
HAL Id: hal-01255499
https://hal.science/hal-01255499v1

Preprint submitted on 13 Jan 2016 (v1), last revised 15 Nov 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Efficient Dynamic Range Minimum Query
A Heliou, M Léonard, L Mouchard, Mikael Salson

To cite this version:
A Heliou, M Léonard, L Mouchard, Mikael Salson. Efficient Dynamic Range Minimum Query. 2016.
�hal-01255499v1�

https://hal.science/hal-01255499v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Efficient Dynamic Range Minimum Query

A. Helioub,a, M. Léonardc, L. Mouchardc,d, M. Salsone,∗

aInria Saclay-Île de France, AMIB, Bâtiment Alan Turing, Palaiseau, France
bLaboratoire d’Informatique de l’École Polytechnique (LIX), CNRS UMR 7161, Palaiseau,

France
cNormandie University, University of Rouen, LITIS EA 4108, TIBS, Rouen, France

dCentre for Combinatorics on Words & Applications, School of Engineering & Information
Technology, Murdoch University, Murdoch WA 6150, Australia

eCRIStAL (UMR 9189 University of Lille, CNRS), INRIA Lille-Nord Europe, France

Abstract

The Range Minimum Query problem consists in answering efficiently to a sim-
ple question: “what is the minimal element appearing between two specified
indices of a given array?”. In this paper we present a novel approach that offers
a satisfying trade-off between time and space. Moreover we show how the struc-
ture can be easily maintained whenever an insertion, modification or deletion
modifies the array.

Keywords: Range Minimum Query, Dynamic Structure, Compressed Bit
Vector, Longest Common Prefix

1. Introduction

The Range Minimum Query (RMQ) problem consists in finding, for a given
array A of comparable elements and two values i < j, the index m such that
A[m] = mink∈[i,j] A[k]. The Lowest Common Ancestor (LCA) problem consists
in finding, for a given rooted tree and two nodes, the common ancestor of the
two nodes that is located the farthest from the root. In [1], Gabow et al. show
that RMQ and LCA are two equivalent problems (e.g. RMQ can be solved
using a LCA on A’s Cartesian tree).

LCA algorithms can be used for example to solve the Approximate String
Matching (ASM) problem: find the occurrences of all factors in a text T of
length n that approximately match a pattern P given a distance D (e.g. Ham-
ming or Levenshtein distances) and a maximal number of errors k. ASM is
fundamental to many applications in Computer Science such as search engines,
text processing and computational biology to name three of the most demanding
domains.

In [2], Landau and Vishkin present a O(kn) algorithm based on a diago-
nal visit of the dynamic programming matrix and a clever skip-algorithm that

∗Corresponding author: Mikael.Salson@univ-lille1.fr

Preprint submitted to Theoretical Computer Science July 6, 2015

prevents from visiting every position on the diagonals. Other approaches build
the Generalized Suffix Tree GST (T, P) of T and P , so all suffixes of T and
all suffixes of P have leaves in GST (T, P). GST (T, P) can be preprocessed to
perform O(1)-time queries of the LCA of two nodes, permitting the search for
Longest Common Extension of any suffix of P with a suffix of T in constant
time.

This very interesting theoretical result is unfortunately slow in practice,
the main reasons being the preprocessing stage for fast LCA queries and the
data structure GST (T, P) as mentioned in [3]. In [4], Miranda and Ayala-
Rinćon propose to adapt the strategy to use a suffix array [5] instead of a suffix
tree, and present an algorithm for computing the longest common extension
on the extended suffix array, which contains the Longest Common Prefix array
in addition to the suffix array itself. In [6], Fischer and Heun present a direct
algorithm for the general RMQ-problem with linear preprocessing time and
constant query time. Then in [7], Sadakane proposes a compressed suffix tree
that can be preprocessed to answer LCA queries theoretically in constant time.
Fischer and Heun proposed a constant time solution in space O(nHk) + o(n)
bits where Hk is the k-th order empirical entropy [8]. Finally, in [9], Durocher
proposes a solution in O(1) time with O(n) words of space.

