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The Range Minimum Query problem consists in answering efficiently the simple question: 
“what is the minimal element between two specified indices of a given array?”. In this 
paper we present a novel structure that offers a trade-off between time and space. 
Moreover we show how the structure can be easily maintained whenever an insertion, 
modification or deletion modifies the input sequence.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In [1], Valiant presents a worst-case analysis of the problem of finding the maximum of n elements of a list using k
processors. In [2], Shiloach and Vishkin present a model for synchronized parallel computation that finds the maximum 
of n elements. Ten years after, in [3], Berkman and Vishkin describe a similar problem: the Range-Minima Problem (RMQ 
for Range Minimum Queries in what follows): “given an array A = (a1, a2, · · · , an) of n real numbers, preprocess the array 
so that for any interval 

[
ai,ai+1, · · · ,a j

]
the minimum over the interval can be retrieved in constant time using a single 

processor.” The solutions to range minimum problems are usually split in two categories: indexing solutions, which rely on 
the input array A at query time, and encoding solutions, which do not make use of the input array A when querying. The 
solutions we propose here are indexing solutions.

Since then, this problem has been intensively studied as it has many important applications, such as pattern matching, 
text indexing and compression, information retrieval, computational biology (see [4] for more examples).

Regarding the indexing solutions, in [5], Fischer and Heun present an algorithm for the range minimum problem with 
linear preprocessing time and constant query time. Then in [6], Sadakane proposes a data structure that occupies 2n +
o(n) bits and answers RMQ theoretically in constant time. Fischer and Heun proposed a constant time solution in space 
O (nHk) + o(n) bits where Hk is the k-th order empirical entropy [4]. Finally, in [7], Durocher proposes a solution in O (1)

time with O (n) words of space.
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Regarding encoding solutions to the range minimum problem (which is not the case of the solution we propose), the 
result is provided as the index of the minimum rather than its value. In such a case the RMQ can be solved in constant 
time using 2n + o(n) bits [8,4,9].

The dynamic setting of the RMQ problem, where insertions, deletions, substitutions can occur in the original input array, 
has been much less studied. There exists a solution providing �(log n/ log log n) query time and O (log n/ log log n) amortized 
time for the update in linear space [10,11]. In 2013, Arge et al. [12] sketch possible solutions for the dynamic RMQ in linear 
space, mainly in the context of external memory queries.

In this article we propose a new approach for the (dynamic) RMQ-problem that is not based on existing ideas for solving 
the RMQ problem (i.e. Cartesian trees, Eulerian tours, Four-Russian-Trick, splitting the sequence in non-overlapping blocks). 
Moreover, we show that this structure is flexible enough so it can be easily updated whenever edit operations are modifying 
the text.

In section 2, we present our approach and analyze its complexity. In section 3, we explain how our approach can be 
extended to handle edit operations such as insertions and deletions. Finally, in section 4, we conclude and draw perspectives.

2. Our approach

In what follows, we will consider without loss of generality an array S[0, n − 1] of integers. Our goal is, given two 
integers 0 ≤ i� ≤ k ≤ ir < n, to find the minimal value S[k] in S[i�, ir].
2.1. Basic idea

Finding the minimum in a given range can be naïvely performed in time linear to the query range size by traversing all 
the values in the range of interest. We base our approach on the fact that this can be computed faster as soon as potential 
candidates have been identified beforehand. It is more likely for a value to be the answer to a range minimum query if 
this value is a minimum among its two direct neighbors. In a numeric sequence, such a value is called a local minimum 
and therefore we will particularly focus on these values. However in a range there may be several local minima, and in this 
case, we do not have the possibility to answer in constant time to a range minimum query since we have to compute which 
local minima is the right answer. Nevertheless this computation is made on fewer values than originally (if one considers 
all the values in the requested range) and thus it could be answered more quickly. Moreover, we can apply the same idea 
recursively on the previously selected local minima. Namely we need to know what values are local minima among the 
local minima, and so on. This process can be reiterated until we only have one local minimum inside the requested range.

Definition 1. A sequence S of length n > 1 has a local minimum at a position:

• 0 < i < n − 1 if: S[i] < S[i + 1] and:
– there is 0 < p ≤ i such that S[p − 1] > S[p] and for all j ∈ [p..i], S[ j] = S[i],
– or, for all j ∈ [0..i], S[ j] = S[i];

• i = 0 if S[0] < S[1];
• i = n − 1 if S[n − 2] > S[n − 1].

