
(ii) if pk > 0 and qk > 0 for some 0 ≤ k < n, then pk+1 > 0 or qk+1 > 0.

The left half xp0

0 xp1

1 · · ·xpn
n is called the positive part of the word and the right half

x−qn
n · · ·x−q1

1 x−q0

0 the negative part. A word is said to be positive (or negative) if its
normal form only consists of its positive (or negative) part.

The second normal form is given by the so called reduced forest diagrams [2].
Recall that a binary forest is a finite sequence of binary trees, together with a
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1/2 3/4

1/2

1/4

1/2

1/2 3/4

3/4

7/8

5/8

Figure 1. The canonical generators x0 and x1 of F .

pointer on one of the trees. The number of leaves in a binary forest is the sum of
the numbers of leaves in its binary trees. A forest diagram is a pair of binary forests
which have the same number of leaves. We speak of the bottom forest as well as of
the top forest, see Figure 2.

Figure 2. A forest diagram with 8 leaves

A caret in a tree is a pair of leaves with the same parent vertex. A forest diagram
is reduced if it has no opposite pairs of (bottom and top) carets (cf. [2]). For
example, the diagram of Figure 2 is reduced.

One associates to an arbitrary reduced forest diagram an element of F with normal
form xp0

0 xp1

1 · · ·xpn
n x−qn

n · · ·x−q1

1 x−q0

0 as follows:

– Enumerate top and bottom leaves, as well as top and bottom trees, from the left
to the right, starting at 1.
– The top (or bottom) forest gives the positive part (or negative part respectively)
of the normal form.
– The exponent of xi, for i > 0, equals to the maximal length of simple paths in the
top forest starting at the ith top leaf and following the top-to-right direction (the
exponent is 0 whenever such a leaf does not exist).
– The exponent of x−1

i , for i > 0, equals to the maximal length of simple paths in
the bottom forest starting at the ith bottom leaf and following the bottom–to-right
direction.
– The exponent of x0 is n whenever the top pointer is on the (n + 1)st tree.
– The exponent of x−1

0 is n whenever the bottom pointer is on the (n + 1)st tree.

For example, the reduced forest diagram of Figure 2 gives the element

x0x
2
1x

2
4x6x

−1
7 x−1

6 x−3
2 .
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Notice that adding a top and a bottom leaf on the right of a forest diagram does
not change the corresponding element of F . Up to this trivial transformation, it
turns out that each element of F can be represented by a unique reduced forest
diagram (cf. [2]). This is the second normal form we are interested in.

For example, the generators x0, x1 and their inverses are represented by the re-
duced forest diagrams given in Figure 3.

x0
-1 x1

-1

x0 x1

Figure 3. Forest diagrams for the generators x0, x1 and their inverses

Below we use the following definitions: A binary forest is trivial if each of its
subtrees consists of a single vertex only, and if the pointer is on the first of them.
A forest diagram is negative (or positive) if its top (or bottom) tree is trivial; in
such a case the normal form of the associated element of F is negative (or positive
respectively). The height of a forest is the maximal height of one of its binary trees;
it can take any value between 0 and the number of leaves minus 1. For instance,
the top forest and the bottom forest of the forest diagram in Figure 2 have height 2
and 3 respectively.

4. Special subsets in Thompson’s group F

For the first three classes of groups considered in this paper, free abelian groups,
Baumslag-Solitar groups, and the wreath product Z o Z, all of our numerical ex-
periments are performed on balls B(n) of radius n in the Cayley graph C, centered
around the vertex defined by the neutral element 1 ∈ G. For the fourth group,
Thompson’s group F , we will work with balls, but also with other kinds of sets,
which we specify now.

4.1. Left positive balls. Let n > 0. The left positive ball of radius n, denoted by
LP (n), is defined to be the maximal subgraph in the Cayley graph C = C(F, {x0, x1})
which contains only positive words

xp0

0 xp1

1 · · ·xpk
n with p0 + p1 + · · ·+ pk ≤ n

as vertices. Notice that a left positive ball LP (n) cannot be a tree: Indeed, our
densification algorithm (see §5) deletes subtrees from some of the LP (n), but if
n ≤ 5 the LP (n) are left unchanged (cf. §9.9). This shows in particular that those
LP (n) are not trees. Thus none of the LP (n) is a tree, since obviously LP (n) is
always a subgraph of LP (n + 1).
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4.2. Negative forests. A negative forest with n leaves, n ∈ N, denoted by NF (n),
is defined to be the maximal subgraph of the Cayley graph which contains only
vertices that are given by group elements which are represented by a negative reduced
forest diagram with at most n leaves. Obviously one has NF (n) ⊂ NF (n+1). The

x0
-1

x1
-1x0

-1

x2
-1x1

-1

x2
-1

x1
-2

x2
-1x0

-1

x0
-2

x1
-1

e

Figure 4. The negative forest NF (3)

negative forest with 3 leaves, NF (3), is given in Figure 4.
In the graphical representation of a negative forest we only draw the representative

bottom forest. For example, in Figures 4 and 5 below the generators x0 and x1 are
given by simple and double arrows respectively.

Notice that even though NF (3) is a tree, NF (n) is not a tree for n ≥ 5 (see, for
example, §9.10).

4.3. Belk-Brown sets. The Belk-Brown set with n leaves and of height at most k,
for n, k ∈ N and k < n, denoted by BB(n, k), is the maximal subgraph of the Cayley
graph C which contains as vertices only elements that have a negative reduced forest
diagram with n leaves and height at most k [2]. For instance, Figure 5 represents
the Belk-Brown set BB(4, 1). Note that BB(4, 1) is not a tree (it contains the loop
x−2

0 x−1
1 x2

0x
−1
1 x−1

0 x1x0x1).
Obviously one has BB(n, k) ⊂ BB(n + 1, k) and BB(n, k) ⊂ BB(n, k + 1). In

particular BB(n, k) is not a tree whenever n ≥ 4 and k ≥ 1. Since the height of a
forest is at most the number of its leaves minus 1, we have BB(n, n− 1) = NF (n).
This shows that NF (n) is not a tree whenever n ≥ 4, as already stated in the
previous section.

5. The densification algorithm

In this section we describe the algorithm by which we can improve the density of
a given finite graph, through passing over to a subgraph.

Given a finite subgraph A in the Cayley graph C of a finitely generated group
G, the algorithm applies a finite sequence of reductions (given in detail below), and
returns a new “densified” subgraph A. If the initial finite graph A is sufficiently
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x3
-1x1

-1

x1
-1

x2
-1

e x0
-1 x0

-3x0
-2

x3
-1x0

-1x3
-1x0

-2 x3
-1

x3
-1x1

-1x0
-1x1

-1x0
-2 x1

-1x0
-1

x2
-1x0

-2x2
-1x0

-1

Figure 5. The Belk-Brown set BB(4, 1).

dense, then the returned graph A will have even higher density. Otherwise, for
example if A is a cycle or a tree, it is possible that the algorithm will collapse A to
a single vertex. As our applications concern all Cayley graphs built on 2-element
generating systems, our algorithm is tuned to graphs with vertex degree uniformely
bounded by 4. The necessary modifications for higher vertex degree, if needed, are
fairly easy to device.

We first need to introduce some terminology. Let K be a finite graph. A chain
is a maximal simple path in K where all of its vertices, except for the endpoints,
have degree 2 in K. The length of a chain is the number of its vertices of degree
2. A cycle is a simple loop in K where all vertices have degree 2 in K. A tripod
is a subgraph of K which consists of 3 chains which have precisely 1 vertex v in
common, and v is an endpoint in each of the three chains. The length of a tripod
is the sum of the lengths of its three chains. A degenerated tripod is a subgraph of
K which consists of two chains c and c′, such that the two endpoints of c coincide
with a vertex v, and precisely one of the endpoints of c′ also coincides with v. The
length of a degenerated tripod is the sum of the lengths of the two chains c and c′.
We require that, in case of a tripod or a degenerated tripod, the vertex v has degree
3 in K; i.e. there is no other edge adjacent to v.

We will now define four types of elementary reductions. They correspond to the
removal of chains, cycles, and tripods (degenerated or not) from K, whenever their
length is large enough. Any such transformation will in most cases increases the
density, see Lemma 2.

For a finite graph K with density δ(K) we define the following parameters: If
δ(K) 6= 2, let Nc(K) = max(0, 2

δ(K)−2
), Nt(K) = max(0, 4

δ(K)−2
− 1) and Nd(K) =

max(0, 2
δ(K)−2

− 1). If δ(K) = 2, we set Nc(K) = Nt(K) = Nd(K) = 0.

(R1): Remove any subtree of K.

(R2): Remove any cycle of K.



TESTING CAYLEY GRAPH DENSITIES 9

(R3): Remove all chains of length greater than Nc(K) from K.

(R4): Remove from K some tripod of length greater than Nt(K), or some degen-
erated tripod of length greater than Nd(K). Repeat this procedure as often as
possible, of course every time with respect to the new values of Nt(K) and Nd(K).

Lemma 2. If K is a finite graph with density δ(K) > 2, then any of the above
elementary transformations (R1), (R2), (R3) or (R4) transforms K into a subgraph
K ′ of strictly larger density of δ(K).

Proof. It suffices to check that the number of edges removed in any of the elementary
transformations is strictly smaller than δ(K) times the number of vertices removed.
This is trivially true for the transformations (R1) and (R2), since any tree has one
more vertex than unoriented edges, and any cycle has equal number of vertices as
unoriented edges. Since according to our conventions we have to count an edge and
its inverse separately, this gives directly the desired inequality.

For the reduction (R3) we observe that any chain c of length n > Nc(K) has
precisely 2n + 2 edges (counting again an edge and its inverse separately) and n + 2
vertices, and while all of the edges are removed with c, only the n interior vertices
of c are removed. Since δ(K) > 2 and Nc(K) = max(0, 2

δ(K)−2
), one has n > 2

δ(K)−2

and hence δ(K) > 2
n

+ 2 = 2n+2
n

, which precisely what we need.
Any tripod of length n consists precisely of 2n+6 edges and n+4 vertices, where

n + 1 of them (as well as all edges) will be removed. A degenerated tripod of length
n consists precisely of 2n+4 edges and n+2 vertices, of which n+1 will be removed.
The further calculation for (R4) is very similar to the above one for (R3) and thus
left to the reader. �

The algorithm proceeds as follows:

Given a finite graph K

DO WHILE: the graph K is changing:

Apply successively reductions (R1), (R2), (R3), (R1), (R2), (R4)

END

RETURN \! the densified graph K

Below we will call each successive applications of the reductions (R1), (R2), (R3),
(R1), (R2), (R4) a round.

6. The algorithmic package

As mentioned in the introduction, our numerical results were obtained by means
of computer calculations, executed by a program written in C++. In this section we
give a brief description of the three parts I, II and III of our programmed algorithmic
package, of its software routines and also of the assumptions and limitations involved.
A fourth computational feature, concerning the linear interpolation of the numerical
data obtained by parts I - III, and in particular calculating an interpolated limit
density is performed using Matlab and is described in §8 below.

Part I of the algorithmic package consists of subprograms, one for each class of
groups G considered here, that transform a given product of generators or their
inverses into a word in normal form as introduced in §3.
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Part II calculates, for a given parameter n, the finite graphs B(n), or, in case
where the group in question is Thompson’s F , the finite graphs LP (n), NF (n), or,
for given k and n, the graph BB(n, k), as defined in §4.

Part III calculates, for any finite graph A (= the graph computed in part II) a
densified subgraph A according to the algorithm presented in §5.

It is an important characteristics of our algorithmic package that it is organized in
a strictly modular fashion where the different parts work independently from each
other. This give the possibility to easily improve specific parts without having to
change the rest. For example, new classes of groups can be investigated by adding
new subprograms to part I without changing parts II or III, new families of sets for
the known groups can be investigated without changing I or III, and the densification
algorithm could be embellished and reapplied to the groups and set families already
programmed without ever changing I or II.

6.1. What the program can do. The program works in a console mode. A
contextual menu allows the user to choose any of the actions. The actions, besides
saving a copy of the outputs into a text file and offering some further options, consists
mainly in:
– Choose one of the predefined groups; all further computations will concern this
group.
– Perform direct computations, like writing an element or a product of elements in
normal form.
– Construct one (or a sequence) of the predefined finite graphs as explained in §4,
and compute their density (or alternatively their isoperimetric constant).
– Apply to such a finite graph (or sequence of finite graphs) the algorithm of §5.
The program provides some extra informations, like the density at each step, and
further details concerning the application of the elementary reductions (R1)–(R4).

