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ABSTRACT

A recent work has shown that using conformal mapping can lead to exact values of the degenerate scales in
plane elasticity. We elaborate on this work by introducing some algebraic tools when this conformal mapping
is a rational fraction transforming the outside of the unit circle into the outside of the considered domain.
Using these tools, new cases are solved including shortened hypotrochoid, arc of circle, new approximates of
equilateral triangle and square or symmetric Joukowski profiles. Another method makes it possible to obtain
the degenerate scales for plane elasticity from the degenerate scale for Laplace’s equation for some multiply
connected sets: the cases of segments on a line or of arcs of circle with a n-fold symmetry. In these last cases,
the exact values of the degenerate scales are obtained when the degenerate scale for the Laplace problem is

known.
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1. Introduction

The degenerate scales appear when solving single layer bound-
ary integral equations with kernels containing a logarithmic term.
This is the case for plane problems related to conduction or elasticity.
Among early investigators working on Laplace’s equation, we can cite
Christiansen (1975); Jaswon (1963). Costabel and Dauge (1996) inves-
tigated the case of biharmonic equation. Antiplane elasticity prob-
lems are closely related to Laplace’s ones and some specific cases
have been considered: Joukowski profile Chen (2013), quadrilaterals
Chen (2012), regular N-gon domains Kuo et al. (2013b). The case of
plane elasticity has been studied in Constanda (1994); Kuhn et al.
(1987); Vodicka and Manti¢ (2004). The interest in degenerate scales
has increased with the development of Boundary Element Methods,
the degenerate scales causing loss of uniqueness and ill conditioning
(Chen et al., 2002; Chen and Lin, 2008; Dijkstra and Mattheij, 2007)
of the linear system obtained by BEM. Several methods have been de-
veloped to get over this problem (Chen et al., 2014, 2015b, 2005; Chen
and Lin, 2008; Christiansen, 1982).

The asymptotic behavior of degenerate scales has been investi-
gated for Laplace’s equation Corfdir and Bonnet (2013) and for plane
elasticity (Chen, 2015; Vodicka, 2013). Upper bounds of degenerate
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scales for plane elasticity have been obtained recently Corfdir and
Bonnet (2015). A first work about anisotropic elasticity has been per-
formed by Voditka and Petrik (2015).

The exact values of degenerate scales for Laplace’s Boundary Value
Problems are known for many cases. They can be obtained by com-
puting the logarithmic capacity of the domain Hayes and Kellner
(1972). The name of logarithmic capacity has been given because
of “the analogy with the three-dimensional Newtonian case typified
by the distribution of electricity on a conductor” Hille (1962). A re-
view of known exact values of logarithmic capacities can be found
in Rumely (1989) and examples of application to Laplace’s problem
in Kuo et al. (2013a). In comparison, the known exact values of de-
generate scales for elasticity are scarce. A review of the cases already
studied can be found in Corfdir and Bonnet (2015). So, the aim of the
present paper is to provide two methods of solution and the exact
values of elastic degenerate scales in several application cases. The
methods of solution use complex potentials. Indeed, we apply the
ideas presented by Muskhelishvili (1953) to solve boundary values
problems in plane elasticity using a specific complex representation
(see also (England, 2003; Milne-Thomson, 1960; Sokolnikoff, 1956)).
This method has been applied to numerous problems, for example
the study of stress concentration due to holes and cracks (Savin, 1961;
Sneddon and Lowengrub, 1969). A first application of such a method
to the degenerate scale problem for elasticity was described in Chen
et al. (2009a). These authors use conformal mappings w(z) from the
outside of the unit disk to the outside of considered domains. One
feature of these conformal mappings w(z) is to behave as z at oo,
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Fig. 1. Notations: conformal mapping w from C- to I'-.

In this paper, a first new method is developed by extending
the methodology described in the pioneering paper of Chen et al.
(2009a), leading to a more systematic means to obtain the degen-
erate scales. The computation leads to finite algebraic linear systems.
Then, the calculus can be greatly alleviated by the use of symbolic
computational softwares.

A second method is developed, using the solution of the Laplace’s
problem to build the elastic complex potentials for two cases: sets of
segments on a line or set of arcs of a circle with a n-fold symmetry
axis. We show how to find the exact values of the elasticity degener-
ate scales in these cases when the exact value of the degenerate scale
(or of the logarithmic capacity) for Laplace’s problem is known.

2. The null condition at the boundary using conformal mapping
and complex potentials

In this paper, the degenerate scale problem for elasticity will be
studied for contours that can be described by using conformal map-
pings (For example, contour I' in Fig. 1). This section presents the
background on conformal mapping and complex potentials that are
used to find the degenerate scales. In a first step, the requirements
on the conformal mappings that are used to describe different con-
tours are prescribed. Next, the complex potentials that allow us to
obtain the solution of plane elasticity problem are recalled, these
potentials being also submitted to precise requirements. Degener-
ate scales correspond to specific contours such that non-null poten-
tials meet a condition of null prescribed displacement at such con-
tours. So, the following step will be to present how this condition
of null displacement at the boundary can be prescribed. These non-
null potentials will be called in the following “eigenfunctions with 0
eigenvalue”.

2.1. Choice of the type of conformal mapping

In the books of Muskhelishvili (1953) and Sokolnikoff (1956) the
conformal mappings considered for the study of infinite domains are
from the interior of the circle to the exterior of the image of the circle;
more recent authors (England, 2003; Milne-Thomson, 1960) find gen-
erally more convenient to use the transformation from the outside of
the circle to the outside of the image of the circle (Fig. 1). This choice is
coherent with the mathematical definition of the class X of univalent
functions Duren (1983, e.g.); it is also used for the evaluation of the
logarithmic capacity and of the degenerate scale for Laplace’s equa-
tion. As explained thereafter, the contours I' that will be obtained
by the conformal mappings w(z) in X are at the degenerate scale for
Laplace’s equation.

We consider mapping functions defined on C= and which can be
written in the following way:

¢ =Rw(2). (1)

where R is a positive real and limit* = 1. Following Duren

(1983), the function w(z) is a univalent function of class X, i.e. holo-
morphic on C~ except for a simple pole at infinity with residue 1, and
has a series expansion w(z) = z+ Y 2o muz ",

In a first step we assume that 0 ¢ I'~; thatis we X% Duren (1983).
Ifitis not the case, itis shown in Section 2.4 thata convenient transla-
tion allows us to transform the problem into another one that meets
that condition.

Itis known that the image of the unit circle by such a mapping has
a logarithmic capacity equal to InR and is at the degenerate scale for
the Laplace’s operator if R =1 (Hayes and Kellner, 1972; Kuo et al.,
2013a; Yan and Sloan, 1988). So, we will essentially compare the
degenerate scales for elasticity to the degenerate scale for Laplace’s
problem.

2.2. Use of the elastic complex potentials

Following Muskhelishvili (1953), two elastic complex potentials
& and W can be used to obtain a displacement field solution of the
plane elasticity equations in ¢ plane. They are written:

() =AIn (&) +C¢ + Do(C), (2)

W(¢) = —AIn () +C'¢ +Wo(¢) 3)

where A is the conjugate of A and functions &g and W are holomor-
phic in I'". Then, the displacement components u and v are given by:

26(u+iv)=kd-d - (4)

with k = 3 —4v for plane strain problem (k = (3 —v)/(1+v) for
plane stress problems).

