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INVERSE PROBLEMS FOR TIME-DEPENDENT SINGULAR HEAT

CONDUCTIVITIES — ONE-DIMENSIONAL CASE

P. GAITAN∗, H. ISOZAKI† , O. POISSON‡ , S. SILTANEN§ , AND J. P. TAMMINEN¶

Abstract. We consider an inverse boundary value problem for the heat equation on the inter-
val (0, 1), where the heat conductivity γ(t, x) is piecewise constant and the point of discontinuity
depends on time : γ(t, x) = k2 (0 < x < s(t)), γ(t, x) = 1 (s(t) < x < 1). Firstly we show
that k and s(t) on the time interval [0, T ] are determined from a partial Dirichlet-to-Neumann map :
u(t, 1) → ∂xu(t, 1), 0 < t < T , u(t, x) being the solution to the heat equation such that u(t, 0) = 0, in-
dependently of the initial data u(0, x). Secondly we show that another partial Dirichlet-to-Neumann
map u(t, 0) → ∂xu(t, 1), 0 < t < T , u(t, x) being the solution to the heat equation such that
u(t, 1) = 0, restricts the pair (k, s(t)) to at most two cases on the time interval [0, T ], independently
of the initial data u(0, x).

Key words. Inverse problem, Dirichlet-to-Neumann map, heat probing

AMS subject classifications. 35R30, 35K05.

1. Introduction.

1.1. Inverse heat conductivity problem. Let Ω = (0, 1), and consider the
following initial boundary value problem





∂tu(t, x)− ∂x (γ(t, x)∂xu(t, x)) = 0 in (0, T )× Ω,

u(t, 0) = f0(t), u(t, 1) = f1(t) for 0 < t < T,

u(0, x) = u0(x) in Ω,

(1.1)

where γ(t, x) ∈ L∞((0, T )×Ω) having the following properties: There exist a constant
k > 0, k 6= 1, and s(t) ∈ C2([0, T ]) such that

0 < inf
0<t<T

s(t) ≤ sup
0<t<T

s(t) < 1, (1.2)

γ(t, x) =

{
k2, if 0 < x < s(t),

1, if s(t) < x < 1.

Let u(t, x) be the solution to (1.1). The problem we address in this paper is to
detect the region D(t) = (0, s(t)) and to determine γ(t, x) from the inputs (f0, f1)
on the boundary and local measurements at x = 1 of the heat flux ∂xu(t, x), without
taking into account of the information of the initial data u0. We consider two cases
for the inputs:
Case 1 : f0 = 0.
Case 2 : f1 = 0.
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Physically, the region D(t) in the domain Ω corresponds to some inclusion in the
medium with heat conductivity different from the one in the background. The first
case, f0 = 0, (respectively, the second one, f1 = 0) corresponds to maintaining zero
temperature at the point x = 0 (respectively, at x = 1) for the finite time 0 < t < T ,
and measuring the resulting heat flux at the point x = 1. We shall show that, in the
first case, γ(t, x) can be determined by suitable choice of the input of the temperature
u(t, 1). The second case is more complicated: we can determine the value (1− 1

k )s(t)
and we show that k (and so, s(t)) can take two values at most.

Theoretically, the infinite-precision measurement needs to be repeated infinitely
many times to recover D(t) and γ(t, x) perfectly. However, approximate recovery
should be possible from a finite number of finite-precision measurements similarly to
[8, 6, 7], but this is outside the scope of the present paper.

1.2. Main theorems. Take a large parameter λ > 0, and put

hfw(t, x;λ) = eλ
2t+λx, hbw(t, x;λ) = e−λ2t+λx.

They solve the forward and the backward heat equation, respectively:

(
∂t − ∂2

x

)
hfw = 0,

(
∂t + ∂2

x

)
hbw = 0.

Theorem 1.1. Let u(t, x;λ) be the solution to (1.1) with f0 = 0, f1 = hfw(t, 1;λ),
and define

Iind(T ;λ) =

∫ T

0

eλνthbw(t, 1;λ)∂x (u(t, x;λ)− hfw(t, x;λ))
∣∣∣
x=1

dt.

Fix ν such that

ν > max
( 2

T
,max

(
2, |1− k|,

∣∣∣1− 1

k

∣∣∣
)

sup
0<t<T

∣∣ṡ(t)
∣∣
)
. (1.3)

Then for λ → ∞, we have

Iind(T ;λ) ≃
2(k − 1)

(k + 1)(ν + 2ṡ(T ))
eλνT+2λs(T )−ṡ(T )(1−s(T )).

Corollary 1.2. For any initial data u0(x) ∈ L2(0, 1), one can determine k and
s(t), 0 < t < T , from the partial Dirichlet-to-Neumann map

Λu0
partial

: f1 → ∂xu
∣∣∣
x=1

,

with u(t, 0) ≡ 0.
Theorem 1.3. Let u(t, x;λ) be the solution to (1.1) with f1 = 0, f0(t) =

hfw(t, 0;λ), and define

Ĩind(T ;λ) =

∫ T

0

eλνthbw(t, 1;λ)∂xu(t, x;λ)
∣∣∣
x=1

dt.

