Olivier Poisson 
email: poisson@latp.univ-mrs.fr
  
Carleman estimates for the heat equation with discontinuous diffusion coefficients

Keywords: AMS classification scheme numbers: 35K05, 35K55, 35R05, 35R30

We consider the heat equation with a diffusion coefficient that is discontinuous at an interface. We give global Carleman estimates for solutions of this equation, even if the jump of the coefficient across the interface has not a constant sign.

Introduction

The heat Equation with a discontinuous diffusion coefficient

Let Ω ⊂ IR n be a bounded connected open set with boundary Γ of class C 2 . Let a(•) be a measurable function of the variable x ∈ Ω and satisfying Assumption 1.1 There exist two constants a min , a max so that 0 < a min ≤ a(x) ≤ a max < ∞.

We denote by A := -div(a∇•) the formal stationary differential operator on Ω. We consider for a time T > 0 the formal heat operator L := ∂ t + A in the cylinder Q = (0, T ) × Ω and we define L as the heat operator L = L with domain D(L) := {q : q ∈ L 2 (0, T ; H 1 0 (Ω)), ∂ t q ∈ L 2 (0, T ; H -1 (Ω)), Lq ∈ L 2 (Q)} . For q 0 ∈ L 2 (Ω) we consider the following equations:

     Lq = f in Q, q(0, •) = q 0 in Ω .
(1.1)

The function q then satisfies the Dirichlet homogeneous condition q(t, x) = 0 for (t, x) ∈ Σ := (0, T ) × Γ. We know that if f ∈ L 2 (t 0 , T ; H -1 (Ω)) then (1.1) admits an unique solution we denote by Y (f, q 0 ) ∈ L 2 (0, T ; H 1 0 (Ω)), and if f ∈ L 2 (Q) then Y (f, q 0 ) ∈ D(L). (We refer to [1, Theorems 1.1, 4.1 and Remark 4.3; Chap. 3] and to [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF] for a complete proof). We make the following assumptions on the diffusion coefficients a(•): a(x) is piecewise smooth in Ω; more precisely, Ω admits a partition in two non empty open sets, Ω 0 and Ω 1 = Ω \ Ω 0 , such that a j ≡ a |Ω j ∈ C 1 (Ω j ), j = 0, 1. Moreover the interface S = Ω 0 ∩ Ω 1 is of class C 2 . We denote by n the outward unit normal to Ω 1 at the points of S and also the outward unit normal to Ω at the points of Γ. Formally, the jump of a quantity q on S is defined by [q] := q 0 -q

1 ≡ (q |Ω 0 ) |S -(q |Ω 1 ) |S . So S is partitioned in S = S + ∪ S -∪ S 0 with S ± := {x ∈ S; ±[a](x) > 0}, S 0 = {x ∈ S; [a](x) = 0} .
We shall analyse (1.1) in the large framework S = S 0 , that is, when a is discontinuous across S + ∪ S -= ∅. We look for global Carleman estimates on Y (f, q 0 ) with source terms in ω T = (0, T ) × ω, where ω ⊂ Ω is open, non empty, and satisfies

Assumption 1.2 Each connected component of Ω 0 contains part of ω.
Then there are two different situations that will be analysed in this work.

• Case 1: Ω 0 ⊂⊂ Ω (see Fig. 1);

• Case 2: Ω 1 ⊂⊂ Ω (see Fig. 2).

The main goal of this paper is to obtain a Carleman estimate for q solution of (1.1) in cases 1 or 2.

Main Results

In order to state the main result of this work, we need some geometrical conditions (see Figure 2).

Geometrical Conditions and Technical Assumptions

Assumption 2.1 on (Ω 1 , S); corresponding to case 1. There exists a vector field ζ :

Ω 1 → IR n , ζ ∈ C 1 (Ω 1 ), so that ζ(x) • n(x) < 0 ∀x ∈ Γ , ζ(x) • n(x) > 0 ∀x ∈ S , ζ(x) = 0 ∀x ∈ Ω 1 ,
and if we consider the characteristics associated to ζ

     dx(t) dt = ζ(x(t)) , t > 0 , x(0) = x 0 , (2.1)
with x 0 ∈ Γ, we also assume that for some time T 1 > 0 and for every x 0 ∈ Γ, there exists t 1 (x 0 ) < T 1 such that the solution x(t) of (2.1) verifies x(t) ∈ Ω 1 for 0 < t < t 1 (x 0 ), and x(t 1 (x 0 )) ∈ S.

(2.2)

See figure 1 

Ω 1 → IR n , ζ ∈ C 1 (Ω 1 ), so that ζ(x) • n(x) > 0 ∀x ∈ S , ζ(x) • n(x) > 0 ∀x ∈ O , ζ(x) = 0 ∀x ∈ Ω 1 \ O ,
and for the characteristics associated to ζ

     dx(t) dt = -ζ(x(t)) , t > 0 , x(0) = x 0 , (2.3)
with x 0 ∈ S, we also assume that for some time T 2 > 0 and for every x 0 ∈ S, there exists t 2 (x 0 ) < T 2 such that the solution x(t) of (2.3) verifies x(t) ∈ Ω 1 \ O for 0 < t < t 2 (x 0 ), and x(t 2 (x 0 )) ∈ ∂O.