Following Voditka and Manti¢ (2004), it is also required for the
eigenfunctions with zero eigenvalue to meet the condition that the
stress field induces a finite resultant force at the boundary and tends
to 0 at infinity. A first consequence is that the solutions to the zero
eigenvalue problem are such that C =C’ = 0.

A second consequence of that condition impacts also the value of
®d, and Wy at infinity. We refer to Chen et al. (2009b) and we adopt
the following values for the potentials of a concentrated force P at a
point t with components Py and Py England (2003):

d)p = —FlIn(z —t);

\I/p=/(l?ln(z—t)+th—twithF= b + 1B

2rk+ 1)

Then, as shown in Chen et al. (2009b), the potentials at infinity can
be written in the form (2,3) with C =’ =0 and ®, and ¥, tend to
zero when z tends to infinity. This form of &y and W, depends on
the choice of the complex potentials ®p and Wp related to the con-
centrated force and is true only for the choice given by (5). It is im-
portant to notice that this form of potential for a point force corre-
sponds to an expression of the Green's tensor for plane elasticity that
is not the standard Green'’s tensor (Kelvin's tensor). In addition, mod-
ifying the choice of the potential that is used to describe the concen-
trated forces leads to another value of the degenerate scale. A scaling
procedure to convert the degenerate scale for one choice of poten-
tial to the degenerate scale for another one is reported in Vodicka
and Manti¢ (2004, (3.4)). A consequence is that all degenerate scales
obtained in the following must be multiplied by the factor ez to
recover the degenerate scales corresponding to the usual Kelvin's
tensor.

(5)

2.3. The boundary equation for eigenfunctions with 0 eigenvalue

We are looking for non trivial solutions with a null displace-
ment on I': then the potentials ®(¢), W(¢ ) must satisfy a boundary



equation that is taken as the conjugate of the condition that comes
directly from the definition of the displacement field (4):

KP(L) - () -W()=0Vel. (6)

This condition is now transformed by the mapping into a condi-
tion in the z plane. Therefore, we consider now the two functions
z), ¥(z) defined on C- U C:

$(2) = P(RW(2)); Y (2) = V(Rw(2)). (7)

These two functions are multivalued (due to the logarithmic
terms in ([2,3])) and holomorphic in C~. Substituting (7) and ¢’ (z) =
Rw'(z)®'(Rw(z)) into (6), we get the following boundary condition
(in the z plane) on the unit circle:

w(z)
Z)— Z) =
W (z)¢ (2) =¥ (2)
It is now possible to introduce into this boundary condition the
expression of ¢ and i containing the logarithmic terms.
We have:

kp(z) —

0VzeC. (8)

¢(z) = P(RW(2)) =Aln (Rw(2))+¢1(2) with ¢1(z) = Po(Rw(2))

(9)
with a similar relation for . ¢»; and v are univalued holomorphic
functions in C~ that are continuous in C~ UC.

These expressions contain the multivalued logarithmic term that
can be written as:

In(Rw(z)) =In(R) +In(2) + (In(w(z)) — In(2)) . (10)
S —— e —

$(2)

We intend to show that ¢ is univalued in C~ and tends to zero
when |z| tends to infinity. This is proved by using an argument devel-
oped in Muskhelishvili (1953). For any closed circuit in C~ not pass-
ing around C, the function ¢, reverts to its former value. However,
it is possible to show also that property for a closed circuit passing
around C. Indeed, the derivative ¢ is O(1 /%), then the increase along
a circle centered at the origin with radius T is equal to the integral of
¢/ along this circle and is O(1/T). Therefore, it is equal to zero since it
does not depend on T = 1. As a consequence, ¢, can be chosen as a
univalued holomorphic function in C- tending to zero when |z| — oo,
since ¥ tends to 1 for large z.

Using the previous decompositions of ¢, ¥, In(Rw(z)) leads to:

@(z) =AIn(R) +AIn(2) + ¢o(2) (11)
with ¢o(z) = Ap1(2) + P2 (2); (12)
Vr(z) = —Ak In (R) — Ak In (2) + Vo(2) (13)
with Yo(2) = —Ak Y1 (2) + V2(2). (14)

where the functions ¢ and ¢ are univalued, holomorphic in C~ and
tend to zero when z — oc.

Inserting (11) and (13) into the boundary Eq. (8), we get the fol-
lowing equation (Chen et al., 2009a):

2kA1In (R) + ko (2) — f(2) ) —Af(z)% —Yo(2) =0Vz eC, (15)
where f= %

The displacement given by the conjugate of the left hand term of
(15) must also be continuous in C~ UC. The values of R for which it is
possible to find non-null values of A, ¢ and /¢ meeting (15) are the
degenerate scales for I".

Chen et al. (2009b) have found a few solutions of this equa-
tion and obtained the value of the degenerate scales in the related
cases.

2.4. Remark: effect of adding a constant term to w(z)

If we translate the contour I' by adding a constant wq to w(z), its
degenerate scale does not change. As a consequence, the solutions of
Eq.(15)and of its transformed by a translation must be the same.

Indeed, if we substitute w(z) + wq to w(z) in (15), we get:

2810 (R) + Ko@) ~ T - o th(@ -ATD);

1 x o ~
- W":/(oz)z Vo(z) = 2kAIn (R) + K do(2) — f(2)dp(2)
_Af(Z);—(W,(Z)%(Z) W/(Z)Z @) =0 6)

We first notice that if the set (A, ¢o(z), ¥o(z)) is non-null and sat-
isfies (15), then A # 0 (otherwise any value of R would be a de-
generate scale). We deduce that if (A, ¢g(z), ¥o(z)) is a non-null
solution of (15) for the mappmg (w(z) +wg) at the scale R, then
(A, po(2), w,(z)qbo(z) Aw’u) 7 — ¥o(2) is a non-null solution of (15)
for the mapping w(z) at the same scale R. The derivation of (15) used
the fact that the mapping must be in X*. In fact it is only needed that
there exists at least one wg such that the condition w(z) + wg € L* is
fulfilled and this is always possible. In addition, it proves finally that
" and its transform by a translation lead to equations in A, ¢pp and ¥
that provide the same values of degenerate scales.

3. A method for the case where the conformal mapping is a
rational fraction

As explained previously, Eq. (15) can be used to find degenerate
scales, on the assumption that w € . However, it can be noticed that
all the examples for degenerate scales solved in Chen et al. (2009a)
use conformal mappings that are rational fractions. In addition, this
kind of conformal mapping is also the only one for which a method
of solution is developed in classical books (England, 2003; Muskhel-
ishvili, 1953).

It is therefore of prime importance to develop more precisely this
case. This is the subject of this section. In a first step, it will be shown
that an alternative equation can be used to obtain the degenerate
scales. Next, this equation will be transformed into a linear system
of equations that will be used to provide the degenerate scales.

3.1. A new expression of the boundary equation if w(z) is a rational
fraction

We suppose that w(z) is continuous on C U C~, so w(z) has no pole
on C. In Section 3 and the two following ones, it is assumed that w'(z)
# 0,z e C(we already know that w/(z) # 0,z € C~ since w is a confor-
mal mapping).