When the input array it not accessible anymore at query time (which is not
the case of the solution we propose), the RMQ can be solved in constant time
using 2n + o(n) bits [10, 11].

The dynamic setting of the RMQ problem, when insertions, deletions, sub-
stitutions can occur in the input sequence, has been much less studied. There
exists a solution providing Θ(log n/ log logn) query time and O(log n/ log log n)
amortized time for the update in linear space [12, 13].

In this article we propose a new approach for the RMQ-problem that is
neither linked to Cartesian trees, to Eulerian tours, to the Four-Russian-Trick
neither to splitting the sequence in non-overlapping blocks. Moreover, we show
that this structure is flexible enough so it can be easily updated whenever edit
operations are modifying the text.

2. Our approach

In what follows, we will consider without loss of generality an array S[0, n−1]
of integers. Our goal is, given two integers 0 ≤ i` < ir < n, to find the minimal
value S[k] in S[i`, ir].

2.1. Basic idea

Finding the minimum in a given range can be näıvely performed by travers-
ing all the values in the range of interest. This can be computed more quickly as
soon as potential candidates have been identified beforehand. It is more likely
for a value to be the answer to a range minimum query if this value is a mini-
mum among its neighbors. In a numeric sequence, such a value is called a local
minimum and therefore we will particularly focus on these values. However in a

2

range there may have several local minima, and in this case, we do not have the
possibility to answer quickly to a range minimum query since we would have
to compute which local minima is the right answer. Nevertheless this compu-
tation is made on fewer values than originally (if one considers all the values
in the requested range) and thus it could be answered more quickly. Moreover,
we can apply the same idea recursively on the previously selected local minima.
Namely we have to identify, among those local minima, which ones are still local
minima. This process can be reiterated until we only have one local minima
inside the requested range.

Definition 1. A k-local minimum in S, for any k ≥ 1, is a local minimum
among all the k − 1-local minima. Any value of S is a 0-local minimum in S.

We denote by S[k] the sequence composed of k-local minima in position
order, in S. Clearly, S[0] = S.

Let consider the sequence S = 5
0

4
1

2
2

4
3

3
4

4
5

3
6

4
7

1
8

4
9

3
10

4
11

6
12

2
13

4
14

. Following the
previously described idea, a minimum query in the range [1, 14] could be pro-
cessed this way:

1. Local minima in S[1, 14] are 2 (position 2), 3 (positions 4 and 6), 1 (posi-
tion 8), 3 (position 10) and 2 (position 13).

2. The subsequence of S[1, 14] only consisting of its local minima is S[1, 14][1] =

2
0

3
1

3
2

1
3

3
4

2
5

. Local minima in this subsequence (or 2-local minima in S[1, 14])
are 2 (position 0), 1 (position 3) and 2 (position 5).

3. Again, this corresponds to a shorter subsequence S[1, 14][2] = 2
0

1
1

2
2

which
only contains one local minimum: 1 at position 1. Therefore the minimum
in the range [1,14] is 1.

We have explained the main idea of our algorithm but until now, we did
not focus on its efficiency. It is clear that computing local minima on demand
would not be time-efficient. Since a local minimum will always remain a local
minimum whatever the requested range is, we can precompute them all in the
input sequence. We will now explain how we preprocess the local minima, what
information we need to store and how it can be retrieved efficiently.

2.2. Storing local minima

The 1-local minimality of each value in S is stored in a bit vector M1 (i.e.
M1[i] = 1 iff S[i] is a 1-local minimum):

M1[0] = 1 if S[0] < S[1]
0 otherwise.

M1[n− 1] = 1 if S[n− 2] > S[n− 1]
0 otherwise.

M1[k] = 1 if S[k] < S[k + 1] and S[k′] = S[k], for all k′ ∈ [k′′ . . k], and
k′′ = 0 or S[k′′ − 1] > S[k′′].