(2.4)

See figure 2 and [3, page 625].

The main restriction of this framework lies in We shall need the technical assumption 2.4 below. We denote by ∇ the tangential derivative on S and we set S 00 := S + ∩ S -⊂ S 0 .

Assumption 2.4 There exist a neighbourhood V ⊂ S of S 00 and a function

h 0 ∈ C 2 (V ) such that (∇ h 0 (x) = 0, ∀x ∈ V ), and 
(±h 0 (x) > 0, ∀x ∈ V ∩ S ± ). Equivalently, S 00 is a (n -2)-dimensional submanifold of S separating S -∩ V = h -1 0 (IR - * ) and S + ∩ V = h -1 0 (IR + * ). Assumption 2.4 is checked if [a(•)] is of class C 2 in a neighbourhood of S 00 and if ∇ [a(x)] = 0 for any x ∈ S 00 : in such a case we can choose h 0 (x) = [a(x)].
Remark 2.2 If S + = ∅ then S 00 = ∅ and so assumption 2.4 is validated. However it possibly happens that sets S ± are non empty but S 00 = ∅. In such a case ∇ [a] = 0 on S 0 = ∂S + ∪ ∂S -.

Remark 2.3

In assumption 2.4 the function h 0 can be extended to a function h0 ∈ C 2 (W ), where W is some neighbourhood of S 00 in Ω, and such that the vector field

∇ h 0 ∈ (C 1 (V )) n-1 extends to the vector field ∇ h0 ∈ (C 1 (W )) n satisfying ∇ h0 (x) = 0 for all x ∈ W . The set h-1 0 ({0}) ⊂ W separates W into W + = h-1 0 (IR + * ) and W -= h-1 0 (IR + * ). Thus if S is a C 2 extension of S + , then S ∩ W + = S + ∩ W = S + ∩ V , S ∩ W -= S -∩ W = S -∩ V , h0 (x) < 0 for all x ∈ (S \ S + ) ∩ W and h0 (x) > 0 for all x ∈ S + ∩ W . Furthermore we can choose V , W sufficiently small so that | h0 | ≤ 1 2 in W . Ω 0 Ω 1 b) a) Ω c S Γ Figure 1. Case 1: Assumption 2.1 is not fulfilled in situation a). Situation in b)
shows a third case.

Ω 1 Ω 0 Γ S' S + ω S' Ω 0 ' Ω 1 ' S - Γ ω Figure 2. Case 1: Assumptions 2.1, 1.2

and 2.3 are fulfilled

The arrow means that we extend S + to S . 
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Carleman weight functions

Carleman estimates on q solution of (1.1) requires Carleman weight functions that we present now. Lemma 2.1 Assume that we have the geometrical situation of case 1. Under assumptions 1.2, 2.1, 2.3, 2.4, there exist functions β i ∈ C 0 (Ω), i = 1, 2 that satisfy the following properties.

(i) β i ∈ C 0 (Ω), β k i ≡ β i |Ω k ∈ C 2 (Ω k ), k = 0, 1; div(a∇β i ) ∈ L ∞ (Ω).
(Thus the following transmission conditions are checked on S:

[β i ] = 0 and [a∂ n β i ] = 0). (ii) β i (x) > 0, ∀x ∈ Ω.
(iii) There exists r > 0 so that

|∇β i | ≥ r in Ω \ ω, i = 1, 2. (iv) ∂ n β i (x) < 0 for any x ∈ Γ, i = 1, 2. (v) β 1 = β 2 on S 00 , β 1 (x) > β 2 (x) for any x ∈ S -, β 2 (x) > β 1 (x) for any x ∈ S + .
(vi) For x ∈ S, let the symmetrical matrix M(x) := i=1,2 M i (x) of size n + 1 where we set:

M i :=       -ρa∂ n β i ∇ β i |∇ β i | 2 -ρ(a∂ n β i ) 2 t ∇ β i -(a∂ n β i )I n-1 t 0 IR n-1 |∇ β i | 2 -ρ(a∂ n β i ) 2 0 IR n-1 2a∂ n β i {|∇ β i | 2 -ρ(a∂ n β i ) 2 }       . (2.

5)

Here I n-1 denotes the unit matrix of size n -1 and ρ(x) := (a 0 (x)a 1 (x)) -1 .

Then M 1 ≤ 0 on S -and M 2 ≥ 0 on S + . Furthermore there exists a neighbourhood V of S 00 in S so that M = 0 on V .

Lemma 2.2 Assume that we have the geometrical situation of case 2. Under assumptions 1.2, 2.2, 2.3, 2.4, there exist functions β i ∈ C 0 (Ω), i = 1, 2 that satisfy properties (i), (ii), (iv), (v), (vi) of lemma 2.1. The function β 2 satisfies (iii) of lemma 2.1 and β 1 satisfies:

(iii) there exists r > 0 so that

|∇β 1 | ≥ r in Ω \ (ω ∪ B),
where B is an opened ball such that B ⊂⊂ O. Moreover β 1 and β 2 satisfy

(vii) β 2 ≥ 2β 1 in B.
Remark 2.4 In all cases 1, 2, we can construct β i so that β i |Γ are constant, i = 1, 2.

