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Abstract. This work deals with an inverse boundary value problem arising
from the equation of heat conduction. Mathematical theory and algorithm is
described in dimensions 1–3 for probing the discontinuous part of the conduc-
tivity from local temperature and heat flow measurements at the boundary.
The approach is based on the use of complex spherical waves, and no knowl-
edge is needed about the initial temperature distribution. In dimension two we
show how conformal transformations can be used for probing deeper than is
possible with discs. Results from numerical experiments in the one-dimensional
case are reported, suggesting that the method is capable of recovering locations
of discontinuities approximately from noisy data.

1. Introduction.

1.1. Inverse heat conductivity problem. Let Ω be a bounded open set in R
d

with Lipschitz boundary ∂Ω, and consider the following boundary value problem






∂tv −∇ · (γ(x)∇v) = 0 in (0, T )× Ω,
v = f on (0, T ) × ∂Ω,

v
∣

∣

t=0
= v0 in Ω

(1)

where γ(x) ∈ L∞(Ω) such that γ(x) > c for a constant c > 0. Let vf be the unique
solution to the above equation. The time-dependent Dirichlet-to-Neumann (DN)
map Λ is then defined by

Λ : f → γ(x)
∂vf

∂ν

∣

∣

∣

∂Ω
, (2)

where ν is the outer unit normal to ∂Ω.
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Physically, we consider a heat-conducting body modelled by the set Ω and the
strictly positive heat conductivity distribution γ inside the body. The function
v0 is the initial temperature distribution in Ω over which we do not have control.
We perform boundary measurements by applying the temperature f(x, t) at the
boundary ∂Ω during the time 0 < t < T and measuring the resulting heat flux

γ(x)∂vf

∂ν |∂Ω through the boundary. The DN map Λ defined in (2) is an ideal model
of all possible infinite-precision measurements of the above type.

We study the ill-posed inverse problem of detecting conductivity inclusions inside
Ω from the local knowledge of Λ. Namely, we assume that only a part Γ ⊂ ∂Ω is

available for measurements and take as data the restrictions γ(x)∂vf

∂ν |Γ of heat fluxes
corresponding to functions f that are supported in Γ. An inclusion is defined as
a subdomain Ω1 ⊂ Ω such that γ(x) is perturbed on Ω1 from some known γ0(x).
Our aim is to find the location of ∂Ω1 from the local measurements. The typical
situation is drawn in the figure 1.

Figure 1.

The above inverse boundary value problem is related to nondestructive testing
where one looks for anomalous materials inside a known material. One such example
is monitoring a blast furnace used in ironmaking: the corroded thickness of the
accreted refractory wall based on temperature and heat flux measurement on the
accessible part of the furnace wall [11].

We remark that although Λ depends on both f and v0, our method uses no
information of the initial data v0 to detect ∂Ω1.

1.2. Main theorems. Suppose we are given γ0(x) ∈ C∞(Ω), γ(x) ∈ L∞(Ω) and
an open subset Ω1 ⊂⊂ Ω, i.e. Ω1 ⊂ Ω, such that for some constant C0 > 0,

C0 < γ0(x) < C−1
0 , C0 < γ(x) < C−1

0 , on Ω,

and

γ(x) = γ0(x), on Ω0 = Ω \ Ω1.

We put

γ1(x) = γ(x) − γ0(x).

Moreover, we shall assume that γ1(x) − γ0(x) has a constant sign on Ω1. Our
main purpose is to study discontinuous perturbations, however, we allow γ(x) to
be continuous. Hence, we impose the following assumption.

(A) infx∈K |γ1(x) − γ0(x)| > 0 for any compact set K ⊂ Ω1.
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We define (formal) differential operators by

A0 = −∇ · (γ0∇) , A = −∇ · (γ∇) .

We extend γ0(x) smoothly outside Ω so that γ0(x) = 1 for large |x|.
First, we consider the 1-dimensional problem. Namely, for the heat equation on

(a, b), we try to detect dist(a, ∂Ω1) from the measurement at a.

Theorem 1.1. Let d = 1, Ω = (a, b). Suppose Ω1 = (a1, b1) with a < a1 < b1 < b.
Take x0 ∈ R arbitrarily. Then there exists a real fucntion ϕλ(x) ∈ C∞(R) depending
on a large parameter λ > 0 having the following properties.
(1) It satisfies

(A0 + λ)ϕλ(x) = 0, x ∈ (a, b), λ >> 1. (3)

(2) For any compact sets K− ⊂ (−∞, x0), and K+ ⊂ (x0,∞), there exist constants
C, δ > 0 such that for λ > C

|ϕλ(x)| ≥ Ceδ
√

λ, |ϕ′
λ(x)| ≥ Ceδ

√
λ, ∀x ∈ K−,

|ϕλ(x)| ≤ Ce−δ
√

λ, |ϕ′
λ(x)| ≤ Ce−δ

√
λ, ∀x ∈ K+.