6.2. What the program is made of. The program is written in standard C++

and can be compiled either on Linux or Win32 platforms. It can be easily adapted
to compilation on other platforms.

The program makes intensive use of the object-oriented abilities of C++. Groups,
graphs, vertices are all objects (or class); all the main algorithms correspond to
general functions which takes data as input (like a group), and returns data. The
functions which construct balls in the Cayley graph, and implement the algorithm
of §5 are general and can be applied to any implemented group or finite graph.

Elements are given by strings of characters. This allows more choices when one
encodes an abstract group element. Usually, strings look like words on given canon-
ical generators and inverses. So they are really close to their mathematical meaning.
However, for example in the case of Thompson’s group F , they don’t represent words
on the canonical generators, but encode normal forms.

6.3. Limitations. The graphs are constructed in the physical memory (RAM) of
the computer, and their size is almost proportional to the number of vertices. The
main limitation of our computation is obviously the size of the computed graphs.
This is closely related to the complexity of the group: In groups of polynomial
growth, our computations of B(n) can easily be implemented for n going up to
hundreds or thousands, while in groups of exponential growth n goes hardly up to
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20. On the other hand, the program can handle free groups of rank at most 128, free
abelian groups of rank at most 128, and words in wreath products with in at most
127. For the group F the program can handle normal forms xp0

0 . . . xpn
n x−qn

n . . . x−q0

0

with n up to 127.

7. Summary of experimental results

In this section we give an overview of our experimental results. For each of the
classes of groups considered in §3 and for each type of the special subsets defined in
§4 our presentation contains the following parts:

(a) – known theoretical results for the group;
(b) – best values of densities calculated by our program;
(c) – analysis of the work of the densification algorithm;
(d) – values of the interpolated limit density;
(e) – comments.

In the next section we give a graphical interpretation of our experimental results,
and in Section 9 we present the numerical data obtained.

7.1. Comparative analysis I: Amenable vs non-amenable.

7.1.1. Free abelian groups Z× Z and Z× Z× Z.

(a) Both groups are of polynomial growth, and hence balls B(n) are known to be a
family of Følner sets. The slow growth allows an easy implementation of balls B(n)
for large n (for hundreds or for thousands). Also, theoretical values of the density
of balls and of densified balls are very easy to calculate.

(b) The ball of radius 301 in Z×Z has density 3.98673 before and 3.98678 after the
densification algorithm is applied. The denisities of the ball B(171) and of B(171)
in Z× Z× Z are 5.94752 and 5.94812 respectively.

(c) The densification algorithm does not change the initial density significantly: the
increase of density is less than 1%. It deletes only 4 vertices in case of Z× Z.

(d) The interpolated values of the limit density coincide with the theoretical values:
4 for Z × Z and 6 for Z × Z × Z respectively. Moreover, this is the case, both in
small scale (for n = 1, . . . , 15) and in large scale (for n = 1, . . . , 300) calculations,
which numerically confirms that balls constitute a Følner family.

7.1.2. Baumslag-Solitar group BS(1,−1).

(a) The group is virtually abelian. Hence it is of polynomial growth and amenable,
and balls B(n) are Følner sets.

(b) The ball of radius 301 has density 3.98673. The densified ball of radius 301 has
density 3.98678.

(c) The densification algorithm removes only 4 vertices and the increase in density
is negligible.

(d) The interpolated limit density is equal to 4. In particular, one sees numerically
that balls constitute a Følner family.
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(e) Balls in the Cayley graph of BS(1,−1) are isomorphic (as graphs) to balls in
the Cayley graph of Z× Z. Hence one expects the same results as for Z× Z. This
is indeed the case even if implementations of BS(1,−1) and of Z × Z are rather
different: the former belongs to the class encoding Baumslag-Solitar groups, and
the latter refers to the class encoding abelian groups.

7.1.3. Baumslag-Solitar group BS(1, 2).

(a) This is an amenable group of exponential growth. Hence balls do not form a
Følner family.

(b) The ball of radius 19 has density 3.14771. The densified ball of radius 19 has
density 3.42439.

(c) The densification algorithm yields a 9% increase in density and slightly reduces
the size of balls: approx. 40% of vertices are removed.

(d) Our interpolation gives limit density 3.22 for balls and 3.48 for the densified
balls. They are quite close to the optimal value 4.

(e) This is the first example where the densification algorithm improves the (inter-
polated) limit density substantially. Of course, we know from the amenability of
BS(1, 2) that there is some family of subgraphs which is Følner, and our calcula-
tions indicate that, even for large n, densification of balls B(n) is not sufficiently
strong to build such a family.

7.1.4. Baumslag-Solitar group BS(2, 2).

(a) This group contains F2 × Z as a subgroup (of index 2) and hence it is not
amenable.

(b) The ball of radius 18 has density 2.58585. The densified ball of radius 18 has
density 2.928.

(c) The densification algorithm induces a 14% increase in density and remove approx.
40% of vertices.

(d) The interpolated values of the limit density of balls and of densified balls are
2.64 and 2.97, respectively.

(e) An interesting point is that the algorithm runs only through one round.

7.1.5. Baumslag-Solitar group BS(2, 3).

(a) This group is not amenable. Hence the density of balls can not be close to the
optimal value 4.

(b) The ball of radius 14 has density 2.40677. The densified ball of radius 14 has
density 2.79782.

(c) The densification algorithm generates a 16% increase in density and removes
relatively many vertices: approx. 70%.

(d) The interpolated values of the limit density of balls and of densified balls are
2.44 and 2.86, respectively.
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7.1.6. Wreath product Z o Z.

(a) This is an amenable group of exponential growth. Balls B(n) are not a Følner
family.

(b) The ball of radius 16 has density 2.32838. The densified ball of radius 16 has
density 2.90938.

(c) The densification algorithm produces a 25% increase in density and removes
approx. 2/3 of vertices. Thus the algorithm is quite efficient in this case.

(d) The interpolated values of the limit densities of balls and of densified balls are
2.43 and 3 respectively.

7.2. Comparative analysis II: The Thompson group F . Amenability of F is
unknown, but one knows that F grows exponentially [3], so that balls will certainly
not give a Følner family.

7.2.1. Balls B(n) in F .

(b) The ball of radius 15 has density 2.14905. The densified ball of radius 15 has
density 2.7183.

(c) The densification algorithm induces a 25% increase in density. It removes more
than 80% of vertices.

(d) The interpolated limit densities of balls and of the densified balls are 2.23 and
2.8 respectively.

(e) The results are quite similar to the above case of the wreath product Z o Z. An
interesting point is that the densification algorithm performs at most three rounds
for n < 15. However it suddenly takes 132 rounds to perform calculations for n = 15
and the density increases a lot. This allows to believe that there may well exist a
subset of much higher density than given by our interpolation.

7.2.2. Left positive balls LP (n) in F .

(b) The left positive ball LP (19) has density 2.15988. The densified left positive
ball LP (19) is of density 2.74349.

(c) The densification algorithm yields an increase in density of approx. 27%. This
is one of the best values obtained. The densified left positive balls are particulary
small: up to 90% of the vertices are removed by the densification algorithm.

(d) The interpolated limit densities of left positive balls and of densified left positive
balls are 2.22 and 2.97 respectively.

(e) The densification algorithm appears to be most efficient in case of these particular
graphs.

7.2.3. Negative forests NF (n) for F .

(b) The reduced negative forest NF (14) has density 2.47619. The densification of
this subgraph gives density 2.79448.

(c) The densification algorithm is rather inefficient: it gives a 13% increase in density
and removes less than 60% of the vertices.
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(d) The interpolation of the limit density gives values 2.67 and 3.03 for the reduced
negative forest and for the densified reduced negative forest respectively.

(e) The interpolated values of the limit density are exceptionally close to the calcu-
lated ones: the norm of the residues is approx. 10−5.

7.2.4. Belk-Brown sets BB(n) for F .

(a) Since BB(n, n − 1) = NF (n) both implementations have the same behavior,
even though distinct routines and functions are used.

(b) The Belk-Brown set BB(17, 3) has density 2.82642. The densified set BB(17, 2)
is of density 2.89577. This is comparable to the case of Z o Z.

(c) The densification algorithm increases density by less than 13% and removes
approx. 60% of vertices.

(d) The interpolation of limit densities gives 3.18, both before and after the densi-
fication. Thus the densification algorithm seems to be inefficient in this case.

(e) Our interpolations do not agree with theoretical values: it has been announced
that the limit of density of Belk-Brown sets tends to 3.5 [2].

Notice that the best value of density of BB(n, k(n)) is obtained whenever k(n)
increases, see Figures 40 and 41. At the same time, the best value of densities of
BB(n, k(n)) appear for k(n) = 3 (or for slowly growing k(n)).

For n fixed and k large enough all the BB(n, k) have the same density and the
same number of vertices. It is an interesting question whether these finite graphs
are isomorphic as subgraphs of the Cayley graph.

8. Graphics and interpolation

We give a graphical interpretation of our experimental results. The main numeri-
cal results are given in §9. Each subsection below concerns the density of a family of
finite graphs in a given group, and its behavior under application of the densification
algorithm. We study successively:

(8.2) balls B(n) in Z× Z,
(8.3) balls B(n) in Z× Z× Z,
(8.4) balls B(n) in BS(1,−1),
(8.5) balls B(n) in BS(1, 2),
(8.6) balls B(n) in BS(2, 2),
(8.7) balls B(n) in BS(2, 3),
(8.8) balls B(n) in Z o Z,
(8.9) balls B(n) in Thompson’s group F ,

(8.10) left positive balls LP (n) in F ,
(8.11) negative Forests NF (n) in F ,
(8.12) Belk-Brown’s sets BB(n) in F .

Except for Thompson’s group F , amenability (or not) of these groups is well
known (see §2). In order to estimate the limit (or limit superior) of the density of
the families of subgraphs considered, we apply a first order approximation to the
numerical data obtained from our experiments. This interpolation allows us, in a
certain sense, to extrapolate this limit of densities by a value called “interpolated
limit density” of this family of subgraphs. Of course, the reader has to be aware
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that for groups with exponential growth this does only estimate a lower bound to
the density of the Cayley graph, compare the discussion at the end of §2.

8.1. Method of interpolation. We consider the densities δn of a sequence of finite
graphs Sn, for p+1 ≤ n ≤ q. We approximate the δn by a real-valued function f(n),
specified below, defined on the domain {p+1, p+2, . . . , q}. We estimate the quality
of the approximation first by constructing the vector in Rq−p whose nth-component
is the residue δn − f(n), and later by considering its euclidian norm. We call this
norm, the norm of residues. It is a non-negative number. Clearly, the smaller it is,
the better the approximation will be, with the zero value for the norm of residues
in the case of a perfect correspondence of f with the given values of δn.

The approximating function f is set to be of type

f(n) =
an + b

n + x
.

There are two main reasons: On one hand, these functions give the best experimental
results. On the other hand, assume that the values δn are well approximated by some

rational function f(n) = P (n)
Q(n)

. Then one easily sees (observing that limn→∞ δn is

neither zero nor infinite) that P and Q have to be of the same degree, and thus f(n)
may be just as well approximated by a function of the above type an+b

n+x
.

The key points for the interpolation procedure now are the following: First, the
interpolation reduces to the consideration of a parameter x and a linear interpolation
δn(n+x) in order to obtain a and b. Here the value of x is chosen such that δn(n+x)
is best distributed close to a line. That is, the corresponding norm of residues in a
linear interpolation is the smallest one among all possibilities for the value of x. (In
the search for the best x, using Matlab, we consider only large enough n, and the
values for x are only considered up to 10−1.)

Observe that the limit of f(n) for n →∞ is a, and hence this is the value, called
interpolated limit density, which we use as parameter to estimate the limit of δn.
The latter is, after all, the information we are mainly interested in.

Aside: An interesting experimental result in the above described interpolation pro-
cedure is that the parameter a remains essentially unchanged whenever x is slightly
modified. This stability with respect to perturbations seems interesting in light of
the fact that a is related to the approximation of zero order: the line y = ax gives
the asymptotic direction.

