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Abstract— In this paper we describe the use of situation 

models for observing and understanding activity. Observing 

activity in natural environments can be an extremely complex 

perceptual problem. Situation models provide a means to both 

focus attention in such systems and to provide default 

reasoning to accommodate missing and erroneous 

observations. We briefly review the use of situations models in 

Cognitive Science and then describe how such models can be 

used to provide services based on observation of human 

activity. We present a layered component-oriented software 

architecture in which components for perception and action 

maintain a situation model for use in providing human 

services.  

I. INTRODUCTION 

Human activity is extremely rich. Real world scenes can 

contain an overwhelming number of possible agents and 

objects to detect and observe.  As are result, systems and 

services based on observation of activity must, either 

implicitly or explicitly, be able to choose where to look 

next and what to look for. Designers of system for 

observing activity are increasingly confronted with the 

problem of control attention. 

Attention is not the only problem confronting designers 

of systems for observing activity. Activity in the real world 

often occurs in less than ideal viewing conditions. Poor 

lighting, background clutter, object texture, and occlusions 

can degrade the reliability of even the most well designed 

systems. Thus systems and services must be able to detect 

and discard uncertain and unreliable observations, and if 

appropriate, substitute default information. In addition, 

many services require real time information from 

perception. In such systems it may be preferable to provide 

an immediate response with default information and to use 

background processes to verify that the response was 
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correct.  

Current systems for observing activities tend to be 

constructed in an ad-hoc manner with control structures that 

are hard-wired into the system design. Such systems are 

generally restricted to detecting a very small set of 

activities observed within a highly controlled environment.  

Adapting such systems to different operating environments 

or modifying such systems to observe different forms of 

activity can involve extensive reprogramming.   

In this paper we propose an approach for constructing 

systems for observing activity based on a model from 

Cognitive Science. We propose the use of situation models 

to organize, control, and interpret perception of activity. 

We will first provide some background from Cognitive 

Science concerning the use of situation models as a model 

of human mental activity. We then describe how to adopt 

such a model into software systems that provide services.  

We propose a layered, component-oriented software 

architecture for building situation aware services, and 

examine how situation models can be used to structure 

perceptual components and to provide default information 

for understanding activity. We conclude with discussion of 

the problems of automatically acquiring situation models 

through developmental learning.  

II. SITUATION MODELS FOR MENTAL PROCESSES 

Situation models have been proposed by Johnson-Laird [1], 

as a cognitive theory for human mental models.  Over the 

last 25 years, Theories about situation models have been 

adopted and developed by a large community of cognitive 

psychologists. Key publications include [2], [3] as well as 

[4].  

Situations are defined as a set of relations between 

entities, where an entity is anything that can be observed, 

and a relation is a predicate function. According to 

Radansky [2], a situation model is a mental representation 

of a described or experienced situation in a real or 

imaginary world.   Situation models are commonly 

composed of four primary types of information: 

1) A spatial-temporal framework  (spatial locations, time 

frames) 

2) Entities (people, objects, ideas, etc. ) 

3) Properties of entities (color, emotions, goals, shape, 

etc. ) 

4) Relational information (spatial, temporal, causal, 

ownership, kinship, social, etc. )  
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Situation models can be structured along dimensions of 

space, time, causality, actors and objects. Extensions of 

situations models have been proposed to represent 

intentions of actors.  It is commonly assumed that both 

general world knowledge (knowledge about concept types, 

e.g., scripts, schemas, categories, etc ) and referent specific 

knowledge (knowledge about specific entities, independent 

of the situation) are used in constructing situation models.  

Situation models are used for representations of: 

1) Information about events. 

2) Information about sequences of events.  

3) Information about collections of episodes  

We have adapted the concept situation models to 

construct system and services based on monitoring and 

observing human activity [5], [6], [7]. Although most of 

our implementations have been constructed using smart 

environments, such services can also be designed using 

robotic systems. Indeed, our approach to smart 

environments is to see the environment as a form of "inside 

out" robot, observing and interacting with occupants. Thus 

we maintain that models for understanding activity in smart 

environments may also be adapted for construction of 

autonomous robots.  