(3) Take 0 < T1 ≤ T arbitrarily, and let

hλ(x) = ϕλ(x)
∣

∣

∂Ω
, fλ(t, x) = eλthλ(x),

I(λ) = e−λT1 (Λfλ) (T1, a)hλ(a) − γ0(a)
dhλ

dx
(a)hλ(a). (4)

Then, if ±(γ1 − γ0) > 0 on Ω1, we have

lim
λ→∞

(2
√
λ)−1 log(±I(λ)) = −y(a1), (5)

where y(x) is defined by

y(x) =

∫ x

x0

dt
√

γ0(t)
. (6)

For higher dimensions, we need the following notations. By dist(x0, A), we mean
the distance between a point x0 ∈ Rd and a set A ⊂ Rd. Let B(x0, R) = {x ∈
Rd ; |x−x0| < R}. For dimensions d ≥ 2, we take an open subset Γ on the boundary
∂Ω, and try to recover the location of ∂Ω1 from a measurement on Γ. Take x0 ∈ R

d

arbitrarily. The roles of half-lines (−∞, x0) and (x0,∞) are played by B(x0, R) and
B(x0, R)c, respectively.

Theorem 1.2. Suppose d = 2, 3. Take B = B(x0, R) satisfying

(C-1) ∅ 6= B ∩ ∂Ω ⊂ Γ.

Take x∗ ∈ ∂B \ Ω arbitrarily. For an open set O ⊂ Rd, let

aB(O) = sup
x∈O

R2 − |x− x0|2
|x− x∗|2 , (7)

and fix constants T1 and µ such that

0 < T1 ≤ T, 0 < µ <
T1√

2 (aB(Ω) − aB(Ω1))
. (8)

Then there exists ϕλ(x) ∈ C∞(Rd \ {x∗}) depending on a large parameter λ > 0
having the following properties.
(1) It satisfies

(A0 + λ)ϕλ(x) = 0, 0 < |x− x∗| < 2
√
λR. (9)
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(2) For any compact sets K− ⊂ B(x0, R) \ {x∗}, and K+ ⊂ B(x0, R)
c
, there exist

constants C, δ > 0 such that for λ > C

|ϕλ(x)| ≥ Ceδλ, |∇xϕλ(x)| ≥ Ceδλ, ∀x ∈ K−,

|ϕλ(x)| ≤ Ce−δλ, |∇xϕλ(x)| ≤ Ce−δλ, ∀x ∈ K+.

(3) We put

hλ(x) = ϕλ(x)
∣

∣

∂Ω
, fλ(t, x) = eλthλ(x),

I(λ) = e−λT1

∫

Γ

(Λfλ) (T1, x)hλ(x)dσ(x) −
∫

Γ

γ0(x)
∂ϕλ(x)

∂ν
hλ(x)dσ(x), (10)

dσ(x) being the induced measure on ∂Ω. Then we have

lim
λ→∞

(
√

2µλ)−1 log(±I(λ)) = aB(Ω1),

accordingly as ±(γ1 − γ0) > 0.

Figure 2.

In Theorems 1.1 and 1.2, ϕλ(x) is constructed by using γ0(x) only. We put

R1 = dist(x0, ∂Ω1).

Let us remark that

aB(Ω1) > 0 ⇐⇒ B(x0, R) ∩ Ω1 6= ∅ ⇐⇒ R > R1,

aB(Ω1) < 0 ⇐⇒ B(x0, R) ∩ Ω1 = ∅ ⇐⇒ R < R1.

Then by Theorem 1.2, if ±(γ1 − γ0) > 0 on Ω1 and R < R1, then ±I(λ) tends to
0 exponentially as λ → ∞, and if R > R1, then ±I(λ) tends to ∞ exponentially
as λ→ ∞. This means, we can see whether B(x0, R) touches Ω1 or not using only
the knowledge of γ0(x).

Our results also hold for 4 ≤ d ≤ 6. However, to fix the idea, we shall consider
the case 1 ≤ d ≤ 3.
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1.3. Detection algorithm. Suppose for the sake of simplicity that γ0 ≡ 1. The
1-dimensional case is rather easy. We have only to use (5) to compute a1. The
detection algorithm for d = 2, 3 is as follows.

1. Take an open set Γ ⊂ ∂Ω, and x∗ outside Ω, but close to Γ.
2. Draw a straight line l with end point x∗, take x0 ∈ l, and the ballB = B(x0, R)

such that (B ∩ ∂Ω) ⊂ Γ.
3. For large λ > 0, compute I(λ). The function

eλt|x− x∗|2−de−ζ·y(x), y(x) = y∗ + 2R
x− x∗

|x− x∗|2 , ζ =
µλ√

2
(y∗ + iy′⊥),

y∗ =
x∗ − x0

|x∗ − x0|
, y∗ · y∗⊥ = 0, |y∗⊥| = 1

will give an approximation of the probing data.
4. If I(λ) → 0 as λ→ ∞ we infer that B does not intersect the inclusion.
5. If I(λ) → ∞ (or −∞) as λ→ ∞ we infer that B intersects the inclusion and
γ1(x) > γ(x) (or γ1(x) < γ(x)) on it.

1.4. Transformation of exponentially growing solutions. The main idea of
the proof (for d = 2, 3) consists in using the probing data of the form eλtϕλ(x), where
ϕλ(x) is exponentially growing as λ → ∞ in the ball B(x0, R) and exponentially
decaying outside B(x0, R). Such a method was found and used in [4] for the case
of the elliptic problem: ∇ · (γ(x)∇u) = 0 by passing through the hyperbolic space.
The essential feature of this idea is to use conformal transformation which maps
a sphere to a plane. In this paper, we shall work entirely in the Euclidean space,
and use inversion with respect to a sphere (this is also the case in [4]), which maps
the ball B(x0, R) to the half-space {y · y∗ < 0}. We are then led to consider the
equation of the form

(−∆ + 2ζ · ∇ + qλ)u = f,

where ζ ∈ Cd. Although in our case qλ(x) grows up linearly in λ, suitable change of
variables enables us to reduce the construction of solutions to now standard method
of Sylvester-Uhlmann [9]. Another important difference is that in [4], the point x0,
the center of the ball B(x0, R), is taken outside the covex hull of Ω, while in our
method it should satisfy (C-1) and that x∗ ∈ ∂B \ Ω. This makes it possible to
probe regions deeper than that of [4].