Set L1(t) = (1− 1
k )s(t). Fix ν such that

ν > max
(
(3 + |1− 1

k
|)/T, sup

0<t<T

∣∣L̇1(t)
∣∣
)
. (1.4)
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Then for λ → ∞, we have

Ĩind(λ;T ) ≃ − 4k

k + 1

1

ν + L̇1(T )
eλνT+λL1(T )− 1

2 L̇1(T )(1−s(T )). (1.5)

Corollary 1.4. For any initial data u0(x) ∈ L2(0, 1), one can determine L1(t),

ξ(t) = 1
2 L̇1(t)L1(t) and F = k

k+1e
k

k−1 ξ(t), 0 < t < T , from the partial Dirichlet-to-
Neumann map

Λ̃u0

partial : f0 → ∂xu
∣∣∣
x=1

,

with u(t, 1) ≡ 0. Furthermore, the couple (k, s(t)) can take two values at most. More
precisely, we have the following cases.

(i) ξ = 1 : We have either 0 < F ≤ (4
√
e)−1, or F > e. If 0 < F < (4

√
e)−1, then

there are two couples (ki, si(t)), i = 1, 2, such that (1.5) holds, and 0 < k1 < 1/3 <
k2 < 1. If F > e, then (k, s(t)) is uniquely determined and k > 1. If F = (4

√
e)−1,

then k = 1/3.

(ii) ξ = 0 : The couple (k, s(t)) is uniquely determined.

(iii) 0 < ξ < 1 : There exist two values F∗, F
∗ with 0 < F∗ < F ∗ < eξ such that

F 6∈ (F∗, F
∗). If F ≥ eξ or F = F ∗ or F = F∗, then (k, s(t)) is uniquely determined.

If F < F∗ or F ∗ < F < eξ, then there are two couples such that (1.5) holds.

(iv) ξ > 1 : There exists a value F∗ ∈ (0, eξ) such that F 6∈ (F∗, e
ξ]. If F > eξ or

F = F∗, then (k, s(t)) is uniquely determined. If F < F∗, then there are two couples
such that (1.5) holds.

(v) ξ < 0 : If F ≥ eξ, then the couple (k, s(t)) is uniquely determined and 0 < k < 1.

If F < eξ, then there are two couples (ki, si(t)), i = 1, 2 such that (1.5) holds, and
0 < k1 < 1 < k2.

The issues on uniqueness, stability and reconstruction of the inclusion-identification
problem have been centered around the case in which s(t) is independent of t. Bell-
out [2] proved the local uniqueness and stability. Elayyan and Isakov [5] proved the
global uniqueness of the inverse problem using the localized Neumann-to-Dirichlet
(N-D) map. In [3], Di Cristo and Vessella gave logarithmic stability estimates of the
inclusion from the Dirichlet-to-Neumann map. Ikehata [9], and Ikehata-Kawashita
[10] developed the probe method for the heat equation with time-independent inclu-
sions. In [6], the case of time-independent inclusions was treated and a numerical
computation result was given. The idea is based on the complex spherical wave given
by Ide-Isozaki-Nakata-Siltanen-Uhlmann [8] for the elliptic case. The work of Daido,
Kang and Nakamura [4] may be the closest to the present paper. They studied the
case of moving inclusions D(t) = {0 < a0(t) < x < a1(t) < 1} using the probe
method, which is based on the explicit form of the heat kernel, and Runge’s approxi-
mation theorem, and proved that a1(t) is obtained from the whole knowledge of the
Neumann-to-Dirichlet map. Their initial data is assumed to be zero: u0 = 0, and the
computation of k was not done. As for the recent works on the inverse problem for the
parabolic equation, see Bacchelli-Cristo-Sincich-Vessella [1] for the corrosion problem,
Vessella [14] and Kawakami-Tsuchiya [11] for the time-varying domain problem.
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We use two main tools in this paper: the approximate solution of the heat equation
to be constructed in §4 for the first case and in §6 for the second one, and the
energy inequality in §3, common to each case. The details of the construction of the
approximate solution will be explained only for the first case. Although it is based
on the standard construction of parametrics for the parabolic equation, a delicate
choice is necessary for amplitude functions due to the discontinuity of the coefficient.
The energy inequality is also a familiar tool, however we need a careful choice of the
auxiliary function to be multiplied by the equation. Our method can be extended to
the multi-dimensional case, which will be discussed elsewhere.

Throughout the paper, we only deal with real-valued functions.

2. Existence theorem.

2.1. A Theorem of J. L. Lions. Let H be a Hilbert space equipped with inner
product ( , ) and norm ‖ ·‖. Suppose there exists another Hilbert space H1 with inner
product ( , )1 and norm ‖ · ‖1 such that H1 is a dense subset of H and there exists a
constant C > 0 such that

‖u‖ ≤ C‖u‖1, ∀u ∈ H1.

Then we have the following inclusion relations

H1 ⊂ H ⊂ H∗
1.