As w(z) = O(z)when z — oo and as we choose a null constant
term as explained previously, we can write:

y mi;
W(Z)—Z+Z +Zz(z Ik (17)

i=1 j=

The poles 0,yiiedl,..., n} are allin C*.
We define w(z) as:

. 1 om L& my _
w(z)=;+j2=]:Z X}:Z“/z y)JZeC. (18)

that corresponds to W(z) = w(z) .z € C.
The function f(z) can be written:
w(z)

fz) = @)

(19)



The function f(z) is also a rational fraction. As the derivative w/(z)
has all its zeros in C*, the poles of f(z) in C~ are (z; = 1/¥;, o), the
inverses of the conjugates of the poles of w(z) with the same multi-
plicity. This function can be written in the following way:

b bz 20
f@)= (o+§ H;,Z](Z Z)J+f1(z) (20)
where f1(z) is a rational fraction that is holomorphic in C—, contin-

uous in C~ UC, with all its poles in C* and vanishing when |z| =

We assume that ¢{, (z) is holomorphic in C~, continuous in C- UC
and tends to zero when z — oo. Under this condition, the product
f(z)¢6(z) can be written as:

fo¢o@ = Q(z)_(Bo+§jB.z‘)+;Jx (Z 7 H@ @)
=P(z) =F@)

with f,(z) a function holomorphic in C—, continuous inC~ UC and
vanishing when |z| = oo
Similarly, we can write:

f(z) =w(@) = (C0+ZC'Z"+ZZ(Z z)}+f3(z) (22)

i=1 j=1

=Q@) =G(z)
where f3(z) is a function that is holomorphic in C-, continuous inC~ U
C and vanishing when |z| =
Substituting relations (21) and (22) into (15) leads to:
2kAIn(R) + Ko(2) — P(2) —F(2) — f>(2)
—AQ(2) —AG(z) —Af3(z) —Yro(z2) =0 Yz e C. (23)

3.2. Simplified form of the boundary condition using Cauchy integrals

The form of the boundary condition (23) can be simplified us-
ing the properties of Cauchy integrals. Applying the operator f —
)— s f'“d‘ to (23), we use the classical results on Cauchy integrals
(Muskhclnshvm 1953) that are recalled in Appendix A.

The image of 2«A is null by (A.2), the image of k¢ (z) is null by
(A.3), the images of P. F, Q, G are null by (A.4). Finally we get by (A.1):

f2(2) +Af3(2) + Yro(2) =
Adding Eqs. (23) to (24) leads to:

0VzeC (24)

2kAIn(R) + kpo(z) — P(z) — F(z) —AQ(2) —AG(z) =0Vz e C.
(25)
Considering the conjugate of (25), we find:
2kAIN(R) + k¢po(z) = P(z) —F(z) —AQ(2) —AG(z) =0 Vz e C.
(26)
We define:
lo
~ =1
P(z) = ZB,;. (27)
j=1
with the property that:
P(z)=Bo+P(z) Vz C. (28)

In the same way, Q(z) is defined by the equality:
Q2) =G +Q@) VzeC (29)

and Fy is defined by:

o= z-z)1 )~ z= 1yl

i=1 j=1 i=1 j=1

B; ;: Jr2 y
= ZZ (y,_z;J VzeC (30)

i=1 j=1

It must be noticed that:

'j . : A K
o= (- 2)) = o2 ()

(31

so the above expression is the sum of a holomorphic function on €~
vanishing at infinity and of the constant ( — y;)/. We define now:

F2)=R@ -F (32)
with:
no o )
Fo=)" Bij(—y). (33)
i=1 j=1
And finally we have:

TZ):F@—}—E(Z)VZEC. (34)

G. Gy are defined in the same way with:

G(2) =Go+G(z) Vz e C. (35)

Substituting (28),(29), (34) and (35) into Eq. (26) and then apply-
ing f— b fo L2 [0 Jeads to:

—Kk¢o(2) + P(2) +F(2) +AQ(2) +AG(2)

Eq. (36) shows that ¢y is a rational fraction. Such a rational frac-
tion is holomorphic in the whole plane except at poles. It has a Lau-
rent series in the neighborhood of co: ¢g = 2£‘°=1 a;/z'. Then we de-
duce the following set of Iy equations:

~-B-AG =0 Vie{l,....lo). (37)

All the functions in (36) are rational fractions and can be differenti-
ated as suggested in Muskhelishvili (1953), leading to ( 3°i_, ;) rela-
tions:

=0VzeC . (36)

—k g z)) + PO(z) + FO(2)) + AQV (z)) + ACO(z))

=0Vie{l.....lj}. (38)
Adding (36) and (26) leads to:
2kAIn(R) —By — Fy —ACy —AGg = 0. (39)

3.3. Computation of the degenerate scales by using the determinant of
homogeneous systems

The set of (i li+ 1) Eqs. (37)-(39) in (i /i + 1) unknown
variables (A, a;, ¢“)(zj)) constitute a squared homogeneous linear
system Splitting each equation in real and imaginary parts, we get
2( ):,_ol + 1) linear equations and 2( Z, oli + 1) real unknown vari-
ables (Re(A), Im(A), Re(a;), Im(a;), Re(@{ (z/)). Im(¢” (z)) that con-
stitute again a squared homogeneous linear system. There are non
trivial solutions of this system of equations iff its determinant is null.

This determinant is a polynomial of degree 2 in p = InR that leads
to two values of the degenerate scale, as known in the case of plane
elasticity. In Section 4, we will evaluate completely the determinant
of this system in some specific cases. This constitutes the first method
used thereafter.



3.4. An alternative method

A second method can be described as follows. Since ¢ is a rational
fraction, it is possible to write:

- glj
$o(@ = Zg.z '+§§(Z 7 (40)
gij
ho(@) = Zg.z‘+;gzl“/z_m 37 (“4n
We consider:
2AIn (R) +kdo(2) — f@) (94(2) +A/2). (42)

It is possible to find ¥ a holomorphic function in C—, vanishing at
oo, satisfying (15), if the above rational fraction has no constant term,
no terms z', no terms 1/(z —y;)’. These conditions give (Y1 i + 1)
equations with the (Yo /; + 1) unknown variables g;, g j- This is
an equivalent system to the one described in the first method but
the unknown variables are not the same. However, the algebra has
been found simpler than the one obtained in Section 3.2 in several
cases. The degenerate scales are obtained again by computing ex-
plicitly the determinant of this system of equations, as explained in
Section 3.3. This alternative method will be used in Section 5.1 and in
Example 6.5.

3.5. Remark on the effect of changing x into —«x

It is noteworthy that the system of equations described above is
invariant when changing « into —«, as it will be shown now.