8.2. Free abelian group of rank 2. Numerical results are given in §9.1. We
don’t state here, although they were computed, large series of numerical data (up
to n = 1000): they behave as expected. A first series of computation for δ(B(n))
presented below is going from n = 1 to 301, by laps of seize 10, and a second series
is given for n = 1, 2, . . . , 15. This allows us to compare results for Z×Z with results
for groups of exponential growth, and the “small scale” interpolation with the “large
scale” interpolation as well as with the true behavior.

The “large scale” results for n = 1, 11, 21, . . . , 301 are given in Figure 6. We
restrict ourselves to n = 11, 21, . . . , 301. The norm of residues for the density of
balls B(n) is approx. 0.007, see Figure 7. The interpolation gives

δ(B(n)) ≈ 4n− 2

n + 0.5
.
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Figure 6. Large scale density of balls B(n) in Z× Z

Figure 7. Large scale interpolation of densities of balls B(n) in Z× Z

The interpolated limit density is equal to 4.
For n = 11, 21, . . . , 301, the norm of residues of the interpolation of the density of

densified balls B(n) is less than 0.008, see Figure 8. The interpolation yields

δ(B(n)) ≈ 4n + 1.61

n + 1.4
.

The interpolated limit density is equal to 4.
The “small scale” results and interpolations, for n = 1, 2, . . . , 15, are given in

Figure 9. For n = 2, 3, . . . , 15 the norm of residues of the interpolation of the
density of the B(n) is approx. 0.018, see Figure 10. One obtains the interpolation

δ(B(n)) ≈ 4n− 1.4

n + 0.67
.

The interpolated limit density is equal to 4.
For n = 2, 3, . . . , 15 the densities of the densified B(n), multiplied by x + 0.67,

give the line y = 4x − 0.79. The norm of residues is approximately equal to 0.092,
see Figure 11. The interpolation gives



TESTING CAYLEY GRAPH DENSITIES 17

Figure 8. Large scale interpolation of densities of densified balls
B(n) in Z× Z

Figure 9. Small scale density of balls B(n) in Z× Z

δ(B(n)) ≈ 4n− 0.79

n + 0.67
,

and the interpolated limit density is equal to 4.

Now we compare our results with the true values of δ(B(n)) and δ(B(n)). The
ball B(n) has 2n2 + 2n + 1 vertices and 4n2 edges. Thus,

δ(B(n)) =
4n2

n2 + n + 1/2
∼

+∞

4n

n + 1
.

Our (small and large scale) interpolations are not exactly the same, but they are
not so far off either. The key point is that in all three cases one obtains the limit
density 4: The given subsets are a Følner family.
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Figure 10. Small scale interpolation of densities of balls B(n) in Z× Z

Figure 11. Small scale interpolation of the densities of the B(n) in
Z× Z

The densities of the reduced balls is easy to deduce. The algorithm removes only
four vertices and four edges (the 4 extremal points of the “square”):

δ(B(n)) =
4n2 − 4

n2 + n− 3/2
∼

+∞

4n

n + 1

and the same conclusion holds.

8.3. Free abelian group of rank 3. We proceed as above by comparing large scale
and small scale interpolations with the true values. Numerical results are given in
§9.2.

The “large scale” results for Z × Z × Z appear in Figure 12. Let us restrict to
n = 11, 21, . . . , 171. The densities of balls B(n), rescaled via x+0.6, are distributed
along the line y = 6.x − 5.4, see Figure 13. The norm of residues is approximately
equal to 0.011. The interpolation gives
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Figure 12. Large scale density of balls B(n) in Z× Z× Z

Figure 13. Interpolation of the large scale densities of balls B(n) in
Z× Z× Z

δ(B(n)) ≈ 6n− 5.4

n + 0.6
,

the interpolated limit density is equal to 6.
The norm of residues of the interpolation of the density of densified balls B(n) is

approx. 0.032, see Figure 14. One obtains the interpolation

δ(B(n)) ≈ 6n + 4.3

n + 2.2
.

The interpolated limit density is equal to 6.
The “small scale” results for Z×Z×Z, for n = 1, 2, . . . , 15, are presented in Figure

15. We restrict ourselves to n = 3, 4, . . . , 15. y = 6.x− 3.6, Figure 16. The norm of
residues of the density of balls B(n) is less than 0.05, Figure 16. The interpolation
gives:

δ(B(n)) ≈ 6n− 3.6

n + 1
The interpolated limit density is equal to 6.
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Figure 14. Interpolation of large scale density of densified balls B(n)
in Z× Z× Z

Figure 15. Small scale density of balls B(n) in Z× Z× Z

For n = 4, 5, . . . , 15, multiplying the density of densified balls B(n) by x + 1.1
gives distribution along the line y = 6x − 1.1, Figure 17. The norm of residues is
close to 0.061. The interpolation gives

δ(B(n)) ≈ 6n− 1.1

n + 1.1
,

and the interpolated limit density is equal to 6.
A ball B(n) has 4n3 + 2n edges and (4n3 + 6n2 + 8n + 3)/3 vertices,

δ(B(n)) =
24n3 + 12n

4n3 + 6n2 + 8n + 3
∼

+∞

6n

n + 3/2
.

The density of densified balls B(n) can be computed for n ≥ 4. The algorithm
removes 12 vertices of valency 1 and 12(n− 1) edges. Thus it removes 12n vertices
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Figure 16. Interpolation of the small scale density of balls B(n) in
Z× Z× Z

Figure 17. Interpolation of the small scale density of densified balls
B(n) in Z× Z× Z

and 24n− 12 edges. We deduce that

δ(B(n)) =
24n3 − 132n + 72

4n3 + 6n2 − 28n + 3
∼

+∞

6n

n + 3/2
.

As was expected, the computations give the same picture as in the case of Z× Z.

8.4. Baumslag-Solitar group BS(1,−1). Numerical results are given in §9.6.
The Cayley graphs of Z × Z and BS(1,−1) are not isomorphic. However, the
underlying non-labelled graphs (given by the tiling of the plane by squares) are
isomorphic. Thus our results, see Figure 18, are similar to those for Z× Z.

The interpolation of initial densities is given by:

δ(B(n)) ≈ 4n− 2

n + 0.5

The interpolated limit density is equal to 4.
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Figure 18. Density of balls B(n) for BS(1,−1)

The interpolation of final densities is given by:

δ(B(n)) ≈ 4n + 1.61

n + 1.4

The interpolated limit density is equal to 4. The subsets B(n)) are to be Følner
sets, as their density is minorized by that of the Følner family B(n).

8.5. Baumslag-Solitar group BS(1, 2). Numerical results are given in §9.3. For

Figure 19. Density of balls B(n) in BS(1, 2)

n = 5, 6, . . . , 19, the density of balls B(n), multiplied by x− 1.2, is distributed close
to the line y = 3.22x− 5.11, see Figure 20. The norm of residues is approx. 0.096.
The interpolation is given by:

δ(B(n)) ≈ 3.22n− 5.11

n− 1.2

The interpolated limit density is equal to 3.22.
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Figure 20. Interpolation of densities of balls B(n) in BS(1, 2)

For n = 5, 6, . . . , 19, the density of the densified balls B(n), rescaled by a factor
x − 2.9, is distributed along the line y = 3.48x − 11, see Figure 21. The norm of
residues is close to 0.11. The interpolation gives

Figure 21. Interpolation of densities of densified balls B(n) in BS(1, 2)

δ(B(n)) ≈ 3.48n− 11

n− 2.9
,

and the interpolated limit density is equal to 3.48.

8.6. Baumslag-Solitar group BS(2, 2). Graphics are given in Figure 22. Numer-
ical results are found in §9.4. For n = 3, 4, . . . , 18, the density δ(B(n)), multiplied
by (x − 0.9), is distributed close to the line y = 2.64x − 3.3, Figure 23. The norm
of residues is approx. 0.066. The interpolation gives

δ(B(n)) ≈ 2.64n− 3.3

n− 0.9

and the interpolated limit density is equal to 2.64.
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Figure 22. Density of balls B(n) of BS(2, 2)

Figure 23. Interpolation of densities of balls B(n) in BS(2, 2)

For n = 4, 5, . . . , 18, we multiply the density of the densified balls B(n) by x−1.9.
This gives values that can be interpolated by the line y = 2.97x − 6.29, see Figure
24. The norm of residues is approx. 0.084. Our approximation gives:

δ(B(n)) ≈ 2.97n− 6.29

n− 1.9

The interpolated limit density is equal to 2.97.

8.7. Baumslag-Solitar group BS(2, 3). Numerical results are given in §9.5, see
Figure 25 for a graphical representation. For n = 3, 4, . . . , 14, the multiplied densi-
ties δ(B(n)) are distributed close to the line y = 2.44x− 4.24, Figure 26. The norm
of residues is less than 0.093. The interpolation gives

δ(B(n)) ≈ 2.44n− 4.24

n− 1.6
,

and thus the interpolated limit density is equal to 2.44.
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Figure 24. Interpolation of densities of densified balls B(n) in BS(2, 2)

Figure 25. Density of balls B(n) in BS(2, 3)

To interpolate the densities of the densified balls B(n), we restrict to values n =
3, 4, . . . , 14. The norm of residues is close to 0.26, see Figure 27. The interpolation
is given by:

δ(B(n)) ≈ 2.86n− 5.08

n− 1.5
The interpolated limit density is equal to 2.86.

8.8. Wreath product Z o Z. Graphics are given in Figure 28. Numerical results
are given in §9.7. The initial density, multiplied by x + 0.9, is distributed close to
the line y = 2.43x + 0.55, see Figure 29. The norm of residues is approx. equal to
0.25.

The interpolation of densities is given by

δ(B(n)) ≈ 2.43n + 0.55

n + 0.9
.

The interpolated limit density is equal to 2.43.
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Figure 26. Interpolation of densities of balls B(n) in BS(2, 3)

Figure 27. Interpolation of the densities of densified balls B(n) in BS(2, 3)

We interpolate the densities δ(B(n)) by using our numerical results for n =
4, 5, . . . , 16. The norm of residues of our interpolation is approx. 0.23, see Fig-
ure 30. The density of densified balls B(n) is interpolated by

δ(B(n)) ≈ 3n− 7

n− 1.9

The interpolated limit density is equal to 3.

8.9. Balls B(n) in Thompson’s group F . We now consider Thompson’s group
F , for which amenability is unknown. We first investigate the density of balls B(n)
in F . Our results are given in Figure 31. Numerical results are given in §9.8.

In order to interpolate the densities δ(B(n)) we only consider n = 3, 4, . . . , 15.
Multiplication of the density of B(n) by n + 2.3 gives values close to the line y =
2.23x + 3.65, see Figure 32. The norm of residues is approx. 0.123.
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Figure 28. Density of balls B(n) in Z o Z

Figure 29. Interpolation of the densities of balls B(n) in Z o Z

The interpolation gives:

δ(B(n)) ≈ 2.23n + 3.65

n + 2.3

The interpolated limit density is equal to 2.2.
Now we consider the behavior of densities of balls after the densification algorithm

is applied. For n = 3, 4, . . . , 14, the density of the B(n), multiplied by n − 1.7, is
distributed close to line y = 2.8x − 6.4, see Figure 33. The norm of residues is
0.11395.

The estimation is given by:
2.8n− 6.4

n− 1.7
The interpolated limit density is equal to 2.8.

These results are clearly comparable with those of the amenable group Z o Z.

8.10. Left-positive balls LP (n) in F . Numerical results are given in §9.9, graph-
ical data are given in Figure 34.
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Figure 30. Interpolation of densities of densified balls B(n) in Z o Z

Figure 31. Density of balls B(n) in Thompson’s group F

The density of the LP (n), multiplied by n + 0.343, is distributed close to the
line y = 2.22x − 0.427, see Figure 35. The calculated norm of residues is equal to
0.038316.

This gives the approximation:

δ(LP (n)) ≈ 2.22n− 0.427

n + 0.343

The density of the densified sets LP (n), multiplied by n−0.7, is distributed close
to the line y = 2.97x− 6.25, see Figure 36. The norm of residues equals to 0.65841.
This provides the approximation

δ(LP (n)) ≈ 2.97n− 6.25

x− 0.7
.