0 otherwise.

3

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S[i] 5 4 5 4 5 2 4 3 3 3 3 5 5 5 4 1 3 1 4 3 4 3 4 1 4 3 4 2 4 3 4 2

M1[i] 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0

1

2

3

4

5

6

M1[i]

5

0 1

4

5

0 1

4

5

0 1

2

4

0

3

0

3

0

3

0 1

3

5

0

5

0

5

0

4

0 1

1

3

0 1

1

4

0 1

3

4

0 1

3

4

0 1

1

4

0 1

3

4

0 1

2

4

0 1

3

4

0

2

1

The same process is used to identify 2-local minima (in M2) and 3-local
minima (in M3). Note that in M2 the number of bits corresponds to the number
of 1-local minima since only 1-local minima can be 2-local minima. Generally
speaking the number of bits in Mk, k ≥ 1, is the number of k − 1-local minima
in S. Obviously the number of ones in Mk is the number of k-local minima in
S. There is at most one vector Mk without 1-bit. We denote by kM the total
number of bit vectors (i.e. from M1 to MkM

).

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

M2[i]

4

0

4

0 1

2

3

0

1

0 1

1

3

0

3

0 1

1

3

0 1

2

3

0

2

1

0 1 2 3 4
0

1

2

3

M3[i]

2

0

1

0 1

1

2

0 0

2

We use bit vectors with rank and select capabilities. The rank1(B, i) op-
eration consists in computing the number of ones in B[0 . . i]. Conversely the
select1(B, j) operation consists in finding the position of the j-th one in B. Bit
vectors can be precomputed so that rank and select operations are answered in
constant time. Moreover, the bit vector can take a space related to their en-
tropy while still answering the operations in constant time [14, 15]. Some other
solutions are designed for more specific inputs: for instance, when having a lot
of zeroes in the bit vector, one can use gap encoding and achieve very efficient
compression in theory and practice [16, 17, 18].

4

2.3. Computing the minimum in a given range

Identifying the minimum among local minima can therefore be computed
efficiently using these operations. rank operations allow us to determine the
number of k-local minima in the requested range as well as determining the
indices of the new range of interest for k + 1-local minima. The process is
iterated until the range contains at most one value. The remaining value (if it
exists) is the minimum among the local minima.

However this is not necessarily true: computing the minimum among the
local minima is not sufficient if one wants to obtain the minimum inside a given
range. Indeed, the rightmost and leftmost values of the requested range may
be “temporary” local minima, specific to that requested range. This is due to
our local minima definition. We say that the first value is a local minimum iff
it is less than the second value and the last value is a local minimum iff it is
less than the penultimate value. But when considering a specific range, local
minima at the beginning and at the end of this range have not been defined this
way but using the general definition (for all the other values). Consequently, we
will always consider leftmost and rightmost values as if they were local minima.
Hence, to determine the minimum at a specific level we need to compare the
minimum among the local minima, the first and the last values of the range.
More formally, the range minimum query can be solved by:

RMQ(S[k−1], i`, ir) =

min(S[k−1][i`], S
[k−1][ir]) if i` = ir

or rank1(Mk, i`) = rank1(Mk, ir − 1)

min

 S[k−1][i`], S
[k−1][ir],

RMQ

(
S[k], rank1(Mk, i`),
rank1(Mk, ir − 1)− 1)

) otherwise

for 0 ≤ k < kM .

Proof. Let assume that RMQ(S[k−1], i`, ir) = M and ∃i ∈ [i`, ir] such that
m = S[k−1][i] is the minimum in the range [i`, ir] and m < M .