As explained before, the determinant of the system is a polyno-
mial of degree 2 in p = InR. We can write it as:

S(k . by by, by j. bi ) p? +T (i, by, by, by j. by j) p+U (k. by by, by j. bi ).
(43)

The functions (S, T. U) are polynomials. We consider Eq. (15) and

we replace A byA A/l o by g = po/i, Yo by 1[/0 = Y/i. After di-
viding by i, we get the new equation:

- foé;

It is the same equation as (15) if we replace —« by «. The corre-
sponding equation for p is:

S(— k., by, by, by j. by ;) p* + T(
+U( -k, b;, b;, b,lvj.m)l

—2kAp — Ky(2) —Kf(z)% —Up(z)=0VzeC. (44)

— ik, by by, bij. by j)p
(45)

Then, if p is a solution of (43) it is also a solution of (45). So, if we
change the sign of « in the algebraic expression of p = In (R;), we get
also the expression of the logarithm of one of the critical scales. It
must be noticed that this property is true only for the present choice
of the elastic potential and of the potentials related to the concen-

4. Case of a conformal mapping w(z) =z + P(z~1)
4.1. General case of P
We assume that P is a polynomial of degree n = 2 of 1: the case

n =1 is the case of an ellipse and is solved in details in Chen et al.
(2009b).

n
1
P=3%" mi . (46)
i=1
Eq.(20) can then be written:
F(z) = bpz" +by_12"" -+ by + f1(2) (47)
with f;(z) holomorphic in C, continuous in C~ U C and vanishing

at oo (we still assume that w'(z) # 0; z € C).
We write:

n
do=) aiz". (48)
i=1
Eqs. (37) and (39) can be written:
2k In (R)A + By —Aby = 0 for k = 0; (49)
K'Ek+Bk—Abk+]=0f01'(n—])>k>0: (50)
Ka("_l)—Abn =0f0rk=n—l; (5])
k@j=0fork >n-1; (52)
with
j—i=k+1
Substituting the value of By in (49)-(52), we get a system of n
equations in the unknown variables A, aq, ..., a...., a,_1 and their
conjugates:
2k In (R)A + ayby + 2azb3 + - - 4+ (n = 1)ay_1by —Aby =0;  (54)
K@ +a1bs +2ab4+ -- -+ (n = 2)ap_2by —Aby = 0 (55)
KOGy + Y iab;—Ab, =0; (56)
J—i=k+1
Kﬁm_z) + ﬂ]b" —Abn_] =0 (57)
I(a("_]) —Abn =0. (58)

Each of the above equations can be split into real and imaginary parts.
Then we get a system of 2n equations with the unknown variables
Re(A), Im(A), Re(q;), Im(q;) for i=1...(n —1). This system has the

trated forces (see Section 2.2). following determinant with p = In (R) b; = ¢i +id;:
2kp - [ &) —d n=2)tn1 —(n=2)dpy (n=1)cy —(n—1)dy
—d; “2kp-c  dy &) (n=2)dp.1 (N=2)Gg-1 (n=1dy  (n=1Gy
—C d, K +C3 —ds (n—=2)cy —(n=2)d, 0 0
—d, —C ds —K +C3 (n—2)dy (n—-2)cn 0 0
(59)
—C" 1 dn_1 Cn —dn K 0 0 0
—dn_1 —Cp-1 dy Cn 0 —K 0 0
—Cn dy 0 0 0 0 K 0
—dn —Cn 0 0 0 0 0 —K




With the help of a computer algebra software, the coefficients b;
and the determinant can be easily computed. When equating the
determinant to zero, we get an equation of the second degree in
p = In (R) with two complex solutions taking into account the multi-
plicity. In fact the solutions are always real since they determine the
two degenerate scales. In the following, we will study different par-
ticular cases.

4.2. Case where the b; are real numbers

and we assume that m € R*, We restrict ourselves to the case m <
n_l‘l' for having a «_:onformal mapping such t_hat w/(z) has no zeros on
C. The contour I is a shortened hypotrochoid. _

From Eq. (20), the corresponding function f(z) is:

Zn-1
Zm—mmn-1)"

The last term has all its poles in C* if m < 1/(n — 1). All the coef-
ficients ¢; are real and we have:

f@) =mz"" + (M2 =1)+1) (65)

In that case the determinant can be written as: Gy =m;¢=0.i=1...(n-2). (66)
2k p —C 0 Cy 0 (n—=2)c1 0 n-=1c¢ 0
0 —2Kp —Cq 0 Cy 0 (n—=2)c-1 0 (n—=1)¢c,
—C2 0 K +C3 0 n-=2)c 0 0 0
0 —C 0 —K +C3 0 n-=2)c 0 0
(60)
—Cn—1 0 Cn 0 K 0 0 0
0 —Cn-1 0 Cn 0 —K 0 0
—Cn 0 0 0 0 0 K 0
0 —Cn 0 0 0 0 0 —K

It can be arranged by moving upwards all uneven lines, and then
moving leftwards all uneven columns and finally we get this new ex-
pression of the determinant:

M* 0,

0 M-| (61)

where Oy is the n x n null matrix and M+ and M~ are written below:

2kp-0 G n=2)c,y (n=1)cp
—C K +C3 (n=2)cy 0
M+= . H (62)
—Cn-1 Cn K 0
—Cn 0 0 K
—2kp - &) (n—2)ch1 (n=1)cy
) —K +C3 (n—=2)c, 0
M- = :
—Cn-1 Cn —K 0
—Cy 0 0 —K
(63)

Finally, this determinant can be expanded as the product of two
determinants D* = [M*| and D~ = |M~|. Both are one degree poly-
nomials in p = In (R).

These results will be used in some particular cases described in
the following subsection.

4.3. Application to the case of a n-fold axis of symmetry:
w(z) =z+zP(z™")

We assume that P is a polynomial in the variable z=" with no con-
stant term. We assume in the following that all coefficients of P are
real. This mapping can be used to find the degenerate scales corre-
sponding to several interesting contours.

4.3.1. Pis of degree 1
This allows to describe the contours such as hypotrochoid that
have been considered by several authors (Ivanov and Trubetskov,
1995; Muskhelishvili, 1953; Zimmerman, 1986) which provided so-
lutions to elasticity problems for such boundaries.
We consider the following mapping:
m

wiz)=z+ s

(64)

We assume n > 3 and we write (62) for the special case of a n-fold
axis of symmetry:

column 1 (n-1)
rowl 2kp (n—2)m
0 0
Dt = . . (67)
n—1 0 0
—-m K

Adding to the first column the last one multiplied by m/x leads

to:
2p + -2m’ (n—2)m
0
Dt = : : (68)
0 0
0 K

The expansion of the determinant along its first column gives the
condition for a critical scale 2« p + (n —2)m?2/k = 0. We deduce one
value of the critical scale. It can be checked that the critical value de-
duced from D~ is the same; but this is also a consequence of the fact
that there is only one (double) critical scale for boundaries with an
axial symmetry of order > 3 (Vodicka and Manti¢, 2004). We finally
write the single critical scale:

(n —2)m?
2K2 ’

When m — 0 or when k¥ — oo the degenerate scales R — 1; that
means that both degenerate scales tend to the degenerate scale for
Laplace’s equation.

To end this case, it is possible to recover the degenerate scales for
two special cases where the hypotrochoid approximates an equilat-
eral triangle or a square.

The equilateral triangle is approximated by w(z) =z + # corre-
sponding to n = 3;m = 1/3. Substituting these values into formula
(69) gives In (Rc) = —1/(18«2) (see curve T1 on Fig. 2). The square
is approximated by w(z) =z + &% corresponding ton =4;m = 1/6.
From (69), we get: In (Rc) = —1/(36k2) (see curve S1 onFig. 3). These
two results that have been found previously by Chen et al.(2009a) are
two examples at the first order of the more general case presented
thereafter in this subsection.

In(Re) = — (69)
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Fig. 2. Comparison of In(R;) as a function of x for the approximates (T1, T2, T3), of an equilateral triangle and for the numerical computation (NUM) (in the case of a triangle at the

degenerate scale for Laplace's equation).