For t ∈ [0, T ], let a(t, ·, ·) be a symmetric, bilinear form on H1 × H1. We assume
that there exist constants δ > 0, C0 > 0 such that

|a(t, u, v)| ≤ C0‖u‖1‖v‖1, ∀u, v ∈ H1, ∀t ∈ [0, T ],

a(t, u, u) ≥ δ‖u‖21 − C0‖u‖2, ∀u ∈ H1, ∀t ∈ [0, T ]. (2.1)

The last assumption is :

For any u, v ∈ H1, [0, T ] ∋ t 7→ a(t, u, v) is measurable. (2.2)

These assumptions imply that there exists a unique self-adjoint operator A(t) such
that D(A(t)) ⊂ H1 and

(A(t)u, v) = a(t, u, v), ∀u ∈ D(A(t)), ∀v ∈ H1.

With this operator A(t), we consider the following evolution equation on H :
{
∂tu(t) +A(t)u(t) = f(t) in (0, T ),

u(0) = u0 ∈ H.
(2.3)

The theorem of J. L. Lions asserts as follows (see [12], [13]):
Theorem 2.1. Let u0 ∈ H and f ∈ L2((0, T );H∗

1). Then there exists a unique
u(t) having the following properties.
(1) u(t) ∈ C([0, T ];H) ∩ L2((0, T );H1).
(2) u(t) is H∗

1-valued and absolutely continuous on [0, T ], ∂tu(t) ∈ L2((0, T );H∗
1), and

u(t) satisfies (2.3).
(3) u(t) satisfies the following (in)equalities :

1

2
‖u(t)‖2 +

∫ t

0

a(s, u(s), u(s))ds =
1

2
‖u0‖2 +

∫ t

0

(f(s), u(s))ds,
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‖u(t)‖2 + δ

∫ t

0

‖u(s)‖21ds ≤ ‖u0‖2 +
1

δ

∫ t

0

‖f(s)‖2H∗
1
ds.

2.2. Heat equation. We take H = L2((0, 1)) and H1 = H1
0 ((0, 1)), the Sobolev

space of order 1 with 0 trace on the boundary ∂Ω = {0, 1}. For u, v ∈ H1
0 ((0, 1)), we

put

a(t, u, v) = k2
∫ s(t)

0

∂xu(x)∂xv(x)dx +

∫ 1

s(t)

∂xu(x)∂xv(x)dx.

Then the above assumptions (2.1), (2.2) are satisfied, and the associated A(t) is
given by

D(A(t)) ∋ u ⇐⇒
{
u ∈ H1

0 ((0, 1)) ∩H2((0, s(t)) ∩H2((s(t), 1)),

∂xu(s(t) + 0) = k2∂xu(s(t)− 0),

A(t)u =

{
− k2∂2

xu, on (0, s(t)),

− ∂2
xu, on (s(t), 1).

(2.4)

In the following sections, we also use the notation A(t) to denote the formal
differential operator (2.4).

Remark 2.2. Theorem 2.1 shows that the solution u(t, x;λ) to (1.1) is uniquely
well–defined, and guarantees the existence of Iind(T ;λ).

3. Energy Estimates. In the following, we use the notations u̇ = ∂tu, u′ =
∂xu. Let us first prepare an elementary lemma.

Lemma 3.1. Let 0 < δ < 1 and I = [1− δ, 1]. Suppose that u(x) ∈ C1(I) satisfies
u(1) = 0. Then for any nonnegative function a(x) ∈ C(I), we have

lim inf
ε→0

∫ 1

1−δ

a(x)|u′(x)|2 ε
(
ε+ |u(x)|2

)3/2 dx ≥ a(1)|u′(1)|.

Proof. By replacing u by −u if necessary, we have only to consider the case
u′(1) < 0. Shrinking I if necessary, we can assume that u(x) > 0 on [1 − δ, 1) and
adopt u = u(x) as a new variable. Letting c = u(1− δ) and ã(u) = a(x(u)), we have

∫ 1

1−δ

a(x)
∣∣∣du
dx

∣∣∣
2 ε
(
ε+ u2

)3/2 dx =

∫ c

0

ã(u)
∣∣∣dx
du

∣∣∣
−1 ε

(
ε+ u2

)3/2 du.

By the change of variable u =
√
εy, this is equal to

∫ c/
√
ε

0

ã(
√
εy)

∣∣∣dx
du

(
√
εy)

∣∣∣
−1 dy

(1 + y2)3/2
,

which tends to

ã(0)
∣∣∣dx
du

(0)
∣∣∣
−1

∫ ∞

0

dy

(1 + y2)3/2
= a(1)

∣∣∣du
dx

(1)
∣∣∣,
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as ε tends to 0. �

We put

I−(t) = (0, s(t)), I+(t) = (s(t), 1),

D± = {(t, x) ; 0 < t < T, x ∈ I±(t)},

and also

[
f
]
s(t)

= f(s(t) + 0)− f(s(t)− 0).

Lemma 3.2. Let U = U(t, x) ∈ C([0, T ];L2(Ω)) ∩ L2((0, T );H1
0 (Ω)) be such that

U(t)
∣∣
I±(t)

∈ H2(I±(t)), ∂t(U(t)
∣∣
I±(t)

) ∈ L2(I±(t)), 0 < t ≤ T.