A sequence S of length n ≤ 1 has no local minima.

Definition 2. A k-local minimum in S , for any k ≥ 1, is a local minimum among all the (k − 1)-local minima. Any value of 
S is a 0-local minimum in S . We define S[0] = S . We denote by S[k] the sequence composed of k-local minima in position 
order, in S .

Example 1. Let us consider the sequence S = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

5 5 4 2 2 4 5 4 5 3 3 1 4 3 4 6 2 4 as a running example, see Fig. 1. Following the 
previously described idea, a minimum query in the range [1..14] could be processed in this way:

1. Local minima in S[1..14] are 2 (position 4), 4 (position 7), 1 (position 11) and 3 (position 13).
2. The subsequence of S[1..14] consisting only of its local minima is:

S[1][1..14] = 0 1 2 3

2 4 1 3 . Local minima in this subsequence (or 2-local minima in S[1..14]) are 2 (position 0) and 1 (posi-
tion 2).

3. The subsequence of S[1..14] consisting only of its 2-local minima is:

S[2][1..14] = 0 1

2 1 which only contains one local minimum: 1 at position 1. Therefore the minimum in the range [1..14] 
is 1.

We have explained the main idea of our algorithm but until now, we did not focus on its efficiency. It is clear that 
computing local minima on demand would not be time-efficient. Since a local minimum will always remain a local mini-
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Fig. 1. Example of the 1-local minima and the 2-local minima of the sequence S .

mum whatever the requested range is, we can precompute them all in the input sequence. We will now explain how we 
preprocess the local minima, what information we need to store and how it can be retrieved efficiently.

2.2. Storing local minima

Definition 3. The k-local minimality of each value in S is stored in a bit vector Mk (i.e. Mk[i] = 1 iff S[i] is a k-local 
minimum).

Generally speaking, the number of bits in Mk , k ≥ 1, is the number of k − 1-local minima in S .
We denote by kM the total number of non-empty local minima sequences (from S[0] to S[kM−1]). There is one vector, 

MkM , without a 1-bit.
We enhance the bit vectors Mk with rank and select capabilities. The rank1(B, i) operation consists in computing the 

number of ones in B[0..i]. Conversely the select1(B, j) operation consists in finding the position of the j-th one in B . Once 
we have precomputed rank and select data structures on bit vectors Mk , rank and select operations are answered in constant 
time. Moreover, several solutions allow to efficiently compress the bit vector while still answering the operations in constant 
time [13–17].

2.3. Computing the minimum in a given range

Identifying the minimum among local minima can therefore be computed efficiently using these operations. rank opera-
tions allow us to determine the number of k-local minima in the requested range as well as determining the indices of the 
query range for the (k + 1)-local minima. This is iterated until the range contains at most one value. The remaining value 
(if it exists) is the minimum among the local minima.

However, computing the minimum among the local minima is not sufficient if one wants to obtain the minimum inside a 
given range. Indeed, the rightmost and leftmost values of the requested range may be local minima, specific to that requested 
range.

Example 2. Let us consider the minimum query in the range [5..9] of S .

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S[i] 5 5 4 2 2 4 5 4 5 3 3 1 4 3 4 6 2 4
M1[i] 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0

S[5..9] = 5 6 7 8 9

4 5 4 5 3 so the minimum query in the range [5..9] retrieves S[9] = 3, but the position 9 is not a 1-local minima 
of S .

Hence, to determine the minimum at a specific level we need to compare the minimum among the local minima, the 
first and the last values of the range.

Lemma 2.1. The range minimum query can be solved by:

RMQ(S[k], i�, ir) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min(S[k][i�], S[k][ir]), if rank1(Mk+1, i�) ≥ rank1(Mk+1,max(ir − 1,0))

min

⎛
⎜⎝

S[k][i�], S[k][ir],

RMQ

(
S[k+1], rank1(Mk+1, i�),

rank1(Mk+1, ir − 1) − 1

)⎞
⎟⎠, otherwise

for 0 ≤ k < kM .
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Proof. We will prove this formula by induction over k.
We do the initialization step with k = kM − 1. Let i� ≤ ir be indices over S[kM−1] . By definition of kM , S[kM−1] does not 

contain any local minima, thus the minimal element of S[kM −1] between the indices i� and ir is min(S[kM−1][i�], S[kM−1][ir]). 
As S[kM−1] does not contain any local minima, MkM does not contain any one, so rank1(MkM , i�) = rank1(MkM , max(ir −1, 0)). 
Thus the formula gives RMQ(S[kM−1], i�, ir) = min(S[kM−1][i�], S[kM−1][ir]).

