
HAL Id: hal-01255501
https://hal.science/hal-01255501

Submitted on 14 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Situation Models: A Tool for Observing and
Understanding Activity

James L. Crowley, Patrick Reignier, Rémi Barraquand

To cite this version:
James L. Crowley, Patrick Reignier, Rémi Barraquand. Situation Models: A Tool for Observing
and Understanding Activity. IEEE International Conference on Robotics and Automation, Sep 2009,
Kobe, Japan. �hal-01255501�

https://hal.science/hal-01255501
https://hal.archives-ouvertes.fr

Abstract— In this paper we describe the use of situation

models for observing and understanding activity. Observing

activity in natural environments can be an extremely complex

perceptual problem. Situation models provide a means to both

focus attention in such systems and to provide default

reasoning to accommodate missing and erroneous

observations. We briefly review the use of situations models in

Cognitive Science and then describe how such models can be

used to provide services based on observation of human

activity. We present a layered component-oriented software

architecture in which components for perception and action

maintain a situation model for use in providing human

services.

I. INTRODUCTION

Human activity is extremely rich. Real world scenes can

contain an overwhelming number of possible agents and

objects to detect and observe. As are result, systems and

services based on observation of activity must, either

implicitly or explicitly, be able to choose where to look

next and what to look for. Designers of system for

observing activity are increasingly confronted with the

problem of control attention.

Attention is not the only problem confronting designers

of systems for observing activity. Activity in the real world

often occurs in less than ideal viewing conditions. Poor

lighting, background clutter, object texture, and occlusions

can degrade the reliability of even the most well designed

systems. Thus systems and services must be able to detect

and discard uncertain and unreliable observations, and if

appropriate, substitute default information. In addition,

many services require real time information from

perception. In such systems it may be preferable to provide

an immediate response with default information and to use

background processes to verify that the response was

Manuscript received March 9, 2009. This work was supported in part

by project ANR CASPER, as well as the European IST projects FAME

(IST 2000-28323), CAVIAR (IST 2001- 37540) and CHIL (IST 506909)

James L. Crowley is Professor at Grenoble National Polytechnique

Institute (INPG) and directs the PRIMA Research group at INRIA

Grenoble Centre de Recherche, 655 Ave de l'Europe, 38334 St. Ismier,

France.

Patrick Reignier is a Junior Professor (MdC) at the University Joseph

Fourier in Grenoble, and member of the PRIMA Research group at INRIA

Grenoble Centre de Recherche, 655 Ave de l'Europe, 38334 St. Ismier,

France.

Remi Barraquand is a doctoral student at Grenoble National

Polytechnique Institute (INPG) under the direction of James L. Crowley

and member of the PRIMA Research group at INRIA Grenoble Centre de

Recherche.

correct.

Current systems for observing activities tend to be

constructed in an ad-hoc manner with control structures that

are hard-wired into the system design. Such systems are

generally restricted to detecting a very small set of

activities observed within a highly controlled environment.

Adapting such systems to different operating environments

or modifying such systems to observe different forms of

activity can involve extensive reprogramming.

In this paper we propose an approach for constructing

systems for observing activity based on a model from

Cognitive Science. We propose the use of situation models

to organize, control, and interpret perception of activity.

We will first provide some background from Cognitive

Science concerning the use of situation models as a model

of human mental activity. We then describe how to adopt

such a model into software systems that provide services.

We propose a layered, component-oriented software

architecture for building situation aware services, and

examine how situation models can be used to structure

perceptual components and to provide default information

for understanding activity. We conclude with discussion of

the problems of automatically acquiring situation models

through developmental learning.

II. SITUATION MODELS FOR MENTAL PROCESSES

Situation models have been proposed by Johnson-Laird [1],

as a cognitive theory for human mental models. Over the

last 25 years, Theories about situation models have been

adopted and developed by a large community of cognitive

psychologists. Key publications include [2], [3] as well as

[4].

Situations are defined as a set of relations between

entities, where an entity is anything that can be observed,

and a relation is a predicate function. According to

Radansky [2], a situation model is a mental representation

of a described or experienced situation in a real or

imaginary world. Situation models are commonly

composed of four primary types of information:

1) A spatial-temporal framework (spatial locations, time

frames)

2) Entities (people, objects, ideas, etc.)

3) Properties of entities (color, emotions, goals, shape,

etc.)