The interpolated limit density is equal to 3.

8.11. Negative forests NF (n) in F . Numerical results are given in §9.10. A
graphical interpretation is given in Figure 37.
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Figure 32. Interpolation of densities of balls B(n) in F

Figure 33. Interpolation of the densities of densified balls B(n) in F

The best approximation of the density of NF (n) is obtained by multipling it by n,
see Figure 38. The norm of residues is exceptionally low. It is equal to 6.4769.10−5.
Notice that both our data and the results of the interpolation have a margin of error
of 10−5. The density is distributed close to the line 2.6667x− 2.6667. The densities
of NF (n) are particularily well approximated for n = 2, . . . , 14 by

δ(NF (n)) ≈ (2 +
2

3
).

n− 1

n

For n = 5, 6, . . . , 14, the density of the densified negative forests NF (n), multiplied
by n− 1.1, is distributed along line y = 3.03x− 6.28, Figure 39. The approximation
is given by

δ(NF (n)) =
3.03n− 6.28

n− 1.1

and the interpolated limit density is equal to 3.03.
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Figure 34. Density of left-positive balls LP (n) in F

Figure 35. Interpolation of the densities of the sets LP (n) in F

8.12. Belk-Brown sets BB(n, k) in F . Numerical results are given in §9.11. The
densities of the BB(n, k) are given in Figure 40. The densities of the densified
Belk-Brown sets BB(n, k) are given in Figure 41.

For k large enough all the densified BB(n, k) have the same density and the same
number of vertices. Since BB(n, k) ⊂ BB(n, k +1), one should expect that the sets
obtained from our densification algorithm are the same. The best density we obtain
is the density of BB(17, 3), which is equal to 2.89577.

We construct new sequences as follows. For each n we consider the maximum of
densities of BB(n, k) as well as the maximum of densities of densified Belk-Brown
sets BB(n, k). The sequences are given in Figure 42.

For n = 3, 4, . . . , 17 the best initial densities, multiplied with n+1.7, is distributed
close to y = 3.18x− 1.19, see Figure 43. The norm of residues is approx. 0.25. This
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Figure 36. Interpolation of the densities of the densified sets LP (n)
in F

Figure 37. Density of negative forests NF (n) in F

gives as approximation:

δ(n) =
3.18x− 1.19

x + 1.7

The interpolated limit density is equal to 3.18.
For n = 5, . . . , 17, the best densities of the densified Belk-Brown sets BB(n, k),

multiplied by n + 0.69, are close to the line y = 3.18x − 2.92, see Figure 44. The
norm of residues is less than 0.096. This gives as approximation:

δ(n) =
3.18x− 2.92

x + 0.69

Thus, the interpolated limit density for the Belk-Brown sets BB(n, k) before den-
sification and the one for the densified Belk-Brown sets BB(n, k) agree: they are
both approximately equal to 3.18.
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Figure 38. Interpolation of densities of NF (n) in F

Figure 39. Interpolation of densities of NF (n) in F

9. Numerical data

In this section we will give some of the numerical data, obtained from our algo-
rithmic package, in the form of tables. Each table corresponds to a fixed group and
to a fixed family of subgraphs of the Cayley graph, as presented and discussed in the
previous sections. For example the table given in §9.3 corresponds to the Baumslag-
Solitar group BS(1, 2) and to the family of balls B(n) in its Cayley graph. Each
table is organised as follows:

A line in the table corresponds to a fixed choice of parameters for the family of
subgraphs, thus specifying a particular subgraph. For example, the 5-th line of the
table of §9.3 corresponds to the ball B(4), for the group BS(1, 2). The first colomn,
labelled “Density”, states the name of the subgraph considered. The second colomn,
labelled “Before”, states the density of this graph before applying the densification
algorithm. The third colomn, labelled “#”, states the number of rounds performed,
i.e. the number of times the algorithm runs once through the sequence of steps
specified at the end of §5 with at least one edge or vertex deleted (in which case



TESTING CAYLEY GRAPH DENSITIES 33

BB(4,x)

BB(5,x)

BB(6,x)

BB(7,x)
BB(8,x)

BB(10,x)
BB(11,x)BB(12,x)

BB(13,x)
BB(14,x)

BB(15,x)

BB(9,x)

BB(16,x)

BB(17,x)
BB(18,x)

BB(19,x)

Figure 40. Densities of Belk-Brown sets BB(n, k) in F
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Figure 41. Final densities of Belk-Brown sets BB(n, k) in F

it tries to repeat the maneuver, rising the value of # by one). The fourth colomn,
labelled “After”, states the density of the subgraph obtained as final result of our
densification program. The fifth colomn, called “Increase”, explicits the amount of
density gained by the densification procedure, as well (in parathesis) the percentage
this increase means with respect to the density before applying the program. Finally,
the last colomn, labelled “Deleted vertices”, states the number of vertices deleted
in the densification procedure from the originally given subgraph. In parathesis it
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Figure 42. Best densities of Belk-Brown sets

Figure 43. Interpolation of the best densities of the BB(n, k)

states the percentage this amounts to, with respect to the number of all vertices in
the originally given graph.

Remark: If the densification algorithm is applied to a non-empty tree, then the
number # of rounds the algorithm repeats the densification procedure will be equal
to 1, and the final density must be equal to 0. This, however, is not specific for the
case of non-empty trees: It will also happen, for example, if the given subgraph is a
cycle, or any other graph obtained from gluing trees to a cycle.
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Figure 44. Interpolation of best densities of the densified Belk-
Brown sets BB(n, k)

9.1. The group Z× Z.
Large scale balls B(n) in Z× Z

Density Before # After Increase Deleted vertices
B(1) 1.6 1 0 -1.6(-100.00%) 5/5(-100.00%)
B(11) 3.65283 1 3.67816 +0.0253308(+0.69%) 4/265(-1.51%)
B(21) 3.81405 1 3.82193 +0.00787878(+0.21%) 4/925(-0.43%)
B(31) 3.87305 1 3.87683 +0.00378203(+0.10%) 4/1985(-0.20%)
B(41) 3.90363 1 3.90584 +0.002213(+0.06%) 4/3445(-0.12%)
B(51) 3.92234 1 3.92379 +0.00145054(+0.04%) 4/5305(-0.08%)
B(61) 3.93496 1 3.93599 +0.00102353(+0.03%) 4/7565(-0.05%)
B(71) 3.94406 1 3.94482 +0.000760794(+0.02%) 4/10225(-0.04%)
B(81) 3.95092 1 3.95151 +0.000587702(+0.01%) 4/13285(-0.03%)
B(91) 3.95629 1 3.95675 +0.0004673(+0.01%) 4/16745(-0.02%)
B(101) 3.96059 1 3.96097 +0.000380754(+0.01%) 4/20605(-0.02%)
B(111) 3.96413 1 3.96444 +0.000315905(+0.01%) 4/24865(-0.02%)
B(121) 3.96708 1 3.96735 +0.000266552(+0.01%) 4/29525(-0.01%)
B(131) 3.96958 1 3.96981 +0.000227928(+0.01%) 4/34585(-0.01%)
B(141) 3.97173 1 3.97193 +0.000196934(+0.00%) 4/40045(-0.01%)
B(151) 3.9736 1 3.97377 +0.0001719(+0.00%) 4/45905(-0.01%)
B(161) 3.97523 1 3.97538 +0.000151634(+0.00%) 4/52165(-0.01%)
B(171) 3.97668 1 3.97681 +0.000134468(+0.00%) 4/58825(-0.01%)
B(181) 3.97796 1 3.97808 +0.000120163(+0.00%) 4/65885(-0.01%)
B(191) 3.97911 1 3.97922 +0.000108004(+0.00%) 4/73345(-0.01%)
B(201) 3.98015 1 3.98025 +9.75132e-05(+0.00%) 4/81205(-0.00%)
B(211) 3.98109 1 3.98118 +8.84533e-05(+0.00%) 4/89465(-0.00%)
B(221) 3.98194 1 3.98202 +8.08239e-05(+0.00%) 4/98125(-0.00%)
B(231) 3.98272 1 3.9828 +7.39098e-05(+0.00%) 4/107185(-0.00%)
B(241) 3.98344 1 3.98351 +6.81877e-05(+0.00%) 4/116645(-0.00%)
B(251) 3.9841 1 3.98416 +6.27041e-05(+0.00%) 4/126505(-0.00%)
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B(261) 3.9847 1 3.98476 +5.79357e-05(+0.00%) 4/136765(-0.00%)
B(271) 3.98527 1 3.98532 +5.38826e-05(+0.00%) 4/147425(-0.00%)
B(281) 3.98579 1 3.98584 +5.00679e-05(+0.00%) 4/158485(-0.00%)
B(291) 3.98628 1 3.98632 +4.673e-05(+0.00%) 4/169945(-0.00%)
B(301) 3.98673 1 3.98678 +4.3869e-05(+0.00%) 4/181805(-0.00%)

Small scale balls B(n) in Z× Z
Density Before # After Increase Deleted vertices
B(1) 1.6 1 0 -1.6(-100.00%) 5/5(-100.00%)
B(2) 2.46154 1 2.66667 +0.205128(+8.33%) 4/13(-30.77%)
B(3) 2.88 1 3.04762 +0.167619(+5.82%) 4/25(-16.00%)
B(4) 3.12195 1 3.24324 +0.121292(+3.89%) 4/41(-9.76%)
B(5) 3.27869 1 3.36842 +0.0897326(+2.74%) 4/61(-6.56%)
B(6) 3.38824 1 3.45679 +0.0685549(+2.02%) 4/85(-4.71%)
B(7) 3.46903 1 3.52294 +0.0539093(+1.55%) 4/113(-3.54%)
B(8) 3.53103 1 3.57447 +0.0434337(+1.23%) 4/145(-2.76%)
B(9) 3.58011 1 3.61582 +0.0357087(+1.00%) 4/181(-2.21%)
B(10) 3.61991 1 3.64977 +0.02986(+0.82%) 4/221(-1.81%)
B(11) 3.65283 1 3.67816 +0.0253308(+0.69%) 4/265(-1.51%)
B(12) 3.68051 1 3.70227 +0.021754(+0.59%) 4/313(-1.28%)
B(13) 3.70411 1 3.72299 +0.018882(+0.51%) 4/365(-1.10%)
B(14) 3.72447 1 3.74101 +0.0165415(+0.44%) 4/421(-0.95%)
B(15) 3.7422 1 3.75681 +0.0146098(+0.39%) 4/481(-0.83%)

9.2. The group Z× Z× Z.
Large scale balls B(n) in Z× Z× Z

Density Before # After Increase Deleted vertices
B(1) 1.71429 1 0 -1.71429(-100.00%) 7/7(-100.00%)
B(11) 5.22325 1 5.3201 +0.0968509(+1.85%) 132/2047(-6.45%)
B(21) 5.5823 1 5.61473 +0.0324311(+0.58%) 252/13287(-1.90%)
B(31) 5.71457 1 5.73058 +0.0160031(+0.28%) 372/41727(-0.89%)
B(41) 5.78326 1 5.79276 +0.0095005(+0.16%) 492/95367(-0.52%)
B(51) 5.82531 1 5.83159 +0.00628328(+0.11%) 612/182207(-0.34%)
B(61) 5.8537 1 5.85816 +0.00446129(+0.08%) 732/310247(-0.24%)
B(71) 5.87415 1 5.87748 +0.00333071(+0.06%) 852/487487(-0.17%)
B(81) 5.88959 1 5.89217 +0.00258064(+0.04%) 972/721927(-0.13%)
B(91) 5.90165 1 5.90371 +0.00205851(+0.03%) 1092/1021567(-0.11%)
B(101) 5.91134 1 5.91302 +0.0016799(+0.03%) 1212/1394407(-0.09%)
B(111) 5.91929 1 5.92069 +0.00139713(+0.02%) 1332/1848447(-0.07%)
B(121) 5.92593 1 5.92711 +0.00118017(+0.02%) 1452/2391687(-0.06%)
B(131) 5.93156 1 5.93257 +0.00100994(+0.02%) 1572/3032127(-0.05%)
B(141) 5.9364 1 5.93727 +0.000874043(+0.01%) 1692/3777767(-0.04%)
B(151) 5.9406 1 5.94136 +0.000763893(+0.01%) 1812/4636607(-0.04%)
B(161) 5.94427 1 5.94495 +0.000673294(+0.01%) 1932/5616647(-0.03%)
B(171) 5.94752 1 5.94812 +0.000597954(+0.01%) 2052/6725887(-0.03%)