III. SITUATION MODELS FOR OBSERVING ACTIVITY 

Situation models can be used to addresses the twin 

problems of focus of attention, and operation with 

unreliable, erroneous or missing data. They can also be 

used to decouple services from the time constraints 

normally imposed by near (or not-so near) real time vision 

systems.  We present our technique in the context of a 

service-oriented architecture constructed using a layered, 

component-based, software model. For the robotics and 

vision communities, these concepts may require some 

explanation.  

The term "service" is used here in its most general form. 

Generally, it will refer to the "services" that informatics 

systems, including robotic systems, provide to people.  

User services can be designed as software agents that 

observe human activity and respond to events. Over the last 

few years, we have constructed a variety of user services 

based on dynamic assembly of perceptual components.  

This include services for lecture recording [8], meeting 

services [9], monitoring of the health and well-being of 

elderly, and availability monitoring [7]. As sensor and 

actuator technology mature, we can expect to see the 

emergence of an increasing variety of such systems for 

domestic services (cleaning, logistics, cooking), 

commercial services (shopping, queue management, 

customer assistance), health monitoring and assisted living, 

security monitoring, and a variety of other application 

domains. All of these examples require observing and 

understanding the actions of humans. We believe that 

situation models will provide an important component of 

such systems.  

We note that the term "service oriented" also has a more 

technical meaning for the software engineering community. 

In software engineering, a "service oriented" system is one 

in which software components interact according to a well-

defined contract. For example, a location service integrates 

information from a variety of sources to estimate the 

current location of a user.  Although the two uses of the 

term "service" are not incompatible, they can cause some 

confusion. Thus we will use the explicit term "Software 

services" for services that are primarily designed to interact 

with software components. We will interchangeably use 

"user services" or simply "services" for systems that 

interact with and assist people.  

Modern software systems are generally designed using a 

layered architecture. A layered architecture organizes the 

system into a hierarchy of interchangeable components, 

with well-defined interfaces. The design and operation at a 

particular layer may proceed independently of the 

underlying components. Components that make up a 

particular layer may be reused or shared by a variety of 

services. Components that are temporarily inoperative may 

be replaced with components alternative components. A 

common example of this approach is provided by the 

current generation of location aware services on mobile 

devices that can interchangeably use location information 

from GPS, cell phone repeaters, or WIFI repeater identity. 

Components for providing location from WIFI, GPS or 

cell-phone repeaters are a form of "perceptual component" 

that operate in parallel using competing methods to make 

available a key piece of information: current location.  We 

propose a similar approach to building components for 

observing activity. Perceptual components can be 

constructed to observe a scene with competing methods to 

provide information that may then be shared between 

different services.  

A situation model falls naturally at the interface between 

user services and perceptual components. For user services, 

the situation model provides a default reasoning system that 

can complete or repair partial or missing information from 

sensing. For the perceptual components, the situation model 

can be used to focus attention on the objects and events that 

are relevant to a service, allowing irrelevant objects or 

events to be ignored. The situation model can be used to 

predict possible events based, both to focus attention, and 

to prime a response before the event occurs.  

In the following, we describe layered architecture for 

observation systems and present a component-oriented 

approach to building observation systems. We then provide 

a formal definition for a situation model, and describe how 

such a model can be used to configure and control 

perceptual components as well as focus attention, predict 

events, and provide default reasoning for observation of 

activity.  



 

 

 

A. Services, Sensors, and Components  

We are interested in services that provide assistance 

through the observation of human activity. A service 

determines requirements for perception and action, without 

specifying how these requirements are to be met.  Hard-

wiring the interconnection between sensor signals and 

actuators is possible, and can provide simplistic services 

that are hardware dependent and have limited utility.  

Separating services from their underlying hardware 

makes it possible to build systems that operate in a larger 

range of environments, for a larger variety of functions. 

However such separation requires that the sensor-actuator 

layer provide logical interfaces, or standard API's, that are 

function centered and device independent. Hardware 

independence and generality require abstractions for 

perception and action.  

 
Fig. 1. A layered model for systems that observe human activity. 

 

A layered architecture of user services is shown in figure 

1.  At the lowest layer, the service's view of the world is 

provided by a collection of physical sensors and actuators.  

This corresponds to the sensor-actuator layer. This layer 

depends on the technology and encapsulates the diversity of 

sensors and actuators by which the system interacts with 

the world. Information at this layer is expressed in terms of 

sensor signals and device commands.  