It is interesting to find other conformal transformations mapping planes (lines)
to some surfaces (curves) which are useful for the probing problem. Putting trivial
transformations such as translation and orthogonal transformation aside, for d = 3,
the spherical inversion is essentially the unique conformal transformation for the
Euclidean Laplacian. It can be seen by embedding the problem into the hyperbolic
space, as was done in [4]. However, in 2-dimensions, the complex function theory
provides us with lots of conformal transformations. We shall give in this paper one
of such examples and use it for the inclusion detection problem in §5.

1.5. Literature review. There are lots of works on inverse problem of heat con-
ductivity. In a recent article of [6], the following heat equation is considered for
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domains D ⊂⊂ Ω,














ut − ∆u = 0, x ∈ Ω ⊂ D, 0 < t < T,

∂u

∂ν
+ ρu = 0, on ∂D,

u(x, 0) = 0, in Ω \D,
ν being the unit normal on ∂D. Assuming that D and ρ are unknown, they recover
the location and shape of D from the knowledge of u(x, t) and ∂u(x, t)/∂ν on ∂Ω.
The proof is based on the exponentially growing solution of the form exp(τx · (ω +
iω⊥)) with ω, ω⊥ ∈ S2, ω ⊥ ω⊥. This is an extreme case of the problem treated in
this paper by taking the heat conducting coefficient γ(x) = 0 on Ω1.

In [2] the interior boundary curve of an arbitrary-shaped annulus is reconstructed
from overdetermined Cauchy-data on the exterior boundary curve, by assuming
γ = 1 and using the Newton method to a boundary integral equation approach.
In [1] the shape of an inaccessible portion of the boundary is reconstructed by lin-
earisation. In [3] the position of the boundary is reconstructed as a function of
time, using the sideways heat equation. The proposed method of the present paper
differs from these; it is a direct reconstruction method, and it finds inclusions in
non-constant background conductivities. For other related results, see [11, 12, 8]
and the survey article [10].

The paper is organized as follows. In §2 and §3, we shall constuct the probing data
ϕλ(x). Theorems 1.1 and 1.2 are proved in §4. The use of conformal mapping in
2-dimensions is explained in §5. In §6, we give some numerical results for the one
dimensional case.

2. 1-dimensional trial function. Take x0 ∈ R arbitrarily, and make the change

of variable by (6). Letting ϕλ = ψ1(y)e
−
√

λy, we transform the equation (3) into

ψ′′
1 − (2

√
λ− p(y))ψ′

1 + λp(y)ψ1 = 0, ′ =
d

dy
,

where p(y) = (2
√

γ0(x(y)))
−1 dγ0

dx
(x(y)) =

d

dy
log

(

γ0(x(y))
1/2

)

. Putting P (y) =

γ0(x(y))
−1/4, we then have 2

d

dy
P (y) = −P (y)p(y). Therefore, letting ψ1 = P (y)ψ2,

we have

ψ′′
2 − 2

√
λψ′

2 −Q(y)ψ2 = 0, (11)

where Q(y) =
p′(y)

2
+
p(y)2

4
∈ C∞

0 (R). Putting ψ2 = 1 + φ, we then have

φ′′ − 2
√
λφ′ −Q(y)φ = Q. (12)

We consider the integral operator

(Su)(y) =
1

2
√
λ

∫ y

−∞
(e−2

√
λ(t−y) − 1)u(t)dt.

Take A > 0 sufficiently large. If u ∈ C2((−∞, A)) satisfies u, u′, u′′ ∈ L1((−∞, A)),
we have

(Su′′)(y) = u(y) + 2
√
λ(Su′)(y).
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Therefore, φ ∈ C2((−∞, A)) is a solution to (12) satisfying φ, φ′ ∈ L1((−∞, A)) if
and only if φ is a bounded solution to

φ = SQφ+ SQ.

Since Q(s) is compactly supported, we have

‖SQ‖B(L∞(I);L∞(I)) ≤
C√
λ
, I = (−∞, A),

which implies the existence of a solution ψ2 ∈ C2((−∞, A)) of (11) such that

|∂n
x (ψ2(y) − 1)| ≤ C(

√
λ)−1+n, n = 0, 1, 2.

Putting ϕλ(x) = P (y)e
√

λyψ2(y), we obtain the following Theorem.

Theorem 2.1. There exists a solution ϕλ(x) to the equation (3) such that

ϕλ(x) = γ0(x)
−1/4e−

√
λy(x)(1 + φλ(x)), (13)

where y(x) is defined by (6) and φλ(x) satisfies

|∂n
xφλ(x)| ≤ C(

√
λ)−1+n, n = 0, 1, 2, a ≤ x ≤ b.

3. Multi-dimensional trial function. The construction of ϕλ(x) is more com-
plicated in multi-dimensions than in the one-dimensional case. We shall prove the
following theorem.