We first consider the case where i 6= i` and i 6= ir. This case is equivalent
to consider that m < S[k−1][i`] and m < S[k−1][ir]. Therefore, by definition
of local minimality, m should be a k-local minimum. It should even be the
local minimum of highest level in this range. Therefore the recursive call on the
RMQ function should return m. This recursive call must be made on all the
k-local minima within the range [i`, ir]. By definition those k-local minima are
identified by a 1 in Mk, and S[k] is only made of the k-local minima. We also note
that we are actually only interested in k-local minima in the range [i` +1, ir−1]
since the boundaries are treated separately. Let assume that there are b k-local
minima until position i` (included), therefore we must focus on values starting
at position b in S[k] (i.e. the b+ 1-th local minimum). b can be computed using
the rank operation: b = rank1(Mk, i`). Similarly, there are e k-local minima
until position ir − 1 (included), and the last k-local minima in this range will

5

be at position e − 1 in S[k] (as positions start at 0) and e = rank1(Mk, ir − 1).
Hence the recursive call on S[k] must be done between positions b and e − 1,
included. By definition this recursive call should return m and since we compute
a minimum, m should be returned by RMQ(S[k−1], i`, ir) which contradicts
our initial hypothesis. Therefore there exists no such i ∈ [i`, ir] such that
S[k−1][i] < M .

Let us now consider the second case where either i = i` or i = ir. Since
RMQ(S[k−1], i`, ir) returns the minimum among three values including S[k−1][i`]
and S[k−1][ir], it contradicts our initial hypothesis since RMQ should return
m.

Example: Computing RMQ(S, 2, 16) (i` = 2, ir = 16)

1. We compute the rank values at positions i` and ir − 1:
rank1(M1, 2)= 1 and rank1(M1, 15)= 5.
The leftmost and rightmost values are S[2] = 5 and S[16] = 3.

2. Second recursion level: i′` = 1 and i′r = 4
rank1(M2, 1)= 0 and rank1(M2, 3)= 1.
The leftmost and rightmost values are S[1][1] = 4 and S[1][4] = 1.

3. Third recursion level: i′′` = 0 and i′′r = 0
Return min(S[2][0], S[2][0]) = 2.

4. Second recursion level: return min(S[1][1], S[1][4], 2) = min(4, 1, 2) = 1

5. First recursion level: return min(S[2], S[16], 1) = min(5, 3, 1) = 1

Finally RMQ(S, 2, 16) = 1.

Note that in our definition of the RMQ function, the minimum is returned.
However the RMQ problem is usually defined as giving the index of the min-
imum. We returned the value instead of its index for the sake of simplicity.
But when computing the minimum, we know from which index it is coming.
Therefore we could return the index instead of the value itself.

2.4. Retrieving values from S[k]

Our algorithm needs to compare values from S[k] at each recursion level.
However, we do not want to explicitly store those values. That would be too
space consuming. Hence we show two alternatives for easily retrieving values
from S[k].

The first one consists in not storing every S[k] but a limited number of them,
and possibly just one (i.e. S[0], the original sequence). Suppose that one wants
to know the value of S[k][i], for 1 ≤ k ≤ kM − 1, 0 ≤ i < |S[k]|, and S[k] is
not explicitly stored. We know that S[k][i] is necessarily in S[k−1]. Hence we
need to determine at which position S[k][i] is in S[k−1]. By definition, S[k][i] is a
k−1-local minimum and therefore it is stored as a 1 in Mk−1. Moreover it has to
be the i+ 1-th 1-bit in Mk. Its position can be easily computed using the select
operation: select1(Mk, i+ 1)= j. Now we know that the value corresponding to
S[k][i] in S[k−1] is S[k−1][j]. Either S[k−1] is stored explicitly and we can retrieve

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0

1

2

3

4

5

6

M1[i]

5

0 1

4

5

0 1

4

5

0 1

2

4

0

3

0

3

0

3

0 1

3

5

0

5

0

5

0

4

0 1

1

3

0 1

1

4

0 1

3

4

0 1

3

4

0 1

1

4

0 1

3

4

0 1

2

4

0 1

3

4

0

2

1

M ′2[i] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1

M ′3[i] 0 1 0 0 0 0 0 0 0 0

Figure 1: Using bit vectors of the same length as S to avoid the storage of additional S[k]

sequences.

the value, or it is not and we recursively apply the same process until we have a
sequence explicitly stored. In what follows, we call this solution the “sampling
solution”.