Remark 2.5 In all cases 1, 2, we shall construct β i , i = 1, 2, so that in V we have ρ(a∂ n β i ) 2 -|∇ β i | 2 = 0, M = 0, and

M i =       -ρa∂ n β i ∇ β i 0 t ∇ β i -(a∂ n β i )I n-1 t 0 IR n-1 0 0 IR n-1 0       . (2.6)
Thus the eigenvalues of M i (x) are 0 (with multiplicity n) and -(ρ(x)+n-1)(a∂ n β i )(x).

Lemmas 2.1 and 2.2 are proved in appendix.

Global Carleman Estimates

We set β := 5 4 max i=1,2 max Ω β i . We can assume that max i=1,2

max

Ω β i (x) < β < 2 min i=1,2 min Ω β i (x) , (2.7) 
since if not, we replace β i by β i + 4β and then β by 6β. We set

ϕ i (t, x) := e λβ i (x) t(T -t)
, η i (t, x) := e λβ -e λβ i (x) t(T -t) ,

Π j := i=1,2 s j t -j (T -t) -j e -2sη i , j ∈ IN .
In order to state the main result of this work in common statements for cases 1 and 2, we set

B = O = ∅ in case 1.
Theorem 2.1 Assume that conditions of lemma 2.1 in case 1 (respectively: of lemma 2.2 in case 2) are fulfilled. There exists λ 1 (Ω, ω, c) > 0 such that for each λ > λ 1 there exists a positive constant C that only depend on Ω, ω, O and a, and s 1 (λ) > 0 so that the following estimate holds

Q Π 3 |q| 2 + Q Π 1 |∇q| 2 ≤ C ω T Π 3 |q| 2 + C Q Π 0 |Lq| 2 (2.8)
for all q ∈ D(L) and s ≥ s 1 . Moreover, s 1 is of the form s 1 = σ 1 (T 2 + T ), where σ 1 is a positive constant that only depends on Ω, ω, O, a and λ.

Theorem 2.2 Assume that conditions of lemma 2.1 in case 1 (respectively: of lemma 2.2 in case 2) are fulfilled. Let f ∈ (L 2 (Q)) n and q ∈ L 2 (Q) satisfying Lq = divf , that is for any g ∈ L 2 (Q) we have

Q qg dxdt = - Q f • ∇z dxdt + Ω q 0 z(t 0 ) dx , (2.9) 
where z ∈ D(L * ) is solution of L * z = g, z(T ) = 0. Then there exists λ 1 (Ω, ω, a) > 0 such that for each λ > λ 1 there exists a positive constant C that only depend on Ω, ω, and a, and s 1 (λ) > 0 so that the following estimate holds

Q Π 3 |q| 2 ≤ C ω T Π 3 |q| 2 + C Q Π 2 |f | 2 (2.10) for s ≥ s 1 . Moreover, s 1 is of the form s 1 = σ 1 (T 2 + T )
, where σ 1 is a positive constant that only depends on Ω, ω, ), a and λ.

Applications

These Carleman estimates have many applications.

• Firstly, as described in [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF], semilinear parabolic equations as

     Lq + f (q) = vχ ω + g in Q, q(0, x) = q 0 (x) in Ω,
with unknown q ∈ D(L) and under additional assumptions on the functional f are exactly controllable to the trajectories. This is [3, theorem 2.1] if S + = ∅.

• Secondly the inverse problem related to equation 1.1 and stated in terms of uniqueness and Hölder stability for a(•), as described in [START_REF] Poisson | Uniqueness and Hölder stability of discontinuous diffusion coefficients in three related inverse problems for the heat equation[END_REF], is solved in our extended framework.

Comments

Global Carleman inequalities were first used in [START_REF] Fursikov | Controllability of evolution equations[END_REF] to obtain inequality of observability for parabolic equations with C 1 coefficients. By this approach the problem of null controllability for semilinear parabolic equations can be proved: see [START_REF] Barbu | Exact Controllability of the superlinear heat equation[END_REF], [START_REF] Doubova | On the controllability of parabolic systems with a nonlinear term involving the state and the gradient[END_REF], [START_REF] Fernández-Cara | Null and approximate controllability for weakly blowing up semilinear heat equations[END_REF]. In the case of a discontinuous coefficient, results on global Carleman equalities and on null controllability recently appear thanks to the developments in [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF]. In the n dimensional case [START_REF] Benabdallah | On the controllability of linear parabolic equations with an arbitrary control location for a stratified media[END_REF] gives a positive answer to the controllability question for a class of discontinuous coefficients, with separated variables that are smooth w.r.t. to all but one variables, which includes the case of stratified media. The proof relies on the global Carleman inequalities pointed in [START_REF] Benabdallah | On the controllability of linear parabolic equations with an arbitrary control location for a stratified media[END_REF], [START_REF] Rousseau | Carleman estimate and controllability results for the one -dimensional heat equation with bv coefficients[END_REF] for the one -dimensional case. The proof for null controllability for the linear parabolic heat equation is then achieved in [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF] for the case of a coefficient that exhibits jump of arbitrary sign at an interface. Our work is about Global Carleman inequalities for the heat equation as in [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] where the null controllability problem for semilinear parabolic equations is solved. In fact authors of [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] prove inequalities (2.8) and (2.10), but with some restrictions that we remove. Let us precise several points about this.

