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STRONG SCARRING OF LOGARITHMIC
QUASIMODES

by Suresh ESWARATHASAN & Stéphane NONNENMACHER

Abstract. — We consider a semiclassical pseudodifferential operator on a
compact surface, such that the Hamiltonian flow generated by its principal symbol
admits a hyperbolic periodic orbit at some energy. For an arbitrary small ε > 0, we
construct semiclassical families of quasimodes of this operator, with energy widths
of order ε~/|log ~|, and which feature a strong scar along that hyperbolic orbit. Our
construction proceeds by controlling the evolution of Gaussian wavepackets up to
the Ehrenfest time.
Résumé. — Nous considérons un opérateur pseudodifférentiel semiclassique

sur une surface compacte, tel que le flot Hamiltonien engendré par son symbole
principal possède, à une certaine énergie, une orbite périodique hyperbolique. Pour
un paramètre ε > 0 arbitrairement petit, nous construisons une famille de quasi-
modes de cet opérateur, dont la largeur en énergie est d’ordre ε~/|log ~|, mais qui
possèdent un poids positif (une « grosse balafre ») autour de cette orbite pério-
dique. Notre construction procède par un contrôle de l’évolution de paquets d’onde
gaussiens jusqu’au temps d’Ehrenfest.

1. Introduction

The main objective of Quantum Chaos is to understand the behavior
of wave or quantum propagation when the underlying classical Hamilton-
ian dynamics is chaotic, or at least presents various forms of hyperbolic-
ity. Semiclassical analysis shows that the wave mechanical system should
“converge towards” its classical counterpart, in the semiclassical regime
~→ 0, where ~ is an effective Planck’s constant. However, when the classi-
cal dynamics presents some hyperbolicity, this semiclassical correspondence
breaks down when the time of evolution exceeds the so-called Ehrenfest
time TE ∼ c0|log h|, where c0 > 0 depends on the classical dynamics. As

Keywords: semiclassical analysis, quasimode, QUE, strong scarring.
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a result, a precise description of the stationary states (eigenstates) of the
quantum system remains a challenge, since a precise description usually re-
quires one to understand the quantum evolution up to much longer times.

Although our results apply to more general situations, we will in this
introduction focus on the case of the Laplace–Beltrami ∆g on a compact
Riemannian manifold (M, g). To describe the high frequency dynamics gen-
erated by this operator, we will use a semiclassical formalism, that is define
the semiclassically rescaled Laplacian

P (~) = −~2∆g ,

and consider its spectrum in the vicinity of a fixed value E = 1, in the
semiclassical regime ~ � 1. The operator P (~) generates the dynamics of
a free quantum particle on M , embodied in the Schrödinger equation

(1.1) i~
∂

∂t
ϕ(t) = P (~)ϕ(t) ,

where ϕ(t) ∈ L2(M,dg) is the wavefunction of the particle at time t. In the
semiclassical limit, this dynamics can be related with the free motion of a
classical particle on M , namely the geodesic flow. This flow, which lives on
the phase space T ∗M 3 (x, ξ), is generated by the Hamiltonian function
p(x, ξ) = ‖ξ‖2g, so we will denote it by etHp . By scaling, we may restrict
this flow to the unit cotangent bundle S∗M = p−1(1).

When M is compact without boundary and the metric g has everywhere
negative sectional curvature, the geodesic flow is of Anosov type: every
trajectory is hyperbolic. Ergodic theory shows that this flow is ergodic and
mixing with respect to the Liouville measure on S∗M . Anosov flows have
been thoroughly studied, and represent the strongest form of chaos. One
objective of Quantum Chaos is to study the localization properties of the
eigenstates of P (~) at energies E~ ∼ 1, whilst taking into account the
chaotic properties of the geodesic flow. The semiclassical régime ~ → 0
amounts to studying the eigenmodes ϕj of the Laplacian of frequencies
λj ∼ ~−1 →∞.
The Quantum Ergodicity Theorem [39, 43, 50] shows that if the geo-

desic flow is ergodic, then almost all the high-frequency eigenstates ϕj are
asymptotically equidistributed overM . Namely, there exists a subsequence
S ⊂ N of density one, such that the probability measures |ϕj(x)|2 dx weakly
converge to the normalized Lebesgue measure when S 3 j → ∞. An ana-
logue of this theorem is established in the boundary setting for Dirichlet
eigenstates by Gérard–Leichtnam [21] for convex domains in Rn withW 2,∞

regularity and Zelditch–Zworski [52] for compact manifolds with piecewise
smooth boundaries.
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LOGARITHMIC QUASIMODES 2309

An open question concerns the existence of exceptional eigenstates, which
would localize in a nonuniform way on M . Rudnick and Sarnak conjec-
tured that for (M, g) of negative curvature, such exceptional eigenstates
do not exist [36], a property called Quantum Unique Ergodicity. So far
this conjecture was proved only in the case of certain hyperbolic surfaces
with arithmetic properties [8, 32]. Numerical computations of eigenstates
of ergodic Euclidean billiards [27] have shown that certain high frequency
eigenstates present an enhanced intensity along short closed geodesics. In
the case these orbits are hyperbolic, a quantitative characterization of these
enhancements — baptized as scars of the geodesic γ on the corresponding
eigenstates — has remained elusive, in spite of intensive investigations in
the physics literature (see e.g. the review [29] and references therein, or a
more recent numerical study by Barnett [4]). In particular, it is unclear
whether these enhancements can take the form of singular components
wγδγ , wγ > 0, in the weak limits of the measures |ϕj(x)|2 dx.

To connect the localization of eigenstates with the classical dynamics,
which takes place in the phase space T ∗M , it is convenient to lift the lo-
calization properties to phase space, that is characterize the semiclassical
microlocalization of the eigenstates. More generally, for any semiclassical
sequence of L2-normalized states (ϕ~)~→0, we may characterize the as-
ymptotic phase space localization of these states through the semiclassical
measures associated with this sequence. Let us recall how these measures
are constructed (see e.g. [53, Chap. 5]). A sequence of normalized states
(ϕ~)~→0 is said to converge towards the semiclassical measure µsc if, for
any observable a ∈ C∞c (T ∗M), one as

〈ϕ~,Op~(a)ϕ~〉
~→0−−−→

∫
T∗M

adµsc.

Here Op~(a) is an operator on L2(M), obtained through a semiclassical
quantization of the observable a(x, ξ) (see Section 2). The limit measure
is independent of the choice of quantization. For any sequence (ϕ~) one
can always extract a subsequence (ϕ~j ) converging to some semiclassical
measure µsc. The latter is then said to be a semiclassical measure associated
with the sequence (ϕ~). Semiclassical measures provide a notion of phase
space localization, or microlocalization: a sequence (ϕ~) will be said to be
microlocalized in a set K ⊂ T ∗M if any associated semiclassical measure
is supported inside K.
Coming back to the scarring phenomenon, a sequence of eigenstates (ϕ~)

of P (~), of energies E~ ≈ 1, is said to exhibit a strong scar on a closed or-
bit γ ∈ S∗X if any associated semiclassical measure contains a component

TOME 67 (2017), FASCICULE 6
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wγδγ with some positive weight wγ > 0 (here δγ is the normalized, flow
invariant Dirac measure on the orbit γ). The equatorial (or highest weight)
spherical harmonics of the standard 2-sphere are examples of eigenstates
of the Laplacian concentrating along a single closed geodesic. In negative
curvature, the existence of such exceptional eigenstates would contradict
the QUE conjecture. In [1, 2] it was shown that the eigenstates cannot
fully localize along γ: for any sequence of eigenstates, the weight wγ is nec-
essarily smaller than unity, in particular in the case of constant negative
curvature one must have wγ 6 1/2. So far exceptional eigenstates have
been exhibited only for a toy model of Anosov systems, namely the hyper-
bolic automorphisms of the 2-dimensional torus, casually called “Arnold’s
cat map” [19]. The classical dynamics arises from a hyperbolic symplecto-
morphism on T2, which is represented by a matrix A ∈ SL(2,Z); it can be
quantized into a family of unitary operators (U~)~→0 of finite dimensions
∼ ~−1. One can analyze the microlocalization on T2 of the eigenstates
of the operators U~. For any periodic orbit γ of the classical map, the
very special algebraic properties of the operators U~ allows to explicitly
construct eigenstates with strong scars on γ, with weights wγ necessarily
taking values in [0, 1/2] [18]. These special eigenstates were constructed by
linear combinations of evolved Gaussian wavepackets localized on γ.

In the present article we will consider a similar construction for the dy-
namics provided by the geodesic flow on (M, g), or more general Hamilton-
ian flows. By doing so we won’t be able to construct eigenstates of P (~),
but only approximate eigenstates, which are called quasimodes of P (~).
Let us now give a precise definition of this notion.

Definition 1.1. — For a given energy level E > 0, we say that a semi-
classical family (ϕ~)~→0 of L2 normalized states is a family of quasimodes
of P~ of central energy E and width f(~), if and only if there exists ~0 > 0
such that

(1.2) ‖(P (~)− E)ϕ~‖L2(M) 6 f(~) , ∀ ~ ∈ (0, ~0] .

A slightly broader definition consists in allowing the central energy to de-
pend on ~ as well, namely considering a sequence (E~)~ with E~ → E, and
requiring

(1.3) ‖(P (~)− E~)ϕ~‖L2(M) 6 f(~) , ∀ ~ ∈ (0, ~0] .

Remark 1.2. — One way to construct quasimodes of center E~ and
width f(~) is to take linear combinations of eigenfunctions of P (~) with
eigenvalues in the interval [E~ − f(~), E~ + f(~)]. We will use this trick in
the last stage of the proof of Theorem 1.4 below. However, the construction

ANNALES DE L’INSTITUT FOURIER



LOGARITHMIC QUASIMODES 2311

of a fully localized quasimode in Proposition 1.5 will proceed differently,
namely by a time averaging procedure.

What is the interest of considering quasimodes instead of eigenstates?
Except for very special systems like the quantized “cat map”, we are unable
to give explicit, or even approximate expression of the eigenstates of Anosov
systems. On the opposite, we will construct explicit quasimodes of certain
widths f(~). The larger the width, the less constrained the localization
properties. Using the fact that the function p(x, ξ) is the principal symbol
of the operator P (~), one can show (see e.g. [53, Thms. 5.4 and 5.5]) the
following properties of semiclassical measures associated with (ϕ~):

• if f(~) = o(1) as ~→ 0, then µsc is supported on p−1(E), and is a
probability measure.