The second solution consists in just storing explicitly S. But the bit vectors
Mk, with 1 ≤ k ≤ kM , are defined in a slightly different way so that we can
efficiently retrieve any value S[k][i]. Let us denote by M ′k the new way of defining
the bit vectors Mk. Every M ′k has the same length: |S|, and M ′k[i] = 1 iff S[i]
is a k-local minimum (see Figure 1). Using such bit vectors, from a position in
any M ′k we can directly access the corresponding value in S. This solution is
called the “sparse solution” because bit vectors are sparse.

2.5. Complexities

So far we have proposed two different solutions to solve the range minimum
query problem and, now we focus on their respective time and space complexi-
ties.

First, we remark that if we have m k-local minima, we can have at most
dm/2e k+1-local minima: two consecutive values cannot both be local minima.
Therefore the maximal number of levels (number of bit vectors Mk) kM ≤
dlog2 ne1.

When answering a query, at each level, we need to retrieve and compare two
values, we also need to perform two rank operations. rank operations can be
computed in constant time. We denote by tr the time needed to retrieve a value
in S. Hence, at a given level, we need O(tr) time and overall, for answering the
query O(tr log2 n) time. In fact, the depth of recursion depends on the size of
the requested range and not on the size of the total sequence. Let us denote by
q this size. More precisely, the query complexity time is O(tr log2 q).

The value of tr depends on the choice made among the two proposed solu-
tions (sample and sparse solution).

1In the following, for the sake of simplicity, we will denote dlog2 ne by logn

7

Space (bits) Time

Sample 2nH0 + o(n) O(log q log1+ε log q)
Sparse 3.16n + o(n) O(log q)

Table 1: Space (in bits) and time (for a queried range of size q) complexities for the sample
and sparse solutions.

Sample If we sample every log1+ε log n sequence S[k], with ε > 0, we would
need to perform at most log1+ε log n select operations in time O(log1+ε log n) =
tr.

Sparse All bit vectors have the same length, the value can be retrieved in
constant time since we directly know its position in S.

For the space consumption we need to account for the bit vectors stored such
that they can answer rank and select queries in constant time2. In the space
complexity we do not account for the space needed for storing S.

Sample We have at most log n bit vectors whose sizes are, in the worst case,
n, n/2, n/4, . . . , 2 bits. In total, that represents 2n − 2 bits. These bit
vectors can be encoded in 2nH0 + o(n) bits for supporting rank and select
operations [14]. Above that we store some S[k] sequences (one out of
log log1+ε n), that means we have log n/ log1+ε log n sequences to store.
The total length of the sequences to store is

log n

log1+ε log n∑
i=1

n

2i log
1+ε logn

= o

(
n

log n

)

Since integers can be stored in log n bits, the sampled S[k] need o(n) bits
of space. Overall the space complexity of the structure is 2nH0 + o(n)
bits.

Sparse We have log n bit vectors of length n, we can encode each of them using
nH0+o(n) bits. Since most of them are sparse (bit vector Mk has at most
n/2k 1-bit), a compressed encoding will be very efficient on them. The
sum of the empirical order entropy is:

H0(M1) + · · ·+ H0(MkM
) =

logn∑
i=1

i

2i
+

(
1− 1

2i

)
log

(
1

1− 1
2i

)
< 3.16

Hence, the final space complexity for the sparse solution is at most 3.16n+
o(n) bits.

2Note that select query is not necessary for the sparse solution.

8

Space and time complexities are summed up in Table 1. It is worth mention-
ing that both time and space complexities are worst-case complexities. Depend-
ing on the input, the space complexity can be much lower. The best case being
a monotonically increasing (or decreasing) sequence. In that case, we would
have only one local minimum, hence only one bit vector with n−1 zeroes and a
single one. Such a bit vector can be stored in o(n) bits. Our approach benefits
from the complexity of the input sequence. The worst case scenario is reached
when at each level half of the values are local minima.