4) Relational information (spatial, temporal, causal,

ownership, kinship, social, etc.)

Situation Models: A Tool for Observing and Understanding Activity

James L. Crowley, Member, IEEE, Patrick Reignier and Remi Barranquand

Situation models can be structured along dimensions of

space, time, causality, actors and objects. Extensions of

situations models have been proposed to represent

intentions of actors. It is commonly assumed that both

general world knowledge (knowledge about concept types,

e.g., scripts, schemas, categories, etc) and referent specific

knowledge (knowledge about specific entities, independent

of the situation) are used in constructing situation models.

Situation models are used for representations of:

1) Information about events.

2) Information about sequences of events.

3) Information about collections of episodes

We have adapted the concept situation models to

construct system and services based on monitoring and

observing human activity [5], [6], [7]. Although most of

our implementations have been constructed using smart

environments, such services can also be designed using

robotic systems. Indeed, our approach to smart

environments is to see the environment as a form of "inside

out" robot, observing and interacting with occupants. Thus

we maintain that models for understanding activity in smart

environments may also be adapted for construction of

autonomous robots.

III. SITUATION MODELS FOR OBSERVING ACTIVITY

Situation models can be used to addresses the twin

problems of focus of attention, and operation with

unreliable, erroneous or missing data. They can also be

used to decouple services from the time constraints

normally imposed by near (or not-so near) real time vision

systems. We present our technique in the context of a

service-oriented architecture constructed using a layered,

component-based, software model. For the robotics and

vision communities, these concepts may require some

explanation.

The term "service" is used here in its most general form.

Generally, it will refer to the "services" that informatics

systems, including robotic systems, provide to people.

User services can be designed as software agents that

observe human activity and respond to events. Over the last

few years, we have constructed a variety of user services

based on dynamic assembly of perceptual components.

This include services for lecture recording [8], meeting

services [9], monitoring of the health and well-being of

elderly, and availability monitoring [7]. As sensor and

actuator technology mature, we can expect to see the

emergence of an increasing variety of such systems for

domestic services (cleaning, logistics, cooking),

commercial services (shopping, queue management,

customer assistance), health monitoring and assisted living,

security monitoring, and a variety of other application

domains. All of these examples require observing and

understanding the actions of humans. We believe that

situation models will provide an important component of

such systems.

We note that the term "service oriented" also has a more

technical meaning for the software engineering community.

In software engineering, a "service oriented" system is one

in which software components interact according to a well-

defined contract. For example, a location service integrates

information from a variety of sources to estimate the

current location of a user. Although the two uses of the

term "service" are not incompatible, they can cause some

confusion. Thus we will use the explicit term "Software

services" for services that are primarily designed to interact

with software components. We will interchangeably use

"user services" or simply "services" for systems that

interact with and assist people.

Modern software systems are generally designed using a

layered architecture. A layered architecture organizes the

system into a hierarchy of interchangeable components,

with well-defined interfaces. The design and operation at a

particular layer may proceed independently of the

underlying components. Components that make up a

particular layer may be reused or shared by a variety of

services. Components that are temporarily inoperative may

be replaced with components alternative components. A

common example of this approach is provided by the

current generation of location aware services on mobile

devices that can interchangeably use location information

from GPS, cell phone repeaters, or WIFI repeater identity.

Components for providing location from WIFI, GPS or

cell-phone repeaters are a form of "perceptual component"

that operate in parallel using competing methods to make

available a key piece of information: current location. We

propose a similar approach to building components for

observing activity. Perceptual components can be

constructed to observe a scene with competing methods to

provide information that may then be shared between

different services.

A situation model falls naturally at the interface between

user services and perceptual components. For user services,

the situation model provides a default reasoning system that

can complete or repair partial or missing information from

sensing. For the perceptual components, the situation model

can be used to focus attention on the objects and events that

are relevant to a service, allowing irrelevant objects or

events to be ignored. The situation model can be used to

predict possible events based, both to focus attention, and

to prime a response before the event occurs.

In the following, we describe layered architecture for

observation systems and present a component-oriented

approach to building observation systems. We then provide

a formal definition for a situation model, and describe how

such a model can be used to configure and control

perceptual components as well as focus attention, predict

events, and provide default reasoning for observation of

activity.