For the induction step we suppose that the formula is correct for any k strictly below some K < kM , and we prove that 
the formula is correct for k = K . Let i� ≤ ir be two indices over the sequence S[K ] , RMQ(S[K ], i�, ir) has to retrieve the 
minimal element of S[K ] between the indices i� and ir .

First case, if there is no local minima in the interval (i� ,ir ) of S[K ] , then we have rank1(MK+1, i�) = rank1(MK+1,

max(ir − 1, 0)) + 1i�=ir 1MK+1[i�] . Consequently rank1(MK+1, i�) ≥ rank1(MK+1, max(ir − 1, 0)) so the formula gives us 
RMQ(S[K ], i�, ir) = min(S[K ][i�], S[K ][ir]).

Second case, if there is at least one local minimum in the interval (i� ,ir ) of S[K ] , then the minimum among these local 
minima can be obtained by using the formula for k = K + 1. rank1(MK+1, i�) retrieves the number of ones in S[K ][0..i�], so 
it gives us the index in S[K+1] of the local minimum of S[K ] that is just after i� . rank1(MK+1, ir − 1) retrieves the number of 
ones in S[K ][0..ir − 1], so it gives us the index in S[K+1] of the local minimum of S[K ] that is just after ir − 1. Consequently, 
rank1(MK+1, ir − 1) − 1 gives us the index in S[K+1] of the local minimum of S[K ] that is just before ir . Thus, the min-
imum among the local minima inside the interval (i� ,ir ) of S[K ] is retrieved by RMQ(S[K+1], rank1(MK+1, i�), rank1(Mk+1,

ir − 1) − 1). To obtain the minimal element of S[K ] between i� and ir we need to compute the minimum between the two 
extremities S[K ][i�], S[K ][ir] and the minimum among the included local minima. Therefore the formula is correct for k = K ,

RMQ(S[K ], i�, ir) = min

⎛
⎜⎝

S[K ][i�], S[K ][ir],

RMQ

(
S[K+1], rank1(MK+1, i�),

rank1(MK+1, ir − 1) − 1

) ⎞
⎟⎠

Consequently, we have proven by induction that the formula of Lemma 2.1 holds for any 0 ≤ k < kM . �
Example 3. Computing RMQ(S, 4, 15) (i� = 4, ir = 15)

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S[i] 5 5 4 2 2 4 5 4 5 3 3 1 4 3 4 6 2 4
M1[i] 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0

i 0 1 2 3 4

S[1][i] 2 4 1 3 2
M2[i] 1 0 1 0 1

i 0 1 2

S[2][i] 2 1 2
M3[i] 0 1 0

1. We compute the rank values at positions i� = 4 and ir − 1 = 14:
rank1(M1, 4) = 1 and rank1(M1, 14) = 4.

The leftmost and rightmost values are S[4] = 2 and S[15] = 6.
2. Second recursion level:

i′� = rank1(M1, i�) = 1 and i′r = rank1(M1, ir − 1) − 1 = 3;
rank1(M2, 1) = 1 and rank1(M2, 2) = 2.

The leftmost and rightmost values are S[1][1] = 4 and S[1][3] = 3.
3. Third recursion level: i′′� = 1 and i′′r = 1, return min(S[2][1], S[2][1]) = 1.
4. Second recursion level: return min(S[1][1], S[1][3], 1) = min(4, 3, 1) = 1.
5. First recursion level: return min(S[4], S[15], 1) = min(2, 6, 1) = 1.

Finally RMQ(S, 4, 15) = 1.

Note that in our formula for the RMQ computation, the minimum is returned. However the RMQ problem is usually 
defined as giving the index of the minimum. We returned the value instead of its index for the sake of simplicity. While 
computing the minimum, we know from which index it is coming. Therefore we could return the index instead of the value 
itself.