Theorem 3.1. Let d = 2, 3 and x0, x
∗ be as in Theorem 1.2. Take y∗, y∗⊥ ∈ R

d

such that

y∗ =
x∗ − x0

|x∗ − x0|
, y∗ · y∗⊥ = 0, |y∗⊥| = 1, (14)

and let ζ ∈ Cd be a complex vector such that

ζ =
µλ√

2
(y∗ + iy∗⊥), (15)

where µ > 0 is a constant satisfying the condition (8). Let y = y(x) be the inversion
defined by

y = y∗ + 2R
x− x∗

|x− x∗|2 . (16)

Then for large λ > 0, there exists a solution ϕλ(x) to the equation (9) in the region

0 < |x− x∗| < 2
√
λR having the following form:

ϕλ(x) = |x− x∗|2−dγ0(x)
−1/2(1 + φλ(x))e−ζ·y(x), (17)

where for any 0 < δ < 1, φλ(x) satisfies

‖φλ(x)‖L∞(Ω) ≤ Cδ µ
−1λ−δ/2, (18)

‖∇xφλ(x)‖L∞(Ω) ≤ Cδ µ
−1λ(1−δ)/2

for a constant Cδ > 0, which also depends on R and x0 but is independent of µ and
large λ. Moreover

Re ζ · y(x) < 0 ⇐⇒ |x− x0| < R,

Re ζ · y(x) = 0 ⇐⇒ |x− x0| = R,

Re ζ · y(x) > 0 ⇐⇒ |x− x0| > R.

(19)
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3.1. Schrödinger equation and spherical inversion. To prove Theorem 3.1,
we need two changes of (in)dependent variables. For a solution ϕλ to (9), we put
v =

√
γ0ϕλ. Then v satisfies

− ∆v +

(

∆
√
γ0√
γ0

+
λ

γ0

)

v = 0. (20)

Next we pass to the inversion (16). Letting y′ = y − (y · y∗)y∗, and using
x∗ = x0 +Ry∗, we have

y · y∗ =
|x− x0|2 −R2

|x− x∗|2 , y′ =
2R(x− x0)

′

|x− x∗|2 . (21)

The inverse map : y → x is given by

x = x∗ + 2R
y − y∗

|y − y∗|2 . (22)

Direct computation yields the following lemma.

Lemma 3.2. (1) The above transformation x→ y maps

the ball {|x− x0| < R} to the half-space {y · y∗ < 0},
the sphere {|x− x0| = R} to the plane {y · y∗ = 0},
the outer region {|x− x0| > R} to the half-space {y · y∗ > 0},

where y∗ is defined by (14).
(2) For any f(y) ∈ C∞(Rd),

4R2∆xf(y(x)) = |y − y∗|2+d∆y

(

|y − y∗|2−df(y)
)

∣

∣

∣

y=y(x)
.

Here ∆x means
∑d

j=1(∂/∂xj)
2.

For a solution v(x) to (20), we put w(y) = |y−y∗|2−dv(x(y)), where x(y) is given
by (22). Then by the above lemma, w(y) satisfies

(−∆y + qλ(y))w(y) = 0, (23)

qλ(y) =
4R2

|y − y∗|4
(

∆
√
γ0√
γ0

+
λ

γ0

)

∣

∣

∣

x=x(y)
.

3.2. Proof of Theorem 3.1. Taking ζ from (15), we look for a solution w(y) of
(23) of the form

w(y) = (1 + φ(y))e−ζ·y.

Since ζ2 = 0, φ satisfies

− ∆φ+ 2ζ · ∇φ+ qλφ = −qλ. (24)

This is the equation treated in [9], with the difference that the potential qλ grows
up linearly in λ. The remedy is to make the following change of variables and
parameter :

Y =
√
λ(y − y∗), η = (

√
λ)−1ζ.

Letting Φ(Y ) = φ(y), we then have

−∆Y Φ + 2η · ∇Y Φ +QλΦ = −Qλ,

Qλ(Y ) =
qλ(y)

λ
=

4R2

|Y |4
(

∆
√
γ0

λ
√
γ0

+
1

γ0

)

∣

∣

∣

x=x(y)
.
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The potential Qλ(Y ) is now bounded in λ, however, it has a singularity at Y = 0.
We take χ∞ ∈ C∞(Rd) such that χ∞(Y ) = 1 if |Y | ≥ 1/2, χ∞(Y ) = 0 if |Y | ≤ 1/4,
and define Vλ(Y ) by

Vλ(Y ) = χ∞(Y )Qλ(Y ).

We prove that if |η| = µ
√
λ is sufficiently large, the equation

(−∆Y + 2η · ∇Y + Vλ)Ψ = −Vλ, (25)

admits a unique solution Ψ ∈ L2,σ, where the weighted L2-space L2,σ is defined by

L2,σ = {u(Y ) ; (1 + |Y |2)σ/2u ∈ L2(Rd)}
with obvious norm.

The following lemma can be proved easily, and the proof is omitted.

Lemma 3.3. If σ < (6 − d)/2, Vλ satisfies the following inequalities:

‖(1 + |Y |)4Vλ‖L∞(Rd) ≤ C,

‖Vλ‖L2,σ+1 + ‖∇Y Vλ‖L2,σ+1 ≤ C,

‖(1 + |Y |)4∇Y Vλ‖L∞(Rd) ≤ C,

where the constant C does not depend on µ or on λ ≥ 1.