1. They assume that a j ∈ C 2 (Ω j ), j = 1, 2, which is too strong. Indeed, the Carleman functions they build do not depends on all the a k (x), x ∈ Ω, k = 0, 1, but only on the fraction (a 1 /a 0 )(x), x ∈ S. Their condition - , then a j ∈ C 1 (Ω j ), j = 1, 2 suffices. Moreover, outside S, the assumption a j ∈ C 1 (Ω j ) is only used to ensure that (div(a j ∇β))

a j ∈ C 2 (Ω j ) -is only used in [3,
|Ω j ∈ C 0 (Ω j ).
But in fact that we only need is div(a∇β) ∈ L ∞ (Ω). Hence the results (about Carleman estimates) in [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] still holds if the assumption a j ∈ C 2 (Ω j ) is replaced by

a j ∈ W 1,∞ (Ω j ), j = 0, 1.
2. They assume that q belongs to the following restricted set Z 0 ⊂ D(L):

Z 0 := {q : q |Ω j ∈ C 2 ([t 0 , T ] × Ω j ), j = 0, 1, [q] = 0, [c∂ n q] = 0, q = 0 on Σ} . (2.11)
We can extend the results to q ∈ D(L). See [START_REF] Poisson | Uniqueness and Hölder stability of discontinuous diffusion coefficients in three related inverse problems for the heat equation[END_REF] for a proof.

3. They assume that [a] ≤ 0, or equivalently S + = ∅, in both cases 1, 2. Besides, regarding the case 2 with S + = ∅ and considering remark 2.1, assumption [3, Condition 2.2] appears more sophisticated than our assumption 2.2. (Precisely: two sets -O i , i = 1, 2 -in their work, only one -O -in our's) .

The paper is organized as follows. In Section 3 we first recall the main computations of [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] to prove (2.8) in the case 1, then we analyse the sign of the quadratic form coming from integrals on S. In Sections 4 and 5 we study two particular situations, where S 00 = ∅. We show that we need only one function β that we describe there.

In Section 6 we derive from section 3 and from [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] the proof for the case 2.

Proof for the Case 1

We prove the part of theorems 2.1, 2.2 corresponding to Case 1.

Computation of integrals

As in [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] we restrict the proof to q ∈ Z 0 defined above. The general case q ∈ D(L) is completed by following the proof of [4, §6.1].

We particularly watch all the integrals on surfaces Γ or S. Let q ∈ Z 0 and f := Lq ∈ L 2 (Q). We set ψ i := e -2sη i q, i = 1, 2. Then we have

M 1 ψ i + M 2 ψ i = f i,s (3.1) 
where

M 1 ψ i := div(a(x)∇ψ i ) + s 2 λ 2 ϕ 2 i |∇β i | 2 a(x)ψ i + s∂ t η i ψ i , M 2 ψ i := ∂ t ψ i -2sλϕ i a(x)∇β i • ∇ψ i -2sλ 2 ϕ i a(x)|∇β i | 2 ψ i , f i,s := e -sη i f + sλϕ i div(a(x)∇β i )ψ i -2sλ 2 ϕ i a(x)|∇β i | 2 ψ i .
From (3.1), we obtain

M 1 ψ i 2 2 + M 2 ψ i 2 2 + 2(M 1 ψ i , M 2 ψ i ) = f i,s 2 2 , (3.2) 
where (•, •) denotes the scalar product in L 2 (Q). We compute the scalar product in the left hand side of (3.2), with index i omitted. We set S T = (0, T ) × S and Q = Q \ S T .

We have

(M 1 ψ, M 2 ψ) = 3 k=1,l=1 I kl , (3.3) 
where we set

• I 11 := Q div(a(x)∇ψ)∂ t ψ = 0 , • I 12 := -2sλ Q ϕdiv(a(x)∇ψ)a(x)∇β • ∇ψ = J 12 + K 12 + H 12 ,
where we set