Service abilities for perception and action are provided 

by components for perception and action. Components 

make observations about the world, interact with users as 

well as to make changes to the environment.  In our 

systems, services maintain information about users and 

environment in a situation model. The situation model has 

the form of a network of situations. Each situation has three 

facets: Observation, Reaction and Prediction. The 

observation facet specifies the entities and relations needed 

to define the situation. This can act as a specification that 

serves to activate a set of perception components capable of 

providing observations about the required entities and their 

relations. The reaction facet specifies how the service 

should behave in each situation, including both the desired 

state of the environment, and a specification 

communications that the service should make with the user. 

The Prediction facet indicates possible changes to the 

current situation, by pointing to adjacent situations and 

describing the events that can indicate the change. 

Sensors are devices that make measurements, ranging 

simple devices that measure temperature or humidity, to 

devices that capture motion (infrared motion detectors), 

acoustic energy (microphones) and images (cameras). 

Actuators impart change on the environment. Such devices 

can range from information displays, control of lighting and 

sound systems, motorized controls for doors, windows and 

window blinds, as well as mobile robotic devices for 

cleaning and entertainment.  

Components for perception and action operate at a higher 

level of abstraction than sensors and actuators.  While 

sensors and actuators operate on device-specific signals, 

perception and action operate in terms of environmental 

state. Perception interprets sensor signals by detecting, 

recognizing and observing people, things and events.  

Action components alter the environment to being it to a 

desired state. Tightly coupling perception and action can 

offer many advantages. Controlling action with perception 

allows a service to adapt action in accordance with the 

effect on the environment. Action can also be used to 

reconfigure the environment to improve perception, or even 

to probe the environment as part of perception.   

B. Components for Perception and Action 

Perception and action components are autonomous 

assemblies of modules executed in a cyclic manner by a 

component supervisor. Components communicate via 

synchronous data streams and asynchronous events in order 

to provide software services for action or perception. We 

propose a data-flow process architecture for software 

components for perception and action [10], [11], [12]. 

Component based architectures, as described in Shaw and 

Garlan [13], are composed of auto-descriptive functional 

components joined by connectors. Such an architecture is 

well adapted to interoperability of components, and thus 

provides a framework by which multiple partners can 

explore design of specific components without having to 

rebuild the entire system.  

Components are controlled by a supervisory module. The 

component supervisor interprets commands and parameters, 

supervises the execution of the transformation, and 

responds to queries with a description of the current state 

and capabilities of the component. The auto-critical report 

from modules allows a component supervisor to monitor 

the execution time and to adapt the schedule of modules for 

the next cycle so as to maintain a specified quality of 

service, such as execution time or number of targets 

tracked.  Such monitoring can be used, for example, to 

reduce the resolution of processing by selecting 1 pixel of 

N [14] or to selectively delete targets judged to be 

uninteresting or erroneous [15]. 



 

 

 

Figure 2. An example of perceptual component based on visual tracking 

 

In addition to recognition the supervisory component 

provides execution scheduling, self-monitoring, parameter 

regulation, and communications. The supervisor also acts 

as a scheduler, invoking execution of modules in a 

synchronous manner.  For self-monitoring, a component 

applies a model of its own behavior to estimate both quality 

of service and confidence for its outputs. Monitoring allows 

a process to detect and adapt to degradations in 

performance due to changing operating conditions by 

reconfiguring its component modules and operating 

parameters.  Monitoring also enables a process to provide a 

symbolic description of its capabilities and state.  

Homeostasis or "autonomic regulation of internal state" 

is a fundamental property for robust operation in an 

uncontrolled environment. A component is auto-regulated 

when processing is monitored and controlled so as to 

maintain a certain quality of service. The process 

supervisor maintains homeostasis by adapting module 

parameters to maximize estimated quality of service.  For 

example, processing time and precision are two important 

state variables for a tracking process. Quality of service 

measures such as cycle-time, number of targets, or 

precision can be maintained by dropping targets based on a 

priority assignment or by changing resolution for 

processing of some targets.  