• if f(~) = o(~), then µsc must be invariant through the Hamiltonian
flow etHp .

For an Anosov flow like the geodesic flow on (M, g), there exist many invari-
ant measures, the simplest ones being the Liouville measure on p−1(E), or
the delta measures localized along a closed orbit γ ⊂ p−1(E). Our Propo-
sition 1.5 will exhibit quasimodes of width C~/|log ~| (with C > 0 large
enough) converging to the measure δγ . As a corollary, if the flow etHp is
Anosov on p−1(E), then for any flow-invariant measure µ on p−1(E) one
may construct a sequence of quasimodes of width C~/|log ~| converging
to µ.
In [1, 2] it was specified that the semiclassical measures associated

with quasimodes of width f(~) = o
( ~
|log ~|

)
must satisfy the same “half-

delocalization” constraints as the measures associated with eigenstates.
Hence, for such Anosov flows the “logarithmic scale” c ~

|log ~| seems to be
critical for the quasimode width, the constraints on the localization de-
pending on the size of the factor c > 0. In [6] Shimon Brooks studied
such “logarithmic quasimodes” for the Laplacian on compact hyperbolic
surfaces. He showed that quasimodes of width c ~

|log ~| with c > 0 arbitrary
small could still be “strongly scarred” on γ:

Theorem 1.3 ([6]). — Let (M, g) be a compact hyperbolic surface, and
γ ⊂ S∗M a closed geodesic. Then for any ε > 0, there exists δ(ε) > 0 and
a sequence (ϕ~)~→0 of quasimodes of the Laplacian, of center energy E =
1 and width ε ~

|log ~| , converging to a semiclassical measure µsc satisfying
µsc(γ) > δ(ε).

The methods used in [6] are quite specific to the setting of compact hy-
perbolic surfaces. Our main objective in this article is to generalize Brooks’s
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theorem to more general surfaces and Hamiltonian flows. Our construction
will be mostly local, independent of the global dynamics on p−1(E); es-
sentially, the only assumption we need to make on the dynamics is the
presence of a hyperbolic closed orbit γ. We will also attempt to optimize
the relation between the width constant ε > 0 and the weight µsc(γ). In
principle our methods could be extended to higher dimensions, but proba-
bly at the expense of this optimization (see the Remark 3.2 at the end of
Section 3). Our main result is the following Theorem.

Theorem 1.4. — Let (M, g) be a smooth compact Riemannian surface
without boundary. Let P (~) ∈ Ψm

~ (M) be a self-adjoint elliptic pseudodif-
ferential operator, with semiclassical principal symbol p(x, ξ). For a regular
energy level E0, assume that the Hamiltonian flow etHp admits a closed hy-
perbolic orbit γ ⊂ p−1(E0).
Choose any ε > 0. Then there exists δ(ε, γ) > 0, a family of energies

(E~ = E0 + O(~/|log ~|))~→0 and a sequence of quasimodes (ψ~)~→0 cen-
tered on E~ and of widths ε~/|log ~|, such that any semiclassical measure
µsc associated with (ψ~)~→0 satisfies

µsc(γ) > δ(ε, γ) .

Furthermore, we have an explicit estimate for δ(ε, γ) in the régime ε� 1:

(1.4) δ(ε, γ) = ε

πλγ

2
3
√

3
+O((ε/λγ)2) ,

where λγ > 0 is the expanding rate per unit time along the unstable direc-
tion of the orbit γ.

In the course of proving this theorem we will first construct logarithmic
quasimodes fully localized along γ, that is converging to the semiclassical
measure δγ , but with a lower bound on their width.

Proposition 1.5. — Let (M, g), P (~) and γ ⊂ p−1(E0) be as in the
above theorem.
Then, for any sequence of energies (E~ = E0+O(~))~→0 and any constant

Cγ > πλγ , there exist a family of quasimodes (ψ~ ∈ L2(M))~→0 centered
on E~ and of width Cγ(~/|log ~|), converging to the semiclassical measure
µsc = δγ .

Remark 1.6. — Notice a difference between the “central energies” E~
in the Theorem and the Proposition: in the latter we are free to choose the
energy E~ in the range E0 + O(~), while in the Theorem the energies E~
are imposed to us by the system.

ANNALES DE L’INSTITUT FOURIER
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Our result includes various types of dynamics: the Anosov systems de-
scribed above, for which it seems for the moment very difficult to explicitly
describe quasimodes of widths o(~/|log ~|). Let us recall that in [6, Conjec-
ture 2] Brooks extends the QUE conjecture for eigenstates of the semiclas-
sical Laplacian to quasimodes of widths o(~/|log ~|). On the other hand,
our result also encompasses 2-dimensional Liouville-integrable Hamiltonian
flows featuring one hyperbolic orbit: in this case one can generally obtain
a precise description of quasimodes of width O(~∞), or even of the eigen-
states of P (~). We will discuss this case a little in the next subsection.

1.1. Discussion of related results

The construction of quasimodes which localize along closed geodesics, or
more generally along invariant submanifolds, has a long history, starting
at least with the work of Keller [31], who initiated the construction of
quasimodes supported on invariant Lagrangian submanifolds of T ∗M , using
WKB-type Ansätze. The methods were further developed during the 1970s
and 1980s, at least in the case of completely integrable dynamics, by a
plethora of authors including Maslov [33], Duistermaat [14], Weinstein [49],
and Colin de Verdière [42], through the use of “softer” symplectic geometric
methods and Fourier integral operators. One could then exhibit quasimodes
with widths of order O(~∞), localized on some invariant Liouville–Arnold
torus.
Babich and Lazutkin [3] constructed O(~∞) quasimodes concentrating

along a single closed geodesic of elliptic type (that is, the linearized Poincaré
map of the orbit γ is an elliptic matrix). The works of Voros [48], Guillemin–
Weinstein [24], and Ralston [35] each carried out this idea via different
methods; in particular Ralston constructed maximally localized eigenstates
in the form of Gaussian beams, which are minimal uncertainty Gaussian
wavepackets transversally to the orbit. These constructions were specific to
the case of elliptic orbits, albeit with nonresonance conditions.
In the case of a hyperbolic orbit, the construction of O(~∞) quasimodes

using Gaussian wavepackets usually breaks down, due to the fast spread-
ing of the wavepacket along the unstable direction. However, for certain
Liouville-integrable systems, the particular structure of the unstable and
stable manifolds of γ allows to construct O(~∞) quasimodes as WKB states
along the various branches of these manifolds. This construction, performed
by Colin de Verdière and Parisse [44] in the case of a surface of revo-
lution, shows that some family of eigenstates of the Laplacian converge

TOME 67 (2017), FASCICULE 6
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to the semiclassical measure δγ , but the convergence is rather slow: the
weight of the measure |ϕ~(x)|2dx on the complement of a small neighbour-
hood of γ decays at the rate |log ~|−1. We will come back to the Colin de
Verdière–Parisse quasimode construction in Subsection 5.3. Toth studied
specific integrable systems in higher dimension [40, 41], and showed that
some families of eigenstates may converge to δγ for γ a hyperbolic orbit.
The inverse logarithmic decay of the measure away from γ was shown to
hold in greater generality by Burq–Zworski [9]: their Theorem 2′ implies
that in any dimension, a quasimode of width c~/|log ~| with c > 0 small
enough must have a weight > C−1|log ~|−1 outside a small neighbour-
hood of a hyperbolic closed orbit γ. These results were generalized to semi-
hyperbolic orbits by Christianson [10, 11], including the case of manifolds
with boundary.
In the Quantum Chaos physics literature several studies were devoted to

constructing various forms of localized states, which could hopefully mim-
ick the “scars” numerically observed on certain eigenfunctions, or at least
exhibit significant overlaps with these eigenstates. These localized states
are generally based on Gaussian wavepackets localized on a point of γ. De
Polavieja et al. [5], and then Kaplan and Heller [30] used time averaging of
such a wavepacket to construct localized quasimodes, but they did not try
to optimize the time of evolution or the width. On the opposite, a series of
works by Vergini and collaborators constructed so-called “scar functions”
localized along γ. They first considered a Gaussian beam along γ [45], then
used several procedures to improve the width of the quasimode, keeping
the latter localized near γ [46, 47]. In particular, in [47] they improved
the Gaussian beam through a time averaging procedure, and optimized the
width by evolving up to the Ehrenfest time and by carefully selecting the
weight function.
In the mathematics literature, Brooks [6] also constructed localized log-

arithmic quasimodes in the course of proving his Theorem 1.3; his method
also relied on time averaging, but started from “radial states” specific to the
geometry of hyperbolic surfaces, instead of Gaussian wavepackets. Brooks
did not try to optimize the implied constants; one aim of the present article
is to perform such an optimization.

In [7] Brooks constructs quasimodes of the Laplacian on the modular sur-
face (a noncompact hyperbolic surface of finite area), which are associated
with the absolutely continuous part of the spectrum. Namely, his quasi-
modes are obtained as linear combinations of Eisenstein series of different
spectral parameters. He obtains that such Eisenstein quasimodes satisfy a

ANNALES DE L’INSTITUT FOURIER
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form of QUE (as do the individual Eisenstein series) even for larger widths
o(~); in particular they cannot concentrate on a closed geodesic. This pe-
culiar phenomenon is associated with the arithmetic nature of the modular
surface, and is not believed to hold in the case of nonarithmetic surfaces of
finite area.
In closing of this section, we would like to mention two recent articles

of relevance. First in [17] the first author and L. Silberman consider a
compact hyperbolic manifold N admitting a totally geodesic submanifold
M ⊂ N , possibly of dimension d > 1. Extending our present approach,
they are able to construct quasimodes of the Laplacian on N , of width
ε~/|log ~|, such that the associated semiclassical measure carries a “strong
scar” along the invariant submanifold S∗M ⊂ S∗N , namely it contains a
component wδS∗M , where δS∗M is the normalized Liouville measure on the
submanifold S∗M . Even when M consists in a single closed geodesic, their
result already extends the present one by allowing the hyperbolic manifold
N to have arbitrary dimension. Finally, the recent breakthrough [16] by
S. Dyatlov and L. Jin demonstrates that for quasimodes of width o( h

| logh| ),
their associated semiclassical measures must have full support on S∗M ,
showing that the present result of this paper and that of [17] provide a form
of sharpness in sense that above the sub-logarithmic scale, semiclassical
measures can have lower-dimensional supports.