2.4. Retrieving values from S[k]

Our algorithm needs to compare values from S[k] at each recursion level. We remark that if we have m k-local minima, 
we can have at most �m/2� (k + 1)-local minima: two consecutive values cannot both be local minima. Therefore the 
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Fig. 2. Using bit vectors of the same length as S to avoid the storage of additional S[k] sequences.

maximal number of levels (number of bit vectors Mk) kM is at most �log2 n� + 1. For the sake of simplicity, we will denote 
log2 n by log n in what follows. Therefore storing explicitly all the S[k] would require O (n log n) space in the worst case. We 
want to access S[k] values in sublinear additional space (with 0 < k), hence we show two alternatives for easily retrieving 
values from S[k] .

The first one consists in not storing every S[k] but a limited number of them, and possibly just one (i.e. S[0] , the original 
sequence). Suppose that one wants to know the value of S[k][i], for 1 ≤ k ≤ kM − 1, 0 ≤ i < |S[k]|, and S[k] is not explicitly 
stored. We know that S[k][i] is necessarily in S[k−1] . Hence we need to determine at which position S[k][i] is in S[k−1] . By 
definition, S[k][i] is a k − 1-local minimum and therefore it is stored as a 1 in Mk−1. Moreover it has to be the i + 1-th 1-bit 
in Mk . Its position can be easily computed using the select operation: select1(Mk, i + 1) = j. Now we know that the value 
corresponding to S[k][i] in S[k−1] is S[k−1][ j]. Either S[k−1] is stored explicitly and we can retrieve the value, or it is not and 
we recursively apply the same process until we have a sequence explicitly stored. In what follows, we call this solution the 
sampling solution.

The second solution consists in just storing explicitly S . But the bit vectors Mk , with 1 ≤ k ≤ kM , are defined in a slightly 
different way so that we can efficiently retrieve any value S[k][i]. Let us denote by M ′

k the new way of defining the bit 
vectors Mk . Every M ′

k has the same length |S|, and M ′
k[i] = 1 iff S[i] is a k-local minimum (see Fig. 2). Using such bit 

vectors, from a position in any M ′
k we can directly access the corresponding value in S . This solution is called the “sparse 

solution” because for k > 1 the bit vectors M ′
k are sparse.

2.5. Complexities

So far we have proposed two different solutions to solve the range minimum query problem, now we focus on their 
respective time and space complexities.

When answering a query, at each level, we need to retrieve and compare two values, we also need to perform two rank
operations. rank operations can be computed in constant time. We denote by tr the time needed to retrieve a value in any 
S[k] , with 0 < k < kM . Hence, at a given level, we need tr time to access a given value and overall, for each level, we need 
O (tr log n) time to answer the query. In fact, the depth of recursion depends on the size of the requested range and not on 
the size of the total sequence. Let us denote by q this size. More precisely, the query complexity time is O (tr log q).

The value of tr depends on the choice made among the two proposed solutions (sample and sparse solution).

Sample If we sample every log1+ε log n sequence S[k] , with ε > 0 and 0 < k < kM , we would need to perform at most 
log1+ε log n select operations in time O (log1+ε log n) = tr .

Sparse All bit vectors have the same length, a k-local minimum is identified by a one at a position i in M ′
k , with 0 ≤ k < kM . 

The value of this k-local minimum can be retrieved in constant time in S[i], therefore tr = O (1).

For the space consumption we need to account for the bit vectors stored such that they can answer rank and select
queries in constant time.1 In the space complexity we do not account for the space needed for storing S .

Sample We have at most kM = O (log n) bit vectors whose sizes are, in the worst case, n, n/2, n/4, . . . , 2 bits. In total, we 
can represent these with 2n − 2 bits. These bit vectors can be encoded in 2nH0(M) + o(n) bits for supporting rank
and select operations [13], where H0(M) is the empirical zero-th order entropy of all the concatenated Mk bit vectors. 
Above that we store some S[k] sequences (one out of log1+ε log n), that means we have log n/ log1+ε logn sequences to 
store. The total length of the sequences to store is

log n

log1+ε log n∑
i=1

n

2i log1+ε log n
= o

(
n

log n

)

Since integers can be stored in log n bits, the sampled S[k] need o(n) bits of space. Overall the space complexity of the 
structure is 2nH0 + o(n) bits.