3. Updating the Mk bit vectors

The new approach we introduced for RMQ computation also allows us to
consider the dynamic RMQ problem. With our method, adding or removing
values from the input sequence just corresponds to adding some bits in bit
vectors and computing a few local minimality where values changed.

We consider the insertion of a single value in an existing sequence. Inserting
several values consecutively presents no significant difference, from the theoret-
ical viewpoint. Depending on the value to be inserted, several different cases
arise. We will present all the different cases and we will examine the changes in
the local minimality for values in the neighborhood of the insertion position.

For reasons that will become clearer later, we will need to introduce another
bit vector.

Definition 2. A plateau consists of at least two identical consecutive values in
S. A plateau is such that it cannot be extended either to the right or to the
left. In other words the values before or after the plateau differ (if they exist)
from the values in the plateau.

We add a new bit vector P of length n delimiting the start and end of the
plateaux. P is formally defined in the following way:

P [i] = 1 ⇐⇒

S[i] = S[i + 1] if i = 0
S[i] = S[i− 1] if i = n− 1
S[i] 6= S[i− 1] and S[i] = S[i + 1]
S[i] = S[i− 1] and S[i] 6= S[i + 1] otherwise

Now let assume that position i is inside a plateau, not at the end. Going to
the start of the plateau can be done using select1(P, rank1(P, i)). Similarly, now
assuming that position i is inside a plateau, not at the start, we can go to the
end of the plateau using select1(P, rank1(P, i− 1) + 1).

3.1. Analysis of the different cases

3.1.1. Inserting a value lower than the previous one

In Figure 2 we present the cases where the inserted value is lower than the
left value. The two first sub-cases (Figure 2a and 2b) present no difficulty. In
both cases the inserted value cannot be a local minimum and local minimality of

9

i − 1 i i + 1

low

mid

up

M N 0 N

P N 0 N

(a)

i − 1 i i + 1

low

mid

up

M N 0 N

P N 1 ¬P

(b)

i − 1 i i + 1

low

mid

up

M N 1 0

P ¬P 0 ¬P

(c)

Figure 2: Insertion of a value lower than its left value. Below the coordinates, N stands for
“Not changed” meaning that the value at that position does not change in the corresponding
bit vector; 0 or 1 means that we will put the corresponding value at that position, whatever
the previous value was. ¬P means that we will change the bit by its opposite value.

left and right values remain unchanged. Regarding the plateaux, the second case
may create or extend a plateau. Therefore if the value at position P [i+1] was a
1, it was the start of the plateau and it must become a 0 now. On the contrary
if it was a 0, that means the value at position i+ 2 is different from the value at
position i+1. The plateau should now end at position i+1. Hence P [i+1] = 1.
For the third case (Figure 2c), the inserted value is a local minimum. The next
value, at position i + 1 cannot be anymore a local minimum. Hence we need to
put a 0 in M . But more generally, from position i+ 1 we need to go at the end
of the plateau as described previously. Let denote by e this position, then we
set M [e] = 0. Note that we may have e = i + 1.

Regarding the plateau, the inserted value breaks a plateau. We therefore
need to change the bits at position i − 1 and i + 1 for the same reasons as for
the case 2b.

3.1.2. Inserting a value equal to the previous one

Cases in Figure 3a and 3b just consist in inserting a 0 in the M bit vector at
the insertion position. In case 3a we just extend the plateau by the middle. We
need to insert a 0 in P at position i since we are not at one end of a plateau.
Concerning case 3b, we now necessarily end a plateau at position i. The previous
bit must be changed for similar reasons as in 2b and 2c.