During the communication phase, the supervisor may 

respond to requests from other components. These requests 

may ask for descriptions of process state, process 

capabilities, or may provide specification of new 

recognition methods. The supervisor acts as a 

programmable interpreter, receiving snippets of code script 

that determine the composition and nature of the process 

execution cycle and the manner in which the process reacts 

to events. Recognition procedures are small procedures 

interpreted by a lightweight language interpreter for the 

lisp-like language "scheme" [16]. In our implementation, 

such procedures may be preprogrammed, or they may be 

downloaded to the component during configuration as 

snippets of code.   

For most human activities, there are a potentially infinite 

number of entities that could be observed and an infinite 

number of possible relations for any set of entities. The 

appropriate entities and relations must be determined with 

respect to the service to be provided. This is the role of the 

situation model, as described in the previous section. The 

situation model allows the system to focus perceptual 

attention and computing resources, in order to associate the 

current state of the activity, with the appropriate system 

action.  

Perceptual components communicate using Streams, 

Events, and Queries. Streams are synchronous 

communication channels for communicating synchronous 

data such as image frames or acoustic signals. An important 

role for perceptual components is to process streams in 

order to observe entities and their properties.  Events are 

asynchronous messages generated by components in 

response to changes in entities or their properties.  Events 

may be sent to other components or to the situation model. 

Queries are communication transactions in which a service, 

the situation model, or another component interrogate a 

component about its entities and their properties.  

C. Assembling Components to Provide Services  

We have constructed a middle-ware environment [17] that 

allows us to dynamically launch and connect components 

on different machines. This environment, called 

O3MiSCID, provides an XML based interface that allows 

components to declare input command messages, output 

data structures, as well as current operational state.    In this 

environment, a user service may be created by assembling a 

collection of perceptual components.  

Available components are discovered by interrogating an 

ontology server. An open research challenge is to provide 

an ontological system for indexing components based on 

function in a manner that is sufficiently general to capture 

future functionalities as they emerge. In addition the 

ontology server is used to establish compatible 

communications of data. The problem of aligning 

ontologies of data structures is manageable when 

components are co-designed by a single group. The 

problem becomes very difficult when components are 

developed independently with no prior effort to agree on 

specifications. This problem resembles to web-ontology 

alignment problem that currently receives attention in 

software engineering.  

Figure 3 shows a simple example of a service provided 

by an assembly of perceptual components. This service 

integrates information from multiple cameras to provide 3-

D target tracking.  A set of tracked entities is provided by a 

Bayesian 3D tracking process that tracks targets in 3D 

scene coordinates. This process specifies the predicted 2-D 

Region of Interest (ROI) and detection method for a set of 

pixel-level detection components. These components use 

color, motion or background difference subtraction to 

detect and track blobs in an image stream from a camera. 

The O3MICID middle-ware makes it possible to 

dynamically add or drop cameras to the process during 



 

 

 

tracking.  

 
Fig. 3. An example of an assembly of perceptual components. The 3D 

Bayesian blob tracker provides a ROI and detection method for a number 

of 2D entity detection components. The result is used to update a list of 3D 

blobs. 

D. Entities and Relations 

Situations are defined as relations between entities.  An  

"entity" is anything that can be observed.  This solipsistic 

viewpoint admits that the system can only see what it 

knows how to see. At the same time, it sidesteps existential 

dilemmas related to how to define notions of "object" and 

"class". In this view, a chair is anything that can be used as 

a chair, regardless of its apparent form.   

Formally, entities are correlated sets of observations. 

Entities are grounded in the software components for 

observation of activity, typically through some form of 

tracking process that correlates observations over time. 

Entities can be decorated with properties that make possible 

the determination of relations between entities.  

A relation is a predicate or binary function computed on 

the properties of one or more entities. Relations have an 

arity, that specifies the number of  properties of entities that 

are concerned. An arity-1 relation is true when a property is 

observed to be within some range of values, or is otherwise 

signaled as true by a sensor. Examples can include 

(standing person) or (running person).  

Relations of Arity-2 may be any of the classical relation 

spaces including spatial relations, temporal relations or 

more abstract functions such as social-behaviour. Spatial 

relations can be 2D or 3D and relative or absolute, 

depending on the requirements of the service.  Examples 

can include absolute  position of actors (at podium person), 

(seated-at table person), relative position (facing person1 

person2), or even refer to the posture of persons (standing 

person). Observing human interaction can require 

perceptual components that detect more abstract social 

behaviour, such as (talking-to person1 person2) or 

(smiling-at person1 person2).  