Small scale balls B(n) in Z× Z× Z
Density Before # After Increase Deleted vertices
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B(1) 1.71429 1 0 -1.71429(-100.00%) 7/7(-100.00%)
B(2) 2.88 1 3.15789 +0.277895(+9.65%) 6/25(-24.00%)
B(3) 3.61905 1 3.78947 +0.170426(+4.71%) 6/63(-9.52%)
B(4) 4.09302 1 4.44444 +0.351421(+8.59%) 48/129(-37.21%)
B(5) 4.41558 1 4.70175 +0.28617(+6.48%) 60/231(-25.97%)
B(6) 4.64721 1 4.87869 +0.231473(+4.98%) 72/377(-19.10%)
B(7) 4.82087 1 5.01018 +0.189314(+3.93%) 84/575(-14.61%)
B(8) 4.95558 1 5.11262 +0.157037(+3.17%) 96/833(-11.52%)
B(9) 5.06299 1 5.19505 +0.132067(+2.61%) 108/1159(-9.32%)
B(10) 5.15054 1 5.26301 +0.112467(+2.18%) 120/1561(-7.69%)
B(11) 5.22325 1 5.3201 +0.0968509(+1.85%) 132/2047(-6.45%)
B(12) 5.28457 1 5.3688 +0.0842314(+1.59%) 144/2625(-5.49%)
B(13) 5.33697 1 5.41087 +0.0739012(+1.38%) 156/3303(-4.72%)
B(14) 5.38225 1 5.44759 +0.0653448(+1.21%) 168/4089(-4.11%)
B(15) 5.42176 1 5.47994 +0.0581827(+1.07%) 180/4991(-3.61%)

9.3. The Baumslag-Solitar group BS(1, 2).
Balls B(n) in BS(1, 2)

Density Before # After Increase Deleted vertices
B(0) 1.6 1 0 -1.6(-100.00%) 5/5(-100.00%)
B(1) 1.6 1 0 -1.6(-100.00%) 5/5(-100.00%)
B(2) 2.47059 1 2.53333 +0.0627451(+2.54%) 2/17(-11.76%)
B(3) 2.65116 1 2.75676 +0.105594(+3.98%) 6/43(-13.95%)
B(4) 2.77419 1 2.91139 +0.137199(+4.95%) 14/93(-15.05%)
B(5) 2.90052 5 3.08889 +0.188365(+6.49%) 101/191(-52.88%)
B(6) 2.96 5 3.18947 +0.229474(+7.75%) 185/375(-49.33%)
B(7) 2.99578 8 3.25543 +0.259654(+8.67%) 343/711(-48.24%)
B(8) 3.02961 16 3.30172 +0.272111(+8.98%) 621/1317(-47.15%)
B(9) 3.05868 16 3.33898 +0.280306(+9.16%) 1105/2403(-45.98%)
B(10) 3.07945 16 3.36515 +0.285692(+9.28%) 1907/4317(-44.17%)
B(11) 3.09195 16 3.37375 +0.281799(+9.11%) 3263/7667(-42.56%)
B(12) 3.1056 16 3.38569 +0.280083(+9.02%) 5605/13513(-41.48%)
B(13) 3.11557 16 3.397 +0.281421(+9.03%) 9667/23647(-40.88%)
B(14) 3.1239 16 3.40165 +0.277745(+8.89%) 16395/41153(-39.84%)
B(15) 3.13105 16 3.40872 +0.277670(+8.87%) 28061/71279(-39.37%)
B(16) 3.13618 16 3.41389 +0.277709(+8.85%) 48101/123005(-39.10%)
B(17) 3.14091 16 3.41812 +0.277213(+8.83%) 81957/211603(-38.73%)
B(18) 3.14447 16 3.42129 +0.276822(+8.80%) 139731/363093(-

38.48%)
B(19) 3.14771 16 3.42439 +0.276685(+8.79%) 238089/621771(-

38.29%)

9.4. The Baumslag-Solitar group BS(2, 2).
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Balls B(n) in BS(2, 2)
Density Before # After Increase Deleted vertices
B(1) 1.6 1 0 -1.6(-100.00%) 5/5(-100.00%)
B(2) 1.88235 1 0 -1.88235(-100.00%) 17/17(-100.00%)
B(3) 2.21277 1 2.47619 +0.263425(+11.90%) 26/47(-55.32%)
B(4) 2.32479 1 2.64407 +0.319281(+13.73%) 58/117(-49.57%)
B(5) 2.41455 1 2.76423 +0.349682(+14.48%) 152/275(-55.27%)
B(6) 2.4576 1 2.81388 +0.35628(+14.50%) 308/625(-49.28%)
B(7) 2.49029 1 2.84224 +0.351948(+14.13%) 624/1391(-44.86%)
B(8) 2.51032 1 2.85974 +0.349421(+13.92%) 1292/3053(-42.32%)
B(9) 2.526 1 2.87281 +0.346812(+13.73%) 2696/6635(-40.63%)
B(10) 2.53755 1 2.88305 +0.3455(+13.62%) 5668/14313(-39.60%)
B(11) 2.54712 1 2.89163 +0.344501(+13.53%) 11936/30695(-38.89%)
B(12) 2.55501 1 2.89894 +0.343929(+13.46%) 25148/65509(-38.39%)
B(13) 2.56183 1 2.90531 +0.343485(+13.41%) 52920/139235(-38.01%)
B(14) 2.56776 1 2.91092 +0.343161(+13.36%) 111188/294881(-37.71%)
B(15) 2.57303 1 2.91591 +0.342875(+13.33%) 233168/622559(-37.45%)
B(16) 2.57774 1 2.92037 +0.342623(+13.29%) 488044/1310685(-37.24%)
B(17) 2.58199 1 2.92438 +0.342383(+13.26%) 1019624/2752475(-

37.04%)
B(18) 2.58585 1 2.928 +0.342154(+13.23%) 2126468/5767129(-

36.87%)

9.5. The Baumslag-Solitar group BS(2, 3).
Balls B(n) in BS(2, 3)

Density Before # After Increase Deleted vertices
B(1) 1.6 1 0 -1.6(-100.00%) 5/5(-100.00%)
B(2) 1.88235 1 0 -1.88235(-100.00%) 17/17(-100.00%)
B(3) 2.22642 1 2.41379 +0.187378(+8.42%) 24/53(-45.28%)
B(4) 2.27211 1 2.53731 +0.265205(+11.67%) 80/147(-54.42%)
B(5) 2.31877 1 2.61376 +0.294991(+12.72%) 200/389(-51.41%)
B(6) 2.36075 1 2.65291 +0.292155(+12.38%) 476/1009(-47.18%)
B(7) 2.37418 4 2.73178 +0.357604(+15.06%) 1942/2587(-75.07%)
B(8) 2.38084 5 2.75669 +0.375856(+15.79%) 4894/6575(-74.43%)
B(9) 2.39074 5 2.77009 +0.379349(+15.87%) 12168/16635(-73.15%)
B(10) 2.39581 7 2.77824 +0.382428(+15.96%) 30266/41959(-72.13%)
B(11) 2.39818 8 2.78533 +0.387151(+16.14%) 75760/105531(-71.79%)
B(12) 2.40157 12 2.79096 +0.389394(+16.21%) 188738/264843(-71.26%)
B(13) 2.40505 13 2.79452 +0.38947(+16.19%) 468592/663799(-70.59%)
B(14) 2.40677 13 2.79782 +0.391054(+16.25%) 1168366/1661233(-

70.33%)

9.6. The Baumslag-Solitar group BS(1,−1)).
Balls B(n) in BS(1,−1)

Density Before # After Increase Deleted vertices
B(1) 1.6 1 0 -1.6(-100.00%) 5/5(-100.00%)
B(11) 3.65283 1 3.67816 +0.0253308(+0.69%) 4/265(-1.51%)
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B(21) 3.81405 1 3.82193 +0.00787878(+0.21%) 4/925(-0.43%)
B(31) 3.87305 1 3.87683 +0.00378203(+0.10%) 4/1985(-0.20%)
B(41) 3.90363 1 3.90584 +0.002213(+0.06%) 4/3445(-0.12%)
B(51) 3.92234 1 3.92379 +0.00145054(+0.04%) 4/5305(-0.08%)
B(61) 3.93496 1 3.93599 +0.00102353(+0.03%) 4/7565(-0.05%)
B(71) 3.94406 1 3.94482 +0.000760794(+0.02%) 4/10225(-0.04%)
B(81) 3.95092 1 3.95151 +0.000587702(+0.01%) 4/13285(-0.03%)
B(91) 3.95629 1 3.95675 +0.0004673(+0.01%) 4/16745(-0.02%)
B(101) 3.96059 1 3.96097 +0.000380754(+0.01%) 4/20605(-0.02%)
B(111) 3.96413 1 3.96444 +0.000315905(+0.01%) 4/24865(-0.02%)
B(121) 3.96708 1 3.96735 +0.000266552(+0.01%) 4/29525(-0.01%)
B(131) 3.96958 1 3.96981 +0.000227928(+0.01%) 4/34585(-0.01%)
B(141) 3.97173 1 3.97193 +0.000196934(+0.00%) 4/40045(-0.01%)
B(151) 3.9736 1 3.97377 +0.0001719(+0.00%) 4/45905(-0.01%)
B(161) 3.97523 1 3.97538 +0.000151634(+0.00%) 4/52165(-0.01%)
B(171) 3.97668 1 3.97681 +0.000134468(+0.00%) 4/58825(-0.01%)
B(181) 3.97796 1 3.97808 +0.000120163(+0.00%) 4/65885(-0.01%)
B(191) 3.97911 1 3.97922 +0.000108004(+0.00%) 4/73345(-0.01%)
B(201) 3.98015 1 3.98025 +9.75132e-05(+0.00%) 4/81205(-0.00%)
B(211) 3.98109 1 3.98118 +8.84533e-05(+0.00%) 4/89465(-0.00%)
B(221) 3.98194 1 3.98202 +8.08239e-05(+0.00%) 4/98125(-0.00%)
B(231) 3.98272 1 3.9828 +7.39098e-05(+0.00%) 4/107185(-0.00%)
B(241) 3.98344 1 3.98351 +6.81877e-05(+0.00%) 4/116645(-0.00%)
B(251) 3.9841 1 3.98416 +6.27041e-05(+0.00%) 4/126505(-0.00%)
B(261) 3.9847 1 3.98476 +5.79357e-05(+0.00%) 4/136765(-0.00%)
B(271) 3.98527 1 3.98532 +5.38826e-05(+0.00%) 4/147425(-0.00%)
B(281) 3.98579 1 3.98584 +5.00679e-05(+0.00%) 4/158485(-0.00%)
B(291) 3.98628 1 3.98632 +4.673e-05(+0.00%) 4/169945(-0.00%)

B(301) 3.98673 1 3.98678 +4.3869e-05(+0.00%) 4/181805(-0.00%)

9.7. The wreath product Z o Z.

Balls B(n) in Z o Z
Density Before # After Increase Deleted vertices
B(1) 1.6 1 0 -1.6(-100.00%) 5/5(-100.00%)
B(2) 1.88235 1 0 -1.88235(-100.00%) 17/17(-100.00%)
B(3) 1.96226 1 0 -1.96226(-100.00%) 53/53(-100.00%)
B(4) 2.0915 1 2.4242 +0.332739(+15.91%) 120/153(-78.43%)
B(5) 2.14727 1 2.56881 +0.421539(+19.63%) 312/421(-74.11%)
B(6) 2.19022 1 2.64264 +0.45242(+20.66%) 792/1125(-70.40%)
B(7) 2.2254 2 2.74425 +0.518849(+23.31%) 2198/2937(-74.84%)
B(8) 2.25023 2 2.7895 +0.539267(+23.96%) 5442/7537(-72.20%)
B(9) 2.26973 2 2.82382 +0.554091(+24.41%) 13502/19093(-70.72%)
B(10) 2.285 2 2.84949 +0.564495(+24.70%) 33390/47881(-69.74%)
B(11) 2.29693 2 2.86788 +0.570949(+24.86%) 82190/119133(-68.99%)
B(12) 2.30638 2 2.88159 +0.575211(+24.94%) 201546/294585(-68.42%)