1 Note that select queries are not necessary for the sparse solution.
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Table 1
Space (in bits) and time (for a queried range of size q) 
complexities for the sample and sparse solutions.

Space (bits) Time

Sample 2nH0(M) + o(n) O (log q log1+ε log q)

Sparse 3.16n + o(n) O (log q)

Sparse We have at most kM = O (log n) bit vectors of length n, we can encode each of them using nH0 + o(n) bits. Since 
most of them are sparse (bit vector M ′

k has at most n/2k ones), a compressed encoding will be very efficient on them. 
The sum of the empirical order entropies is:

H0(M ′
1) + · · · + H0(M ′

kM
) ≤

�log n�+1∑
i=1

(
1

2i
log 2i +

(
1 − 1

2i

)
log

(
1

1 − 1
2i

))

≤
�log n�+1∑

i=1

(
i

2i
+

(
1 − 1

2i

)
log

(
1

1 − 1
2i

))
< 3.16

The equation can be solved using a computer algebra system (such as the online WolframAlpha). Hence, the final space 
complexity for the sparse solution is at most 3.16n + o(n) bits.

Space and time complexities are summed up in Table 1. It is worth mentioning that both time and space complexities 
are worst-case complexities. Depending on the input, the space complexity can be much lower. The best case being a 
monotonically increasing (or decreasing) sequence. In that case, we would have only one local minimum, hence only one 
bit vector with n − 1 zeroes and a single one. Such a bit vector can be stored in o(n) bits. Our approach is sensitive to 
the distribution of the input sequence. The worst case scenario is reached when at each level half of the values are local 
minima.

Regarding construction time, the bit vectors must be built before any query is performed. This can be done in time O (n)

or O (n logn) in the sample or sparse cases respectively.

3. Updating the Mk bit vectors

The new approach we introduced for RMQ computation also allows us to consider the dynamic RMQ problem. With 
our method, adding or removing values from the input sequence involves adding or removing some bits in bit vectors and 
computing extra values to determine whether there are new local minima where values changed.

We consider the insertion of a single value in an existing sequence. Inserting several values consecutively presents 
no significant difference, from the algorithmic viewpoint. Depending on the value to be inserted, several different cases 
arise. We will present all the different cases, and we will examine the changes in the local minimality for values in the 
neighborhood of the insertion position.

For reasons that will become clearer later, we need to introduce another bit vector.

Definition 4. A plateau is a maximal interval of equal values in the input sequence S .

For each bit vector Mk , we add a new bit vector Pk of length |Mk| delimiting the start and the end of the plateaux. Pk is 
formally defined in the following way:

Pk[i] = 1 ⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S[k−1][i] = S[k−1][i + 1] if i = 0

S[k−1][i] = S[k−1][i − 1] if i = n − 1

(S[k−1][i] = S[k−1][i + 1] �= S[k−1][i − 1])
otherwise

or (S[k−1][i] = S[k−1][i − 1] �= S[k−1][i + 1])
Now assume that position i is inside a plateau, but not on the right end of the plateau. Jumping to the start of the 

plateau can be done using select1(Pk, rank1(Pk, i)). Similarly, assume that position i is inside a plateau, not at the start. We 
can go to the end of the plateau using select1(Pk, rank1(Pk, i − 1) + 1).

Note that while M ′
k bit vectors are the sparse versions of Mk bit vectors, we denote by P ′

k the sparse versions of Pk bit 
vectors. We still have |P ′ | = |M ′ |.
k k

http://www.wolframalpha.com/input/?dataset=&i=sum(i/2%5Ei%2B(1-1/2%5Ei)(log(1/(1-1/2%5Ei))/log(2)),+i,+1,+inf)
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Fig. 3. Insertion of a value at position i which is lower than its left value. Below the coordinates, N stands for “Not changed” meaning that the value at that 
position does not change in the corresponding bit vector; 0 or 1 means that we will put the corresponding value at that position, whatever the previous 
value was. ¬P means that we will change the bit by its opposite value.

Fig. 4. Insertion of a value at position i equal to its left value. The legend remains the same as in Fig. 3. → means that the inserted value is copied from 
the value at position i − 1 in the bit vector before the insertion.