Assume that U is a solution to the equation

U̇ +A(t)U = F in L2(D±), (3.1)

and satisfies
{
U(t,s(t) + 0) = U(t,s(t)− 0) in L2(0, T ),

U(t, 0) = U(t, 1) = 0, in L2(0, T ),
(3.2)

where F = F (t, x) ∈ L2((0, T )× Ω). Let H(t, x) ∈ C2(D+) ∩ C2(D−) be such that

H(t, x) ≥ 0 on [0, T ]× Ω, (3.3)

[
H
]
s(t)

=
[
γ∂xH

]
s(t)

= 0, 0 ≤ t ≤ T. (3.4)

Assume that there exists a real constant K such that

−∂tH +A(t)H ≥ KH in (0, T )× Ω. (3.5)

We put

E(U,H ; t) =

∫ 1

0

|U(t, x)|H(t, x) dx.

Then we have the following inequality

E(U,H ;T ) +

∫ T

0

eK(t−T )|U ′(t, 1)|H(t, 1)dt

≤ e−KTE(U,H ; 0) +

∫∫

(0,T )×Ω

eK(t−T )|F (t, x)|H(t, x) dtdx

+

∫ T

0

eK(t−T )|[γ(t, x)U ′(t, x)
]
s(t)

|H(t, s(t))dt.

Remark 3.3. In Lemma 3.2, U corresponds to a solution u of (2.3) (in the
sense of Theorem 2.1 with H1 = H1

0 ((0, 1))), with F = f |D±
∈ L2(D±). But f ∈

L2((0, T )× Ω) if and only if ∂xU(t)
∣∣∣
s(t)+0

= k2∂xU(t)
∣∣∣
s(t)−0

, 0 < t ≤ T .
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Proof of Lemma 3.2. Let χε(x) = x(ε+ x2)−1/2 for ε > 0, and note the following
properties :

|χε| ≤ 1, xχε(x) → |x|, ε → 0, (3.6)

χ′
ε(x) > 0, |xχ′

ε(x)| ≤ 1/2, xχ′
ε(x) → 0, ε → 0. (3.7)

In fact, (3.7) follows from χ′
ε(x) = ε(ε+x2)−3/2, and |xχ′

ε(x)| = |y(1+y2)−3/2| ≤ 1/2
where x =

√
εy.

Put Ω′ = Ω \ {s(t)}. Integration by parts using (3.2) and (3.4) yields

∫

Ω′

(γU ′′)χε(U)Hdx −
∫

Ω′

Uχε(U)(γH ′′)dx

= −
[
γU ′(t, x)

]
s(t)

χε(U(t, s(t)))H(t, s(t)) −
∫ 1

0

γ|U ′|2χ′
ε(U)Hdx

+

∫ 1

0

Uχ′
ε(U)γU ′H ′dx.

(3.8)

where U = U(x) = U(t, x) andH = H(t, x), and we have used χε(U(0)) = χε(U(1)) =
0, since χε(0) = 0. We put

Eε(t) =

∫

Ω′

U(t, x)χε(U(x, t))H(t, x)dx.

Then we have

Ėε(t) =

∫

Ω′

(γU ′′)χε(U)Hdx−
∫

Ω′

Uχε(U) (γH ′′) dx

+

∫ 1

0

Fχε(U)Hdx+

∫

Ω′

Uχε(U)
(
Ḣ + γH ′′)dx

+

∫

Ω′

Uχ′
ε(U)U̇Hdx.

Plugging this with (3.8), we have

Ėε(t) = − [γU ′]s(t)χε(U(t, s(t)))H(t, s(t)) −
∫ 1

0

γ|U ′|2χ′
ε(U)Hdx

+

∫ 1

0

Uχ′
ε(U)γU ′H ′ dx+

∫ 1

0

Fχε(U)H dx

+

∫

Ω′

Uχε(U)
(
Ḣ + γH ′′)dx+

∫

Ω′

Uχ′
ε(U)U̇H dx.

By (3.7), the integrals containing the term Uχ′
ε(U) vanish as ε → 0. Using (3.5), we

then have

Ėε(t) +KEε(t) +

∫ 1

0

γ|U ′|2χ′
ε(U)H dx

≤ − [γU ′]s(t)χε(U(t, s(t)))H(t, s(t)) +

∫ 1

0

Fχε(U)H dx+ o(1).
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We multiply this inequality by eK(t−T ) and integrate on the time interval [0, T ] to
obtain

Eε(T ) +

∫ T

0

eK(t−T )dt

∫

Ω

γ|U ′|2χ′
ε(U)H dx

≤ e−KTEε(0)−
∫ T

0

eK(t−T )[γU ′(t, x)]S(t)χε(U(t, s(t)))H(t, s(t))dt

+

∫ T

0

eK(t−T )dt

∫

Ω

Fχε(U)H dx+ o(1).

(3.9)

By Lemma 3.1, we have

H(t, 1)|U ′(t, 1)| ≤ lim inf
ε→0

∫ 1

0

γ|U ′(t, x)|2χ′
ε(U(t, x))Hdx.