1.2. Outline of the proof

Most of the article deals with the proof of Proposition 1.5, namely the
construction of fully localized quasimodes. Our proof is essentially identical
to the procedure used by Vergini–Schneider in [47]. The main difference is
that the semiclassical tools we use (e.g. the Quantum Normal Form) are
mathematically rigorous. The extension to the partially localized quasi-
modes of Theorem 1.4 is similar in spirit to that of [6], albeit with a better
control of the constants.

We now present an outline of the proof of Theorem 1.4, which starts by
constructing the fully localized logarithmic quasimodes of Proposition 1.5.

Quantum Normal Form. The first task is to choose convenient canon-
ical coordinates near the orbit γ, namely normal form coordinates, which
map the neighbourhood of γ = γ(E0) ⊂ p−1(E0) into a neighbourhood of
the circle {τ = x = ξ = 0, s ∈ T} inside the model phase space T ∗(Ts×Rx)

TOME 67 (2017), FASCICULE 6
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spanned by the coordinates (s, x; τ, ξ). In these coordinates, the Hamilton-
ian p takes the following form, at the order 2N in the transverse coordinates:

p̃(s, x; τ, ξ) = f(τ) + λ(τ)xξ +
∑

26α6N
qα(τ)(xξ)α +O((x, ξ)2N+1) ,

where f(τ) = E0 + τ
T0

+O(τ2), with T0 > 0 the period of γ = γ(E0) and
λ(0) > 0 the expansion rate along the unstable direction of the orbit γ.
This normal form can be extended to the quantum level, following works
of Gérard–Sjöstrand and Sjöstrand [20, 38]. The result is that, microlocally
near γ, the operator P (~) is unitarily equivalent to a Quantum Normal
Form (QNF) operator P̃ (~), a pseudodifferential operator on T × R of
“simple” form; in particular, its principal symbol of P̃ (~) is given by p̃

above.
In this outline we will rather consider a simplified normal form to fo-

cus on the important ideas. Namely, we will take the following quadratic
Hamiltonian on the phase space T ∗(T× R):

p2(s, x; τ, ξ) def= E0 + τ

T0
+ λx ξ ,

with λ = λ(0). The stable (resp. unstable) subspace corresponds to the
ξ-axis (resp. x-axis). The corresponding quantum operator is obtained
through the Weyl quantization of p2 on T× R 3 (s, x):

P̃2(~) = Op~
w(p2) = E0+ 1

T0
~Ds+λ

(
x ~Dx−i~/2

)
, s ∈ T = R/Z, x ∈ R .

On the right hand side we recognize the selfadjoint one-dimensional dilation
operator

(
x ~Dx − i~/2

)
.

Propagation of transverse Gaussians. The state with which we start
has the shape of a Gaussian beam: it is a minimal uncertainty Gaussian
wavepacket transversely to γ, and a plane wave along the direction of γ. In
our normal form coordinates (s, x), this state has the form

(1.5) ψ0(s, x) = 1
(π~)1/4 exp(2iπns) exp

(
−x

2

2~

)
,

for some choice of n ∈ Z .

This state has, with respect to the model Hamiltonian P̃2(~), an average
energy E~〈ψ0, P̃2(~)ψ0〉 = 〈ψ0, P̃2ψ0〉 = E0 + 2πn

T0
~, and an energy width

O(~). We first propagate this Gaussian beam using the Schrödinger equa-
tion; for the model operator P̃2(~) the propagation is explicit, and preserves
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the factorization of variables:

(1.6) ψt(s, x) def= [e−itP̃2/~ ψ0](s, x)

= e−itE~/~ e−tλ/2

(π~)1/4 exp(2πins) exp
(
− x2

2e2tλ~

)
.

The longitudinal dependence e2πins of the state is unchanged, but its trans-
verse part is now a Gaussian of spatial width etλ~1/2, which grows expo-
nentially when t > 0 (recall that the unstable manifold for this model is the
x-axis). The state remains localized in a microscopic neighbourhood of γ
until the Ehrenfest time Tλ = 1

2λ |log ~|. Notice that, with respect to the full
Hamiltonian flow on T ∗M , Tλ is only the local Ehrenfest time associated
with the orbit γ.

To control the evolution of ψ0 through the full QNF Hamiltonian P̃ (~),
we will use the results of Combescure and Robert [12] who give an explicit
procedure to calculate e−itP̃ (~)/~ψ~ in terms of an asymptotic expansion in
powers of ~ (see also [25]). Although their expansion usually breaks down at
the time ∼ 1

3Tλ, the special structure of the QNF P̃ (~) allows here to keep
the evolution under control until Tλ. Besides, up to this time the expansion
is dominated by the state ψt of (1.6).

Time averaging. Obviously, each evolved state ψt is a quasimode of P̃2
with the same center and width O(~) as ψ0. On the other hand, one can
decrease the width of the quasimode by linearly combining these evolved
states, namely averaging over the time. Following the approach in [47], we
consider the Ansatz:

(1.7) Ψ~ =
∫ ∞
−∞

χ(t/T ) eitE~/hψt dt ,

where χ ∈ C∞c ((−1, 1)) is a smooth cutoff, and T > 0 is a (large) time.
Both χ and T will be optimized later. To compute the width of this
quasimode, we must compare the norms of the states (P̃ − E~)Ψ~ and
Ψ~. Both computations rely on first estimating the overlaps 〈ψt, ψt′〉 be-
tween evolved states. For our model Hamiltonian P̃2 the overlap is explicit:
〈ψt, ψt′〉 = 1√

2 cosh((t−t′)λ)
. For the evolution through the full QNF opera-

tor P̃ (~), we will see that these overlaps decay approximately in the same
way. An integration by parts shows that

(1.8) (P̃ − E~)
∫
R
χ(t/T ) eitE~/h ψt dt = i~

T

∫
R
χ′(t/T ) eitE~/h ψt dt .
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Hence, the larger the time T , the smaller the prefactor in the RHS. Because
the evolved states remain localized until the time Tλ, we will choose the
cutoff time T = (1−ε′)Tλ for some small ε′ > 0. The prefactor of the above
right hand side explains the order of magnitude C ~

|log ~| of the width. To
minimize the constant C we also need to optimize the cutoff function χ.
This optimization completes the construction of fully localized quasimodes
in Proposition 1.5.

Projections onto logarithmic intervals. After constructing our log-
arithmic quasimode Ψ~ with center E~, width Cγ ~

|log ~| , and microlocalized
on γ, we project Ψ~ on an energy interval of width 2ε~/|log ~| centered near
E~: this projection is then automatically a quasimode of width ε~/|log ~|.
Elementary linear algebraic arguments show that, if the center E′~ of this
interval is carefully chosen, the projected state is nontrivial, and has a
positive weight on a small neighbourhood of γ.

Remark 1.7. — The compactness of M has not been used in the proof
of Proposition 1.5, but only in the step 4) of the proof of the Theorem,
where we need the spectrum of P (~) to be discrete. This discrete spec-
trum is the reason why we required P (~) to be semiclassically elliptic.
Actually we need this discrete spectrum only in a neighbourhood of the
energy E0, so the result of Theorem 1.4 can be generalized, for instance,
to the case of Hamiltonians p(x, ξ) ∈ Sm(T ∗R2) such that the energy layer
p−1([E0 − ε, E0 + ε]) is compact.
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2. Semiclassical preliminaries

In this sections we recall the concepts and definitions from semiclassical
Analysis we will need. The notations are drawn from the monographies [13,
53].
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2.1. Pseudodifferential operators on a manifold

Recall that we define on R2d the following class of symbols for m ∈ R2:

(2.1) Sm(R2d) def= {a ∈ C∞(R2d × (0, 1]) : |∂αx ∂
β
ξ a| 6 Cα,β〈ξ〉

m−|β|}.

Symbols in this class can be quantized through the ~-Weyl quantization
into the following pseudodifferential operators acting on u ∈ S(Rd):

(2.2) Op~
w(a)u(x) def= 1

(2π~)d

∫
R2d

e
i
~ 〈x−y,ξ〉 a

(
x+ y

2 , ξ; ~
)
u(y) dy dξ .

One can adapt this quantization procedure to the case of the phase space
T ∗M , where M is a smooth compact manifold of dimension d (without
boundary). Consider a smooth atlas (fl, Vl)l=1,...,L ofM , where each fl is a
smooth diffeomorphism from Vl ⊂ M to a bounded open set Wl ⊂ Rd. To
each fl corresponds a pullback f∗l : C∞(Wl) → C∞(Vl) and a symplectic
diffeomorphism f̃l from T ∗Vl to T ∗Wl:

f̃l : (x, ξ) 7→
(
fl(x), (Dfl(x)−1)T ξ

)
.

Consider now a smooth partition of unity (ϕl) adapted to the previous atlas
(fl, Vl). That means

∑
l ϕl = 1 and ϕl ∈ C∞(Vl). Then, any observable a

in C∞(T ∗M) can be decomposed as: a =
∑
l al, where al = aϕl. Each al

belongs to C∞(T ∗Vl) and can be pushed to a function ãl = (f̃−1
l )∗al ∈

C∞(T ∗Wl). We may now define the class of symbols of order m on T ∗M
(after slightly abusing notation and treating (x, ξ) as coordinates on T ∗Wl)

(2.3) Sm(T ∗M) def=
{
a ∈ C∞(T ∗M × (0, 1]) : a =

∑
l al ,

such that ãl ∈ Sm(R2d) for each l

}
.

This class is independent of the choice of atlas or smooth partition. For
any a ∈ Sm(T ∗M), one can associate to each component ãl ∈ Sm(R2d) its
Weyl quantization Op~

w(ãl), which acts on functions on R2d. To get back
to operators acting on M , we consider smooth cutoffs ψl ∈ C∞c (Vl) such
that ψl = 1 close to the support of ϕl, and define the operator:

(2.4) Op~(a)u def=
∑
l

ψl ×
(
f∗l Op

w
~ (ãl)(f−1

l )∗
)

(ψl × u) , u ∈ C∞(M) .

This quantization procedure maps (modulo smoothing operators with semi-
norms O(~∞)) symbols a ∈ Sm(T ∗M) onto the space Ψm

~ (M) of semi-
classical pseudodifferential operators of order m. The dependence in the
cutoffs ϕl and ψl only appears at order ~Ψm−1

~ ([28, Thm. 18.1.17] or [53,
Thm. 9.10]), so that the principal symbol map

σ0 : Ψm
~ (M)→ Sm(T ∗M)/~Sm−1(T ∗M)
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is intrinsically defined. Most of the rules and microlocal properties (for ex-
ample the composition of operators, the Egorov and Calderón–Vaillancourt
Theorems) that hold on Rd can be extended to the manifold case.