3.1. Analysis of the different cases

As our algorithm is recursive, we will only focus on the operations needed for updating the bit vectors at one given 
level, k. For the sake of clarity we will denote by M and P the bit vectors respectively storing the local minima, Mk , and 
the plateaux, Pk .

3.1.1. Inserting a value lower than the previous one
In Fig. 3 we present the cases where the inserted value at position i is lower than its left value, at position i − 1. The 

two first sub-cases (Fig. 3a and 3b) present no difficulty. In both cases the inserted value cannot be a local minimum, and 
the local minimality of both left and right values remain unchanged. Regarding the plateaux, the second case may create or 
extend a plateau. Therefore if the value at position P [i + 1] was a one, it was the start of the plateau and it must become 
a zero now. On the contrary if it was a zero, that means the value at position i + 2 is different from the value at position 
i + 1. The plateau should now end at position i + 1. Hence P [i + 1] = 1. For the third case (Fig. 3c), the inserted value is a 
local minimum. The next value, at position i + 1 cannot be anymore a local minimum. Hence we need to put a zero in M
at that position. But more generally, from position i + 1 we need to go at the end of the plateau as described previously. 
Let e denote this position. We set M[e] = 0. Note that we may have e = i + 1.

Regarding the plateau, the inserted value breaks a plateau. We therefore need to change the bits at position i − 1 and 
i + 1 for the same reasons as for the case in Fig. 3b.

3.1.2. Inserting a value equal to the previous one
Now we consider the case where the inserted value at position i is equal to its left value, at position i − 1. Cases in 

Fig. 4a and 4b just consist in inserting a zero in the bit vector M at the insertion position. In Fig. 4a, the insertion of a value 
increases the length of the plateau, hence the insertion of a zero at position i in P . We need to insert a zero in P at position 
i since we are not at the end of a plateau. Concerning case in Fig. 4b, we now necessarily end a plateau at position i. The 
previous bit in P must be changed for similar reasons as in Fig. 3b and 3c.

The last case is slightly more involving (Fig. 4c). By adding a new value that is equal to the left value but lower than 
the right value, we extend the plateau by one position. Therefore the local minimality of the left value is transferred to the 
inserted value: if the left value was a local minimum, the inserted value becomes a local minimum, otherwise it does not. 
Finally the left value, in all cases, is not a local minimum anymore. Bit vector P is modified as in Fig. 4b.
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Fig. 5. Insertion of a value at position i greater than its left value. The values marked ? need extra computations detailed in the text.

3.1.3. Inserting a value greater than the previous one
When the inserted value at position i is greater than the left value at position i − 1 (Fig. 5), we still have two easy cases 

(Fig. 5a is the symmetric of Fig. 3a and Fig. 5b is the symmetric of Fig. 4b) and one (Fig. 5c) which is more complicated. Let 
us focus on the last case. Inserting a value that is greater than the left value may create a new local minimum depending 
on the value preceding the start of the current plateau. We have the position s of the start of the plateau directly using P , 
as explained previously. If the value at position s − 1 is greater than the value at position i − 1 or if s = 0, then the value at 
position i − 1 is now a local minimum. On the contrary if the value at position s is lower than the value at position i − 1, 
we must add a new local minimum after position i. This local minimum would be located at the position of the right end 
of the right plateau, after position i. This will be done by setting a one in M at that position.

3.1.4. Generalization
Deletions are handled in a similar way. All the cases explored for insertion can be considered for deletion where the 

value at position i is deleted. For deletions, we need to act in reverse order compared to what was done for insertions.
The analysis made here used a bit vector M that stores positions of local minima. This bit vector M represents any Mk , 

1 ≤ k ≤ kM , since we proceed by recursion. Similarly the bit vector P works in connection with the bit vector M , therefore 
we have kM bit vector Pk .

3.2. Time and space complexities

Allowing the insertion or deletion of values necessitates to support insertions and deletions in Mk and Pk bit vectors. 
There exist such solutions that also allow to compress the bit vector (e.g. Navarro and Nekrich [18]). With such an im-
plementation, updating the bit vector as well as rank and select operations are performed in O (log n/ log log n) amortized 
time.

While the majority of cases just requires comparing the left and right values, in some cases we have to traverse the 
entire plateau, this can be done in O (log n/ log log n) amortized time using Navarro and Nekrich’s solution to store Pk .