J 12 := 2sλ Q a∇(ϕa∇β • ∇ψ) • ∇ψ, K 12 := 2sλ S T ϕ[∇β • ∇ψa 2 ∂ n ψ], H 12 := -2sλ Σ ϕ∇β • ∇ψ a 2 ∂ n ψ. We compute J 12 = 2sλ 2 Q ∇(ϕa∇β • ∇ψ)(a∇β • ∇ψ) + 2sλ Q ϕa∂ j ψ ∂ j (a∂ l β) ∂ l ψ + 2sλ Q ϕa 2 ∂ j ψ ∂ 2 jl ψ ∂ l β = 2sλ 2 Q ϕ|a∇β • ∇ψ| 2 + 2sλ Q ϕa∂ j ψ ∂ j (a∂ l β) ∂ l ψ + sλ Q ϕa 2 ∇(|∇ψ| 2 ) • ∇β = 2sλ 2 Q ϕ|a∇β • ∇ψ| 2 + 2sλ Q ϕa∂ j ψ ∂ j (a∂ l β) ∂ l ψ -sλ Q |∇ψ| 2 div(ϕa 2 ∇β) + K 12 + H 12 ,
where we set

K 12 := -sλ S T ϕ[|∇ψ| 2 a 2 ∂ n β], H 12 := sλ Σ |∇ψ| 2 ϕa 2 ∂ n β. Finally since H 12 = -1 2 H 12 we get I 12 := -sλ 2 Q ϕ|a∇β| 2 |∇ψ| 2 + 2sλ 2 Q ϕ(a∇ψ • ∇β) 2 + K 12 + K 12 + 1 2 H 12 + X 1 , X 1 := 2sλ Q ϕa∂ j ψ∂ j (a∂ l β)∂ l ψ -sλ Q ϕ|∇ψ| 2 div(a 2 ∇β) . • I 13 := -2sλ 2 Q div(a∇ψ)ϕa|∇β| 2 ψ = 2sλ 2 Q a∇ψ∇(ϕa|∇β| 2 ψ) + K 13 , with K 13 := 2sλ 2 S T ϕ[a 2 |∇β| 2 ψ∂ n ψ].
Thus we obtain

I 13 = 2sλ 2 Q ϕ|a∇β| 2 |∇β| 2 + X 2 + K 13 , with X 2 := 2sλ 2 Q ϕa∇(a|∇β| 2 )∇ψ ψ + 2sλ 3 Q ϕa 2 |∇β| 2 ∇β • ∇ψ ψ. • I 21 := s 2 λ 2 Q ϕ 2 |∇β| 2 a∂ t ψ ψ = -s 2 λ 2 Q ϕ∂ t ϕ |∇β| 2 a|ψ| 2 , • I 22 := -s 3 λ 3 Q ϕ 3 a 2 |∇β| 2 ∇β • ∇ψψ = 3s 3 λ 4 Q ϕ 3 a 2 |∇β| 4 |ψ| 2 + K 22 + X 3 , with K 22 := s 3 λ 3 S T ϕ 3 [a 2 |∇β| 2 ∂ n β]|ψ| 2 , X 3 := s 3 λ 3 Q ϕ 3 div(a 2 |∇β| 2 ∇β)|ψ| 2 . • I 23 := -2s 3 λ 4 Q ϕ 3 a 2 |∇β| 4 |ψ| 2 , • I 31 := s Q ∂ t η ψ∂ t ψ = - 1 2 Q ∂ 2 t η |ψ| 2 ,
• I 32 := -2s 

The quadratic form on the interface

Thus we write (3.3) in the form (M 1 ψ i , M 2 ψ i ) = J i + K i + H i , with J i : integrals on Q , K i : integrals on S T , H i : integrals on Σ. We have

J i := S T {Q i nn |a∂ n ψ i | 2 + 2Q i nτ • ∇ ψ i (a∂ n ψ i ) + Q i τ τ |∇ ψ i | 2 (3.4) 
+ (Q i 00 + X i 00 )|ψ i | 2 + 2X i n0 (a∂ n ψ i )ψ i } , with

Q i nn := sλϕ i [∂ n β i ] , Q i nτ := sλϕ i [a∇ β i ] , Q i τ τ := -sλϕ i [a 2 ∂ n β i ] , X i n0 := sλ 2 ϕ i [a|∇β i | 2 ] , Q i 00 := s 3 λ 3 ϕ 3 i [a 2 ∂ n β i |∇β i | 2 ]
, X i 00 := s 2 λϕ i ∂ t η i [a∂ n β i ] . We write (3.4) by using ψ i := e -sη i q and ∇ψ i = e -sη i ∇q + sλϕ i ∇β i q. Thus we have

J i := S T e -2sη i {Q i nn |a∂ n q| 2 + 2Q i nτ • ∇ q(a∂ n q) + Q i τ τ |∇ q| 2
+ (2Q i 00 + Y i 00 )|q| 2 + 2(Q i n0 + X i n0 )(a∂ n q)q} , with Y i 00 := 2s -1 ϕ -1 i Q i 00 + X i 00 , Q i n0 := s 2 λ 2 ϕ 2 i [a|∇β i | 2 ]. We set

R i :=       Q i nn Q i nτ Q i n0 Q i nτ Q i τ τ I n-1 t 0 IR n-1 Q i n0 0 IR n-1 2Q i 00       , X i :=       0 0 IR n-1 X i n0 t 0 IR n-1 0 n-1 t 0 IR n-1 X i n0 0 IR n-1 Y i 00       ,

Assumption 2 . 3

 23 The set S + can be extended to a variety S of class C 2 which is the interface between two open sets Ω 0 , Ω 1 ⊂ Ω, with Ω 1 ⊂ Ω 0 , Ω 1 ⊂ Ω 0 and each connected component of Ω 0 = Ω \ Ω 1 contains part of ω. See figures 1 and 2.