The last case is slightly more complicated (Figure 3c). By adding a new
value that is equal to the left value but lower than the right value, we extend
the plateau by one position. Therefore the local minimality of the left value is
“transferred” to the inserted value: if the left value was a local minimum, the
inserted value becomes a local minimum, otherwise it is not. Finally the left
value, in all cases, is not a local minimum anymore.

10

i − 1 i i + 1

low

mid

up

M N 0 N

P N 0 N

(a)

i − 1 i i + 1

low

mid

up

M N 0 N

P ¬P 1 N

(b)

i − 1 i i + 1

low

mid

up

M 0 → N

P ¬P 1 N

(c)

Figure 3: Insertion of a value equal to its left value. The legend remains the same as in
Figure 2. → means that the inserted value is copied from the former value at the previous
position in the bit vector.

i − 1 i i + 1

low

mid

up

M N 0 N

P N 0 N

(a)

i − 1 i i + 1

low

mid

up

M N 0 N

P N 1 ¬P

(b)

i − 1 i i + 1

low

mid

up

M ? 0 ?

P ¬P 0 ¬P

(c)

Figure 4: Insertion of a value greater than its left value. The values marked ? need extra
computation detailed in the text.

11

3.1.3. Inserting a value greater than the previous one

When the inserted value is greater than the left value (Figure 4), we still
have two easy cases (Figure 4a and 4b) and one (Figure 4c) which is more
complicated. Let us focus on this latter case. Inserting a value that is greater
than the left value may create a new local minimum. However that also depends
on the slope before position i − 1. We have to reach the start of the plateau,
to determine that slope, which can be done in constant time using P . If the
slope was decreasing, the value at position i − 1 is now a local minimum. On
the contrary if the slope was increasing we may add a new local minimum after
position i. This local minimum would be located at the end of the plateau, after
position i and will be added iff the slope is increasing on the left. Therefore is
the slope on the left is increasing, we need to go at the end of the plateau on
the right and add a local minimum at that position, by setting a 1 in M .

3.1.4. Generalization

Deletions are handled in a similar way. All the cases explored for insertion
can be considered for deletion where the value at position i would be deleted.
We need to act conversely for the deletions.

The analysis made here is valid for any Mk, 1 ≤ k ≤ kM , since we also
proceed by recursion.

3.2. Time and space complexities

Allowing the insertion or deletion of values necessitates to support inser-
tion and deletions in bit vectors. There exist such solutions that also allow to
compress the bit vector (e.g. Navarro and Nekrich [19]). With such an imple-
mentation, rank and select operations are performed in O(log n/ log log n) time.

While the majority of cases just requires comparing the left and right values,
in some cases we have to traverse the entire plateau, this can be done in constant
time using P . The time complexity for updating our dynamic RMQ structure
when a value is inserted or removed is therefore bounded by O(log2 n/ log log n).

The query time complexities have a O(log n/ log log n) penalty compared to
the static version due to the dynamic bit vectors used.

In this dynamic setting we also store an additional bit vector P that can be
stored in n + o(n) bits. Hence the space complexities from the static case are
augmented by n + o(n) bits.

4. Conclusions

We have introduced a new way of computing the range minimum query
by considering local minima. This approach sheds a new light on how the
range minimum query problem can be viewed. We believe that the approach is
interesting by itself from a theoretical viewpoint.

Moreover the structure we presented has space and time complexities which
are directly linked to the stored input. This is not reflected by worst-case space
and time complexities: as far as we know there exists no such measure as entropy

12

to reflect the number of local minima a sequence will have and what the value
of kM will be. This approach is the first one to benefit from the composition of
the input sequence and which will take less space on less variable sequences.

We also showed how our structure can be adapted to deal with modifications
making it the only dynamic structure with a space complexity which is entropy-
related.

It would also be interesting to see how the structure behaves in practice
compared to other alternatives: in the best case, in the worst case, on real-case
data. We also let open the possibility that our approach could be adapted to
problems related to the range minimum query, such as the range median query.