When inserting or deleting a value, we may have to modify up to kM bit vectors Mk . Each of those modifications require 
a constant number of modifications and accesses in Mk and Pk which are done in O (log n/ log log n) amortized time. We 
also need a constant number access to S[k] , for 1 ≤ k ≤ kM . Querying also requires a constant number of rank and select
operations and a constant number of access to S[k] . Therefore time complexities for update and queries will be the same. 
The structure we present here is built on top of S . Thus updating S is not in the scope of our approach. A simple and 
naive solution would be to store S in a balanced tree. As time complexities will depend on the time required for accessing 
a value in S (for example in case Fig. 5c), we will denote it by ta . We also recall that there are kM = O (log n) levels to be 
considered.

Then depending on the paradigm used for storing the bit vectors, the complexities would differ.

Sample We need to update the sampled S[k] sequences. Those sequences could be stored using the data structure of Navarro 
and Nekrich [18].

Space The Mk bit vectors can still be stored in space 2nH0(M) + o(n) bits, where M is the concatenation of the Mk
bit vectors, to which we add the Pk bit vectors in space 2nH0(P ) + o(n) bits, where P is the concatenation of the 
Pk bit vectors. As in the static case, there are o 

(
n

log n

)
integers to store for the sampled S[k] . Storing them in a 

balanced binary tree would need �(log n) bits per integer, thus we would need o(n) bits to store all the samples.
Update and query Access to any sampled value is done in O (log n log1+ε log n/ log log n) = O (log n logε logn) (or in ta

for S) in the worst case and there are at most O (log n) levels to be updated or queried. Therefore the query time 
would be O (log2 n logε log n), by assuming for simplicity that ta = O (log n logε log n) (which is well beyond the 
time complexity for updating a balanced tree for instance).
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Table 2
Space and time (update and query) complexities for our solutions and for 
the solution presented in [10,11]. We do not show complexities from Arge 
et al. [12] as they focus on an external memory solution, which has different 
constraints.

Space (bits) Time

Sample 2n(H0(M) + H0(P )) + o(n) O (log2n logε(log n))

Sparse 6.32n + o(n) O (log2 n/ log logn + ta log n)

[10,11] O (n) O (logn/ log logn)

Sparse

Space As in the static case, M ′
k bit vectors are stored using a nH0 + o(n) bit solution [18]. Therefore the space used 

is still bounded by 3.16n + o(n) bits for the M ′
k bit vectors. However we have additional P ′

k bit vectors, in which 
the number of ones is at least divided by two at each level (as for M ′

k bit vectors). Hence P ′
k bit vectors can be 

stored in 3.16n + o(n) bits. Therefore the total space is at most 6.32n + o(n) bits.
Update and query The time complexities have a O (log n/ log log n) penalty compared to the query in the static version 

due to the dynamic bit vectors used leading to a O (log2 n/ log log n + ta log n) amortized time complexity.

Those time complexities are worse than the one presented in [10,11] but the space complexity is better, as can be seen 
in Table 2. We therefore introduce a new trade-off for the dynamic range minimum problem. As for the static case, we 
recall that our complexities are worst case complexities which could improve depending on the actual sequence to query.

4. Conclusions

We have introduced a new way of computing the range minimum query by considering local minima. This approach 
sheds a new light on how the range minimum query problem can be solved. We believe that the approach is interesting by 
itself from a theoretical viewpoint.

Moreover the structure we presented has space and time complexities which are directly linked to the stored input. This 
is not reflected by worst-case space and time complexities: as far as we know there exists no such measure as entropy 
to reflect the number of local minima a sequence will have and what the value of kM will be. This approach is the first 
one to benefit from the composition of the input sequence and which will take less space on less variable sequences. For 
instance with a monotonically increasing sequence, our approach needs o(n) bits both in the static and dynamic cases and 
the queries will be answered in constant time in the static case. On the contrary, space consumption of other approaches 
will only depend on the length of the sequence and not on its composition.

We also showed how our structure can be adapted to deal with modifications making it the only dynamic RMQ structure 
with a space complexity which is entropy-related.

It would also be interesting to see how the structure behaves in practice compared to other alternatives: in the best 
case, in the worst case, on real-case data. We also let the possibility open that our approach could be adapted to problems 
related to the range minimum query, such as the range median query.
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