As mentioned above, a key problem is that the number of 

potential relations that might be observed is an unbounded 

set. The situation model for a service specifies the entities 

(agents and objects) that must be observed, the properties 

that are required, and the relations between entities that are 

relevant. The task of the system designer is to provide 

perceptual components that can detect and track the 

required entities, measure the required properties, and 

detect when the required relations are true.  

Human Attention is an important relation in social 

situations. In our approach, we adopt the attention model 

developed by Maisonnasse [18]. In this work, attention is 

defined as the cognitive process of selectively 

concentrating on one aspect of the environment while 

ignoring other things. We include attention of agents as one 

of the fundamental relations for describing the social 

situation. 

E. Generalizing with Roles 

In most situations, the exact identity of the entity is not 

important. Thus we have generalized situation models by 

the introducing of the concept of "role" [5]. A role is a form 

of abstract model for an entity. In applying a situation 

model to describe a scene, a system will select from 

available entities to determine which entity can "fill" each 

role.  

Operationally, a role is an abstract generalization for a 

class of entities. Role classes are typically defined based on 

the set of actions that entities in the class can take (actors), 

or the set of actions that the entities can enable (props). 

Formally, role is a function that selects an entity from the 

set of observed entities.  

A “role” is NOT an intrinsic property of an entity, but 

rather, is an interpretation assigned to an entity by the 

system. Entities are assigned to roles by a role assignment 

process. Role assignment generally occurs by applying a set 

of tests to available entities.  The role assignment process 

acts as a form of  "filter" [19] that sorts suitability of 

entities based on their properties. The most suitable entity 

wins the role assignment.  

In our experiments for automatic learning of situation 

models [6], we have discovered that roles provide 

generalization in learning. Reactions learned for a situation 

composed of one set of entities can be used to understand a 

different set of entities.  

F. Situations  

The situation model acts as a non-linear script for 

interpreting activity and predicting the corresponding 

appropriate and inappropriate actions for services. This 

framework organizes the observation of interaction using a 

hierarchy of concepts: scenario, situation, role, entity and 

relations. A situation is defined as a configuration of 

relations over a set of entities playing roles. Thus a 

situation is a form of state, expressed as a logical 

expression (a conjunction of predicates).  This logical 

expression is composed of predicates whose arguments are 

roles.  This concept generalizes and extends the common 

practice of defining situations based on the relative position 

of actors and objects. 



 

 

 

Relations test the properties of entities that have been 

assigned to roles. As mentioned above, situations also 

predict possible future situations. This is captured by the 

connectivity of a situation network. Changes in the logical 

expression of relations or in the selection of entities playing 

roles are represented as changes in situation. Such changes 

can trigger system actions. 

A situation is a form of state, expressed as a logical 

expression (a conjunction of predicates). Situations are 

defined as a set of relations between entities, where entities 

may be agents, objects or any abstract concept observed as 

a correlated set of properties.  This logical expression is 

composed of predicates.  This concept generalizes and 

extends the common practice of defining situations based 

on the relative position of actors and objects. As predicates, 

relations are Boolean functions with one or more 

arguments. Relations are true or false, depending on the 

properties of their arguments. 

G. Situation Models to Understand Activity  

Situations are organized into networks, with transition 

probabilities, so that possible next situations may be 

predicted from the current situation.  

In our systems, the situation model drives focus of 

attention by specifying the entities and relations that should 

be attended. When a service is initiated, a list of relevant 

entities and relations are provided, along with the relevant 

configuration information. This list is used to initiate and 

configure the perceptual and action components needed to 

maintain the situation model.   

Each situation contains a list of expected relations, as 

well as expected observed entities and their expected 

properties. Transitions between situations can be triggered 

by events, and do not require verification for the entire set 

of relations, entities and properties. Thus it is possible for a 

situation to provide default values for relations, and 

properties that have not been verified. When interrogated 

by a service, a situation model may respond with the 

default values, whether or not these values can be currently 

verified. Such a response can be provided without waiting 

for an actual verification to occur. However, this 

verification can be used as an integrity check for the 

situation model   

When a system responds with a default value, it is good 

practice for the system to query the relevant perceptual 

components to verify the default values that have been 

returned.  In some cases, this may indicate a divergence 

between the situation model and the observed  properties of 

entities. Such a divergence can be used to trigger a 

diagnostic process to recover from the current error, by 

adapting perception to changes in the environment or by 

developing the situation model by adding new situations or 

behaviours.   