0 T T T T T T T T T
— NN
PELEL]
-0.005 -
-0.010 4
~ -0.015 1
o
c
£
-0.020 4
-0.025 R
-0.030 4
-0.035 | | l 1 1 | 1 l |
1 1.2 14 1.6 1.8 2 22 24 26 28 3

K

Fig. 3. Comparison of In(R.) as a function of « for the approximates (S1, S2, S3), of a square and for the numerical computation (NUM) (in the case of a square at the degenerate

scale for Laplace’s equation).

4.3.2. Pis of degree 2

We consider now the mapping corresponding to:

m m

7T+ 7T

We assume that m; and m; are real numbers. This type of con-
formal mapping has been considered by Ekneligoda and Zimmerman
(2006, 2008) to model holes having n-fold symmetry.

The next step is to compute the rational fraction f(z), thatis easily
achieved by computing w’ and w . Then, this rational fraction is put
into the form f(z) = g(—fi where N and D are polynomials. The polyno-
mial quotient Q(z) of N(z) by D(z) is given by N(z) = Q(z).D(z) + R(z)
with the degree of R(z) inferior to the one of D(z). This leads to:

f2)=Q@ + fi(@

w(z) =z+ (70)

(71)

where f(z) = % is a function that tends to zero at infinity.
With the previous expression of the mapping w(z), Eq. (47) that

comes from that process writes out:

f@) =myz=" 4+ my(14 (= Hmy)2" + f1(2). (72)
If n = 3, the determinant D* can be written as:
2kp G 0 0 4cs
) K 0 Nncs 0
Dt = 0 0 203+« 0 0 (73)
0 Cs 0 K 0
—cs 0 0 0 K



We expand the determinant along the third row (or column). We
get:

2Kp C2 0  4cs
_ —C; Kk ncs 0
D* = (2¢5 4+ k) 0 & k 0 (74)
—cs 0 0 K
If n = 3, the determinant D* can be written as:
column 1 n-=1) n n+1)
row 1 2K p (n—2.)c,,_1 0 0
0 : 0 :
n-1 —Cp_p e K 0 NCyp_q
n 0 0 K+ (n—1)Cp 0
n+1 0 (n—2)Con-1 0 K
0 . : : :
AE=L et e 0 0 0

This expression is the same as the previous one for n = 3, We add
to the first column the last one multiplied by cz;—1/x and the (n +
1)th column multiplied by —(n —2)¢,_1Co—1/(k* = n(n=2),_,)
and the (n — 1)th column multiplied by ¢,_;/(k —n(n — 2)c§n_1/x).
We find that the first column of the determinant is now:

(2n-2)c2,_ (n-2)c2_
2Kp + K =t K—n(n—Z)tg,,'_‘/K
0 (76)
0
We deduce that:
n—1)c2 1 (n—2)c2
In _ -1 _ ! n-1 77
(Re) K2 2k2-n(n-2)c,_, 7

It can be checked that if c2;,_1 = 0 and ¢;_1 = m; are introduced
into (77), we find again the result (69) and also if ¢;_1 = 0 and 2n is
replaced by nin (77).

These results can be applied to the cases of an approximate equi-
lateral triangle and of an approximate square with a second order ap-
proximation.

Coefficients ¢; are obtained from m; by relation (72) with coeffi-
cients m; obtained from the approximations at the second order of
the triangle and square given in Appendix C.

For a triangle, with n = 3, coefficients ¢; are given by cs = 1/45
and ¢; = —47/135, hence:

2 1 2209 1
n(Re) =~ 3025 k7 ~ 36450 7 — gy 78)
For a square we have : ¢; = 1/56,c3 = —59/336, hence:
3 1 3481 1
IR = =373 %7 ~ 12896 k2 — 31" (79)

Eq. (78) is plotted in Fig. 2 (curve T2) and Eq. (79) is plotted in Fig. 3
(curve S2).

4.3.3. The degree of P is 3

This type of conformal mapping has also been considered by
Ekneligoda and Zimmerman (2006, 2008). Writing ¢, instead of ¢,_1,
¢ instead of ¢;,_1, c3 instead of c3,_4, the value of R; obtained along
the previous lines is given by:

16n-2)c¢ 1
ln(RC)=_5x—2_ =

. k2((n-2)c +2(n - 1)c3) - 2n(n = 1)(n - 2)(2c3¢5 — 2c5¢3¢1 + ¢4 +c3d) '

80
k4 —k2n(22n-3)c + (n-2)c) +4nZ (n-1) (n-2)c§ (80)

Substituting c3 = 0 into (80) gives the previous formula (77).

We focus now on the approximates of a square and of an equi-
lateral triangle. Coefficients ¢; are obtained from the mapping at
the third order characterized by coefficients m;,i=1,...,3 given in
Appendix C. Transforming again the rational fraction f by the poly-
nomial quotient gives:

(2n-1)
(2n —2)Cyp
0
0
0 (75)
0
0
K

f=ms.2" 4 (my+ (n— 1)msm,)z2=! 42" (m2m3(n — 1)?
+my + (n — 1)mymy + (2n — 1)msmy) + f1(2) (81)

that leads to the expression of coefficients ;.

The results corresponding to the three approximations for a tri-
angle are reported in Fig. 2 and the ones for a square in Fig. 3. These
results are compared to the ones obtained numerically for polygons
that are at the degenerate scale for Laplace equation, the sides of
these polygons being recovered from Rumely (1989). The numerical
results are obtained by the method described in Appendix B, based on
the Boundary Element Method. The same method has been used by
Vodicka and Mantic¢ (2008) and more recently by Chen et al. (2015a).
It has been checked that the BEM leads to the same values of degener-
ate scales as the analytical ones when reproducing the contours cor-
responding exactly to the mappings. The numerical method repro-
duces also the case of the circle within a relative error of the order of
104, It has also been checked with the same level of approximation
that the degenerate scale for large values of « tends to the degenerate
scale for Laplace equation.

The results show that all approximations lead to similar values of
degenerate scales, the accuracy increasing with the order of the so-
lution. The largest discrepancy is attained when « is near to 1, that
corresponds to elastic incompressibility (v = 0.5). However, even in
this case, the difference between numerical and analytical results re-
mains small, within a few percent.

5. Case where f(z) has only one simple pole in C~

In the previous section, there was only one pole atz = 0. Now, the
case of one simple pole in C~ is studied.

5.1. General solution

We assume that function fis now given by:

f@) =G+L+fo(2), (82)
Z—-Zh
with fy(z) a holomorphic function on C~ and z; € C~ . Then we
need to find : ¢ = ¢/(z — 1/z7). We have: ¢ = -z, —fzf/(z —-71).
We substitute these values of fand $ into (42) and we write that
the constant term and the coefficient of 1/(z — z;) are equal to 0; we
get a system of two equations where A and c are unknown:

2AIn(R) —cz; =0

bA% +KCzZ2 - =0. 53}

1z}
(1-217;)*



After splitting the system (83) into real and imaginary parts, we
can write the determinant of the system.