Then thanks to [9, Theorem 2.3] and Lemma 3.3, for all σ ∈ (−1, 0), (25) admits
a unique solution Ψ ∈ L2,σ. Moreover, for |η| > 1,

‖Ψ‖L2,σ ≤ C|η|−1.

Letting ′ = ∂/∂Yj and differentiating (25), we obtain

(−∆Y + 2η · ∇Y + Vλ)Ψ′ = −V ′
λ(1 + Ψ).

Lemma 3.3 again implies that ‖V ′
λ(1 + Ψ)‖L2,σ+1 ≤ C, hence

‖∇Y Ψ‖L2,σ ≤ C|η|−1.

Let us recall the correspondence

|Y | > 1 ⇐⇒ |y − y∗| > 1√
λ
⇐⇒ |x− x∗| < 2

√
λR.

Therefore, for σ ∈ (−1, 0), there exists a unique solution φ(y) ∈ L2,σ of (24) in the

region |y − y∗| > 1/
√
λ. Letting Ω′ = {y(x);x ∈ Ω}, and noticing that |η| = µ

√
λ,

we then have

‖φ‖L2(Ω′) ≤ Cσ(1 + λ)|σ|/2 ‖(1 + λ |y − y∗|2)σ/2φ‖L2(Ω′)

≤ Cσ(1 + λ)|σ|/2 λ−d/2‖Ψ(Y )‖L2,σ

≤ Cσµ
−1λ(|σ|−d−1)/2.

Similarly, since ∇yφ(y) =
√
λ∇Y Ψ(Y ), we obtain

‖∇yφ‖L2(Ω′) ≤ Cσµ
−1λ(|σ|−d)/2,

and then, generally,

‖φ‖Hs(Ω′) ≤ Cσ,sµ
−1λ(|σ|−d+s−1)/2, s > 0.

Thanks to Sobolev’s embeddings in Rd, d = 2, 3, we obtain if s > d/2:

‖φ‖L∞(Ω′) ≤ Cσ,sµ
−1λ(|σ|−d+s−1)/2,

‖∇φ‖L∞(Ω′) ≤ Cσ,sµ
−1λ(|σ|−d+s)/2.
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Hence letting δ = 1 − |σ|, if µ
√
λ is sufficiently large we obtain

‖φ‖L∞(Ω) ≤ Cδ µ
−1λ−δ/2,

‖∇φ‖L∞(Ω) ≤ Cδ µ
−1λ(1−δ)/2.

The estimates (19) follow from Lemma 3.2.

4. Detection of inclusions.

4.1. Stationary D-N map. We define the stationary Dirichlet-Neumann maps
Λ0

S and ΛS ∈ B(H1/2(∂Ω);H−1/2(∂Ω)) as follows:

Λ0
S(h) = γ0

∂u0

∂ν
, ΛS(h) = γ

∂u

∂ν
,

where u0 and u are solutions to
{

(A0 + λ)u0 = 0 on Ω,
u0 = h on ∂Ω,

{

(A + λ)u = 0 on Ω,
u = h on ∂Ω.

(26)

Let 〈 , 〉∂Ω be the inner product on L2(∂Ω) and put

JS(h) = 〈(ΛS − λ0
S)h, h〉∂Ω. (27)

The following lemma was proven in [7] in the case λ = 0.

Lemma 4.1. The following identities hold:

JS(h) =

∫

Ω

{

(γ − γ0)|∇u0|2 − γ|∇(u− u0)|2 − λ|u− u0|2
}

dx, (28)

JS(h) =

∫

Ω

{

γ0(γ − γ0)

γ
|∇u0|2 +

1

γ
|γ∇u− γ0∇u0|2 + λ|u − u0|2

}

dx. (29)

Proof. By Green’s formula, we have for g ∈ H1(Ω)

〈Λ0
Sh, g〉∂Ω =

∫

Ω

(γ0∇u0∇g + λu0g) dx, (30)

〈ΛSh, g〉∂Ω =

∫

Ω

(γ∇u∇g + λug) dx. (31)

Letting g = u0 in (30) and g = u in (31), we have

〈Λ0
Sh, h〉∂Ω =

∫

Ω

(

γ0|∇u0|2 + λ|u0|2
)

dx, (32)

〈ΛSh, h〉∂Ω =

∫

Ω

(

γ|∇u|2 + λ|u|2
)

dx, (33)

Relation (30) with g = u− u0 gives:

0 =

∫

Ω

{γ0∇u0 · ∇(u − u0) + λu0(u− u0)}dx. (34)
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From (33) − (32) we have

JS(h) =

∫

Ω

{

(γ − γ0)|∇u|2 + γ0(|∇u|2 − |∇u0|2) + λ(|u|2 − |u0|2)
}

dx

=

∫

Ω

{

(γ − γ0)|∇u|2 + γ0|∇(u − u0)|2

+γ0 (∇(u− u0) · ∇u0 + ∇u0 · ∇(u − u0))

+λ
(

|u− u0|2 + (u− u0)u0 + u0(u− u0)
) }

dx.

Thanks to(34) we obtain

JS(h) =

∫

Ω

{

(γ − γ0)|∇u|2 + γ0|∇(u − u0)|2 + λ|u − u0|2
}

dx. (35)

Now letting ψ = γ∇u− γ0∇u0, we take notice of the following equality

(γ − γ0)|∇u|2 + γ0|∇(u − u0)|2
= γ−2{(γ − γ0)|γ0∇u0 + ψ|2 + γ0|(γ0 − γ)∇u0 + ψ|2}
= γ−1γ0(γ − γ0)|∇u0|2 + γ−1|ψ|2.