Remark 2 . 1

 21 If S + = ∅ then assumption 2.3 holds for the case 1 with S = ∅ and Ω 1 = ∅, and for the case 2 with S = Γ, Ω 1 = ∅.

Figure 3 .

 3 Figure 3. Case 2: Assumptions 2.2, 1.2 and 2.3 are fulfilled. The arrow means that we extend S + to S .

  and [3, page 624].Assumption 2.2 on (Ω 1 , S); corresponding to case 2. There exists an open set O ⊂⊂ Ω 1 (with always a unit outward normal n) and a vector field ζ :

  Step 2, page 656] and similarly in [3, Step 4 page 659]. But if we use [12, Volume I, Corollary 1.3.4]

  η a|∇β| 2 |ψ| 2 -s 2 λ 2 Q ϕ∂ t ϕ a|∇β| 2 |ψ| 2 + K 32 with K 32 := s 2 λ S T ϕ ∂ t η [a∂ n β]|ψ| 2 .

2 λ Q ϕ∂ t η a∇β • ∇ψ ψ = s 2 λ Q ϕdiv(a∇β)|ψ| 2 + s 2 λ 2 Q ϕ∂ t • I 33 := -2s 2 λ 2 Q ϕa ∂ t η|∇β| 2 |ψ| 2 .

and R i := e -2sη i R i , X i := e -2sη i X i , R := i=1,2 R i , X := i=1,2 X i , P := R + X . We prove that P ≥ 0 on S for s sufficiently large. Firstly, note that if x ∈ S 0 then P = 0 n+1 , since [a(x)] = 0. Let L i (x), i = 1, 2, be the (n + 1) sized strictly positive diagonal matrix with L i jj = 1, j ≤ n, and L i n+1,n+1 (x) = sλϕ i (x) for x ∈ S. Thus R i = [a] sλϕ i L i M i L i . Let x ∈ V ∩ S + . Note that X i 00 = 0 since [a∂ n β i (x)] = 0, and that X i n0 = Q i 00 = Y i 00 = 0. Thus X (x) = 0 n+1 . Since [a(x)] ≥ 0, M 2 (x) ≥ 0 and M 1 (x) = -M 2 (x) ≤ 0, we thus have R 2 (x) ≥ 0 and R 1 (x) ≤ 0.. From β 2 (x) ≥ β 1 (x) we obtain ϕ 2 (x) ≥ ϕ 1 (x), η 2 (x) ≤ η 1 (x), e -2sη 2 (x) ≥ e -2sη 1 (x) and L 2 (x) ≥ L 1 (x). We thus obtain R 2 (x) ≥ -R 1 (x), R (x) ≥ 0, and P (x) ≥ 0. Similarly we obtain P (x) ≥ 0 for any x ∈ V ∩ S -. Let x ∈ S + \ V . We have M 2 (x) ≥ r > 0 for some r ≥ 0 that do not depend of x and X 2 = [a] λL 2 Y 2 L 2 where the matrix Y 2 does not depend on s and λ. So s -1 |Y 2 (x)| ≤ 1 4 M 2 (x) for s sufficiently large, X 2 is a perturbation term for R 2 of order s -1 ϕ -1 2 , and R 2 + X 2 ≥ 3 4 R 2 . Then we have M 2 (x) ≥ r > 0 and β 2 (x) ≥ β 1 (x) + r for some r ≥ 0 that does not depend of x. Thus L 2 (x) ≥ L 1 (x) and e -2sη 1 (x) is a perturbation term for e -2sη 2 (x) of order s -1 (at least). Consequently we have

Similarly we obtain P (x) ≥ 0 for any x ∈ S -\ V . Consequently, if s is sufficiently large, then i=1,2 J i ≥ 0.

Then we can complete the computations in [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] and the proof of (2.8).

A Particular situation for the case 1

The following result corresponds to the case S -= ∅.

Lemma 4.1 We assume that Γ and S are of class C 2 and S + = S \ S 0 satisfies assumption 2.3. Then there exists a function β ∈ C 0 (Ω) that satisfies the following properties.

(1)

(2) [β] = 0 and [a∂ n β i ] = 0;

(3) β(x) > 0, ∀x ∈ Ω.

(4) There exists r > 0 so that |∇β| ≥ r in Ω \ ω.

(5) β is constant on Γ and ∂ n β(x) < 0 for any x ∈ Γ.

(6) There exists r > 0 so that if we set

then M(x) ≥ r > 0 on S + .
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We prove this lemma in appendix.

Remark 4.1 We built β independently of the fact that [a] = 0 in S \ S + . This will be used above (see the Proof of lemma 2.1).

We straightforwardly obtain: , η(t, x) := e λβ -e λβ(x) t(T -t) ,

then theorems 2.1 and 2.2 still hold in case 1 with S -= ∅.