Taking the inferior limit in (3.9) and noting (3.6), we obtain the lemma. �

4. Approximate solutions.

4.1. Ansatz. We shall construct an approximate solution of the equation (1.1)
in Case 1, f0 = 0, for λ > sup{|ṡ(t)|, 0 < t < T }. As can be imagined easily, the first
approximation will be

v0(t, x;λ) =

{
hfw(t, x;λ), s(t) < x < 1,

eλ
2t+λ

k
(x−s(t))eλs(t), 0 < x < s(t),

which satisfies v0(t, s(t) + 0;λ) = v0(t, s(t)− 0;λ). Although the other conditions are
not satisfied, this suggests the introduction of the factor eλ(x−s(t)). Our ansatz is

v(t, x;λ) = v+(t, x;λ)χ+(t, x) + v−(t, x;λ)χ−(t, x),

v+(t, x;λ) =hfw(t, x;λ) + hfw(t, s(t);λ)
[
a+(t;λ) exp{(λ+ ṡ(t))(x − s(t))}

+ b+(t;λ) exp{−(λ+ ṡ(t))(x − s(t))}
]
,

(4.1)

v−(t, x;λ) = hfw(t, s(t);λ)a−(t, x;λ) exp
{(λ+ ṡ(t)

k

)
(x− s(t))

}
,

where χ+(t, x), χ−(t, x) are the characteristic functions of the sets {x ; s(t) < x},
{x ; x < s(t)}, respectively. The functions a+, b+ and a− are to be determined. Note
that a+(t;λ) and b+(t;λ) do not depend on x. We use the abbreviations

a+ = a+(t;λ), b+ = b+(t;λ), a−(x) = a−(t, x;λ), s = s(t), ṡ = ṡ(t).

The intuition for this ansatz is as follows. The heat flow hfw given on the boundary
x = 1 is transmitted and reflected at the inner boundary x = s(t), which gives rise

to a− exp(
λ+ ṡ

k
(x− s)) and b+ exp(−(λ+ ṡ)(x− s)). This latter is again reflected at

the boundary x = 1 and produces a+ exp((λ + ṡ)(x− s)).
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It must satisfy the following conditions




v+(t, 1;λ) = hfw(t, 1;λ),

v+(t, s(t);λ) = v−(t, s(t);λ),

v′+(t, s(t);λ) = k2v′−(t, s(t);λ).

(4.2)

We can rewrite (4.2) as





a+e
(λ+ṡ)(1−s) + b+e

−(λ+ṡ)(1−s) = 0,

1 + a+ + b+ = a−(s),

λ+ (λ+ ṡ)(a+ − b+) = k2a′−(s) + k(λ+ ṡ)a−(s).

(4.3)

We put

ϕ = ϕ(t, x;λ) = (λ+ ṡ(t))(x − s(t)),

ϕ1 = ϕ1(t;λ) = (λ+ ṡ(t))(1 − s(t)).

By a direct computation, we have for x > s(t)

v̇+ − v′′+
hfw(t, s;λ)

=
[
− 2λṡa+ + ȧ+ +

(
s̈(x− s)− 2ṡ2)a+

]
eϕ

+
[
ḃ+ − s̈(x − s)b+

]
e−ϕ,

(4.4)

and for x < s(t)

v̇− − k2v′′−
hfw(t, s;λ)

=
[
− λ

(
2ka′− + (1 +

1

k
)ṡa−

)
+
( s̈(x− s)

k
− (1 +

1

k
)ṡ2

)
a−

+ ˙a− − 2kṡa′− − k2a′′−

]
eϕ/k.

(4.5)

4.2. Construction. By the 1st equation of (4.3), we have

a+ = −b+e
−2ϕ1. (4.6)

By the 2nd equation of (4.3), we have

a−(s) = 1 + b+(1− e−2ϕ1). (4.7)

We take a− to be the solution of the differential equation

a′− +
1

2k

(
1 +

1

k

)
ṡa− = 0,

satisfying (4.7), i.e.

a−(x) = e−
1
2k (1+ 1

k
)ṡ(x−s)

(
1 + b+(1− e−2ϕ1)

)
.

Plugging them to the third equation of (4.3) and noting that sup{s(t), 0 < t < T } < 1
by our assumption, we have

b+ =
1− k

1 + k
+O(e−2ϕ1), (4.8)



10 TEX PRODUCTION AND V. A. U. THORS

a+ =
k − 1

k + 1
e−2ϕ1

(
1 +O(e−2ϕ1)

)
, (4.9)

a−(x) =
2

1 + k
e−

1
2k (1+ 1

k
)ṡ(x−s) +O(e−2ϕ1), (4.10)

and these expansions can be differentiated term by term. By (4.4) and (4.6), we have

v̇+ − v′′+
hfw(t, s;λ)

=
(
s̈(2− s− x)b+ − ḃ+

)
eϕ−2ϕ1 +

(
ḃ+ − s̈(x− s)b+

)
e−ϕ. (4.11)

In view of (4.11) and (4.5), we then have

|v̇+ − v′′+| ≤ Chfw(t, s;λ)e
−ϕ, s < x < 1,

|v̇− − k2v′′−| ≤ Chfw(t, s;λ)e
ϕ/k, 0 < x < s,

where the constant C is independent of 0 < t < T and λ > sup{|ṡ(t)|, 0 < t < T }.
The above v(t, x;λ) does not satisfy v(t, 0;λ) = 0. We modify it in the following

way: Let

s0 = inf
0<t<T

s(t).