40 ARZHANTSEVA, GUBA, LUSTIG, AND PRÉAUX

B(13) 2.31387 2 2.89178 +0.577903(+24.98%) 492598/724869(-67.96%)
B(14) 2.31984 2 2.89937 +0.579533(+24.98%) 1200726/1776717(-67.58%)
B(15) 2.32459 2 2.90508 +0.580484(+24.97%) 2920614/4341425(-67.27%)
B(16) 2.32838 2 2.90938 +0.580996(+24.95%) 7092194/10582177(-67.02%)

9.8. Balls in Thompson’s group F .
Balls B(n) in F

Density Before # After Increase Deleted vertices
B(1) 1.6 1 0 -1.6(-100.00%) 5/5(-100.00%)
B(2) 1.88235 1 0 -1.88235(-100.00%) 17/17(-100.00%)
B(3) 1.96226 1 0 -1.96226(-100.00%) 53/53(-100.00%)
B(4) 1.98758 1 0 -1.98758(-100.00%) 161/161(-100.00%)
B(5) 2.03789 1 2.31579 +0.277895(+13.64%) 418/475(-88.00%)
B(6) 2.05069 1 2.39106 +0.340374(+16.60%) 1202/1381(-87.04%)
B(7) 2.07632 2 2.48073 +0.404413(+19.48%) 3412/3957(-86.23%)
B(8) 2.08597 2 2.53365 +0.44768(+21.46%) 9959/11237(-88.63%)
B(9) 2.10377 2 2.57062 +0.46685(+22.19%) 26994/31589(-85.45%)
B(10) 2.11048 2 2.59635 +0.485875(+23.02%) 75036/88253(-85.02%)
B(11) 2.12304 3 2.61761 +0.494578(+23.30%) 203765/244823(-83.23%)
B(12) 2.12823 3 2.63324 +0.505008(+23.73%) 558984/676061(-82.68%)
B(13) 2.13765 3 2.64741 +0.50976(+23.85%) 1512760/1857029(-81.46%)
B(14) 2.14177 3 2.65825 +0.51648(+24.11%) 4120532/5082969(-81.07%)
B(15) 2.14905 132 2.7183 +0.569249(+26.49%) 12420620/13856005(-

89.64%)

9.9. Left-positive balls in Thompson’s group F .

Left-positive balls LP (n) in F

Density Before # After Increase Deleted vertices
LP(1) 1.33333 1 0 -1.33333(-100.00%) 3/3(-100.00%)
LP(2) 1.71429 1 0 -1.71429(-100.00%) 7/7(-100.00%)
LP(3) 1.875 1 0 -1.875(-100.00%) 16/16(-100.00%)
LP(4) 1.94444 1 0 -1.94444(-100.00%) 36/36(-100.00%)
LP(5) 2 1 0 -2(-100.00%) 81/81(-100.00%)
LP(6) 2.03297 1 2.19355 +0.160581(+7.90%) 151/182(-82.97%)
LP(7) 2.05868 1 2.30189 +0.243207(+11.81%) 356/409(-87.04%)
LP(8) 2.07835 1 2.38571 +0.307368(+14.79%) 779/919(-84.77%)
LP(9) 2.09395 3 2.45662 +0.362674(+17.32%) 1846/2065(-89.39%)
LP(10) 2.10647 12 2.52926 +0.422796(+20.07%) 4247/4640(-91.53%)
LP(11) 2.11682 21 2.57116 +0.454332(+21.46%) 9379/10426(-89.96%)
LP(12) 2.1255 38 2.60121 +0.475717(+22.38%) 20789/23427(-88.74%)
LP(13) 2.13283 71 2.62354 +0.490717(+23.01%) 46116/52640(-87.61%)
LP(14) 2.13908 136 2.6407 +0.501627(+23.45%) 102464/118281(-86.63%)
LP(15) 2.14445 265 2.65425 +0.509793(+23.77%) 227988/265775(-85.78%)
LP(16) 2.14911 522 2.66511 +0.515999(+24.01%) 507883/597191(-85.05%)
LP(17) 2.15318 914 2.72507 +0.571886(+26.56%) 1237673/1341876(-92.23%)
LP(18) 2.15674 793 2.73535 +0.578606(+26.83%) 2761427/3015168(-91.58%)
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LP(19) 2.15988 1029 2.74349 +0.583608(+27.02%) 6164348/6775021(-90.99%)

9.10. Negative forests in Thompson’s group F . Note that the following results, for
negative forest NF (n), correspond precisely to the results for Belk-Brown sets B(n, n−1),
see below.

Negative forests NF (n) in F

Density Before # After Increase Deleted vertices
NF(2) 1.33333 1 0 -1.33333(-100.00%) 3/3(-100.00%)
NF(3) 1.77778 1 0 -1.77778(-100.00%) 9/9(-100.00%)
NF(4) 2 1 0 -2(-100.00%) 28/28(-100.00%)
NF(5) 2.13333 1 2.27907 +0.145736(+6.83%) 47/90(-52.22%)
NF(6) 2.22222 2 2.42105 +0.19883(+8.95%) 183/297(-61.62%)
NF(7) 2.28571 3 2.52717 +0.24146(+10.56%) 633/1001(-63.24%)
NF(8) 2.33333 2 2.59580 +0.262469(+11.25%) 1955/3432(-56.96%)
NF(9) 2.37037 2 2.64099 +0.270623(+11.42%) 6299/11934(-52.78%)
NF(10) 2.4 6 2.70468 +0.304678(+12.69%) 28117/41990(-66.96%)
NF(11) 2.42424 5 2.73583 +0.311589(+12.85%) 94931/149226(-63.62%)
NF(12) 2.44444 5 2.75949 +0.315048(+12.89%) 326375/534888(-61.02%)
NF(13) 2.46154 5 2.77912 +0.317579(+12.90%) 1142627/1931540(-59.16%)
NF(14) 2.47619 5 2.79448 +0.31829(+12.85%) 4031727/7020405(-57.43%)