An important example of a pseudodifferential operator is the semiclassi-
cal Laplace–Beltrami operator P (~) = −~2

2 ∆g. In local coordinates (x; ξ)
on T ∗M , the operator can be expressed as Opwh

(
|ξ|2g+~(

∑
j bj(x)ξj+c(x))+

~2d(x)
)
for some functions bj , c, d on M . In particular, its semiclassical

principal symbol is the function |ξ|2g ∈ S2(T ∗M). Similarly, the principal
symbol of the Schrödinger operator −~2

2 ∆g + V (x) (with V ∈ C∞(M)) is
|ξ|2g + V (x) ∈ S2(T ∗M).
We will need to consider a slightly more general class of symbols than

the class (2.1). Following [13], for any 0 6 δ < 1/2 we introduce the symbol
class

Smδ (R2d) def= {a ∈ C∞(R2d × (0, 1]) : |∂αx ∂
β
ξ a| 6 Cα,β~

−δ|α+β|〈ξ〉m−|β|}.

These symbols are allowed to oscillate more strongly when ~→ 0. All the
previous remarks regarding the case of δ = 0 transfer over in a straight-
forward manner. This slightly “exotic” class of symbols can be adapted on
T ∗M as well. For more details, see [15, §3] or [53, §14.2].

3. Normal form around a hyperbolic trajectory

Although the 2-dimensional quantum Birkhoff normal form (abbreviated
by QNF) that we present below from [38] was proved in the setting of real
analytic Hamiltonians on T ∗R2, its proof directly transfers into the C∞
setting, and we will present a sketch of it for the sake of the reader.
Let us recall our setting. (M, g) is a smooth surface without boundary

and P (~) is a pseudodifferential operator on M with principal symbol p ∈
Sm(T ∗M) assumed to be independent of ~, and formally selfadjoint on
L2(M,dg). We assume that for a regular energy level E0 (meaning that
dp does not vanish on the energy shell p−1(E0)), the Hamiltonian flow
etHp admits a hyperbolic periodic orbit γ = γ(E0) ⊂ p−1(E0), with period
T (E0). The hyperbolicity implies that this orbit is isolated in p−1(E0), and
that it belongs to a smooth family {γ(E)} of hyperbolic orbits, each inside
p−1(E). The linearized Poincaré map of γ has eigenvalues Λ(E0), Λ(E0)−1

with |Λ(E0)| > 1; Λ(E0) is positive (resp. negative) if the local unstable
manifold of γ is orientable (resp. nonorientable). In both cases we denote
|Λ(E0)| = exp(T (E0)λ(E0)), so that λ(E0) is the expansion rate per unit
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time along the unstable direction. This parameter will play an important
role in the following.
Denote by α the Liouville 1-form on T ∗M , which reads α =

∑2
j=1 ηj dyj

in local coordinates (yi, ηi). We call

ϕ = ϕ(E0) def=
∫
γ(E0)

α, the action of the orbit γ(E0).

Proposition 3.1 ([38]).

(1) There exists a Birkhoff normal form around the orbit γ(E0).
Namely, for any integer N > 0, there exist local symplectic co-
ordinates (s, τ, x, ξ) ∈ T ∗(T × R) and a smooth local canonical
transformation

κ = κN : neigh
(
γ0

def= {(s, 0, 0, 0), s ∈ T}, T ∗(T× R)
)

→ neigh
(
γ(E0), T ∗M

)
,

single-valued if the unstable manifold of γ(E0) is orientable, and
otherwise double-valued with κ(s−1, τ, x, ξ) = κ(s, τ,−x,−ξ), such
that

(3.1)
p̃N

def= p ◦ κ = f(τ) + λ(τ)xξ + q(N)(τ, xξ) +O((x, ξ)N+1) ,

q(N)(τ, xξ) =
∑

462α6N
qα(τ)(xξ)α .

Here f(τ) = E0 + τ
T0

+ O(τ2), and to each value τ ∈ [−ε, ε] cor-
responds a periodic orbit of energy E(τ), with E(0) = E0. By a
slight abuse of notation we denote λ(τ) = λ(E(τ)) the unstable
expansion rate for the orbit γ(E(τ)). The remainder means that
|O((x, ξ)N+1)| 6 C(|x| + |ξ|)N+1 in the indicated neighborhood of
T ∗(T× R).

(2) Recall that ϕ is the action of the orbit γ(E0). Given ~ ∈ (0, 1], let
So/noϕ/~ (T × R) be the space of smooth functions u(t, x) on R × R,
in the Schwartz class in the second variable, with the periodicity
property u(s + 1, x) = e−iϕ/~u(s, x) in the orientable case, resp.
u(s+ 1, x) = e−iϕ/~u(s,−x) in the non-orientable case.

There exists a corresponding quantum Birkhoff normal form,
namely a semiclassical Fourier integral operator UN : So/noϕ/~ (T ×
R) → C∞(M) quantizing κN microlocally near γ0, microlocally
unitary near γ(E0) × γ0 (using the natural L2(T × R) structure).
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This operator conjugates P = P (~) to the following Quantum Nor-
mal Form operator:

(3.2) U∗N P UN = P (N) +RN+1 .

Here P (N), RN+1 are pseudodifferential operators on So/noϕ/~ (T×R),
microlocally supported near γ0, with Weyl symbols(1)

(3.3)
p(N)(τ, x, ξ; ~) =

N∑
j=0

~j p(N)
j (τ, x, ξ),

rN+1(s, τ, x, ξ;h) = O
(
(~, x, ξ)N+1),

where p(N)
0 = p̃N above, and the higher order terms are of the same

form. Moreover,

p(N+1)(τ, x, ξ; ~)− p(N)(τ, x, ξ; ~) = O
(
(~, x, ξ)N+1).

Sketch of the proof, after [20, 38].
(1). — For simplicity we will only consider the orientable case. The first

step of the proof lies in the construction of suitable symplectic coordi-
nates κN (s, τ ;x, ξ) = (y, η) such that the classical Hamiltonian p = σ0(P )
in these coordinates reads as in (3.1). That is, we construct the classical
normal form near the orbit γ(E0). Let us recall this construction.
As mentioned above, the hyperbolicity of γ(E0) implies that in some

range E ∈ [E0 − ε0, E0 + ε0], the flow admits a hyperbolic orbit γ(E), so
that Γ def=

⋃
|E−E0|6ε0

γ(E) forms a smooth symplectic submanifold. If we
call Γ±(E) the local unstable/stable manifolds of γ(E), which are smooth
immersed Lagrangian leaves, their unions Γ±

def=
⋃
|E−E0|<ε0

Γ±(E) are
smooth involutive outgoing/incoming submanifolds of codimension 1. One
can use the implicit function theorem to define a smooth function ξ near
γ(E0) such that locally Γ+ = {ξ = 0}, and a symplectically conjugate
coordinate x with x �Γ−= 0. We may also setup canonical coordinates (s, τ)
on Γ, with s multivalued, such that each orbit γ(E) corresponds to a circle
{τ = τ(E), s ∈ [0, 1)}. This set of coordinates on Γ can be extended to a
neighbourhood of Γ, such as to produce a system of canonical coordinates
(y, η) = κ2(s, τ, x, ξ) with τ = τ(E) constant on each submanifold Γ±(E).
In these coordinates near γ(E0), the Hamiltonian is of the following form:

p ◦ κ2(t, τ ;x, ξ) = f(τ) + λ(τ)xξ +O
(
(x, ξ)3) ,

(1)Since T = R/Z, the Weyl quantization is intrinsically defined on T ∗(T×R) by pullback
from the quantization on T ∗R2.
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where the function τ 7→ f(τ) is the inverse function of E 7→ τ(E). In order
to normalize the higher order terms in (x, ξ), we can iteratively construct
functions (Gj(t, τ, x, ξ))j>3 (which are homogeneous polynomials of degree
j in (x, ξ), satisfying certain solvable ODEs), and use the Hamiltonian flows
etHGj they generate, such as to obtain, at the order N , the normal form:

p̃N = p ◦ κ2 ◦ eHG3 ◦ · · · ◦ eHGN

= f(τ) + λ(τ)xξ +
∑

26α6N
qα(τ)(xξ)N +O((x, ξ)N+1) ,

which is the desired Birkhoff normal form. The induced change of coordi-
nates κN = κ2 ◦eHG3 ◦ · · · ◦eHGN maps a neighbourhood of γ0 ∈ T ∗(T×R)
to a neighbourhood of γ(E0) ∈ T ∗M . Notice that κN and κN+1 have the
same Taylor expansion in the coordinates (x, ξ) up to order N .

(2). — One can adapt this normal form construction to the quantum
framework (a general discussion on quantum normal forms can be found
in [53, Chap. 12]). The task is to construct a semiclassical Fourier Integral
Operator (FIO) U0 quantizing the canonical transformation κN . The con-
struction of the phase function of U∗0 shows that this operator maps the
space C∞(M) to the space Sϕ/~(T× R) of functions which are Z-periodic
functions in the variable s, twisted by the phase eiϕ/~ (see for instance [20,
Eq. (2.9)]). The FIO U0 is elliptic from a neighbourhood of γ0 to a neigh-
bourhood of γ(E0), and can be constructed such as to be microlocally
unitary between two such neighbourhoods.
Conjugating our quantum Hamiltonian P (~) with U0, we obtain a pseu-

dodifferential operator P̃0(~) def= U∗0P (~)U0 on Sϕ/~(T×R), whose principal
symbol is of the form p̃N (s, τ, x, ξ). The subprincipal symbol of P̃0(~) is, a
priori, an arbitrary function of (s, τ ;x, ξ). By iteratively solving a sequence
of transport equations, we may correct the symbol of the FIO U0 into a FIO
UN , so that the symbol of the conjugated operator P̃N (~) = U∗NP (~)UN
takes the form (3.3).
Our main point is that the above construction, originally presented in

the case of analytic symbols and operators on the Euclidean space [20, 38],
can be generalized to the case of smooth objects on a smooth manifold (the
FIO U0 can be constructed with a real valued phase function). Since the
construction is local near γ(E0), topological properties of the manifold M
(e.g. the homotopy class of γ(E0)) do not come into play. �

Remark 3.2. — Similar quantum normal forms were established in
higher dimension. The references [22, 51] are specific to the homogeneous
microlocal setting. A higher dimensional formulation of the QNF we use
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was given in [23], albeit the proof for the case of a hyperbolic trajectory
was only sketched. A similar QNF was also derived in [10], but at the cost
of a remaining elliptic factor depending on the longitudinal variable.