IV. 5. LEARNING SITUATION NETWORKS 

We distinguish the concepts of adaptation from 

development [20]. Adaptation allows a system to maintain 

consistent behaviour across variations in operating 

environments. The environment denotes the physical world 

(e.g., in the street, lighting conditions), the user 

(identification, location, goals and activities), social 

settings, and computational, communicational and 

interactive resources. Development refers to the acquisition 

of abilities, in this case encoded as situation models 

composed of the entities, roles and relations with which 

situation is described and service actions are performed.  

Systems for providing services based on observing 

activity must both adapt and develop. Adaptation is 

necessary to maintain consistent behaviour while 

accommodating changes in the operating environment, task, 

user population, preferences or some other factors. At the 

same time, human activity is too complex to be fully 

captured in a pre-programmed situation model. An activity 

model must develop through observation and interaction 

with users. A fundamental challenge is to provide both 

automatic adaptation and automatic development without 

disruption.  

Current learning technologies, such as hidden Markov 

models and neural networks, require large sets of training 

data – something that is difficult to obtain for an extensible 

environment. Non-disruptive development of context 

models requires new ways of looking at learning, and may 

ultimately require a new class of minimally supervised 

learning algorithms. This requires that learning be studied 

as part of a semi-autonomous system. It requires that 

systems have properties of self-description, self-evaluation 

and auto-regulation, and may well lead to new classes of 

learning algorithms specifically suitable to developing and 

evolving context models in a non-disruptive manner.  

We are currently experimenting with techniques for 

adapting activity models based on pre-defined stereotypical 

situations [21].  We are exploring different approaches to 

learning for development of activity models starting from a 

predefined stereotypical model using feedback about the 

system actions. Because the different components of the 

model (entities, roles, relations, and situations) depend on 

each other, these cannot be developed simultaneously. Thus 

we have focused on the development of the situation 

networks and the associated system actions.  

Bayesian models (in particular Hidden Markov Models 

[22] as well as algorithms based on first-order logic [23] 

can be used to represent and adapt the situation network. 

However, these approaches do not have desirable properties 

concerning the extension of the number of situations. 

Bayesian models require a large amount of example data to 

extend the number of states. First-order logic algorithms 

cannot create new predicates (problem of higher order 

logic), which is necessary for the extension of situations. 



 

 

 

Thus we propose an approach for changes in the structure 

of the situation network, as shown in figure 4. 

 The input to the algorithm is a predefined situation 

network along with feedback from prior use mediated by a 

supervisor. The supervisor corrects, deletes or preserves the 

actions executed by the system while observing a user in 

the environment. Each correction, deletion, or preservation 

generates a training example for the learning algorithm 

containing current situation, roles and configuration of 

relations, and the (correct) (re)action. The differences 

between the actions given in the training examples and the 

actions provided in the predefined situation network will 

drive the different steps of the algorithm. 

Initially, our approach has been to directly modify 

system actions using the existing situation network. If 

action A is associated with situation S, and all training 

examples indicate that action B must be executed instead of 

A, then B is associated to S and the association between A 

and S is deleted. 

 

 
Fig 4: Overview of the algorithm for adapting system actions  

V. CONCLUSIONS 

 Activity models for context aware services can be 

expressed as a network of situations concerning a set of 

roles, entities and relations. Roles are abstract classes for 

entities. Entities may be interpreted as playing a role, based 

on their current properties.  Relations between entities 

playing roles define situations.  This conceptual framework 

provides default reasoning, focus of attention, and real time 

response for services that require observation of human 

activity. This model can also provide a  basis for adaptation 

and development of non-disruptive software services for 

aiding human-to-human interaction.   

Socially aware observation of activity and interaction is a 

key requirement for development of non-disruptive 

services. For this to become reality, we need methods for 

robust observation of activity, as well as methods to 

automatically learn about activity without imposing 

disruptions. The framework and techniques described in 

this paper are intended as a foundation for such 

observation. 
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