This and (35) imply (29). By exchanging (γ, u, u−u0) and (γ0, u0, u0−u) in (35),
we can prove (28).

The above lemma implies
∫

Ω

γ0(γ − γ0)

γ
|∇u0|2dx ≤ JS(h) ≤

∫

Ω

(γ − γ0)|∇u0|2dx,

which yields the following corollary.

Corollary 1. If γ(x) − γ0(x) has a constant sign, then JS(f) has the same sign
and there exists a constant C > 0 such that

C

∫

Ω

|γ − γ0||∇u0|2dx ≤ |JS(h)| ≤ C−1

∫

Ω

|γ − γ0||∇u0|2dx. (36)

4.2. Uniform estimate for the parabolic equation.

Lemma 4.2. Let u0 be a solution to the equation (A0 + λ)u0 = 0 in Ω. Construct
solutions u to (26) with h = u0, and v(t) to (1) with f = eλtu0. Then for any
0 < t ≤ T and m ≥ 0, there exists a constant Ctm > 0 independent of λ such that

‖v(t, ·) − eλtu(·)‖Hm(Ω\Ω1) ≤ Ctm

(

‖v0‖L2(Ω) + ‖u0‖H1(Ω)

)

.

Proof. Letting w = v(t) − eλtu, we have






∂tw + Aw = 0 in (0, T ) × Ω,
w(t) = 0 on (0, T )× ∂Ω,
w(0) = v0 − u on Ω.

Thus, w(t) = e−tAD(v0−u), where AD denotes the self-adjoint operator A with the
homogeneous Dirichlet boundary condition. Therefore, for any t > 0 and m ≥ 0,
w(t) ∈ D((AD)m). By the regularity theorem for elliptic operators, we then have

‖w(t)‖H2m(Ω\Ω1) ≤ Cm(‖w(t)‖L2(Ω) + ‖(AD)mw(t)‖L2(Ω)) ≤ Ctm‖v0 − u‖L2(Ω).

Let φ be the solution of
{

Aφ = 0 on Ω,
φ = u0 on ∂Ω.
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Then ‖φ‖H1(Ω) ≤ C‖u0‖H1/2(∂Ω) and u− φ satisfies
{

(A+ λ)(u − φ) = −λφ on Ω,
u− φ = 0 on ∂Ω.

Since AD is positive definite, ‖u−φ‖L2(Ω) ≤ Cλ‖(AD+λ)−1φ‖L2(Ω) ≤ C‖φ‖L2(Ω) ≤
C‖u0‖H1/2(∂Ω), where C is independent of λ > 0. Hence we obtain for 0 < t ≤ T
and m ≥ 0

‖w(t, ·)‖Hm(Ω\Ω1) ≤ Ct‖v0 − u‖L2(Ω) ≤ Ct

(

‖v0‖L2(Ω) + ‖u0‖H1/2(∂Ω)

)

≤ Ct

(

‖v0‖L2(Ω) + ‖u0‖H1(Ω)

)

.

4.3. Proof of Theorems 1.1 and 1.2. For the sake of simplicity, we restrict the
proof to the case γ1(x) > γ0(x) on Ω1. Let y(x) be defined by (6) for d = 1, and
by (16) for d = 2, 3. Letting y∗ be defined by (14), we put

y1(x) =

{

y(x) (d = 1),
y(x) · y∗ (d = 2, 3),

and for a bounded open set O ⊂ Rd

a(O) = sup{−y1(x) ; x ∈ O}.
Note that a(O) = aB(O) for d = 2, 3 by (7) and (21). We put

κ =

{

2
√
λ, if d = 1,

√
2µλ, if d = 2, 3.

Let ϕλ(x) be as in Theorem 2.1 or Theorem 3.1. Thanks to (13) and (17), we have

Cκ2e−κy1(x) ≤ |∇ϕλ(x)|2 ≤ C−1κ2e−κy1(x). (37)

We then put

J(O, κ) =

∫

O
e−κ y1(x)dx,

Jγ(κ) =

∫

Ω

(γ − γ0)|∇ϕλ(x)|2dx.

Lemma 4.3. (1) For a non-empty bounded open set O ⊂ Rd, we have

lim
κ→∞

κ−1 log J(O, κ) = a(O). (38)

(2) We have

lim
r→∞

κ−1 log Jγ(κ) = a(Ω1). (39)

Proof. Letting Oǫ = {x ∈ O ; a(Ω) − ǫ ≤ −y1(x) ≤ a(O)}, we have
∫

Oǫ

eκ(a(O)−ǫ)dx ≤
∫

O
e−κy1(x)dx ≤

∫

O
eκa(O)dx.

Taking the logarithm, and letting κ → ∞, we get (38). Let O be a bounded open
set such that O ⊂ Ω1. Then in view of (37), we have

Cκ2J(O, κ) ≤ Jγ(κ) ≤ C−1κ2J(Ω1, κ),

which implies by (38)

a(O) ≤ lim inf
κ→∞

κ−1 log Jγ(κ) ≤ lim sup
κ→∞

κ−1 log Jγ(κ) ≤ a(Ω1).

Since O ⊂⊂ Ω1 can be taken arbitrarily, we get (39).
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We put

hλ(x) = ϕλ(x)
∣

∣

∣

∂Ω
.