9.11. Belk-Brown sets in Thompson’s group F .

Belk-Brown sets BB(n, k) in F

Density Before # After Increase Deleted vertices
BB(2,1) 1.33333 1 0 -1.33333(-100.00%) 3/3(-100.00%)
BB(3,1) 1.71429 1 0 -1.71429(-100.00%) 7/7(-100.00%)
BB(3,2) 1.77778 1 0 -1.77778(-100.00%) 9/9(-100.00%)
BB(4,1) 2 1 0 -2(-100.00%) 15/15(-100.00%)
BB(4,2) 2 1 0 -2(-100.00%) 24/24(-100.00%)
BB(4,3) 2 1 0 -2(-100.00%) 28/28(-100.00%)
BB(5,1) 2.13333 1 2.17391 +0.0405796(+1.90%) 7/30(-23.33%)
BB(5,2) 2.2 1 2.27907 +0.0790696(+3.59%) 17/60(-28.33%)
BB(5,3) 2.14634 1 2.27907 +0.132728(+6.18%) 39/82(-47.56%)
BB(5,4) 2.13333 1 2.27907 +0.145736(+6.83%) 47/90(-52.22%)
BB(6,1) 2.24138 1 2.29787 +0.056493(+2.52%) 11/58(-18.97%)
BB(6,2) 2.34014 1 2.41509 +0.0749583(+3.20%) 41/147(-27.89%)
BB(6,3) 2.28326 2 2.42105 +0.137791(+6.03%) 119/233(-51.07%)
BB(6,4) 2.23488 2 2.42105 +0.186177(+8.33%) 167/281(-59.43%)
BB(6,5) 2.22222 2 2.42105 +0.19883(+8.95%) 183/297(-61.62%)
BB(7,1) 2.31193 1 2.37363 +0.0616999(+2.67%) 18/109(-16.51%)
BB(7,2) 2.42735 1 2.50714 +0.0797923(+3.29%) 71/351(-20.23%)
BB(7,3) 2.39258 2 2.52717 +0.134593(+5.63%) 279/647(-43.12%)
BB(7,4) 2.33064 3 2.52717 +0.196538(+8.43%) 497/865(-57.46%)
BB(7,5) 2.29515 3 2.52717 +0.232024(+10.11%) 601/969(-62.02%)
BB(7,6) 2.28571 3 2.52717 +0.24146(+10.56%) 633/1001(-63.24%)
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BB(8,1) 2.36816 1 2.43023 +0.0620732(+2.62%) 29/201(-14.43%)
BB(8,2) 2.49695 1 2.57676 +0.0798025(+3.20%) 124/821(-15.10%)
BB(8,3) 2.48144 2 2.59581 +0.114371(+4.61%) 489/1778(-27.50%)
BB(8,4) 2.40847 2 2.5958 +0.18733(+7.78%) 1167/2644(-44.14%)
BB(8,5) 2.36387 2 2.5958 +0.231935(+9.81%) 1667/3144(-53.02%)
BB(8,6) 2.33967 2 2.5958 +0.256135(+10.95%) 1891/3368(-56.15%)
BB(8,7) 2.33333 2 2.5958 +0.262469(+11.25%) 1955/3432(-56.96%)
BB(9,1) 2.41096 1 2.4717 +0.060739(+2.52%) 47/365(-12.88%)
BB(9,2) 2.55485 1 2.63139 +0.0765369(+3.00%) 233/1896(-12.29%)
BB(9,3) 2.5493 2 2.65126 +0.101964(+4.00%) 977/4828(-20.24%)
BB(9,4) 2.47602 2 2.64423 +0.168205(+6.79%) 2749/8008(-34.33%)
BB(9,5) 2.4212 2 2.64099 +0.219797(+9.08%) 4555/10190(-44.70%)
BB(9,6) 2.39025 2 2.64099 +0.250741(+10.49%) 5691/11326(-50.25%)
BB(9,7) 2.37439 2 2.64099 +0.266608(+11.23%) 6171/11806(-52.27%)
BB(9,8) 2.37037 2 2.64099 +0.270623(+11.42%) 6299/11934(-52.78%)
BB(10,1) 2.4458 1 2.50432 +0.0585163(+2.39%) 76/655(-11.60%)
BB(10,2) 2.60032 3 2.67492 +0.0745924(+2.87%) 775/4331(-17.89%)
BB(10,3) 2.60551 4 2.70623 +0.100716(+3.87%) 3422/12994(-26.34%)
BB(10,4) 2.5348 5 2.70607 +0.171267(+6.76%) 10956/24136(-45.39%)
BB(10,5) 2.47021 6 2.70483 +0.234619(+9.50%) 19145/32998(-58.02%)
BB(10,6) 2.43355 6 2.70468 +0.271126(+11.14%) 24277/38150(-63.64%)
BB(10,7) 2.41258 6 2.70468 +0.292101(+12.11%) 26837/40710(-65.92%)
BB(10,8) 2.40245 6 2.70468 +0.302224(+12.58%) 27861/41734(-66.76%)
BB(10,9) 2.4 6 2.70468 +0.304678(+12.69%) 28117/41990(-66.96%)
BB(11,1) 2.47423 1 2.53026 +0.0560327(+2.26%) 123/1164(-10.57%)
BB(11,2) 2.63755 3 2.71078 +0.0732303(+2.78%) 1443/9800(-14.72%)
BB(11,3) 2.65202 4 2.74514 +0.0931263(+3.51%) 6978/34680(-20.12%)
BB(11,4) 2.58441 4 2.74205 +0.157632(+6.10%) 26855/72394(-37.10%)
BB(11,5) 2.51403 5 2.73747 +0.223436(+8.89%) 53749/106600(-50.42%)
BB(11,6) 2.47079 5 2.7358 +0.26501(+10.73%) 74443/128762(-57.81%)
BB(11,7) 2.44596 5 2.73583 +0.289869(+11.85%) 86515/140810(-61.44%)
BB(11,8) 2.43202 5 2.73583 +0.303807(+12.49%) 92243/146538(-62.95%)
BB(11,9) 2.4257 5 2.73583 +0.310129(+12.79%) 94419/148714(-63.49%)
BB(11,10) 2.42424 5 2.73583 +0.311589(+12.85%) 94931/149226(-63.62%)
BB(12,1) 2.49805 1 2.55154 +0.0534873(+2.14%) 199/2052(-9.70%)
BB(12,2) 2.66921 3 2.7401 +0.0708911(+2.66%) 2862/22008(-13.00%)
BB(12,3) 2.69209 4 2.779 +0.0869138(+3.23%) 14982/91965(-16.29%)
BB(12,4) 2.62814 4 2.77148 +0.143337(+5.45%) 66315/216154(-30.68%)
BB(12,5) 2.5533 5 2.7649 +0.211606(+8.29%) 153498/343946(-44.63%)
BB(12,6) 2.50352 5 2.76087 +0.257348(+10.28%) 229951/435268(-52.83%)
BB(12,7) 2.47504 5 2.76001 +0.284971(+11.51%) 280855/488584(-57.48%)
BB(12,8) 2.45827 5 2.76036 +0.302098(+12.29%) 309351/516520(-59.89%)
BB(12,9) 2.44917 5 2.75949 +0.310318(+12.67%) 320743/529256(-60.60%)
BB(12,10) 2.4453 5 2.75949 +0.314195(+12.85%) 325351/533864(-60.94%)
BB(12,11) 2.44444 5 2.75949 +0.315048(+12.89%) 326375/534888(-61.02%)
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BB(13,1) 2.51823 1 2.56924 +0.0510149(+2.03%) 322/3593(-8.96%)
BB(13,2) 2.69615 2 2.76459 +0.0684388(+2.54%) 5845/49110(-11.90%)
BB(13,3) 2.7264 4 2.80896 +0.0825596(+3.03%) 35904/242478(-14.81%)
BB(13,4) 2.66664 4 2.79765 +0.131004(+4.91%) 166062/643068(-25.82%)
BB(13,5) 2.58797 5 2.78796 +0.199994(+7.73%) 442137/1108550(-39.88%)
BB(13,6) 2.53309 5 2.78229 +0.249196(+9.84%) 717635/1472390(-48.74%)
BB(13,7) 2.50062 5 2.77942 +0.2788(+11.15%) 914731/1700220(-53.80%)
BB(13,8) 2.48142 5 2.7789 +0.297486(+11.99%) 1037283/1827316(-56.77%)
BB(13,9) 2.4702 5 2.77912 +0.308918(+12.51%) 1102691/1891604(-58.29%)
BB(13,10) 2.46437 5 2.77912 +0.314748(+12.77%) 1130851/1919764(-58.91%)
BB(13,11) 2.46203 5 2.77912 +0.317089(+12.88%) 1140579/1929492(-59.11%)
BB(13,12) 2.46154 5 2.77912 +0.317579(+12.90%) 1142627/1931540(-59.16%)
BB(14,1) 2.53557 1 2.58423 +0.0486629(+1.92%) 521/6255(-8.33%)
BB(14,2) 2.71929 2 2.78529 +0.0659952(+2.43%) 12052/108982(-11.06%)
BB(14,3) 2.75635 4 2.83483 +0.0784769(+2.85%) 80539/636264(-12.66%)
BB(14,4) 2.70065 6 2.82311 +0.122467(+4.53%) 467063/1906645(-24.50%)
BB(14,5) 2.61918 8 2.80987 +0.190696(+7.28%) 1368089/3569029(-38.33%)
BB(14,6) 2.55993 10 2.80225 +0.242317(+9.47%) 2361586/4984631(-47.38%)
BB(14,7) 2.52346 5 2.79651 +0.273047(+10.82%) 3012087/5931157(-50.78%)
BB(14,8) 2.50193 5 2.79464 +0.292711(+11.70%) 3504047/6486437(-54.02%)
BB(14,9) 2.48895 5 2.79436 +0.305406(+12.27%) 3796015/6786933(-55.93%)
BB(14,10) 2.48154 5 2.79448 +0.312939(+12.61%) 3945199/6933877(-56.90%)
BB(14,11) 2.47786 5 2.79448 +0.316618(+12.78%) 4007151/6995829(-57.28%)
BB(14,12) 2.47647 5 2.79448 +0.318012(+12.84%) 4027631/7016309(-57.40%)
BB(14,13) 2.47619 5 2.79448 +0.31829(+12.85%) 4031727/7020405(-57.43%)
BB(15,1) 2.55062 1 2.59708 +0.0464547(+1.82%) 843/10835(-7.78%)
BB(15,2) 2.73947 1 2.80304 +0.0635667(+2.32%) 24893/240693(-10.34%)
BB(15,3) 2.78255 4 2.85759 +0.0750453(+2.70%) 186351/1662399(-11.21%)
BB(15,4) 2.73117 6 2.84478 +0.113609(+4.16%) 1193477/5636091(-21.18%)
BB(15,5) 2.64757 7 2.82836 +0.180787(+6.83%) 3994150/11478205(-34.80%)
BB(15,6) 2.58416 8 2.81871 +0.234552(+9.08%) 7483649/16887924(-44.31%)
BB(15,7) 2.5442 [...] 20730535
...
BB(16,1) 2.56381 1 2.60821 +0.0443943(+1.73%) 1364/18687(-7.30%)
BB(16,2) 2.75722 1 2.81842 +0.0612032(+2.22%) 51425/529373(-9.71%)
BB(16,3) 2.80576 4 2.87778 +0.072022(+2.57%) 440405/4327228(-10.18%)
...
BB(17,1) 2.57547 1 2.61795 +0.0424783(+1.65%) 2207/32106(-6.87%)
BB(17,2) 2.77292 1 2.83186 +0.0589356(+2.13%) 106246/1160005(-9.16%)
BB(17,3) 2.82642 4 2.89577 +0.069357 (+2.45%) 1056462/11226140(-9.41%)
...
BB(18,1) 2.58584 1 2.62654 +0.0406988(+1.57%) 3571/54974(-6.50%)
BB(18,2) 2.78693 1 2.8437 +0.0567749(+2.04%) 219506/2533584(-8.66%)
...
BB(19,1) 2.59513 1 2.63418 +0.039046 (+1.50%) 5778/93845(-6.16%)
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BB(19,2) 2.7995 1 2.85423 +0.054727 (+1.95%) 453495/5517456(-8.22%)
...
BB(20,1) 2.6035 1 2.64101 +0.037510 (+1.44%) 9349/159765(-5.85%)
BB(20,2) 2.81085 1 2.86364 +0.052791 (+1.88%) 936918/11983889(-7.82%)
...
BB(21,1) 2.61108 1 2.64716 +0.036081 (+1.38%) 15127/271321 (-5.58%)
...
BB(22,1) 2.61797 1 2.65272 +0.034750 (+1.33%) 24476/459743(-5.32%)
...
BB(23,1) 2.62427 1 2.65778 +0.033508(+1.28%) 39603/777432(-5.09%)
...
BB(24,1) 2.63005 1 2.6624 +0.032347(+1.23%) 64079/1312200(-4.88%)
...
BB(25,1) 2.63537 1 2.66663 +0.0312603(+1.19%) 103682/2211025(-4.69%)
...
BB(26,1) 2.64028 2 2.67104 +0.0307548(+1.16%) 585073/3719643(-15.73%)
...
BB(27,1) 2.64483 2 2.67506 +0.0302331(+1.14%) 946668/6248479(-15.15%)
...
BB(28,1) 2.64906 2 2.67876 +0.0296998(+1.12%) 1531741/10482351(-14.61%)
...

We now consider Belk-Brown sets B(n, k) with best density, for fixed n and any k,
before (or after, in the subsequent table) applying the densification algorithm.

Best density Belk-Brown sets (before densification)
Density Before # After Increase Deleted vertices
BB(2,1) 1.33333 1 0 -1.33333(-100.00%) 3/3(-100.00%)
BB(3,2) 1.77778 1 0 -1.77778(-100.00%) 9/9(-100.00%)
BB(4,2) 2 1 0 -2(-100.00%) 24/24(-100.00%)
BB(5,2) 2.2 1 2.27907 +0.0790696(+3.59%) 17/60(-28.33%)
BB(6,2) 2.34014 1 2.41509 +0.0749583(+3.20%) 41/147(-27.89%)
BB(7,2) 2.42735 1 2.50714 +0.0797923(+3.29%) 71/351(-20.23%)
BB(8,2) 2.49695 1 2.57676 +0.0798025(+3.20%) 124/821(-15.10%)
BB(9,2) 2.55485 1 2.63139 +0.0765369(+3.00%) 233/1896(-12.29%)
BB(10,3) 2.60551 4 2.70623 +0.100716(+3.87%) 3422/12994(-26.34%)
BB(11,3) 2.65202 4 2.74514 +0.0931263(+3.51%) 6978/34680(-20.12%)
BB(12,3) 2.69209 4 2.779 +0.0869138(+3.23%) 14982/91965(-16.29%)
BB(13,3) 2.7264 4 2.80896 +0.0825596(+3.03%) 35904/242478(-14.81%)
BB(14,3) 2.75635 4 2.83483 +0.0784769(+2.85%) 80539/636264(-12.66%)
BB(15,3) 2.78255 4 2.85759 +0.0750453(+2.70%) 186351/1662399(-11.21%)
BB(16,3) 2.80576 4 2.87778 +0.072022(+2.57%) 440405/4327228(-10.18%)
BB(17,3) 2.82642 4 2.89577 +0.069357 (+2.45%) 1056462/11226140(-9.41%)

Best density Belk-Brown sets (after densification)
Density Before # After Increase Deleted vertices
BB(2,1) 1.33333 1 0 -1.33333(-100.00%) 3/3(-100.00%)
BB(3,2) 1.77778 1 0 -1.77778(-100.00%) 9/9(-100.00%)
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BB(4,2) 2 1 0 -2(-100.00%) 24/24(-100.00%)
BB(5,2) 2.2 1 2.27907 +0.0790696(+3.59%) 17/60(-28.33%)
BB(6,3) 2.28326 2 2.42105 +0.137791(+6.03%) 119/233(-51.07%)
BB(7,3) 2.39258 2 2.52717 +0.134593(+5.63%) 279/647(-43.12%)
BB(8,3) 2.48144 2 2.59581 +0.114371(+4.61%) 489/1778(-27.50%)
BB(9,3) 2.5493 2 2.65126 +0.101964(+4.00%) 977/4828(-20.24%)
BB(10,3) 2.60551 4 2.70623 +0.100716(+3.87%) 3422/12994(-26.34%)
BB(11,3) 2.65202 4 2.74514 +0.0931263(+3.51%) 6978/34680(-20.12%)
BB(12,3) 2.69209 4 2.779 +0.0869138(+3.23%) 14982/91965(-16.29%)
BB(13,3) 2.7264 4 2.80896 +0.0825596(+3.03%) 35904/242478(-14.81%)
BB(14,3) 2.75635 4 2.83483 +0.0784769(+2.85%) 80539/636264(-12.66%)
BB(15,3) 2.78255 4 2.85759 +0.0750453(+2.70%) 186351/1662399(-11.21%)
BB(16,3) 2.80576 4 2.87778 +0.072022(+2.57%) 440405/4327228(-10.18%)
BB(17,3) 2.82642 4 2.89577 +0.069357 (+2.45%) 1056462/11226140(-9.41%)

10. Outlook

Throughout this section we use essentially the same notation as introduced in the
beginning of the paper, and as used in the description of our densification algorithm
(§5): A always denotes a (not necessarily connected) finite graph, which we think of
as “virtually” embedded as subgraph into an infinite ambient graph C. The latter is
usually the Cayley graph C = C(G, X) of a finitely generated group G with respect
to a generating system of finite cardinality m ∈ N, on which G acts on the right. In
any case we always assume that C has a uniform bound 2m for the degree of any
of its vertices. Note that the ambient graph is “virtual” in that, contrary to the
subgraph A, it exists only as theoretical construct, and hence any finite piece A∗ of
it (typically with A ⊂ A∗) has to be algorithmically constructed before it can be
used in the algorithm.