A second Particular situation for the case 1

In this part we assume S -and S + non empty, and S 00 empty, that is, d(S -, S + ) = 0. Thus for any ε ∈ (0, 1) there exists two open sets

where β is built as in lemma 4.1 (with the modification S + = S\(S -∪S 0 )). See also remark 4.1. Let β 1 = ψ 1 β where β is defined as in [3, (43) page 629] (with the modification that S + is non empty). See also remark 4.1.

We choose ε > 0 such that

Then we can easily check that

for some r > 0 and for s sufficiently large. Hence with this modified function β, the conclusion of corollary 4.1 holds again in this situation.

Proof for the case 2

We prove the part of theorems 2.1, 2.2 corresponding to Case 2. Thanks to the computations in [3, Proof of theorem 3.4] and to the properties of the Carleman weights that originate from lemma 2.2, we can complete the proof of these theorems in the case 2. Remark 6.1 If S -is empty or, more generally, if S 00 is empty, then we are as in the first or the second particular situations above -see sections 4, 5 but corresponding to case 2. Then, by following lemma 4.1 and section 5, we can prove theorems 2.1 and 2.2 (in case 2) by introducing only one function β. This is as corollary 4.1, but in the situation of case 2.
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Proof of lemma 4.1

Step 1 -Let S be an extension of S + inside Ω 0 of class C 2 , that separates Ω in two open sets Ω 0 and Ω 1 , with ω ⊂⊂ Ω 0 ⊂⊂ Ω. We denote by n the unit vector field on S with n (x) pointing towards Ω 0 . We are thus in the situation of [3, case 2, page 1] with the prime suppressed, but a j ∈ W 1,∞ (Ω j ) only (that is not a problem as we pointed in comment 1. of §2.5). So at this point we could conclude with two β j functions. In fact, we can use only one. This has a the great advantadge for the inverse problem treatment: one measurement instead of two (see [START_REF] Poisson | Uniqueness and Hölder stability of discontinuous diffusion coefficients in three related inverse problems for the heat equation[END_REF]). Indeed, we construct a function β ∈ C 0 (Ω 0 ) satisfying

All these points can be checked by following [3, Proof of lemma 3.2, Steps 4, 5, 6]. (Concerning the last point, we use there the fact that each connected component of Ω 0 contains part of ω, thanks to assumption 2.3). Note that we have ∂ n β (x) < 0 for any x ∈ S ∩ S , since n = -n on S ∩ S . We set β = β in Ω 1 .

Step 2 -Following [3, Proof of Lemma 3.1, Steps 2, 3, 4], we then extend β in Ω 0 such that

(Thus β satisfies the transmission conditions on S: [β] = 0 and [a∂ n β] = 0).

(ii) β(x) > 0, ∀x ∈ Ω.

(iii) There exists r > 0 so that |∇β| ≥ r in Ω \ ω.

(Concerning point (iii), we use there the fact that each connected component of Ω 0 contains part of ω, thanks to assumption 1.2). We thus have ∇ β(x) = 0 for any x ∈ Γ ∪ S + , and, for any x ∈ S + ⊂ S ∩ S , M(x) ≥ r > 0. (Here, setting α ≡ a∂ n β, the value

is suitable).

Proof of lemma 2.1

We will use the following lemma:

Carleman estimates for the heat equation with discontinuous diffusion coefficients 13 Lemma 7.1 Let r > 0 and, for any ε sufficiently small, let φ ε be a C 2 diffeomorphism defined in a neighbourhood U of S such that φ ε -Id ∞ < ε, |J(φ ε ) -1| < ε, where J(φ ε ) denotes the jacobian of φ ε . We assume that S ε := φ ε (S) ⊂ U 1 , U 1 := U ∩ Ω 1 , and we denote by n ε the unit normal on S ε pointing towards S.

Let h 1 , h 2 be two functions in C 2 (Ω 1 ) with h 1 -h 2 • φ ε ≥ r, g 1 ≥ r on S and g 2 ≥ r on S ε , where we set

Then there exists ε 0 > 0 such that for any ε ∈ (0,

Denote by p the orthogonal projection on S, defined in a neighbourhood U of S in Ω. Then p ∈ C 2 (U ). We set q := Id -p ∈ C 2 (U ). Let U ε := {tp(x) + (1 -t)x; 0 < t < 1; x ∈ S ε }. Note that for any z ∈ U ε there exists an unique (t, x)

Let us prove lemma 2.1 in 6 steps. We successively construct

Step 1 -Let S be the interface between Ω 0 and Ω 1 that extends S + inside Ω 0 . Thus S 00 ⊂ S ∩ S . Let h 0 be the function of assumption 2.4 defined in V ⊂ S and let h0 ∈ C 2 (W ) be an extension to W ⊂ Ω, as explained in remark 2.3.