By Corollary 4.2 and (39), we have

Lemma 4.4. Let JS(f) be defined by (27). Then we have

lim
κ→∞

κ−1 log JS(hλ) = a(Ω1).

Before entering into the probing problem, we need to study geometric properties
of the map : x → y1(x). The next lemma follows from a direct computation using
R = |x0 − x∗| and (21).

Lemma 4.5. Let d ≥ 2. For c 6= 1, let

xc =
x0 − cx∗

1 − c
, Rc =

R

|1 − c| .

Then we have
{

x ∈ R
d ; −y1(x) = c

}

= B(xc, Rc).

Note that B(xc, Rc) is the sphere passing through x∗ with center on the line
l = {x∗ + t(x0 − x∗) ; t ∈ R}. When c grows up, so does its radius, and if c = 0, it
is the sphere B(x0, R).

Now, by definition, there exists x ∈ Ω1 such that −y1(x) = a(Ω1). Then Ω1

lies outside B(xc, Rc) with c = a(Ω1). Assume that the open set Γ ⊂ ∂Ω satisfies
the condition (C-1). Then by a suitable choice of c < a(Ω1), we see that Ω2 =

Ω \B(xc, Rc) satisfies

(C-2) ∂Ω \ Γ ⊂ ∂Ω2, Ω ∩B(x,R) = ∅, a(Ω2) < a(Ω1).

The following lemma gives a relation between the time-dependent measurement
I(λ) defined by (4) or (10) and the stationary one JS(hλ).

Lemma 4.6. Assume the condition (C − 1) for d = 2, 3. Then there exists δ > 0
such that the following estimate holds:

∣

∣

∣

∣

I(λ) − JS(hλ)

JS(hλ)

∣

∣

∣

∣

≤ e−δκ, ∀λ > 1/δ.

Proof. Let fλ(t, x) = eλtϕλ(x), and v(t, x) the solution of (1) with f = fλ. Let
uλ be the solution of (26) with h = hλ. Letting w = v − eλtuλ, we then have

I(λ) = JS(hλ) +RΓ(λ) +RS(λ),

RΓ(λ) = e−λT1

∫

Γ

γ
∂w(T1, ·)

∂ν
hλdσ,

RS(λ) = −
∫

∂Ω\Γ
(ΛS − Λ0

S)hλ hλdσ,

Then, thanks to lemma 4.2, we obtain:

|RΓ| ≤ Ce−λT1‖∂w(T1, ·)
∂ν

‖H1/2(∂Ω) ‖hλ‖H1/2(∂Ω)

≤ Ce−λT1‖w‖H2(Ω\Ω1) ‖ϕλ‖H1(Ω)

≤ Ce−λT1(‖v0‖2 + ‖ϕλ‖2
H1(Ω))
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By (37), we have ‖ϕλ‖2
H1(Ω) ≤ Cκ2eκa(Ω). Hence

|RΓ| ≤ Cκ2e−λT1+κa(Ω). (40)

Let us estimate RS . If d = 1 we set Ω2 = (a2, b) ⊂ Ω with a1 < a2 < b. Recall
that Ω1 = (a1, b1). If d = 2, 3, we take Ω2 satisfying the condition (C − 2). Then
we have

|RS | ≤ C(‖uλ‖H1(Ω2) + ‖ϕλ‖H1(Ω2))‖ϕλ‖H1(Ω2)

≤ C(‖w̃‖H1(Ω2) + 2‖ϕλ‖H1(Ω2))‖ϕλ‖H1(Ω2),
(41)

with w̃ = uλ − ϕλ. Using (35) we have ‖w̃‖H1(Ω) ≤
√

JS(hλ). Hence, by (36), we
obtain

|RS | ≤ C
(
√

JS(hλ) + ‖ϕλ‖H1(Ω2)

)

‖ϕλ‖H1(Ω2).

By (37), (41) and

‖ϕλ‖H1(Ω2) ≤ Cκeκa(Ω2)/2.

Lemma 4.5 implies that for any ǫ > 0, there exists κ0 > 0 such that

eκ(a(Ω1)−ǫ) ≤ JS(hλ) ≤ eκ(a(Ω1)+ǫ), ∀κ > κ0. (42)

In view of (40), (41) and (42), we have
∣

∣

∣

∣

I(λ) − JS(hλ)

JS(hλ)

∣

∣

∣

∣

≤ |RΓ(λ)|
JS(hλ)

+
|RS(λ)|
JS(hλ)

≤ Cκ2
(

e−λT1+κ(a(Ω)−a(Ω1)+ǫ) + eκ(a(Ω2)−a(Ω1)+2ǫ)
)

.

(43)

Now we use the geometric configuration of Ω1 and Ω2. In the case d = 1, y(x) is
monotone increasing. Hence

a(Ω2) = sup
x∈Ω2

(−y1(x)) = −y(a2) < −y(a1) = sup
x∈Ω1

(−y1(x)) = a(Ω1).

In the case d > 1, we have a(Ω2) < a(Ω1) by (C−2). By the condition (8), we have
−λT1 + κ(a(Ω)− a(Ω1)) < −δκ for some δ > 0. Therefore choosing ǫ small enough
in (43), we prove the lemma.

Now Theorems 1.1 and 1.2 follow from Lemma 4.7 and (42).