Using these higher dimensional QNF, one can probably generalize the
quasimode construction we are presenting below. The main extra difficulty
is to compute the corresponding square norm of the quasimode Ψ as per-
formed in Lemma 5.2. This computation requires to understand well the
overlaps between evolved coherent states in higher dimension (the general-
ization of (5.5)), which will depend on the spectrum and Jordan structure of
the linearized Poincaré map of γ(E0). Since obtaining sharp constants is one
objective of the present article, we restrict ourselves to the 2-dimensional
case.

Remark 3.3. — Another possible extension of the present result con-
cerns the case of manifolds with boundary, where the unstable geodesic γ
would be replaced by an unstable broken geodesic with specular reflections
on the boundary. This situation encompasses for instance certain chaotic
Euclidean billiards. Even in two dimensions and when the boundary is
smooth near the reflection points of the geodesic, the construction of a
quantum normal form becomes problematic. Inspired by the method de-
veloped in [11], it may be possible to construct and analyze our quasimodes
by using a quantum monodromy operator instead of a normal form around
the full periodic orbit.

4. Propagation of a Gaussian wavepacket at the
hyperbolic fixed point

The construction of our quasimode will be performed on the Quantum
Normal Form side, that is on the model space T×R. As explained in §1.2,
it will be based on an initial state which is a plane wave in the longitudinal
direction, and Gaussian along the transverse direction. We must never-
theless take into account that the QNF operator acts on twisted-periodic
functions. From the action ϕ(E0) and ~ ∈ (0, 1] we setup the number

ϕ~
def= 2π

{
ϕ(E0)
2π~

}
,

where {s} ∈ [0, 1) represents the fractional part of s ∈ R .

It satisfies eiϕ~ = eiϕ(E0)/~, so the spaces of twisted periodic functions can
be denoted by So/noϕ~ (T × R). Up to this twist, our initial state will be of
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the same form as in (1.5):

(4.1) ψ0(s, x) def= exp(i(2πn− ϕ~)s) 1
(π~)1/4 exp

(
−x

2

2~

)
,

for some arbitrary n ∈ Z.

Due to the parity of x 7→ e−x
2/2~, this function belongs to both spaces

So/noϕ~ (T×R), and it will allow us to treat both the orientable and nonori-
entable cases simultaneously.
We select the index n to be uniformly bounded when ~→ 0, so that

Op~
w(f(τ))ψ0 = f(~Ds)ψ0 = f(~(2πn− ϕ~))ψ0

satisfies f(~(2πn− ϕ~)) = E0 +O(~) .

We will evolve the state ψ0 through the Schrödinger equation generated by
the QNF operator P (N) described in Proposition 3.1,ii): our task will now
be to describe the states

ψ
(N)
t = e−itP

(N)/~ ψ0, for times |t| 6 C |log ~| ,

where C > 0 is, for the moment, an arbitrarily chosen constant.
The Weyl symbol p(N) of P (N) can be written

(4.2) p(N)(τ, x, ξ;h) =
N∑
α=0

qα(τ ; ~) (xξ)α ,

where the symbols qα(τ, ~) expand as

qα(•; ~) =
N∑
i=0

~i qαi (•) ,

with the special values q0
0(τ) = f(τ), q1

0(τ) = λ(τ) .

The major advantage of this QNF is the separation between the variables
(s, τ) and (x, ξ). As a result, the Schrödinger evolution can be reduced to a
family of 1-dimensional problems. Indeed, since ei(2πn−ϕ~)s is an eigenfunc-
tion of ~Ds, the state ψt can be factorized into longitudinal and transversal
parts,

ψ
(N)
t (s, x) = e−itq

0/~ ei(2πn−ϕ~)sϕ
(N)
t (x) ,

with the shorthand notation q0 = q0((2πn− ϕ~)~; ~) .

TOME 67 (2017), FASCICULE 6



2326 Suresh ESWARATHASAN & Stéphane NONNENMACHER

Notice that q0 = E0 + O(~). The transversal part ϕ(N)
t satisfies the one

dimensional Schrödinger equation

(4.3)

i~∂tϕ(N)
t = Q(N)(~)ϕ(N)

t , Q(N) = Op~
w(q(N)) ,

q(N)(x, ξ; ~) =
N∑
α=1

qα (xξ)α,

where again we took qα = qα((2πn− ϕ~)~; ~).

We thus end up with analyzing the evolution of the 1D Gaussian state
ϕ0(x) = (π~)−1/4 e−

x2
2~ under the above Schrödinger equation.

Let us truncate the symbol q(N) to the quadratic order in (x, ξ), that is
keep from (4.3) the term

(4.4) q(N)
q (x, ξ; ~) = q1 xξ ,

where q1 = q1((2πn− ϕ~)~; ~) = λ(0) +O(~) .

The evolved state through this quadratic operator is easily computed:

(4.5) exp
(
− it
~
Q(N)
q

)
ϕ0 = Dtq1ϕ0 ,

using the unitary dilation operator Dβ : L2(R)→ L2(R):

(4.6) [Dβu](x) def= [exp(−iβOp~
w(xξ)/~)u](x) = e−β/2u(e−βx) .

The stateDtq1ϕ0 is known in the literature as a squeezed coherent state [12]:
it is a Gaussian state, but with a different width from that of ψ0. This state
is still microlocalized at the phase space point (x, ξ) = (0, 0), which is a
fixed point for the flow generated by the Hamiltonian q(N)

0 .
For N > 2, the operator Q(N) includes a nonquadratic part

(4.7) q(N)
nq

def= q(N) − q(1) =
N∑
α=2

qα(xξ)α.

We show below that, in the semiclassical limit, this nonquadratic compo-
nent of Q(N) will induce small corrections to the state (4.5) evolved through
the quadratic part. To justify this fact we will use a Dyson expansion, like
in the general treatment of [12, §3], which considered the evolution of co-
herent states through arbitrary Hamiltonians. Here, the special form of
q(N) will facilitate our task and will produce smaller remainder terms. The
corrections due to the nonquadratic part Q(N)

nq are linear combinations of
squeezed excited states.
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Squeezed excited states. The initial coherent state ϕ0 is the ground
state of the standard 1D Harmonic oscillator (~Dx)2 + x2. We will call
(ϕm)m>1 the m-th excited states, obtained by iteratively applying to ϕ0

the “raising operator” a∗ def= Op~(x−iξ√
2~ ) and normalizing:

(4.8) ϕm = (a∗)m√
m!

ϕ0 =⇒ ϕm(x) = 1
(π~)1/42m/2

√
m!

Hm(x/~1/2) e− x
2

2~ ,

withHm( · ) them-th Hermite polynomial. By applying the unitary dilation
operator Dβ , we obtain a family of squeezed excited states (Dβϕm)m>1.
Following the strategy of [12], we will show the following approximate

expansion for e−itQ(N)/~)ϕ0 in terms of squeezed excited states.

Proposition 4.1. — For every l ∈ N, there exists a constant Cl > 0
and time dependent coefficients cm(t, ~) ∈ C for 0 6 m 6 2l, such that the
following estimate holds for any ~ ∈ (0, 1]:

(4.9) ∀ t ∈ R ,∥∥∥∥eitQ(N)/~ϕ0 −Dtq1ϕ0 −
2l∑

m=0
cm(t, ~)Dtq1ϕ2m

∥∥∥∥ 6 Cl (|t|~)l+1 .

The coefficients cm(t, ~) are polynomials in (t, ~), with degree at most
l in the variable t. Besides, c0(t, ~) = Ot(~), c1(t, ~) = Ot(~2), cm(t, ~) =
Ot(~[(m+1)/2]) for 2 6 m 6 2l.

Remark 4.2. — The result presented in [12, Thm. 3.1] concerned the
evolution of ϕ0 w.r.t. an arbitrary quantum Hamiltonian; in this general
case the remainder usually grows exponentially with the time. The present
polynomial growth of the remainder relies on the normal form structure
of Q(N), namely the fact that Q(N)

nq is a sum of powers of Op~(xξ), which
commutes with the quadratic evolution.

Proof. — Like in [12], we want to compare the full evolution ϕ
(N)
t =

U(t)ϕ0 = e−itQ
(N)/~ϕ0 with the quadratic one, Uq(t)ϕ0 = e−itQ

(N)
q /~ϕ0.

The comparison is based on the Dyson expansion

(4.10) U(t)− Uq(t) = 1
i~

∫ t

0
U(t− t1)Q(N)

nq Uq(t1) dt1 .

This identity is the first order Dyson expansion (case l = 0).
Let us show that Q(N)

nq commutes with Q(N)
q . Each operator Op~

w((xξ)α)
is a linear combination of powers of Op~

w(xξ):
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Lemma 4.3. — For any α > 2, there exists constants (cα,k)16k6[α/2]
such that

(4.11) Op~
w((xξ)α) = (Op~

w(xξ))α +
[α/2]∑
k=1

cα,k ~2k(Op~
w(xξ))α−2k .

This Lemma can be proved by induction, using the fact that the ~-
expansion of the Moyal product (xξ)α#~(xξ) terminates at the order ~2.
As a result, Q(N)

nq commutes with Q
(N)
q , hence with Uq(t1), so we may

rewrite (4.10) as:

(4.12) U(t)− Uq(t) = 1
i~

∫ t

0
U(t− t1)Uq(t1)Q(N)

nq dt1 .

We want to apply this operator to ϕ0. We can represent Q(N)
nq ϕ0 as a

linear combination of excited coherent states. Indeed, using the expression
Op~(xξ) = i~((a∗)2 − a2) in terms of the raising and lowering operators
a∗, a, we may write:

Op~
w((xξ)α) = ~α

(
iα((a∗)2 − a2)α +

[α/2]∑
k=1

iα−2kcα,k((a∗)2 − a2)α−2k
)
.

Using the commutation relation [a, a∗] = 1, the RHS can be rewritten in
normal ordering, that is as a linear combination of terms (a∗)2βa2γ , with
0 6 β, γ 6 α. Since ϕ0 satisfies aϕ0 = 0, we only keep the terms with
γ = 0. Using the definition (4.8) of the excited coherent states ϕm, we get
the following expression:

Lemma 4.4. — For any α > 2, there exists coefficients {dα,k, 0 6 k 6
[α/2]} such that

(4.13) Op~((xξ)α)ϕ0 = ~α
[α/2]∑
k=0

dα,k ϕ2α−4k .