References

[1] H. N. Gabow, J. L. Bentley, R. E. Tarjan, Scaling and related techniques
for geometry problems, in: Proceedings of the Sixteenth Annual ACM
Symposium on Theory of Computing, STOC ’84, ACM, New York, NY,
USA, 1984, pp. 135–143. doi:10.1145/800057.808675.

[2] G. M. Landau, U. Vishkin, Introducing efficient parallelism into approxi-
mate string matching and a new serial algorithm, in: Proc. of the ACM
Symposium on Theory Of Computing (STOC), 1986, pp. 220–230.

[3] G. Navarro, A guided tour to approximate string matching, ACM Com-
puting Surveys 33 (1) (2001) 31–88.

[4] R. C. Miranda, M. Ayala-Rincón, A modification of the Landau-Vishkin
algorithm computing longest common extensions via suffix arrays, in: Proc.
of Brazilian Symposium on Bioinformatics (BSB), 2005, pp. 210–213.

[5] U. Manber, G. Myers, Suffix arrays: a new method for on-line string
searches, in: Proc. of Symposium on Discrete Algorithms (SODA), 1990,
pp. 319–327.

[6] J. Fischer, V. Heun, Theoretical and practical improvements on the RMQ-
problem, with applications to LCA and LCE, in: Proc. of Combinatorial
Pattern Matching (CPM), 2006, pp. 36–48.

[7] K. Sadakane, Compressed suffix trees with full functionality, Theory Com-
put. Syst. 41 (4) (2007) 589–607.

[8] J. Fischer, V. Heun, Space-Efficient Preprocessing Schemes for Range Min-
imum Queries on Static Arrays, SIAM Journal on Computing 40 (2) (2011)
465–492. doi:10.1137/090779759.

[9] S. Durocher, A Simple Linear-Space Data Structure for Constant-Time
Range Minimum Query, in: A. Brodnik, A. Lpez-Ortiz, V. Raman, A. Viola
(Eds.), Space-Efficient Data Structures, Streams, and Algorithms, no. 8066
in Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2013,
pp. 48–60.

13

[10] J. Fischer, Optimal succinctness for range minimum queries, in: Proc. 9th
Latin American Theoretical Informatics Symposium, 2010, pp. 158–169.

[11] P. Davoodi, R. Raman, S. R. Satti, Succinct Representations of Binary
Trees for Range Minimum Queries, in: J. Gudmundsson, J. Mestre, T. Vi-
glas (Eds.), Computing and Combinatorics, no. 7434 in Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2012, pp. 396–407.

[12] G. S. Brodal, P. Davoodi, S. S. Rao, Path minima queries in dynamic
weighted trees, in: Algorithms and Data Structures, Springer, 2011, pp.
290–301.

[13] P. Davoodi, Data Structures: Range Queries and Space Efficiency, Ph.D.
thesis, Aarhus University (2011).

[14] R. Raman, V. Raman, S. Rao, Succinct indexable dictionaries with appli-
cations to encoding k-ary trees and multisets, in: Proc. of Symposium on
Discrete Algorithms (SODA), 2002, pp. 233–242.

[15] G. Navarro, E. Providel, Fast, Small, Simple Rank/Select on Bitmaps, in:
R. Klasing (Ed.), Experimental Algorithms, no. 7276 in Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2012, pp. 295–306.

[16] A. Gupta, W.-K. Hon, R. Shah, J. S. Vitter., Compressed data structures:
Dictionaries and data-aware measures, Theor. Comput. Sci. 387 (3) (2007)
313–331.

[17] D. Okanohara, K. Sadakane, Practical entropy-compressed rank/select dic-
tionary, in: Proc. of the Workshop on Algorithm Engineering and Experi-
ments (ALENEX), 2007.

[18] V. Mäkinen, G. Navarro, Rank and select revisited and extended, Theor.
Comput. Sci. 387 (3) (2007) 332–347.

[19] G. Navarro, Y. Nekrich, Optimal dynamic sequence representations, SIAM
J. Comput.

14