By our assumption, 0 < s0 < 1. Pick χ(x) ∈ C∞(R) such that

χ(x) =

{
0, x < s0/4,

1, s0/2 < x,
(4.12)

and put

w(t, x;λ) = χ(x)v(t, x;λ). (4.13)

Lemma 4.1. Let w(t, x;λ) be defined by (4.13). Then w satisfies

w(t, 1;λ) = hfw(t, 1;λ), w(t, 0;λ) = 0. (4.14)

Moreover, we have

|ẇ+A(t)w| ≤ Ceλ
2t+λs(t)

{
e−ϕ, s(t) < x < 1,

eϕ/k + e−δ0λ, 0 < x < s(t),
(4.15)

where C, δ0 > 0 are constants independent of t, λ > 0.

Proof. (4.14) follows directly from (4.13). Since

ẇ+A(t)w = χ(x)(v̇+A(t)v)−2k2χ′(x)v′−−k2χ′′(x)v−,

and x < s0/2 on the support of χ′(x), we obtain (4.15). �
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4.3. The function H. We next construct the function H in Lemma 3.2, with
parameters λ > ν > 0, where ν satisfies (1.3). The idea is the same as above, however
it must be C1 at (t, s(t)) with the trade off that it merely satisfies the differential
inequality (3.5). Letting χ±(t, x) be the characteristic function of D±, we construct
H = H(t, x) in the following form:

H(t, x) = χ+(t, x)e
−λ2t

(
e(λ−ν)x + b1e

(λ−ν)(2s(t)−x)
)

+ χ−(t, x)b2e
−λ2t+(λ−ν)( x−s(t)

k
+s(t)),

The condition (3.4) is satisfied by setting

b1 =
1− k

1 + k
, b2 =

2

1 + k
. (4.16)

For s(t) < x we have

H(t, x)

e−λ2t+(λ−ν)(2s(t)−x)
= e(λ−ν)(2x−2s(t)) +

1− k

1 + k
≥ 2

1 + k
> 0.

This leads to

e−λ2t+(λ−ν)(2s(t)−x) ≤ 1 + k

2
H(t, x), s(t) < x < 1. (4.17)

By computing f ≡ −Ḣ − γH ′′ in D±, we see that

f(t, x) = (2λν − ν2)H(t, x) − 2(λ− ν)ṡ(t)b1e
−λ2t+(λ−ν)(2s(t)−x), (4.18)

s(t) < x < 1,

f(t, x) =

(
(2λν − ν2) + (

1

k
− 1)(λ− ν)ṡ(t)

)
H(t, x), (4.19)

0 < x < s(t).

Using (4.17), (4.18) and (4.19) we have

f ≥
(
(2λν − ν2)− (λ− ν)|1− k| |ṡ|

)
H, s(t) < x < 1, (4.20)

f ≥
(
(2λν − ν2)− (λ− ν)|1

k
− 1| |ṡ|

)
H, 0 < x < s(t). (4.21)

Thanks to (1.3), we have

ν ≥ sup
0<t<T

(
sup

(
|1
k
− 1|, |1− k|

)
|ṡ(t)|

)
,

and so, for 0 < t < T ,

2λν − ν2 ≥ λν + (λ− ν)max
(
|1− k| |ṡ(t)|, |1

k
− 1||ṡ(t)|

)
. (4.22)

Thanks to (4.20), (4.21), (4.22), we obtain f ≥ λνH in L2(D±), and so, (3.5) is sat-
isfied with K = λν.

We shall need also the following upper bound for H :

H(t, x) ≤ 2e−λ2t+λmax(s(t),x) in (0, T )× Ω. (4.23)
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4.4. Proof of Theorem 1.1. Using w(t, x;λ) from (4.13), we put

U(t, x) = u(t, x;λ)− w(t, x;λ). (4.24)

Then we have using (4.8), (4.9), (4.10), |w(0, x;λ)| ≤ Ceλs(0), hence

|U(0, x)| ≤ |u0(x)| + Ceλs(0),

which implies

|U(0, x)|H(0, x) ≤ 2(|u0(x)| + Ceλ)eλ, (4.25)

where we have used (4.23).
By the construction of the ansatz we have [γU ′]s(t) = 0 in L2(0, T ).

Letting F (t, x) = U̇ +A(t)U , and in view of (4.15), (4.23), we also have

|F (t, x)|H(t, x) ≤ Ce2λs(t),

Thanks to (1.2) we have

hbw(t, 1;λ) ≤ C(ν)H(t, 1), 0 < t < T,

and then, in view of Lemma 3.2,

∫ T

0

eλν(t−T )|U ′(t, 1)|hbw(t, 1;λ)dt

≤ C
(
eλ(2−νT ) +

∫ T

0

eλν(t−T )+2λs(t)dt
)
.

Since ν > 2 sup0<t<T |ṡ(t)|, we can make the change of variable y = t + 2s(t)/ν to
see that

∫ T

0

eλνt+2λs(t)dt =

∫ T+2s(T )/ν

2s(0)/ν

eλνy
dy

1 + 2ṡ(t)/ν

≤ C

∫ T+2s(T )/ν

2s(0)/ν

eλνydy ≤ C
eλνT+2λs(T )

λν
.