From (4.7), the state Q(N)
nq ϕ0 is a linear combination of {ϕ2m, 0 6 m 6

N}. By inspection, we find that the coefficients in front of ϕ2m have the
following orders in ~:

Q(N)
nq ϕ0 = O(~2)(ϕ0 +ϕ4) +O(~3)(ϕ2 +ϕ6) +O(~4)ϕ8 + · · ·+O(~N )ϕ2N .

From (4.5), the action of Uq(t1) results in a multiplication by e−it1q
0/~,

and the replacement of ϕ2m by the squeezed states Dt1q1ϕ2m. Taking into
account the factor i/~ in front of the integral (4.12) and the unitarity of
U(t), we obtain the estimate

‖(U(t)− Uq(t))ϕ0‖L2(R) 6 C t~ , ∀ ~ ∈ (0, 1], ∀ t ∈ R ,
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for some constant C > 0.
In order to improve the description of U(t)ϕ0, we expand U(t) − Uq(t)

into a Dyson expansion of order l > 1:

U(t)− Uq(t)

=
l∑

j=1

1
(i~)j

∫ t

0

∫ t

t1

. . .

∫ t

tj−1

Uq(t− tj)Q(N)
nq Uq(tj − tj−1)

×Q(N)
nq · · ·Q(N)

nq Uq(t1) dt1 . . . dtj

+ 1
(i~)l+1

∫ t

0

∫ t

t1

. . .

∫ t

tl

U(t− tl+1)Q(N)
nq Uq(tl+1 − tl)

×Q(N)
nq · · ·Q(N)

nq Uq(t1) dt1 . . . dtl+1

Using the commutativity of Q(N)
nq with Uq(s), this simplifies to

(4.14) U(t)− Uq(t) =
l∑

j=1

tj

j!(i~)j Uq(t)(Q
(N)
nq )j

+ 1
(i~)l+1

∫ t

0

tll+1
l! U(t− tl+1)Uq(tl+1) (Q(N)

nq )l+1 dtl+1 .

When applied to ϕ0, each j-term on the RHS leads to a linear combination
of squeezed excited states {Dtq1ϕ2m, 0 6 m 6 Nj}, with the following
estimates on the coefficients:

~−j(Q(N)
nq )jϕ0 = O(~j)(ϕ4j + ϕ4j−4 + · · ·+ ϕ0)

+O(~j+1)(ϕ4j+2 + ϕ4j−2 + · · ·+ ϕ2)

+O(~j+2)ϕ4j+4 + · · ·+O(~(N−1)j)ϕ2Nj .

Hence, each j-term in the equation (4.14) has a norm∥∥ tj

j!(i~)j (Q(N)
nq )jϕ0

∥∥ 6 Cj (|t|~)j ,

where the implicit constant only depends on the coefficients qα of Q(N).
For the same reasons, applying the remainder term in (4.14) to ϕ0 leads to
the bound:

(4.15)
∥∥∥ 1

(i~)l+1

∫ t

0

tll
l!U(t− tl+1)Uq(tl+1) (Q(N)

nq )l+1ϕ0 dtl+1

∥∥∥
6 Cl (|t|~)l+1.
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In the j-sum, each squeezed excited state Dtq1ϕ2m has a coefficient given
by a certain polynomial cm(t, ~). We won’t need to analyze this polynomial
in detail, but only give partial information. Because we will deal only with
times |t| 6 C|log ~|, the size of each polynomial cm(t, ~) will be guided (up
to a logarithmic factor) by the term with the smallest ~-power.

Beyond the principal term Uq(t)ϕ0, the Dyson expansion is of the form

Dtq1
[
Ot(~)(ϕ0 + ϕ4) +Ot(~2)(ϕ2 + ϕ6 + ϕ8)

+Ot(~3)(ϕ10 + ϕ12) +Ot(~4)(ϕ14 + ϕ16) + . . .
]
,

where the coefficient in front of each ϕm is a polynomial in t which van-
ishes when t = 0. In the range 3 6 j 6 l, the terms are of the form
Ot(~j)(ϕ4j−2) + ϕ4j). This ends the proof of the Proposition. �

After tackling the 1D evolution, we can now reconstruct the full evolved
state

(4.16)
ψ

(N)
t (s, x) def= e−itP

(N)/~ψ0(s, x)

= e−itq
0/~ exp(i(2πn− ϕ~)s)ϕ(N)

t (x) .

4.1. Microlocal support of the evolved state

The expansion in Proposition 4.1 shows that the state ψ(N)
t is under

control until polynomial times |t| ∼ ~−1. However, for such large times the
coherent states Dtq1ϕ2m will be very delocalized. Because the normal form
is valid only in a small neighbourhood of γ0 and it involves remainders
O((x, ξ)N+1), it is important to keep our states to be microlocalized in a
microscopic neighbourhood of γ0. For this reason, we are forced to keep the
time of evolution inside a precise logarithmic window. Namely, we select a
small ε′ ∈ (0, 1), and for any ~ ∈ (0, 1/2] we define the local Ehrenfest time

(4.17) Tε′
def= (1− ε′)Tλ = (1− ε′)|log ~|

2λ ,

where as above λ = λ(0) is the unstable expansion rate along the orbit γ0.

Proposition 4.5. — Take Θ ∈ C∞c (T ∗(T×R)) with Θ ≡ 1 in a neigh-
bourhood of γ0, and denote its rescaling by

Θα(s, τ ;x, ξ) def= Θ(s, τ/α;x/α, ξ/α) .

Then, for any power M > 0, there exists CM > 0 such that

(4.18) ‖[Op~(Θ~ε′/3)− I]ψ(N)
t ‖L2 6 CM ~M , ~ ∈ (0, 1] ,

uniformly for times t ∈ [−Tε′ , Tε′ ].
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The above property could be abbreviated as ‖[Op~(Θ~ε′/3)−I]ψ(N)
t ‖L2 =

O(~∞), uniformly in the time interval. Equivalently, the states ψ(N)
t are

microlocalized in any hε′/3-neighbourhood of γ0

Proof. — We will check that all the squeezed excited states Dtq1ϕ2m,
0 6 m 6M , are microlocalized in the same neighbourhood of (0, 0) ∈ T ∗R,
for t in this time interval. The state Dtq1ϕm(x) is a Gaussian of width
eq

1t~1/2, decorated by a polynomial factor. For |t| 6 Tε′ , this width takes
values:

eq
1t~1/2 6 eq

1Tε′~1/2 = e(λ+O(~))Tε′~1/2 = ~ε
′/2+O(~),

hence it remains microscopic. Consider a cutoff χ ∈ C∞c (R, [0, 1]) supported
in [−2, 2], equal to unity in [−1, 1], and define χα(x) def= χ(x/α). For α >
~ε′/3, a direct estimate of the Gaussian integral shows that for any M > 0,

‖(χα − 1)Dtq1ϕm‖L2 = O(~M ) ,

uniformly in the time window. This shows that Dtq1ϕm is microlocalized
inside the strip {|x| 6 ~ε′/3} ⊂ T ∗R.
Now, the semiclassical Fourier transform leaves the states ϕm invariant

(up to a constant phase), and inverts the dilation operator: Dβ(F~u) =
F~(D−βu). As a result, the above computation shows that Dtq1ϕm is also
microlocalized inside the horizontal strip {|ξ| 6 ~ε′/3}, uniformly for |t| 6
Tε′ . These position and momentum microlocalizations imply that Dtq1ϕm
is microlocalized inside the square {|x| 6 ~ε′/3, |ξ| 6 ~ε′/3}. Hence, for
any θ ∈ C∞c ([−2, 2]2) with θ ≡ 1 in [−1, 1], rescaled into θα(x, ξ) def=
θ(x/α, ξ/α), we get for any index m in a bounded range [0,m0]:

‖[Op~(θα)− I]Dtq1ϕm‖L2 = O(~M ) ,

uniformly for |t| 6 Tε′ , index m ∈ [0,m0], and width α > ~ε′/3.
According to Proposition 4.1 the 1D evolved state ϕ(N)

t = e−itQ
(N)/~ϕ0

is a linear combination of l + 1 squeezed excited states, plus a remainder
O(hl+1−ε). Hence, taking l = M and using the triangle inequality, we get:

‖[Op~(θα)− I]ϕ(N)
t ‖L2 = O(~M ) .

We now consider the full state ψ(N)
t . Considering the cutoff Θ as in the

statement, we choose an auxiliary cutoff Θ̃(s, τ ;x, ξ) = χ(τ)θ(x, ξ), sup-
ported near γ0, equal to 1 in a smaller neighbourhood of γ0, and such
that Θ ≡ 1 near the support of Θ̃. We rescale Θ̃ as in the Proposition. If
α > ~ε′/3, we observe that in the longitudinal variable, we have for ~ small
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enough:

χα(~Ds)(ei(2πn−ϕ~)s) = χ((2πn− ϕ~)~/α) ei(2πn−ϕ~)s = ei(2πn−ϕ~)s .

As a result, for ~ small enough we get

(4.19) ‖[Op~(Θ̃α)− I]ψ(N)
t ‖L2 = O(~M ) ,

uniformly for |t| 6 Tε′ and width α > ~ε′/3.
Let us finally check that the same estimate holds with the cutoff Θα,

which is usually not of factorized form. From the support proprerties of Θ
and Θ̃, we have for any α:

Θα − 1 = (1−Θα)(Θ̃α − 1) .

For α > ~ε′/3 the symbol calculus in S0
ε′/3(T×R) shows that this equality

translates into

Op~(Θα)− I =
(
I −Op~(Θα)

)(
Op~(Θ̃α)− I

)
+O(~∞)L2→L2 ,

so we recover the estimate of the Proposition from (4.19). �

Remark 4.6. — In the studies [12, 26] on the long time evolution of
coherent states, expansions of the type (4.9) generally break down at the
earlier time Tλ/3. This breakdown is related with the fact that the un-
stable manifold of the point where the state is centered is usually curved
in the ambient coordinates (y, η) used to define the coherent states. Since
the evolved coherent state wants to expand along this manifold, it wants
to curve too, which is incompatible with the elliptic shape of squeezed co-
herent states. This curvature effect becomes critical around the time Tλ/3,
leading to the breakdown of the expansion (coefficients with large m be-
come dominant). On the opposite, for our normal form Hamiltonian q(N),
the unstable manifold of the fixed point at the origin is the horizontal line,
which is not curved. The squeezed coherent states can perfectly spread
along this line, explaining why our expansion does not develop any singu-
larity up to polynomial times t ∼ ~−1+ε.