For the purposes of this section it is easier to work with non-oriented edges. Thus
every edge in this section corresponds to a pair of inversely oriented edges with same
endpoints, in the notation of the earlier sections. Below we denote by V (A) the set
of vertices of A and by E(A) the set of edges. By v(A) and e(A) we denote the
cardinality of V (A) and E(A) respectively. We call e(A) the volume of A. The Euler
characteristic of A is given by χ(A) = v(A) − e(A). For any vertex x ∈ V (A) the
degree degA(x) is the number of edge segments adjacent to x, which is consistent
with the use of deg(A) in the earlier sections in view of the above transition from
oriented to non-oriented edges. A vertex x ∈ V (A) is called branch point if it has
degree deg(x) ≥ 3.

For any subset X ⊂ A we denote by cl(X) the smallest subgraph of A that contains
X. For any subgraph K of A we define the A-boundary ∂AK of K to be the 0-
dimensional subgraph of K which consists of all vertices that bound simultaneously
an edge from A and an edge from cl(A−K):

∂AK = A ∩ cl(A−K)

Also, intAK = K − ∂AK denotes the A-interior of K, which is in general not a
subgraph. A subgraph K of A is called full, if it contains all edges of A that have
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both endpoints in K. The density of A is given by

δ(A) =
∑

x∈V (A)

degA(x)

v(A)
= 2

e(A)

v(A)
.

We extend this notion in the obvious way to “graphs with some vertices missing”

like the above set intA(K), for which one has δ(intA(K)) = 2 e(K)
v(K)−v(∂AK)

.

The comments and improvements proposed below concern the following three
aspects: (A) the algorithmic determination of subgraphs of A with higher density,
(B) the deterministic construction of larger graphs A∗ ⊂ C which contain A and
have higher density, and (C) the non-deterministic construction of such A∗.

A. Subgraphs with higher density. We observe that the improvements on the
density by passing over to a subgraph A of A, as performed by the subroutines (R1)
- (R4) of our algorithm presented in §5, are all based on the following principle: The
computer checks for the existence of subgraphs K of A of a certain (fairly simple)
type, and, if it finds any of them, it replaces A by A = A − intAK. The type of
subgraphs K in question assures that the density increases strictly in this process.
This is ensured by the topology of K, which needs to be of low density itself, and
with small A-boundary. More precisely, one has:

Remark 1. For any subgraph K ⊂ A the complementary subgraph A = A− intAK
satisfies δ(A) > δ(A) if and only if one has δ(A) > δ(intAK). Such a subgraph K is
called density increasing.

Below we propose 4 further methods how to effectively find a density increasing
subgraph K, in any given finite graph A:

(1) A first improvement of the algorithm used in our work can simply be obtained
by embellishing the list of density increasing subgraphs K, which are integrated as
fixed part of the algorithm without ever changing in the process. This is done by
adding to the present list (i.e. trees, cycles, long chains, long tripods and long de-
generated tripods, see §5) further subgraphs with low densities and small boundary.
For example, any connected subgraph of A which is of class K(k, l, n), defined as
set of all graphs K with v(K) = k, |∂AK| ≤ l and χ(K) ≥ n, is density increasing
if k−n

k−l
< δ(A), by Remark 1.

(2) We devise a new subroutine, where the computer searches for the set K0 of all
vertices x ∈ V (A) with degA(x) < δ(A) (or degA(x) < δ(A) − C for some constant
C > 0), and assembles them into “clusters”, i.e. it builds iteratively full subgraphs
Ki which have a high percentage of low-valence vertices. The subgraphs Ki are
defined iteratively out of the connected components Kj

i−1 of Ki−1 by adding vertices
and edges from their neighborhood in order to create larger connected components,
with the goal to decrease the total A-boundary of the union of the Kj

i−1.
At any given state Ki the computer checks the cardinality of ∂AKi, and stops the

subroutine if this check shows that Ki is density decreasing.

(3) A promising method to find interesting candidates for density decreasing sub-
graphs K ⊂ A seems to be the following: We consider a symmetric random walk on
A where the starting measure on each vertex x is given by µ0(x) = 2m − degA(x).
We then let the random walk proceed for some integer time t, thus distributing the
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measure to give a value of µt(x) on any x ∈ V (A) via the formula µt(x) =
∑ µt−1(y)

degA(y)
,

where the sum is taken over all vertices y adjacent to x in A. For any h ≥ 0 we
define the vertex sets V (h, t) = {x ∈ V (A) | µt(x) ≥ h}, and the subgraphs K(h, t)
as the full subgraphs of A with vertex set V (h, t). For any integer time t ≥ 0, if
we let h decrease monotously from max{µt(x) | x ∈ V (A)} to 0, the family K(h, t)
defines a (finite) increasing nested sequence of subgraphs of A, which we propose as
candidates for density decreasing subgraphs.

A variation of this approach would be to iterate the random walk until t is large
enough so that the measure µt(x) approximates a stable equilibrium µ∞(x), for all
vertices x ∈ V (A). But this seems less interesting, as there is only one such limit♠
distribution, and that is precisely given by 1

2m
times the density function.

Another, perhaps more promising variation comes from adding exterior measure
sources or measure sinks, for example sinks for the high-density vertices, or sources
for the low-density vertices, to force an equilibrium state to assemble the measure in
the neighborhood of certain subgraphs considered as possible candidates for density
decreasing subgraphs. (Recall that low-density does not imply density increasing,
as one also needs that the A-boundary of K is small.)

(4) More generally, improving the density of A by erasing interiors of subgraphs can
also be viewed az improving the quality of A as an expander: We look for a “small”
set Z of vertices (corresponding to ∂AK in the above approaches) which cuts A into
subgraphs K and A (with union A and intersection Z) that have rather different
densities δ(A) > δ(K). If the difference of these densities is large with respect to the
cardinality of Z, for example if δ(A) − δ(K) > 2m#Z

v(K)−#Z
, then δ(A) will be strictly

bigger than δ(A).

There are also some interesting theoretical questions surrounding the algorithmic
attempts to improve the density by erasing subgraphs:

(i) Is there an algorithm to find the (possibly non-uniquely determined) subgraph
Amax of highest density among all subgraphs of A ?

As A is finite, the answer is of course “yes”, but trying out all subgraphs is
unfortunately not feasable in practise. Hence we rephrase the question as:

(ii) What is the minimal complexity of any algorithm that derives Amax from a given
finite graph A. In particular, is there a polynomial-time algorithm ?

(iii) Is there an algorithm for finding Amax that uses only finitely many types of
steps to pass from one intermediate subgraph Ai to Ai+1 ? Here a “step” consists
of modifying a subgraph of Ai of a given graph type into a new graph of given type.

(iv) Is there always a sequence of nested subgraphs Ai of increasing density and
uniformly bounded volume difference e(Ai)− e(Ai+1) connecting A to Amax ? What
is the minimal value for the volume difference bound needed to answer this question
in the positive, in terms of the universal vertex degree bound 2m ?

An important fact the reader should note is the observation that certain “wrong”
initial improvements on A (by erasing the interior of some density increasing sub-
graph K) can prevent the algorithm used in this paper, as well as any of the above
proposed improvements (1) - (4), from ever finding any of the really desired sub-
graphs A ⊂ A with density δ(A) close to δ(Amax). Indeed, it is not hard to find
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examples of graphs (for example built on two disjoint graphs connected by adding
a long chain) which answer the following question in the negative:

Is any subgraph A of A with δ(A) ≥ δ(A), such that A does not contain a subgraph
of strictly larger density than δ(A), necessarily equal to Amax ?

B. Deterministic methods do increase A to a larger graph A∗ with higher
density. We first notice that for any finite subgraph A of the Cayley graph C of G,
and for any g ∈ G with sufficiently large translation length in C, the subgraph Ag of
C is a disjoint isomorphic copy of A, and hence their union has the same density as
A. On the other hand, if one finds an element g ∈ G such that A and Ag intersect
in a single vertex, then the density of the union A ∪ Ag is strictly larger than that
of A. Of course, as the special case of a subtrees A shows, there are rather strict
limits to this method in its crude form, but nevertheless it gives the right idea why
the following is promising.

Since A is finite, the subset GA ⊂ G defined by

GA = {g ∈ G | A ∩ Ag non-empty}
is also finite, so that at least in principle one can calculate, for all subsets B ⊂ GA,
the density of the union

AB = ∪{Ag | g ∈ B} .

It seems quite realistic that among the AB one finds new graphs with substan-
tially higher density than A, and that an iteration of this procedure leads to a very
promising family of density test graphs for G.

On the other hand, the calculation of the unions AB is tedious and requires much
computing time. Hence the following suggestion may prove to be helpful:

Denote Ag by A′, and let K = A∩A′ be the intersection subgraph. Then δ(A∪A′)
is calculated by the formula

δ(A ∪ A′) =
4e(A)− 2e(K)

2v(A)− v(K)

and hence δ(A ∪ A′) > δ(A) if and only if δ(A) > δ(K).
We may thus start out with a large g = gq = xq . . . x1 ∈ G, so that Ag is disjoint

from A and then pass successively to Agq−1, to Agq−2, etc, for gk = xk . . . x1, until A
and Agk meet. As small graphs have (a forteriori) small density, the first non-empty
intersection graphs K = A ∩ Agi seem to be interesting candidates for the above
procedure.

A very different deterministic approach to construct families Ai of increasing vol-
ume e(Ai) and increasing density δ(Ai) consists of systematic “local” improvements
implemented as follows:

A first computer program compiles a complete list L = Ln, for some integer n ≥ 1,
of all pairs of subgraphs Ki ⊂ Li contained in the ball Bn(1) in C of radius n around
the trivial element 1 ∈ G, which satisfy δ(Li) > δ(Ki). A second program then
verifies, for any x ∈ Ai, whether Bn(x)∩Ai = Kix, and if so, replaces the subgraph
Kix of Ai by Lix to obtain the new graph Ai+1.

Of course, if one can increase the index n of the list Ln in the first computer
program, then procedure performed by the second program will lead to better values.
In principle one can also imagine an interactive procedure, where all pairs of graphs
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Ai ⊂ Ai+1 produced by the second program are automatically added to the list of
test pairs Ki ⊂ Li from L. The problem with this theoretically most promising
approach is of course the hugh amount of memory needed to store the list L.

C. Non-deterministic methods for enlarging the test graph A. A different
concept for finding high-density subgraphs of C comes from the observation that a
random walk in a graph has the tendency to accumulate large amounts of measure
(= “heat”) in parts of the graph which are “heat preserving”. There are several
methods how to mimick random walks in more or less efficient ways on a computer:

(1) For any non-negative function µt : C → R which is equal to 0 outside a finite

set A ⊂ C we define µt+1 : C → R via µt+1(x) =
∑ µt(y)

degC(y)
, where the sum is taken

over all vertices y adjacent to x in C. We then define, for fixed t and increasing
h, a decreasing family of finite level sets At,h = {x ∈ C | µt(x) > h} with empty
intersection, which hence can be computed for any value of t and any value of h. Of
course, the computation is very time consuming.

(2) An approximation of the previous method is the following: At any time t, one
only distributes the weight µt(y) among all of its neighbors xi (including possibly
y itself) if µt(y) is maximal or close to the maximum value of µt(z) among all
z ∈ At = At,0.

The idea here is that vertices with small measure will have to be ignored anyway,
as their totality grows too much like balls and will hence have low density, in general.

(3) We can exploit the fact that our graph C in question is not just any graph, but
actually the Cayley graph of a group G, by denoting a (finite support) measure on C
as element in the group ring RG. It is easy to see that convolution of (finite support)
measures is nothing else than simply multiplying the corresponding elements in RG.
In particular, the classical nearest neighbor symmetric random walk on C(G, X) is
directly given by the powers µt for t →∞, where µ = 1

2#X

∑
X∪X−1 x ∈ RG.

(4) An interesting variation of the previous three approaches seems to be the fol-
lowing “discretization”: One decides ahead of time on a finite integer scale, (say,
from 0 to N ,) and rescale the heat function µt at any time so that its maximal
value on C equals N . Furthermore, for every vertex x the value µt(x) is decreased
to µ∗t (x) = [µt(x)], i.e. to the largest integer smaller or equal to µt(x). This reduces
on one hand the computational effort, and at the same time it cuts off the unde-
sired very-low-heat vertices added by the pure random walk as described above in
(1). Of course, if one choses the scale too coarsely by picking N too small, we may
get nowhere, by cutting off at every “rescaling second half-step” precisely what has
been gained right before by the “neighbor-heat-distribution” in the first half-step,
throughout any step of our discretized random walk procedure.
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