We focus now on the special case where z; and b are real. Then
the determinant is:

2In(R) 0 7 0
0 2In(R) 0 4l
— bz2
D=1 2 0 K-y y ’ (84)
nzz
0 2 0 —K2% — a=r

This determinant is the product of two determinants:

b 2In(R) Z; 2k In(R) Z; (85)
= b2 . bz .
% Kz% - (1—15, 2 % ‘KZ% - (I—ZE, )2

The values of In(R;) are finally given by the values of R for which
the determinant is null:

b 1 .
In(Re) = l o (86)

227 k+b/(1-23)%

5.2. Example of an ovoid

The example of the ovoid defined by w(z) =z+m/(4z — 1) has
been given by Chen et al. (2009a). It corresponds to y; = 1/4,z1 = 4.
It is again an application of the previously described method. For this
case, f is given by:

900m
(4m —225)(z - 4)

where wq(z) is a holomorphic function in C~ vanishing at infinity.
The values of In(R) are:

f@)=-m+ +12) (87)

1 + b/225 b 1 ‘
In(R) ={ 2% ( Iz gzzs) ’ﬁlx——b/zzs (88)
32_( - K+b/2zs) 2 w0 X¥b/225°
with
900m
~am—225 89
4m — 225 (89)

That corresponds to the result obtained by Chen et al. (2009a).

6. Case where w'(z) has one or several simple zeros on C

In Section 3, itwas assumed that w'(z) has no zero on C. We study
now the case where w/(z) has one or several simple zeros on C, and
so f(z) has one or several simple poles on C.

6.1. Singularities of the curve I'

Due to the zeros of w/(z) on C, the curve I" has one or several cusps.
Following Pommerenke (1992), I' has a corner of opening (S~ —
Bt) atzg = expivy if:

B+ ast— vuf

—w(e™) = 1 0.,
B~ ast— v

arg (w(e') (90)
If w'(zg) = 0 and w"(zp) # 0, then using a series expansion of w in
a neighborhood of zy, we get f~ — B+ = 0 (27r) and the curve I' has

a cusp (Pommerenke, 1992).

6.2. Modification of the way to find

In (20) there are now some extra terms bj/(z
equation can now be written

—z{). The boundary

2kAIN(R) + Ky (2)

kb
Zz z,+f1<Z)

- (bo+2bl')+zz(z 2

i=1 j=1

=P(z) =F(z)
x (¢()(2) + ;) - Yo(2) =0. (91)

This case is solved by studying the following auxiliary problem
to find the value of R, A # 0 ¢, and ¥4 by the method described in
Section 3:

2kAIn(R) + K, (2)

- (bo+ZbZ‘)+ZZ(Z Z)J+f1(2) (¢{(z)+';)

i=1 j=1

=P(z) =F(2)
-Yn(2) =0. (92)
When the problem corresponding to the boundary condition (92)

is solved, the problem corresponding to the case with simple poles in
Cis solved by taking ¢ = ¢»1 and

£ b A
Vo=1Y1— — (¢'(Z)+—). (93)
o (gz—zi) 1 z

Introducing ¢ and ¥ into (91), it can, be checked that these
functions constitute a solution of (91).

In this equation, we still assume that ¢; is holomorphic in C-,
continuous in C~ U C and tends to 0 as z tends to oo, It must be noticed
that ¥ has discontinuities in C. Nevertheless, the displacement is
continuous inC~ UC.

Finally, the only terms to consider in the partial fraction expansion of
f (z) are the polynomial part and the partial fractions having their pole
in C—. The partial fractions with their poles on C can be disregarded.

As a first consequence, this result allows to extend the results from
hypotrochoids to hypocycloids.

6.3. Case of a segment of length 4

The conformal mapping is:

w(z) =z+1/z; (94)
hence:
foy=z4 1 4! (95)
=t rator

Due to the result of the previous subsection, both poles are on C
and we have to consider only the polynomial term of f. Then we have
b] =G +|d~| =1.

The determinant (59) is reduced to the following 2 x 2
determinant:

2k In(R) -1 0
0 =2k In(R) =1

We find the two critical scales, R = exp ( — 1/(2«)); exp (1/(2«)),
that correspond to a result of Vodicka and Mantic (2004).

(96)

6.4. Case of a circular arc

We can refer to Pommerenke (1992) for the definition of this con-
formal mapping:
z(az+1

w(z) = (az+1)

az+a)’ (57)
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Fig. 4. Symmetrical Joukowski profile with p =0.1.
The image of C by such a mapping is a circular arc {¢/? /a, —a < 6 < We have:
a}, with a = sin (/2). The function f(z) that can be deduced from w f(z) _ P+1 1 1
is given by: T T (p+Dp pPP+2p+ri1z—1
fa) = (a2 -1)2 a B 5p% +2p+1 1
T a(z+l) 2z 3pt+ap’ -2pt —4p-1z- -y
sin (&) —icos (@) o1 4p> +4p+1 1

M 2tan(«/2)(z - (—sin(a/2) —icos (et /2)))
sin () 41 cos (@)
+2 tan(«/2)(z — (—sin(a/2) +icos (a/2)))"
This function has one pole —1/a € C-, one pole 0 € C*+ and two
poles —sin(«/2) £ icos(a/2) e C. Substituting z; = —1/a and b=
(a% — 1)2/a? into (86) leads to the values of In(R;):

(98)

_ 1 _cos*(/2) |
2 sin? (a/2)’

1_cos* (@/2)

2 ktsin® (/2)

In (Rc) = (99)

For small values of «, the arc of circle tends to a segment of length
4, the values of R tend to exp ( — 1/2«), exp (1/2«) found in the pre-
vious section and for @ — v we find 1 as the limit value of (R;), that is
the double degenerate scale for a circle of radius 1 (Chen et al., 2002).

These closed form values can be compared to the numerical re-
sults of Chen et al. (2010). For instance, the critical values of the ra-
dius for k = 1.8 and o = 7 /12 are (5.84613, 10.0016) in Chen et al.
(2010) and (5.85763, 10.0194) using (99), proving a very good agree-
ment between both calculations.

6.5. Example of a symmetrical Joukowski profile

The exterior mapping is given by Ivanov and Trubetskov (1995)
(see Fig. 4):

1 1 .
W(Z)=p—(t+?) with t =z(p+1)—-p: p> 0. (100)

+1

(101)

YE-1z PGP +4p+ Dz Bl
The poles inside and over the circle do not contribute to the so-
lution. As a consequence, the only term that we have to consider is
; _ _ _4p?+4p+1
the last one. We apply (86)withz; = (p+1)/pand b = ?T%:;p%).
After simplification, we get:

_1 (2p+1)? .
2 = z>
In(Re) = . ((3p2+;12p+1]);(2 P (p+1)

2TGP+ap+ Dk +p) (P17

It can be checked that the limits of In(R;) are & 1/2« whenp — 0
and 0 when p — oo as it should, from the previous section.

(102)

6.6. Example with two simple poles in C~
We consider w(z) =z — (9/8)(1/(z% — 1)) (Fig. 5).

We have:
i 8 25 1 225 1 33 1
[@&=5+37-3 " Teaz+2 * 0az+1 + 1@
Once again, the poles on the circle can be disregarded and we
search for ¢pg with two unknown variables:

b1, b1z
¢0 = .
z—-1/2  z+1/2
Using the procedure described in Section 3.4 leads to:
225 1748«
In(R.) = { 64 S TTH25 A 12A0
764 —17-25x+1242x7

(103)

(104)

(105)



Fig. 5. Case of a curve with two poles in C- and a zero of w' in C.