5. 2-dimensional conformal map. In this section, we identify x = (x1, x2) ∈ R
2

with a complex number z = x1+ix2 ∈ C. Consider a univalent holomorphic function
F (z) defined in a neighborhood of Ω, and the conformal map : z → w = y1 + iy2 =
F (z). As in §3, we look for a solution of (9) in the form ϕλ(x) = (1+φ(y))e−ζ·F (x),

where φ satisfies (24). Note that ζ · F (z) is identified with
µλ√

2
F (z). Assume that

0 6∈ Ω and let us choose F (z) = z−n − ρ−n with ρ > 0 and n = 1, 2, . . .. The case
n = 1 corresponds to the inversion we have studied in §3, where R corresponds to
2/ρ.

Consider the curve ReF (z) = 0 that separates the set of x where ϕλ(x) has
an exponential growth from the set of x where ϕλ(x) has an exponential decay as
λ → ∞. Writing z = reiα, we have that ReF (z) = 0 ⇐⇒ r = ρ(cos(nα))1/n. It
appears that if Ω is convex, then n = 3 is a better choice than n = 1, 2 since the
curve ReF (z) = 0 goes more deeply inside Ω (cf. figure 3).
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Figure 3.

6. Numerical tests in the one-dimensional case. We take γ0 = 1 which im-
plies

hλ(x) = e−
√

λ(x−x0)

fλ(t, x) = eλthλ(x)

I(T1, λ) = [e−λT1(Λfλ)(T1, a) −
∂hλ

∂x
(a)]hλ(a) (44)

lim
λ→∞

log(I(T1, λ))

2
√
λ

= x0 − a1. (45)

The equation (45) is calculated with a finite λ, so we have the approximative re-
construction equation

a1 ≈ x0 −
log(I(T1, λ))

2
√
λ

, (46)

which is the more accurate the larger the parameter λ is. In practice larger
values here implies very large values of fλ on the boundary, so numerical er-
rors will be a problem. However for initial testing purposes we proceed by using
λ = 1.0, 1.5, 2.0, . . . , 20.0. Also we choose a = 0, b = 1, x0 = 0 and T = 1.

Four test cases of the following heat conductivity are considered:

γ = γ1, a1 ≤ x ≤ b1,

γ = γ0, otherwise,

where the values of a1, b1 and γ1 are given in table 6. These test cases are pictured
in figure 4. The solutions v in (1) are calculated with the finite element method
(FEM) so that there are Nx = 200 points of x ∈ [0, 1] and Nt = 100 points of
t ∈ [0, 1]. We consider three different initial temperature distributions:

v(x, 0) = 1,

v(x, 0) = 2 sin(πx),

v(x, 0) = 4| sin(4πx)|.
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In figure 5 we display the solution function v(x, t), v(x, 0) = 1, λ = 2 calculated by
FEM for the test case 1, smaller numbers of Nx and Nt are only used for printing
purposes.

a1 b1 γ1

Case 1 0.1 0.3 0.5
Case 2 0.1 0.3 5
Case 3 0.4 0.6 0.5
Case 4 0.4 0.6 5

Table 1. Parameters a1, b1 and γ1 for the test cases

To simulate measurement noise we define the vector

Ln = L · (1 + c · r), (47)

where L is the vector containing the values of Λfλ(T1, 0) = γ(x)∂vfλ

∂ν

∣

∣

∣

x=0
at the

FEM mesh points and r is a normally distributed random vector (white noise) of
the same size and the parameter c is adjusted separately for each λ so that the
relative noise is approximately two percent:

||Ln − L||
||L|| ≈ 0.02. (48)

The logarithm of the indicator function (44) is calculated for each t ∈ [0, 1] and
λ = 1.0, 1.5, 2.0, . . . , 20.0. This information can be presented in several ways. In
figure 6 one can see how the logarithm of the indicator function, noisy and non-
noisy, behaves as a function of T1, for λ = 1 and λ = 10, in test case 1. We conclude
that the value λ = 1 is too small to get accurate indicator function values, and that
λ = 10 provides good values throughout the time interval [T/2, T ]. In figure 7 we
have a similar graph for λ = 10, but for each initial temperature distribution. We
conclude that the initial distribution v(x, 0) does not change the indicator function
values in the interval [T/2, T ] and thus it will not affect the reconstructions. In
figure 8 one can see how the logarithm of the indicator function, noisy and non-
noisy, behaves as a function of λ, for several choices of T1, in test case 1. Notice
that in these graphs the analytical value based on (46) is also shown.

Based on the observation that the values of the indicator function are good
between the time interval [T/2, T ] we use the following indicator function value:

I⋆(λ) =
1

N⋆
t

T
∑

T1=T/2

I(T1, λ), (49)

where I(T1, λ) is defined by (44) andN⋆
t is the number of FEM mesh points t ∈ [0, 1]

between the time values T/2 and T . The value I⋆(λ) is then inserted into (46), from
which the reconstruction a1 is calculated with λ = 1.0, 1.5, 2.0, . . . , 20.0. In figure 9
the reconstructed a1, noisy and non-noisy, is shown as a function of λ, for each test
case.
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Figure 7. The logarithm of the indicator function, non-noisy on
the left and noisy on the right, as a function of T1 for λ = 10 in
test case 1, with three different initial data v(x, 0) = 1, v(x, 0) =
2 sin(πx) and v(x, 0) = 4| sin(4πx)|. Note that the effect of the
initial data vanishes as T1 grows.
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Figure 8. The logarithm of the indicator function, non-noisy on
the left and noisy on the right, as a function of λ for several choices
of T1 in test case 1.
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