A. Services, Sensors, and Components

We are interested in services that provide assistance

through the observation of human activity. A service

determines requirements for perception and action, without

specifying how these requirements are to be met. Hard-

wiring the interconnection between sensor signals and

actuators is possible, and can provide simplistic services

that are hardware dependent and have limited utility.

Separating services from their underlying hardware

makes it possible to build systems that operate in a larger

range of environments, for a larger variety of functions.

However such separation requires that the sensor-actuator

layer provide logical interfaces, or standard API's, that are

function centered and device independent. Hardware

independence and generality require abstractions for

perception and action.

Fig. 1. A layered model for systems that observe human activity.

A layered architecture of user services is shown in figure

1. At the lowest layer, the service's view of the world is

provided by a collection of physical sensors and actuators.

This corresponds to the sensor-actuator layer. This layer

depends on the technology and encapsulates the diversity of

sensors and actuators by which the system interacts with

the world. Information at this layer is expressed in terms of

sensor signals and device commands.

Service abilities for perception and action are provided

by components for perception and action. Components

make observations about the world, interact with users as

well as to make changes to the environment. In our

systems, services maintain information about users and

environment in a situation model. The situation model has

the form of a network of situations. Each situation has three

facets: Observation, Reaction and Prediction. The

observation facet specifies the entities and relations needed

to define the situation. This can act as a specification that

serves to activate a set of perception components capable of

providing observations about the required entities and their

relations. The reaction facet specifies how the service

should behave in each situation, including both the desired

state of the environment, and a specification

communications that the service should make with the user.

The Prediction facet indicates possible changes to the

current situation, by pointing to adjacent situations and

describing the events that can indicate the change.

Sensors are devices that make measurements, ranging

simple devices that measure temperature or humidity, to

devices that capture motion (infrared motion detectors),

acoustic energy (microphones) and images (cameras).

Actuators impart change on the environment. Such devices

can range from information displays, control of lighting and

sound systems, motorized controls for doors, windows and

window blinds, as well as mobile robotic devices for

cleaning and entertainment.

Components for perception and action operate at a higher

level of abstraction than sensors and actuators. While

sensors and actuators operate on device-specific signals,

perception and action operate in terms of environmental

state. Perception interprets sensor signals by detecting,

recognizing and observing people, things and events.

Action components alter the environment to being it to a

desired state. Tightly coupling perception and action can

offer many advantages. Controlling action with perception

allows a service to adapt action in accordance with the

effect on the environment. Action can also be used to

reconfigure the environment to improve perception, or even

to probe the environment as part of perception.

B. Components for Perception and Action

Perception and action components are autonomous

assemblies of modules executed in a cyclic manner by a

component supervisor. Components communicate via

synchronous data streams and asynchronous events in order

to provide software services for action or perception. We

propose a data-flow process architecture for software

components for perception and action [10], [11], [12].

Component based architectures, as described in Shaw and

Garlan [13], are composed of auto-descriptive functional

components joined by connectors. Such an architecture is

well adapted to interoperability of components, and thus

provides a framework by which multiple partners can

explore design of specific components without having to

rebuild the entire system.

Components are controlled by a supervisory module. The

component supervisor interprets commands and parameters,

supervises the execution of the transformation, and

responds to queries with a description of the current state

and capabilities of the component. The auto-critical report

from modules allows a component supervisor to monitor

the execution time and to adapt the schedule of modules for

the next cycle so as to maintain a specified quality of

service, such as execution time or number of targets

tracked. Such monitoring can be used, for example, to

reduce the resolution of processing by selecting 1 pixel of

N [14] or to selectively delete targets judged to be

uninteresting or erroneous [15].

Figure 2. An example of perceptual component based on visual tracking

In addition to recognition the supervisory component

provides execution scheduling, self-monitoring, parameter

regulation, and communications. The supervisor also acts

as a scheduler, invoking execution of modules in a

synchronous manner. For self-monitoring, a component

applies a model of its own behavior to estimate both quality

of service and confidence for its outputs. Monitoring allows

a process to detect and adapt to degradations in

performance due to changing operating conditions by

reconfiguring its component modules and operating

parameters. Monitoring also enables a process to provide a

symbolic description of its capabilities and state.