6.7. Case of a mapping using a cyclotomic polynomial

We consider a cyclotomic polynomial F, of degree f, (Lang, 1984,
e.g.). Thenwe definew(z) = [ (K, (z)/z/"). To avoid a logarithmic term
in w(z), it is necessary that the coefficient of z/»=1 be equal to zero.
That is true iff n is divisible by the square of an integer (Warusfel,
1971).

For example, the 9™ cyclotomic polynomial is: 26 +23 + 1, and
we have w(z) =z—1/2z%2 —1/5z% (Fig. 6). We can now evaluate
w(1/z)/wW'(z):

fz) = s _3p + A 1)
5

10 1026 +23 + 1) L1085}

Disregarding again the poles on C and applying (77) for n = 2, we
find:

1 625«2 —48

In(Re) = 556 <2 (@25x2 = 3"

(107)

7. Degenerate scales obtained from the logarithmic capacity
7.1. Sets of aligned segments

In this section, a third method is introduced. This method allows
us to find the degenerate scales for elasticity from the degenerate
scale for Laplace’s equation related to the same contour, itself being
obtained from the logarithmic capacity.

7.1.1. Relation between degenerate scales in plane elasticity and
Laplace’s problem for sets of aligned segments

The following proposition specifies a first case where certain de-
generate scales for elasticity can be deduced directly from the ones
for Laplace’s equation

Proposition. If K is a set of aligned closed segments, then the two de-
generate scales for plane elasticity (with the operator defined by com-
plex potentials as in Section 2) of K are p; = ppexp (1/2«) and p =
poexp (—1/2«), with po being the degenerate scale for the Laplace’s
operator.

Proof. We can assume that K is on the real axis and that its degener-
ate scale for the Laplace’s operator is Ry with the logarithmic capacity
Ck equal to 1/Ry. Then, there is a unique equilibrium measure y such
that (Landkof, 1972, e.g.):

1
ﬁdy(X) = ~InGy’ (108)

0.5

Fig. 6. Contour with 6 cusps corresponding to the 9th cyclotomic polynomial.
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Fig.7. Some cases of unions of segments.

U, = / In X : yldy(x) = 1for approximately ally e K.~ (109)
k =

In fact, the above equality holds Yy € K, as all the points satisfy the

Wiener regularity criterion (Tsuji, 1959). In order to consider the im-

age Kp of K by the scaling of ratio R, we introduce the following po-

tential ¢z and we evaluate its derivative:

z , InR _
¢x(Z)=A(-/’;ln(§—Z)dy(Z)—m)ZeKR. (110)
¢’(Z)—A[l;d Z) (111)

R =2 RGE-
We define also the potential ¥g:
A , A
‘//R=—KAT¢R_Z¢R_E' (112)

When z — oo, we have ¢ = —Alnz/InCy + o(1), z¢p, — —A/InCy
and we can check that ¥z = kAIn (z)/In (Cg) + o(1) whenz — oc.

The value of the displacement on K, for these potentials (¢g, ¥gr)
can be obtained using (6) with z instead of ¢ ; as Ky is included in the
real line, we have Z = z and we get

—= o P A
K¢R—Z¢R—1/IR_2KARE(7) +m. (113)
Forz € Kg, z/R € K and using (108) and (109), we get:
Pr _ Z ’
Re(T) = Re(/l;ln(ﬁ -Z)dy (7)) - lnR/lnCK)
InR
- _(1 + E) (114)

Substituting (114) into (113), we conclude that the displacement
is null on Kp if:

— InR A
2KA(1 + _InCK) = _lnCK'
Using Cx = 1/Ry, the above equation has non zero solutions only

for the following degenerate scales:
Ri =Roexp(1/2«); Ry =Rpexp (— 1/2k).

(115)

(116)
O

7.1.2. Examples of applications

Case of two equal segments. We use the results of Rumely (1989)
which gives the logarithmic capacities for different sets, notably the
unions of segments shown in Fig. 7. For two equal segments of length
a with a distance D between their centers (case 1 of Fig. 7), the loga-
rithmic capacity is equal to : v/Da/2. We deduce the two degenerate
scales:

R, =Lexp(l/2k): R2=J%exp(—l/2K). (m7)

Vab

\j

Fig. 8. Example of a set of arcs of circle with n-axis symmetry (n = 4).

This case has been studied by two authors Chen (2015); Voditka
(2013) and they found using asymptotic methods the same solution
as above for large values of D; they both noticed that this solution is
accurate even if the condition D > a is not fulfilled. This is now fully
proved.

Some cases with unequal segments. We derive the degenerate scales
for the cases 2, 3 and 4 of Fig. 7 from the values of their logarithmic
capacities that are given in Rumely (1989):

Case2 : Ry =3""3a "e!/? Ry =3713a e /2%, (118)
Case 3 : Ry =3V6a'e!/2¢ R, =3-1/6q-1e-1/2%; (119)
Case 4: Ry = 107"3a"1e!/? Ry = 107"3a e /2%, (120)

The last example with four segments is built using the decompo-
sition of one number into two different sums of two squares; here,
we use 62 + 172 = 10% + 152,

Setting the origin at the middle of the 12a gap and applying z2
we get two segments [36a2, 100a2], [225a2, 289a2]. Translating these
two segments of (325/2)a? and applying z2 we get one segment
[(125/2)%a*, (253/2)%a?]. Finally the initial set is the inverse image
of this last segment by the polynomial (z2 — 325a2/2)2. The logarith-
mic capacity of the inverse image of a compact subset E by a monic
complex polynomial of degree n is equal to the nt root of the loga-
rithmic capacity of E (Rumely, 1989, e.g.). The logarithmic capacity of
a segment of length L is L/4. We deduce that the logarithmic capac-
ity of the initial 4 segments setis ((253/2)% — (125/2)2)a*/4)"/* and
finally the degenerate scales for case 5 are:

Case 5: Ry = 27137347~ V4q-1el/2¢ (121)

RZ — 2_13_3/47_1/40_10_1/2K. (]22)

7.2. Sets of arcs of a circle with n-axis symmetry

7.2.1. Relation between degenerate sales in plane elasticity and in
Laplace’s problem for sets of arcs with n-axis symmetry

We consider a set K of arcs of a circle of radius d with a n-axis
symmetry (Fig. 8).

The fundamental result on the degenerate scales of K is defined in
the following proposition:

Proposition. For a set of arcs of a circle with n-axis symmetry, the de-
generate scale for plane elasticity is equal to the degenerate scale for the
Laplace operator.

Proof. We use the same approach as for the sets of segments on a
line. We assume that the degenerate scale for the Laplace operator is



Ro # 1. So we consider the corresponding y(x) satisfying (108) and
(109). We define ¢pg as in (110) and vy as follows:

A d?
Vr(2) = —K 2 r(@) = — R (2).

We have to check that ¢ (z)/z tends to zero whenz — ocand is a
holomorphic function in C\Kg.

The first point is a consequence of the property of ¢p: ¢p(z) =
0(1/z),z — ooc. For the last point, we have to check that ¢;(z)/z has a
limitwhen z — 0. In a neighborhood of 0, ¢g(z) has a series expansion
g + anZ" + az,z%" + - .- due to the n-axis symmetry of the problem
and 5o ¢g(2) /z = nanz"2 + 2naz,z2"~% + ... Then ¢'(z)/z has a limit
of 0 if n = 2 and the singularity at 0 is removable.