Since ν > 2/T (see (1.3)), we have 2− νT − 2s(T ) < 0, and this yields

∫ T

0

eλνt|U ′(t, 1)|hbw(t, 1;λ)dt ≤
C

λν
eλνT+2λs(T ),

for λ sufficiently large. On the other hand, by using (4.1), (4.8) and (4.9), we have

hbw(t, 1;λ)∂x
(
w(t, x;λ) − hfw(t, x;λ)

)∣∣∣
x=1

≃ 2λ(k − 1)

k + 1
e2λs(t)−ṡ(t)(1−s(t)).
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By integration by parts, and using ν > 2|ṡ|∞ again, we then have

∫ T

0

eλνthbw(t, 1;λ)∂x
(
w(t, x;λ) − hfw(t, x;λ)

)∣∣∣
x=1

dt

≃ 2λ(k − 1)

k + 1

∫ T

0

eλνt+2λs(t)−ṡ(t)(1−s(t))dt =
2(k − 1)

k + 1

{

[
1

ν + 2ṡ(t)
eλ(νt+2s(t))e−ṡ(t)(1−s(t))

]T

0

−
∫ T

0

eλ(νt+2s(t)) d

dt

(
e−ṡ(t)(1−s(t))

ν + 2ṡ(t)

)
dt
}

=
2(k − 1)

k + 1

1

ν + 2ṡ(T )
eλ(νT+2s(T ))e−ṡ(T )(1−s(T )) +RT 1 +RT 2.

Using νT > 2(s(0)− s(T )), we have

RT 1 ≈e2λs(0)) = o(eλ(νT+2s(T ))),

|RT 2| ≈
∣∣∣∣∣

∫ T

0

eλ(νt+2s(t)) d

dt

(
e−ṡ(t)(1−s(t))

ν + 2ṡ(t)

)
dt

∣∣∣∣∣ ≤ C

∫ T

0

eλ(νt+2s(t))dt = o(eλ(νT+2s(T ))).

This proves Theorem 1.1. �

5. Proof of Theorem 1.3. We set the following ansatz for (1.1) in Case 2,
f1 = 0 :

w(t, x) := χ+(t, x)e
λ2tβ(λ; t)

(
e−λ(x−s(t))−θ+(t)(x−1)

−eλ(x+s(t)−2)+θ+(t)(x−1)
)

+χ−(t, x)e
λ2t

(
e−

λ

k
x − χ(x)b1e

λ

k
(x−2s(t))+θ−(t)(x−s(t))

)
,

where b1 is defined by (4.16), χ by (4.12),

θ−(t) = − ṡ(t)

k2
, θ+(t) =

k − 1

2k
ṡ(t),

β(λ; t) = (1− b1)e
−λ

k
s(t)

(
e−θ+(t)(s(t)−1) − e(2λ+θ+(t))(s(t)−1)

)−1

=
2k

1 + k
e−

λ

k
s(t)+θ+(t)(s(t)−1)(1 +O(e−λδ)),

for some δ > 0. We see that the ansatz satisfies w(t, 0) = hfw(t, 0;λ), w(t, 1) = 0, and,
thanks to the choice of β,

[w(t, ·)]s(t) = 0,

[γw′(t, ·)]s(t) = O(eλ
2t−λ

k
s(t)). (5.1)

Setting f = ẇ− γw′′ ∈ L2(D±), we have, in view of β̇(t) = λṡ(1− 1/k)(1+O(1))β(t)
and the choice of θ±,

|f(t, x)| ≤ Ceλ
2t+λ

k
(x−2s(t)), ∀x ∈ (0, s(t)), (5.2)

|f(t, x)| ≤ Ceλ
2t+λ(−x+(1−1/k)s(t)), ∀x ∈ (s(t), 1). (5.3)
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From (5.1), (5.2), (5.3) we have the following estimates:

∫ 1

0

|f(t, x)|H(t, x)dx ≤ Ceλ(1−
1
k
)s(t),

|[γw′(t, ·)]s(t)|H(t, s(t)) ≤ Ceλ(1−
1
k
)s(t).

Observing that |w(0, x)|H(0, x) ≤ Ceλ and defining U again by (4.24), the inequality
(4.25) holds again. In view of Lemma 3.2, and thanks to (1.4), we then have

∫ T

0

eλν(t−T )|U ′(t, 1)|hbw(t, 1;λ)dt

≤ Cλeλ(3−νT ) +
C

λ
e(1−

1
k
)λs(T ).

Now, we end the proof by observing that

∫ T

0

eλν(t−T )w′(t, 1)hbw(t, 1;λ)dt = −2λ

∫ T

0

β(t)eλν(t−T )+λs(t)dt.

�

6. Proof of Corollary 1.4. Set L1(t) = (1 − 1
k )s(t), ξ(t) =

1
2 L̇1(t)L1(t). The

asymptotic behaviour of Ĩind(λ; t), as λ → ∞, for t ∈ (0, T ], shows that we can
asymptotically determine L1(t), 0 < t ≤ T , and so we can determine L̇1(t), ξ(t), and,
for fixed t ∈ (0, T ], the value of

lim
λ→∞

ν + L̇1(t)

−4
e−λ(νt+L1(t))+

1
2 L̇1(t)Ĩind(λ; t) =

k

k + 1
e

k

k−1 ξ ≡ f(k),

with ξ = ξ(t). The function f(k) is defined for k ∈ (0, 1) ∪ (1,∞). Now, we regard ξ
and F as parameters, and consider the following equation with respect to k:

f(k) = F , F ∈ R. (6.1)

We assume that F ∈ Im f , since, in fact,

F = lim
λ→∞

ν + L̇1(t)

−4
e−λ(νt+L1(t))+

1
2 L̇1(t)Ĩind(λ; t).