Homeostasis or "autonomic regulation of internal state"

is a fundamental property for robust operation in an

uncontrolled environment. A component is auto-regulated

when processing is monitored and controlled so as to

maintain a certain quality of service. The process

supervisor maintains homeostasis by adapting module

parameters to maximize estimated quality of service. For

example, processing time and precision are two important

state variables for a tracking process. Quality of service

measures such as cycle-time, number of targets, or

precision can be maintained by dropping targets based on a

priority assignment or by changing resolution for

processing of some targets.

During the communication phase, the supervisor may

respond to requests from other components. These requests

may ask for descriptions of process state, process

capabilities, or may provide specification of new

recognition methods. The supervisor acts as a

programmable interpreter, receiving snippets of code script

that determine the composition and nature of the process

execution cycle and the manner in which the process reacts

to events. Recognition procedures are small procedures

interpreted by a lightweight language interpreter for the

lisp-like language "scheme" [16]. In our implementation,

such procedures may be preprogrammed, or they may be

downloaded to the component during configuration as

snippets of code.

For most human activities, there are a potentially infinite

number of entities that could be observed and an infinite

number of possible relations for any set of entities. The

appropriate entities and relations must be determined with

respect to the service to be provided. This is the role of the

situation model, as described in the previous section. The

situation model allows the system to focus perceptual

attention and computing resources, in order to associate the

current state of the activity, with the appropriate system

action.

Perceptual components communicate using Streams,

Events, and Queries. Streams are synchronous

communication channels for communicating synchronous

data such as image frames or acoustic signals. An important

role for perceptual components is to process streams in

order to observe entities and their properties. Events are

asynchronous messages generated by components in

response to changes in entities or their properties. Events

may be sent to other components or to the situation model.

Queries are communication transactions in which a service,

the situation model, or another component interrogate a

component about its entities and their properties.

C. Assembling Components to Provide Services

We have constructed a middle-ware environment [17] that

allows us to dynamically launch and connect components

on different machines. This environment, called

O3MiSCID, provides an XML based interface that allows

components to declare input command messages, output

data structures, as well as current operational state. In this

environment, a user service may be created by assembling a

collection of perceptual components.

Available components are discovered by interrogating an

ontology server. An open research challenge is to provide

an ontological system for indexing components based on

function in a manner that is sufficiently general to capture

future functionalities as they emerge. In addition the

ontology server is used to establish compatible

communications of data. The problem of aligning

ontologies of data structures is manageable when

components are co-designed by a single group. The

problem becomes very difficult when components are

developed independently with no prior effort to agree on

specifications. This problem resembles to web-ontology

alignment problem that currently receives attention in

software engineering.

Figure 3 shows a simple example of a service provided

by an assembly of perceptual components. This service

integrates information from multiple cameras to provide 3-

D target tracking. A set of tracked entities is provided by a

Bayesian 3D tracking process that tracks targets in 3D

scene coordinates. This process specifies the predicted 2-D

Region of Interest (ROI) and detection method for a set of

pixel-level detection components. These components use

color, motion or background difference subtraction to

detect and track blobs in an image stream from a camera.

The O3MICID middle-ware makes it possible to

dynamically add or drop cameras to the process during

tracking.

Fig. 3. An example of an assembly of perceptual components. The 3D

Bayesian blob tracker provides a ROI and detection method for a number

of 2D entity detection components. The result is used to update a list of 3D

blobs.

D. Entities and Relations

Situations are defined as relations between entities. An

"entity" is anything that can be observed. This solipsistic

viewpoint admits that the system can only see what it

knows how to see. At the same time, it sidesteps existential

dilemmas related to how to define notions of "object" and

"class". In this view, a chair is anything that can be used as

a chair, regardless of its apparent form.

Formally, entities are correlated sets of observations.

Entities are grounded in the software components for

observation of activity, typically through some form of

tracking process that correlates observations over time.

Entities can be decorated with properties that make possible

the determination of relations between entities.

A relation is a predicate or binary function computed on

the properties of one or more entities. Relations have an

arity, that specifies the number of properties of entities that

are concerned. An arity-1 relation is true when a property is

observed to be within some range of values, or is otherwise

signaled as true by a sensor. Examples can include

(standing person) or (running person).

Relations of Arity-2 may be any of the classical relation

spaces including spatial relations, temporal relations or

more abstract functions such as social-behaviour. Spatial

relations can be 2D or 3D and relative or absolute,

depending on the requirements of the service. Examples

can include absolute position of actors (at podium person),

(seated-at table person), relative position (facing person1

person2), or even refer to the posture of persons (standing

person). Observing human interaction can require

perceptual components that detect more abstract social

behaviour, such as (talking-to person1 person2) or

(smiling-at person1 person2).