Let us mention that the singularity of the evolution at the time Tλ/3 can
be avoided without using a QNF. In [37] the authors manage to propagage
a coherent state up to the delocalization time t ≈ Tλ, even when the un-
stable manifold is curved. The trick consists in changing the representation
of these states: instead of excited Gaussian states, the authors represent
them as WKB states, whose phases may be nonquadratic. Bypassing the
QNF used in the present article, it should be possible to construct and
analyze our quasimodes through a direct analysis of these WKB states,
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at the expense of more intricate expressions when computing overlaps be-
tween evolved states. On the other hand, this alternative method should
be directly applicable in higher dimension.

5. L2 norms and quasimode widths

In this section we will construct a logarithmic quasimode for the QNF
operator P (N), by averaging our evolved coherent states over the time. To
begin with, let us compute the energy width of the initial Gaussian state
ψ0.

Lemma 5.1. — Consider the initial state ψ0(s, x) given in (4.1), with
n ∈ Z possibly ~-dependent, but uniformly bounded when ~→ 0.

Then if we take the energy

(5.1) q0 = q0(~(2πn− ϕ~); ~) = E0 +O(~) ,

we obtain the quasimode estimate

‖(P (N) − q0)ψ0‖L2 = λ
√

2 ~ +O(~2) .

Proof. — The separation between the (s, x) variables allows us to replace
this norm by a 1D norm:

‖(P (N) − q0(~))ψ0‖L2(T×R) = ‖Q(N)ϕ0‖L2(R) .

Considering the decomposition Q(N) = Q
(N)
q +Q

(N)
nq , an explicit computa-

tion shows that

Q(N)
q ϕ0 = q1 Op~((xξ))ϕ0 = i~q1√2ϕ2 ,

Then, Lemma 4.4 shows that each term qα Op~
w((xξ)α)ϕ0 in Q(N)

nq ϕ0 will
produce a linear combination of excited states, of norms O(~α), with α > 2,
so these terms are subdominant with respect to the quadratic one. The
property q1 = λ+O(~) finishes the proof. �

Hence ψ0 is a quasimode centered at q0(~) = E0 + O(~) and of width
∼ C~. Obviously, this is also the case for each evolved state ψ(N)

t .

5.1. Constructing the logarithmic quasimode for the normal
form

We will now construct a better quasimode for the QNF, using a time
averaging procedure.
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Take an arbitrary energy E~ = E0 + O(~), a time T > 0, a weight
function χ ∈ C∞c ((−1, 1), [0, 1]), and its rescaled version χT (t) def= χ(t/T ).
Our quasimode is defined by

(5.2) ΨχT ,E~
def=
∫
R
χT (t) eitE~/~ ψ

(N)
t dt .

It is important to note that this state is not normalized. In order to compute
its energy width, we will first need to compute its L2 norm.

Lemma 5.2. — For C > 0 and ~ ∈ (0, 1], we consider a semiclassically
large averaging time 1 6 T = T~ 6 C|log ~|.

Then the square norm of the state ΨχT ,E~ takes the form

‖ΨχT ,E~‖2 = T S1(λ, (E~ − q0)/~) ‖χ‖2L2

(
1 +O(1/T )

)
,

where S1(•, •) is a positive function given in (5.9), and q0 is the en-
ergy (5.1).

Proof. — Like in the previous section, the factorized form of ψ(N)
t shows

that the above norm is equal to the L2(R)-norm of the state

(5.3) ΦχT ,E~ ,
def=
∫
R
χT (t) eit(E~−q0)/~ ϕ

(N)
t dt .

Recall from Proposition 4.1 that the state ϕ(N)
t is a combination of squeezed

excited states:

ϕ
(N)
t = Dtq1ϕ0 +

2l∑
m=0

cm(t, ~)Dtq1ϕ2m +Rl ,

where the coefficients cm(t, ~) are all O(~ (1 + |t|l)) and the remainder
‖Rl‖L2 = O((|t|~)l+1).
The square norm of ΦχT ,E~ is expressed by

(5.4) ‖ΦχT ,E~‖2 =
∫∫
〈ϕ(N)
t′ , ϕ

(N)
t 〉 ei(t−t

′)(E~−q0)/~ χT (t′)χT (t) dtdt′ .

To compute it, we need to estimate the overlaps

〈Dt′q1ϕ2m′ ,Dtq1ϕ2m〉 = 〈ϕ2m′ ,D(t−t′)q1ϕ2m〉.

The first case m = m′ = 0 is easy to compute (it is a simple Gaussian
integral), and gives for any β ∈ R [19, Eq. 40]:

(5.5) 〈ϕ0,Dβϕ0〉 = 1√
cosh(β)

.
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This overlap decreases fast when |β| � 1. We now show that the other terms
have a similar behaviour. Since Dβ = e−iβOp~

w(xξ)/~, by differentiating
with respect to β we get

∂βDβ = − i
~

Op~(xξ)Dβ = ((a∗)2 − a2)Dβ ,

using the notations of §4 for raising and lowering operators. Since (a∗)2ϕ0 =√
2ϕ2, we get

∂β〈ϕ0,Dβϕ0〉 =
√

2〈ϕ0,Dβϕ2〉 ,
so that

〈ϕ0,Dβϕ2〉 = − sinh(β)
(2 cosh(β))3/2 .

Differentiating once more, we obtain similar expressions for 〈ϕ0,Dβϕ4〉 and
〈ϕ2,Dβϕ2〉. By induction, we can obtain in this way explicit expressions
for all overlaps 〈ϕ2m′ ,Dβϕ2m〉, all of which have the form of linear com-
binations of derivatives of (cosh β)−1/2. As a result, all these overlaps will
decay like e−|β|/2 when |β| → ∞. In particular, for any m,m′ > 0 there
exists Cm,m′ > 0 such that

(5.6)
∣∣∣∣ 〈ϕ2m′ ,Dβϕ2m〉
〈ϕ0,Dβϕ0〉

∣∣∣∣ 6 Cm,m′ , uniformly for β ∈ R .

(these overlaps are independent of ~).
Expanding the states ϕ(N)

t as in (5.4), the first term (m,m′) = (0, 0)
takes the form

I0,0 =
∫
〈ϕ0,D(t−t′)q1ϕ0〉 ei(t−t

′)θ~ χT (t′)χT (t) dtdt′ ,

where we set θ~
def= (E~ − q0)/~ .

From the expression (5.5) we see that the integrand is exponentially local-
ized near the diagonal. This motivates us to operate the change of variables
t̃ = t+t′

2 , r = t− t′, to get

I0,0 =
∫

eirθ~√
cosh(q1r)

χT (t̃+ r/2)χT (t̃− r/2) dt̃dr .

We are interested in large times T � 1, so it makes sense to Taylor expand
the functions χT around the central value t̃. We use the 1st order Taylor
expansion with intermediate value:

(5.7) χT (t̃± r/2) = χT (t̃)± r

2χ
′
T (t̃± r±(t̃, r)/2)

for some r±(t̃, r) ∈ (0, r) .
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The product of the two expansions splits into three terms:

(5.8) χT (t̃)2 + r

2χT (t̃)[χ′T (t̃+ r+/2)− χ′T (t̃− r−/2)]

− r2

4 χ
′
T (t̃+ r+/2)χ′T (t̃− r−/2) .

Keeping only the first term in the integral I0,0 produces

I1
0,0 =

∫
R

eirθ~√
cosh(q1r)

dr
∫
R
χT (t̃)2 dt̃ def= S1(q1, θ~)T ‖χ‖2L2 ,

where the function S1(q1, θ~) admits the explicit expression [19, Eq. (60)]:

(5.9) S1(q1, θ~) = 1
q1
√

2π

∣∣∣∣Γ(1
4 + i

θ~
2q1

)∣∣∣∣2 .
This function is positive for all values of q1, θ~. Given q1 it takes its maxi-
mum at θ~ = 0, with value S1(q1, 0) ≈ 5.244/q1, and decays exponentially
when θ~ →∞. In our situation q1 = λ+O(~), and we have θ~ = O(1), so
this function is uniformly bounded from below and from above by positive
constants.
The second and third terms in (5.8) are both supported in [−T, T ] and

bounded above respectively by |r|T ‖χ‖L∞‖χ
′‖L∞ and r2

4T 2 ‖χ′‖2L∞ . Injected
into the integral I0,0, these terms produce integrals I2

0,0, I3
0,0 with the fol-

lowing bounds:

|I2
0,0| 6

1
T

∫
|r|√

cosh(q1r)
dr
∫ T

−T
dt̃ ‖χ‖L∞‖χ′‖L∞ = S2 ‖χ‖L∞‖χ′‖L∞ ,

|I3
0,0| 6

1
4T 2

∫
r2√

cosh(q1r)
dr
∫ T

−T
dt̃ ‖χ‖L∞‖χ′‖L∞ = S3

T
‖χ′‖2L∞ ,

where S2, S3 > 0 only depends on q1. When T � 1, these two terms are
subdominant compared with I1

0,0. Taking into account that q1 = λ+O(~),
we get

I0,0 = T S1(λ, θ~) ‖χ‖2L2

(
1 +O(1/T )

)
.

Let us now consider the parts of ‖ψ(N)
t ‖2 involving the corrective terms

cm(t, ~)Dtq1ϕ2m. Such a corrective term may be coupled to the main term
Dt′q1ϕ0, or to another corrective term cm′(t′, ~)Dt′q1ϕ2m′ , 0 6 m′ 6 2l. In
both cases, (5.6) shows that the involved scalar product 〈ϕ2m′ ,D(t−t′)q1ϕ2m〉
is bounded above by Cm′m〈ϕ0,D(t−t′)q1ϕ0〉. On the domain of integration,
all the polynomials cm(t, ~) are uniformly bounded above by O(~T l). These
terms are thus bounded above by C̃m,m′ ~T l I0,0(θ~ = 0), and are thus
much smaller than I0,0.
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There remains to treat the contribution to ‖ψ(N)
t ‖2 of the remainder Rl.