We have f > 0, lim f(k) = eξ as k → +∞, and

f ′(k) =
1

(1 + k)2(1 − k)2
p(k)e

k

k−1 ξ, p(k) := (1 − ξ)k2 − (2 + ξ)k + 1.

Let k3, k4 be the roots of p. The discriminant of p is ∆(k) = ξ(ξ + 8). We thus have
to analyse the following cases for ξ.

(i) ξ = 1 In this case p(k) = 1 − 3k. If 0 < F < (4
√
e)−1 = f(1/3), then equa-

tion (6.1) admits two solutions k1 ∈ (0, 1/3), k2 ∈ (1/3, 1). If (4
√
e)−1 < F ≤ e,

then equation (6.1) does not have a solution (this case is forbidden). If e < F , then
equation (6.1) admits only one solution k1 > 1.

(ii) ξ = 0 Then f is increasing from 0 to 1 as k > 0, and so (6.1) admits a unique

solution.
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(iii) 0 < ξ < 1 The roots of p are positive: 0 < k3 < k4. Since p(0) = 1, p(1) =

−2ξ < 0, p(+∞) = +∞, we have 0 < k3 < 1 < k4. So f is increasing in (0, k3) (re-
spectively in (k4,+∞)) from 0 to f(k3) (respectively from f(k4) to eξ), and decreasing
in (k3, 1) (respectively in (1, k4)) from f(k3) to 0 (respectively from +∞ to f(k4)).
Observing that k3ξ

k3−1 < 0 < k4ξ
k4−1 and that k3

k3+1 < k4

k4+1 , we then have f(k3) < f(k4),
hence F 6∈ (f(k3), f(k4)). If F < f(k3) or if F > f(k4), then (6.1) admits two roots.
If F = f(ki), then k = ki, i = 3, 4.

(iv) ξ > 1 In this case, p admits one positive root k3 < 1. So f is increasing in (0, k3)

from 0 to f(k3), and decreasing in (k3, 1) (respectively in (1,+∞)) from f(k3) to 0
(respectively from +∞ to eξ). Observing that f(k3) < eξ, we have F 6∈ (f(k3), e

ξ).
So (6.1) admits two roots if F < f(k3), and only one if F = f(k3) or F > eξ.

(vi) ξ < 0 If ξ > −8, then ∆(k) < 0 and p > 0. If ξ ≤ −8, then the roots of p are

negative and so p(k) > 0 for k > 0. Thus, in any case, f(k) is increasing from 0 to ∞
when k varies over [0, 1) and f(k) is increasing from 0 to eξ when k varies over (1,∞).
Hence if F ≥ eξ, then (6.1) admits a unique solution k1 ∈ (0, 1), and if 0 < F < eξ,
then (6.1) admits two solutions k, k′ such that 0 < k < 1 < k′.

7. Numerical example. Consider four different conductivities,

γi(t, x) = 10 when x < si(t), i = 1, 2, 3, 4,

where

s1(t) = 0.95

s2(t) = 0.8

s3(t) = 0.85 + t

s4(t) = 0.85 + 0.1 cos(t/0.1 · 4π).

The indicator function can be written as

I(T ;λ) = eλ
∫ T

0

e(λν−λ2)T∂xu(T, x;λ)|x=1dT − 1

ν
e2λ(eλνT − 1). (7.1)

The behaviour of the indicator function can be written as

log(I(T ;λ))

λ
→

λ→∞
νT + 2s(T ).

Using a large fixed λ we get the approximative reconstruction equation

s(T ) ≈ 1

2

[
log(I(T ;λ))

λ
− νT

]
, (7.2)

which is the more accurate the larger λ is.
Let T = 0.002, .., 0.1 be 50 discrete points and λ = 5, 10, 15, 18, also choose a

fixed ν = 9. We use the software Matlab and Finite Element Method to compute
the solution u(t, x;λ) for each pair T, λ with 400 nodes of x and 200 nodes of t.
Subsequently we compute the indicator 7.1, where the differentiation ∂x is done via
Matlab’s function “pdeval.m”. Finally we compute the reconstruction s(T ) using 7.2.
The test conductivities and the reconstructions are pictured in figure 7.1; solid black
line is the boundary si(t), dashed lines are the reconstructions with λ = 5, 10, 15, 18.
Note that in the pictures only the part [0.5, 1] of Ω = [0, 1] is shown.
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Fig. 7.1. Test conductivites and their reconstructions; the vertical axis is the variable x, the

horizontal axis is the time t. Solid black line is the boundary si(t), dashed lines are the reconstruc-

tions with λ = 5, 10, 15, 18. On top left: s1(t) = 0.95. On top right: s2(t) = 0.8. On bottow left:

s3(t) = 0.85 + t. On bottow right: s4(t) = 0.85 + 0.1 cos(t/0.1 · 4π).
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