As mentioned above, a key problem is that the number of

potential relations that might be observed is an unbounded

set. The situation model for a service specifies the entities

(agents and objects) that must be observed, the properties

that are required, and the relations between entities that are

relevant. The task of the system designer is to provide

perceptual components that can detect and track the

required entities, measure the required properties, and

detect when the required relations are true.

Human Attention is an important relation in social

situations. In our approach, we adopt the attention model

developed by Maisonnasse [18]. In this work, attention is

defined as the cognitive process of selectively

concentrating on one aspect of the environment while

ignoring other things. We include attention of agents as one

of the fundamental relations for describing the social

situation.

E. Generalizing with Roles

In most situations, the exact identity of the entity is not

important. Thus we have generalized situation models by

the introducing of the concept of "role" [5]. A role is a form

of abstract model for an entity. In applying a situation

model to describe a scene, a system will select from

available entities to determine which entity can "fill" each

role.

Operationally, a role is an abstract generalization for a

class of entities. Role classes are typically defined based on

the set of actions that entities in the class can take (actors),

or the set of actions that the entities can enable (props).

Formally, role is a function that selects an entity from the

set of observed entities.

A “role” is NOT an intrinsic property of an entity, but

rather, is an interpretation assigned to an entity by the

system. Entities are assigned to roles by a role assignment

process. Role assignment generally occurs by applying a set

of tests to available entities. The role assignment process

acts as a form of "filter" [19] that sorts suitability of

entities based on their properties. The most suitable entity

wins the role assignment.

In our experiments for automatic learning of situation

models [6], we have discovered that roles provide

generalization in learning. Reactions learned for a situation

composed of one set of entities can be used to understand a

different set of entities.

F. Situations

The situation model acts as a non-linear script for

interpreting activity and predicting the corresponding

appropriate and inappropriate actions for services. This

framework organizes the observation of interaction using a

hierarchy of concepts: scenario, situation, role, entity and

relations. A situation is defined as a configuration of

relations over a set of entities playing roles. Thus a

situation is a form of state, expressed as a logical

expression (a conjunction of predicates). This logical

expression is composed of predicates whose arguments are

roles. This concept generalizes and extends the common

practice of defining situations based on the relative position

of actors and objects.

Relations test the properties of entities that have been

assigned to roles. As mentioned above, situations also

predict possible future situations. This is captured by the

connectivity of a situation network. Changes in the logical

expression of relations or in the selection of entities playing

roles are represented as changes in situation. Such changes

can trigger system actions.

A situation is a form of state, expressed as a logical

expression (a conjunction of predicates). Situations are

defined as a set of relations between entities, where entities

may be agents, objects or any abstract concept observed as

a correlated set of properties. This logical expression is

composed of predicates. This concept generalizes and

extends the common practice of defining situations based

on the relative position of actors and objects. As predicates,

relations are Boolean functions with one or more

arguments. Relations are true or false, depending on the

properties of their arguments.

G. Situation Models to Understand Activity

Situations are organized into networks, with transition

probabilities, so that possible next situations may be

predicted from the current situation.

In our systems, the situation model drives focus of

attention by specifying the entities and relations that should

be attended. When a service is initiated, a list of relevant

entities and relations are provided, along with the relevant

configuration information. This list is used to initiate and

configure the perceptual and action components needed to

maintain the situation model.

Each situation contains a list of expected relations, as

well as expected observed entities and their expected

properties. Transitions between situations can be triggered

by events, and do not require verification for the entire set

of relations, entities and properties. Thus it is possible for a

situation to provide default values for relations, and

properties that have not been verified. When interrogated

by a service, a situation model may respond with the

default values, whether or not these values can be currently

verified. Such a response can be provided without waiting

for an actual verification to occur. However, this

verification can be used as an integrity check for the

situation model

When a system responds with a default value, it is good

practice for the system to query the relevant perceptual

components to verify the default values that have been

returned. In some cases, this may indicate a divergence

between the situation model and the observed properties of

entities. Such a divergence can be used to trigger a

diagnostic process to recover from the current error, by

adapting perception to changes in the environment or by

developing the situation model by adding new situations or

behaviours.