We set V = W ∩ S of S 00 and h = 2 + h0 in V . Then h can be extended to S so that

Note that h = 2 on S 00 , h (x) < 2 for all x ∈ V ∩ S -, and ∇ h (x) = 0 for all x ∈ V . We then consider g ∈ C 1 (S ) defined on V by

and satisfying g (x) > 0 for all x ∈ S .
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Step 2 -Corollary 1.3.4 of [START_REF] Hormander | The Analysis of Linear Partial Differential Equations[END_REF]Volume I] shows that there exists a positive function β defined in a neighbourhood

Thanks to assumption 2.3 and as in Proof of Lemma 4.1, Step 1, we then extend β into Ω 0 , so that

Step 3 -Thanks to assumption 1.2 and as in Proof of Lemma 4.1, Step 2, we then extend β 2 into Ω 0 , so that

• There exists r > 0 so that

Note that (a∂ n β 2 )(x) = -g (x) < 0 for any x ∈ S + .

Step 4 -Thanks to the properties of h (cf. step 1) we have 3 ≥ β 2 (x) > 2 for x ∈ S + and β 2 (x) < 2 for x ∈ V ∩S -. Thus there exists h ∈ C 2 (S) with the following properties:

Note that h = 2 on S 00 , h(x) < β 2 (x) for any x ∈ S + , h(x) > β 2 (x) for any x ∈ S -, and ∇ β 2 (x) = 0 for all x ∈ V . We then consider g ∈ C 1 (S) defined in V by

Step 5 -Corollary 1.3.4 of [12, Volume I] implies that there exists a positive function

Thanks to assumption 1.2 and as in Proof of Lemma 4.1, Step 2, we then extend β into Ω 0 so that

• There exists r > 0 so that |∇β| ≥ r in Ω 0 \ ω.
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Step 6 -Corollary 1.3.4 of [START_REF] Hormander | The Analysis of Linear Partial Differential Equations[END_REF]Volume I] implies that there exists a positive function α defined in a neighbourhood U 1 ⊂ Ω 1 of S with α ∈ C 2 (U 1 ), α |S = h and ∂ n α = g on S. Moreover we can choose U 1 so that α(x) > 0 and ∇α(x) = 0 for x ∈ U 1 . For ε > 0 we set

ε and S ε := {x ∈ Ω 1 ; d(x, S) = ε}. We notice that if ε is sufficiently small then S ε satisfies the condition in lemma 7.1 (with some φ ε ) and (Ω ε 1 , S ε ) satisfies assumption 2.1. The proof of [3, Lemma 3.1, Step 1] with (Ω 1 , S) replaced by (Ω ε 1 , S ε ) shows that there exists a function

ε in such a way that β 3 ∈ C 2 (Ω 1 ) and β 3 (φ ε (x)) < α(x) for x ∈ S. Then we apply lemma 7.1 with h 1 = α, h 2 = β 3 , and we denote by

In fact, in such a way, the property β 1 |Ω 1 ∈ C 2 (Ω 1 ) fails, but we can use the argument at the end of [3, proof of Lemma 3.1, Step 1]. This shows that we can extend β 1 |Ω 0 into Ω 1 as we wish.

Proof of lemma 2.2

We follow the proof of lemma 2.1 by pointing the modifications. We consider an interface S between Ω 0 and Ω 1 that extends S + inside Ω 0 .

Step 1 -We construct a neighbourhood V ⊂ S of S 00 , h ∈ C 2 (S ) and g ∈ C 1 (S ) so that

Step 2 -Thanks to assumption 2.3, there exists a positive function β defined in Ω 0 so that • β ∈ C 0 (Ω 0 ) and β (x) > 0 for all x ∈ Ω 0 ;

• There exists r > 0 so that |∇β | ≥ r in Ω 0 \ ω.

We set β 2 = β in Ω 1 .
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Step 3 -Thanks to assumption 1.2 and as in Proof of Lemma 4.1, Step 2, we then extend β 2 into Ω 0 , so that

• β 2 |Γ is constant and ∂ n β 2 (x) < 0 for any x ∈ Γ.

• There exists r > 0 such that |∇β 2 | ≥ r in Ω \ ω.

Note that (a∂ n β 2 )(x) = -g (x) < 0 for any x ∈ S + .

Step 4 -There exist functions h ∈ C 2 (S), g ∈ C 1 (S) so that:

• h = 2 on S 00 , h = 4 -β 2 in S + ∪ V ;

• h(x) < β 2 (x) for all x ∈ S + , h(x) > β 2 (x) for all x ∈ S -, h(x) > 0 for all x ∈ S;

in V and g(x) > 0 for any x ∈ S.

Step 5 -Following Step 5 of the proof of lemma 2.1, there exist r > 0 and a function β 1 ∈ C 2 (Ω 0 ) so that

• β 1 |S = h and ∂ n β 1 = 1 a 0 g on S; • β 1 |Γ is constant and ∂ n β 1 (x) < 0 for all x ∈ Γ;

• β 1 (x) > 0 for any x ∈ Ω 0 ;

• |∇β 1 |(x) ≥ r > 0 for any x ∈ Ω 0 \ ω.

Step 6 -We then extend β 1 into Ω 1 so that Step 7 -As in [3, Step 3, Proof of Lemma 3.2] we can construct β 1 so that β 1 ≤ 1 2 β 2 in O.