We write the condition of no displacement on Kg, using the fact
that Z equals —d?r2/z if z e Kg:

(123)

Kpr —Zpp — Vi = 2xKRe(ﬂ) =-2kA(1+ InR . (124)
A IHCK
If InR=—InCg, we can choose A=1 as well as A=i; so we

can build two solutions (¢, ¥g) that lead to two displacements
fields that are independent. The dimension of the corresponding real
eigenspace is 2, and we conclude that there is only one degenerate
scale (Vodicka and Mantic, 2004, Theorem 1):
Ri=R;=Ro= L
1=Ky =Ko = G

We remind that for a n-axis symmetric set withn > 3, there is only
one degenerate scale Voditka and Manti¢ (2004). In the special case
that was considered, the condition n > 2 appears to be sufficient. O

(125)

7.2.2. Case of n equal arcs equally spaced

We can find the degenerate scale of n equal arcs equally spaced
by using the properties of the inverse image of a compact set by a
polynomial (Ransford, 1995, e.g.). The logarithmic capacity of an arc
of radius d" of center 0 and angle « is d"sin(«/4). By the inverse
of g(z) =Z", this arc is transformed into n arcs of angle «/n and ra-
dius d. Its logarithmic capacity is (d"sin(«/4))"/". Finally the loga-
rithmic capacity of n equally spaced arcs of radius d and angle f is:
d(sin(nfB[4))". We finally conclude that the degenerate scales for
plane elasticity are equal to:

= ! n=2
0= dsinmpB/aym =

It can be observed that if n =2, B =1/d and d — oo, the limit

of the two arcs of circle is constituted of two vertical segments of

length 1 separated by a distance D = 2d. Then, the asymptotic values

of the two degenerate scales are 2/D'/2, in accordance with the result
of Vodicka (2013).

Ri=R; =R (126)

8. Conclusion

A methodology has been presented, that provides exact values of
degenerate scales for plane elasticity in domains outside contours,
these domains being described by a conformal mapping of the
domain C-exterior to a unit circle C. This methodology rests on
precise properties of the conformal mappings and of the complex
potentials used to obtain elastic solutions in plane domains. The
degenerate scales correspond to elastic potentials compatible with
a null displacement over the contour. This fundamental condition is
expressed by using the elastic potentials in different forms to make
the solution easier. The major part of the paper rests on the case
when the conformal mapping is given by a rational fraction. The
fundamental null displacement condition is transformed, leading to
a finite homogeneous linear system. The degenerate scales are two
scalars that cancel out the determinant of this homogeneous system.
Writing the linear system rests on the partial fraction expansion of

the function defining the conformal mapping. The linear system is
written using poles in C~ or at co. Several examples have been solved,
depending of the properties of the mapping, including mappings
such as z+P(z=1), P being a polynomial, mapping having a simple
pole in C— and mappings having poles in C~ and on C. In this last
case, it has been shown that the poles on C can be disregarded in the
evaluation of the degenerate scales.

A last fully different method has been described for some subsets
of a line and of a circle. In this case it has been possible to link the
degenerate scales of the plane elasticity problem to the degenerate
scales of the Laplace’s problems. When an exact value of this last de-
generate scale is known, the exact values of the degenerate scales re-
lated to elasticity can immediately be found. To our knowledge, these
exact values are the first known for the degenerate scales in plane
elasticity related to multi connected sets.

Appendix A. Some results on Cauchy integrals (Muskhelishvili,
1953).

If fis a holomorphic function in C~ continuous on C with no pole
atinfinity (f(z) - 0if z — o0):

1 [ f©de )

ch g =—f@) VzeC. (A1)
For a constant, we have:

1 ad¢ _

57 oz =0 VaeC. (A2)

If fis a holomorphic function in C~ continuous on C with no pole
atinfinity (f(z) - 0if z — o0):

Lff(()dt —0 VzeC-. (A3)
2wiJe ¢ -2z
If fis a holomorphic function in C* continuous on C:
1 [ f@)de _
i) T2 =0VzeC . (A4)

Appendix B. Numerical computation of degenerate scales for
plane elasticity.

The numerical method that is used to compute the degenerate
scales follows one of the methods described in Voditka and Manti¢
(2008).

If the contour I'y = Ao is at the degenerate scale, the following
integral equation has non-trivial solutions:

/;or Uijpjds =0 (B.1)

where Uj; is the Kelvin’s tensor given by:

U;j:—K81,ln(r)+w. (B.2)
The integral operator U is denoted by:

Ur(p) =./rU : pds (B.3)
with

U=—«xIn(nNI+V. (B.4)
Passing from I" to AT leads to:

Uy (p) =f” U:pds = A[Ur(p)—K In (%) fr pds] (B.5)

and therefore:

Ur(p) =k In () f pds. (B.6)
r



The idea developed in Vodicka and Mantic (2008) is to search for
p related to a constant value of the second member of the integral
equation over the contour. So, the following integral equations are
solved for the basis vectors e; and e;:

Ur(p1) =ey, (B.7)
Ur(p2) = e;. (B.8)
Next, p is sought in the form:
P =01P1 + q2P2. (B.9)
where g; are constant terms.
This leads to:
Ur(P)=q1Ur(P1)+q2Ur (p2) (B.10)
=q1€1 + (2€; (B.11)
and therefore:
018 + (28,=K ln(Ao)[m /r pids +q; /r pzdS]- (B.12)
One denotes:
9] =f pids, (B.13)
r
t =/ pads. (B.14)
r

These vectors can be obtained numerically from the distributions
of p; over the contour and therefore:

(181 + G2€2=K In (Xo)[q1t; + 2t2]. (B.15)
This leads to:

G1 =k In(Ao)[q1tn + Gat21]. (B.16)

G2 =k In(Ao)[q1t12 + q2t22] (B.17)

where t;; are the components of t; with consistent notations. This
set of equations constitutes an homogeneous system for unknowns g;
that has a non-trivial solution only if its determinant is null.

We introduce m given by: x In (1q) = % The determinant of the
system with unknown g; is given by:

th—m 53}

=0. B.18
2 p—m B8

This means that m is one eigenvalue of the 2 x 2 matrix:

t t
M= (M f)
(f 12 2

Having obtained the eigenvalues, it is easy to obtain the related
two values of 1 that are the degenerate scales.

This method is applied to obtain numerical values of degenerate
scales, the integral equations being discretized classically using con-
stant elements. The contours are discretized using 500 elements.

(B.19)

Appendix C. Mappings for the approximate squares and
polygons.

The mapping of an equilateral triangle is given by Muskhelishvili
(1953):

74
w(z) = -A/ (1 +r3)2/3% + const. (c1)
1

Expanding into a power series leads, for a mapping which is order
of z at infinity, to:

1 1 1

wz)=2- —+ —5 — —— C.2
@ 32 T 555 1628 T (€2)
For the mapping of a square, one has:
74
w(z) = -A / (1 +r4)‘/2f—2’ + const. (€3)
1
and
1 1 1
W@ =z-xt g T et €4
Both mappings are of the form:
m m m
w@) =z+ zn_—ll + zZnEI + 231:1 ) (€s)
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