IV. 5. LEARNING SITUATION NETWORKS

We distinguish the concepts of adaptation from

development [20]. Adaptation allows a system to maintain

consistent behaviour across variations in operating

environments. The environment denotes the physical world

(e.g., in the street, lighting conditions), the user

(identification, location, goals and activities), social

settings, and computational, communicational and

interactive resources. Development refers to the acquisition

of abilities, in this case encoded as situation models

composed of the entities, roles and relations with which

situation is described and service actions are performed.

Systems for providing services based on observing

activity must both adapt and develop. Adaptation is

necessary to maintain consistent behaviour while

accommodating changes in the operating environment, task,

user population, preferences or some other factors. At the

same time, human activity is too complex to be fully

captured in a pre-programmed situation model. An activity

model must develop through observation and interaction

with users. A fundamental challenge is to provide both

automatic adaptation and automatic development without

disruption.

Current learning technologies, such as hidden Markov

models and neural networks, require large sets of training

data – something that is difficult to obtain for an extensible

environment. Non-disruptive development of context

models requires new ways of looking at learning, and may

ultimately require a new class of minimally supervised

learning algorithms. This requires that learning be studied

as part of a semi-autonomous system. It requires that

systems have properties of self-description, self-evaluation

and auto-regulation, and may well lead to new classes of

learning algorithms specifically suitable to developing and

evolving context models in a non-disruptive manner.

We are currently experimenting with techniques for

adapting activity models based on pre-defined stereotypical

situations [21]. We are exploring different approaches to

learning for development of activity models starting from a

predefined stereotypical model using feedback about the

system actions. Because the different components of the

model (entities, roles, relations, and situations) depend on

each other, these cannot be developed simultaneously. Thus

we have focused on the development of the situation

networks and the associated system actions.

Bayesian models (in particular Hidden Markov Models

[22] as well as algorithms based on first-order logic [23]

can be used to represent and adapt the situation network.

However, these approaches do not have desirable properties

concerning the extension of the number of situations.

Bayesian models require a large amount of example data to

extend the number of states. First-order logic algorithms

cannot create new predicates (problem of higher order

logic), which is necessary for the extension of situations.

Thus we propose an approach for changes in the structure

of the situation network, as shown in figure 4.

 The input to the algorithm is a predefined situation

network along with feedback from prior use mediated by a

supervisor. The supervisor corrects, deletes or preserves the

actions executed by the system while observing a user in

the environment. Each correction, deletion, or preservation

generates a training example for the learning algorithm

containing current situation, roles and configuration of

relations, and the (correct) (re)action. The differences

between the actions given in the training examples and the

actions provided in the predefined situation network will

drive the different steps of the algorithm.

Initially, our approach has been to directly modify

system actions using the existing situation network. If

action A is associated with situation S, and all training

examples indicate that action B must be executed instead of

A, then B is associated to S and the association between A

and S is deleted.

Fig 4: Overview of the algorithm for adapting system actions

V. CONCLUSIONS

 Activity models for context aware services can be

expressed as a network of situations concerning a set of

roles, entities and relations. Roles are abstract classes for

entities. Entities may be interpreted as playing a role, based

on their current properties. Relations between entities

playing roles define situations. This conceptual framework

provides default reasoning, focus of attention, and real time

response for services that require observation of human

activity. This model can also provide a basis for adaptation

and development of non-disruptive software services for

aiding human-to-human interaction.

Socially aware observation of activity and interaction is a

key requirement for development of non-disruptive

services. For this to become reality, we need methods for

robust observation of activity, as well as methods to

automatically learn about activity without imposing

disruptions. The framework and techniques described in

this paper are intended as a foundation for such

observation.

VI. REFERENCES

[1] P. N. Johnson-Laird, Mental Models: Towards a

Cognitive Science of Language, Inference, and

Consciousness, Harvard Univ. Press, Cambridge, MA,

1983.

[2] Radvansky, G. A., & Zacks, R. T. (1997). The

retrieval of situation-specific information. In M. A.

Conway (Ed.) Cognitive Models of Memory, pp. 173-

213. Cambridge, MA: MIT Press.

[3] Zwaan, R. A. Radvansky, G. A., "Situation Models in

Language Comprehension and Memory,

PSYCHOLOGICAL BULLETIN, VOL 123;

NUMBER 2, pages 162-185, 1998.

[4] P.N. Johnson-Laird, Mental models, MIT Press

Cambridge, MA, USA, 1989.

[5] J. L. Crowley, "Context Driven Observation of Human

Activity", European Symposium on Ambient

Intelligence, Amsterdam, 3-5 November 2003

[6] J. L. Crowley, O. Brdiczka, and P. Reignier. Learning

Situation Models for Understanding Activity In The

5th International Conference on Development and

Learning 2006 (ICDL06), Bloomington, Il., USA, June

2006

[7] O. Brdiczka, J. L. Crowley, P. Reignier, Learning

situation models for providing context-aware services,

in "IEEE Transactions on Man, Systems and

Cybernetics, Part B", Volume 38, Number 1, January

2008.

[8] F. Metze, P. Gieselmann, H. Holzapfel, T. Kluge, I.

Rogina, A. Waibel, and M. Wolfel, J. Crowley, P.

Reignier and D. Vaufreydaz, F. Bérard, B. Cohen, J.

Coutaz, V. Arranz, M. Bertran and H. Rodriguez, "The

FAME Interactive Space", 2nd Joint Workshop on

Multimodal Interaction and Related Machine Learning

Algorithms, MLMI, Edinburgh, July 2005.

[9] M. Danninger, T. Kluge, R. Stiefelhagen,

"MyConnector: analysis of context cues to predict

human availability for communication", International

Conference on Multimodal Interaction, ICMI 2006:

pp12-19, Trento, 2006.

[10] Software Process Modeling and Technology, edited by

A. Finkelstein, J. Kramer and B. Nuseibeh, Research

Studies Press, John Wiley and Sons Inc, 1994.

[11] J. Rasure and S. Kubica, “The Khoros application

development environment “, in Experimental

Environments for computer vision and image

processing, H. Christensen and J. L. Crowley, Eds,

World Scientific Press, pp 1-32, 1994.

[12] J. L. Crowley, "Integration and Control of Reactive

Visual Processes", Robotics and Autonomous Systems,

Vol 15, No. 1, decembre 1995

[13] M. Shaw and D. Garlan, Software Architecture:

Perspectives on an Emerging Disciplines, Prentice

Hall, 1996.

[14] J. Piater and J. Crowley, "Event-based Activity

Analysis in Live Video using a Generic Object

Tracker", Performance Evaluation for Tracking and

Surveillance, PETS-2002, Copenhagen, June 2002.

[15] D. Hall, R. Emonet, and J. L. Crowley, "An automatic

approach for parameter selection in self-adaptive

tracking." In International Conference on Computer

Vision Theory and Applications (VISAPP), Setubal,

Portugal, Feb. 2006.

[16] A. Lux, "The Imalab Method for Vision Systems",

International Conference on Vision Systems, ICVS-03,

Graz, april 2003.

[17] R. Emonet, D. Vaufreydaz, P. Reignier, J. Letessier,

"O3MiSCID: an Object Oriented Opensource

Middleware for Service Connection, Introspection an

Discover", 1st IEEE International Workshop on

Services Integration in Pervasive Environments - June

2006.

[18] J. Maisonnasse, N. Gourier, O. Brdiczka and P.

Reignier, Attentional Model for Perceiving Social

Context in Intelligent Environments, Artificial

Intelligence Apllications and Innovations 2006.

[19] O. Brdiczka, J. Maisonnasse, P. Reignier, Automatic

Detection of Interaction Groups, 2005 International

Conference on Multimodal interaction, ICMI '05,

Trento It., october 2005

[20] J Coutaz, J. L. Crowley, S. Dobson, and D. Garlan,

"Context is Key", Communications of the ACM,

Special issue on the Disappearing Computer, Vol 48,

No 3, pp 49-53 March 2005.

[21] R. Barraquand and J. L. Crowley, "Learning Polite

Behavior with Situation Models", Third International

Conference on Human Robot Interaction (HRI 2008),

12-15 March 2008, Amsterdam, The Netherlands

[22] L. R. Rabiner, A Tutorial on Hidden Markov Models

and selected Applications in Speech Recognition.

Readings in speech recognition. p. 267-296, 1990.

[23] J. R. Quinlan, Learning Logical Definitions from

Relations. Machine Learning. 5(3), p. 239-266, 1990.