Since all ϕm are normalized, a simple computation shows that the parts of
‖ψ(N)

t ‖2 involving Rl are globally bounded above by C ~l+1T l+3.
Summing up all contributions, we obtain the stated estimate for the norm

of ΦχT ,E~ , and hence the norm of ΨχT ,E~ . �

Estimating the norm of ΨχT ,E~ was a necessary step: to prove that
ΨχT ,E~ is microlocalized near γ0, we need a lower bound on its norm.
Let us define the normalized quasimode

Ψ̃χT ,E~
def= ΨχT ,E~

‖ΨχT ,E~‖
.

Corollary 5.3. — If we choose the time T = Tε′ of (4.17), the quasi-
mode Ψ̃χT ,E~ is localized in the ~ε′/3 neighbourood of γ0, in the sense
of Proposition 4.5: for any Θ ∈ C∞c (T ∗(T × R)) with Θ ≡ 1 in a fixed
neighbourhood of γ0, we have the estimate

(5.10) ‖[Op~(Θ~ε′/3)− I]Ψ̃χT ,E~‖L2 = O(~∞) .

Proof. — The proof is a direct consequence of Proposition 4.5. Since
ΨχT ,E~ is a linear combination of the evolved states ψ(N)

t , we have by the
triangular inequality, for any power M > 0:

‖[Op~(Θ~ε′/3)− I]ΨχT ,E~‖L2 6 CM ~M Tε′ ‖χ‖L∞ .

Since the norm of ΨχT ,E~ is of order |log ~|1/2, we may divide by it on both
sides. �

We have shown in Lemma 5.1 that the states composing ΨχT ,E~ are
quasimodes for the operator P (N)(~) which are centered at the energy
q0(~) = E0+O(~). We will take for central energy of our quasimode Ψ̃χT ,E~

the value E~ used in its definition, which may differ from q0 by O(~). To
compute the width of this quasimode we need to estimate the norm of
(P (N)(~)− E~)ΨχT ,E~ .

Proposition 5.4. — For T = Tε′ , we have the norm estimate

‖(P (N) − E~)ΨχT ,E~‖2 = ~2

Tε′
S1(λ, (E~ − q0)/~) ‖χ′‖2L2 (1 +O(1/|log ~|)) ,

where the function S1 is defined in (5.9).
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Proof. — The proof is a straightforward adaptation of the proof of
Lemma 5.2. From the definition (5.2) of ΨχT ,E~ , we see that

(P (N) − E~)ΨχT ,E~ =
∫
R
χT (t) (P (N) − E~) e−it(P

(N)−E~)/~ψ0 dt

=
∫
R
χT (t) eitE~/~ i~∂t( e−it(P

(N)−E~)/~)ψ0 dt

= −i~
∫
R

(∂tχT (t)) e−it(P
(N)−E~)/~ψ0 dt .

The integral in the RHS is similar to the one defining ΨχT ,E~ . To compute
its norm, we may just apply the Lemma 5.2, up to replacing χ by χ′. We
get:

‖(P (N) − E~)ΨχT ,E~‖2 = ~2

T
S1(λ, (E~ − q0)/~) ‖χ′‖2L2 (1 +O(1/T )) ,

which is the announced result after specializing to T = Tε′ . �

Putting together the results of Lemma 5.2 and Proposition 5.4, we find
that the normalized quasimode Ψ̃χT ,E~ , centered at the energy E~, has the
width

f(~) = ~
Tε′

‖χ′‖L2

‖χ‖L2
(1 +O(1/|log ~|)) ,

which is of the announced order O(~/|log ~|). Let us pay attention to the
prefactor. The time Tε′ is the Ehrenfest time (4.17). As in [47], we can
optimize over the choice of cutoff χ to minimize the ratio ‖χ

′‖L2
‖χ‖L2

.

Lemma 5.5.

(5.11) inf
χ

‖χ′‖L2

‖χ‖L2
= π/2 ,

where we take the infimum over all χ ∈ C∞c ((−1, 1), [0, 1]). Hence, for any
ε′ > 0, we may find a cutoff χε′ ∈ C∞c ((−1, 1), [0, 1]) such that

‖χ′ε′‖L2

‖χε′‖L2
6
π

2 (1 + ε′) .

Proof. — By relaxing the condition on the range of χ, we may mini-
mize the quadratic form q(χ) =

∫
(χ′(t))2 dt over χ ∈ C∞c ((−1, 1)). This

quadratic form can be used to define the Laplacian on the interval (−1, 1)
with Dirichlet boundary conditions: this operator has the form domain
H1

0 ((−1, 1)), and admits C∞c ((−1, 1)) as a core. Its ground state χ0(t) =
cos(πt/2)1(−1,1) reaches the announced infimum. By smoothing χ0, we eas-
ily construct a function χε′ ∈ C∞c ((−1, 1)) with the required property. �
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Choosing the cutoff χε′ in the definition of ΨχT ,E~ , we obtain the width

(5.12) f(~) = πλ(1 + 2ε′) ~
|log ~| (1 +O(1/|log ~|)) .

Provided ~ is small enough, this width is bouded above by Cγ ~
|log ~| if we

take Cγ = πλ(1 + 3ε′).

5.2. A localized quasimode on M : proof of Proposition 1.5

To finish the proof of Proposition 1.5, there remains to transform the
quasimode Ψ̃χT ,E~ ∈ Sϕ/~(T × R) for the normal form P (N) into a state
ψ~ ∈ L2(M), and check that the latter is a good quasimode for our initial
operator P (~). This will be accomplished through the use of the Fourier
integral operators UN bringing the original Hamiltonian P (~) to the QNF
P (N), as described in Proposition 3.1. Using the notation of that Propo-
sition, we consider the normalized quasimode Ψ̃χT ,E~ with the optimized
parameters Tε′ , χε′ as described in the last subsection, and define the fol-
lowing state on L2(M), which will be a quasimode for the operator P (~):

ψ~
def= UN Ψ̃χT ,E~ .

From Corollary 5.3 we know that Ψ̃χT ,E~ is microlocalized in the ~ε′/2
neighbourood of γ0. In this region, the FIO UN is essentially unitary, so
that

‖ψ~‖L2(M) = 1 +O(~∞) .
Besides, using the FIO UN , we may transport the cutoffs Op~(Θ~ε′/3) ap-
pearing in Proposition 4.5 and Corollary 5.3, onto the operator

UN Op~(Θ~ε′/3)U∗N = Op~(Θ̃) +O(~∞) .

In each coordinate chart, the symbol Θ̃ is well-defined up to a remain-
der in ~∞S−∞ε′/3(M). This symbol is essentially supported in the ~ε′/3-
neighbourhood of γ(E0), equal to unity in a slightly smaller neighbourhood.
The operator Op~(Θ̃) is, up to a negligible error, selfadjoint (because UN
are microlocally unitary near γ). It satisfies

(5.13) ‖(Op~(Θ̃)− I)ψ~‖ = O(~∞) ,

showing that ψ~ is microlocalized on a ~ε′/3-neighbourhood of γ(E0).
Now, we want to study the energy width of ψ~ with respect to the oper-

ator P (~). From the conjugation (3.2), we get

U∗N (P − E~)ψ~ = (P (N) − E~)Ψ̃χT ,E~ +RN+1Ψ̃χT ,E~ .
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The microlocalization of ψ~ implies the similar localization of (P −E~)ψ~,
so that

‖(P − E~)ψ~‖L2(M) = ‖U∗N (P − E~)ψ~‖L2(T×R) +O(~∞) .

(the FIO U∗N is unitary microlocally near γ0, and subunitary away from it).
We know that the norm of (P (N) − E~)Ψ̃χT ,E~ is given by the optimized
width (5.12). There remains to check that the norm of RN+1Ψ̃χT ,E~ is
smaller.
We recall that the symbol of the operator RN+1 has the form

rN+1(s, τ, x, ξ;h) = O
(
(~, x, ξ)N+1) when ~, x, ξ → 0. On the other hand,

Proposition 5.3 shows that Ψ̃χT ,E~ is localized in a microscopic neighbour-
hood of γ0, so we can write

RN+1Ψ̃χT ,E~ = RN+1 Op~(Θ~ε′/3)Ψ̃χT ,E~ +O(~∞) .

The symbol calculus in the class S−∞ε′/3(T ∗(T× R)) shows that

RN+1 Op~(Θ~ε′/3) = Op~(rN+1#Θ~ε′/3)

where # denotes the Moyal product on T ∗(T×R). The symbol rN+1#Θ~ε′/3

is of order O(~ε′(N+1)/3) in the class S−∞ε′/3(T ∗(T × R)). The Calderón–
Vaillancourt in this class then implies that

‖RN+1 Op~(Θ~ε′/3)‖L2→L2 = O(~ε
′(N+1)/3) .

As a consequence, we obtain

‖(P − E~)ψ~‖L2(M) = ‖(P (N) − E~)Ψ̃χT ,E~‖L2(T×R) +O(~ε
′(N+1)/3) .

The first term on the RHS has been estimated in (5.12). To ensure that the
remainder is of smaller order, we need N and ε′ to satisfy the condition

(5.14) (N + 1)ε′/3 > 1 .

Remark 5.6. — The choice of these parameters should proceed as fol-
lows. First we select ε′ > 0 small, which determines the choice of the time
Tε′ and the near-optimal cutoff χε′ used to construct our model quasimode.
Then, we select N , the order of the normal form, large enough to satisfy
the condition (5.14): this ensures that the remainder operator RN+1 in the
QNF, acting on our quasimode Ψ̃χT ,E~ , gives a negligible contribution.

The microlocalization (5.13) of ψ~ along γ(E0) implies that any semiclas-
sical measure µsc associated with the sequence (ψ~) must be a probability
measure supported on γ(E0). Because the width f(~) = o(~), this measure
must be invariant with respect to the Hamiltonian flow Φtp. As a result, we
must have µsc = δγ(E0), the unique invariant probability measure supported
on the orbit γ(E0). This achieves the proof of Proposition 1.5 �
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5.3. Comparison with another quasimode construction

In [44] Colin de Verdière and Parisse describe O(~∞) quasimodes and
eigenstates of a 1D Hamiltonian with a hyperbolic fixed point (x, ξ) =
(0, 0). Near the fixed point the Hamiltonian can be put in the QNFQ(N)(~).
Their strategy to construct the quasimodes is different from the one we
presented here. Their starting point are the distributions in S ′(R):

ϕ̃θ(x) def= |x|−1/2+iθ , for any θ ∈ R .

A direct computation shows that ϕ̃θ is an eigendistribution of the quadratic
operator Q(N)

q :
Q(N)
q ϕ̃β = ~q1θ ϕ̃β .

From the decomposition (4.3) and Lemma 4.3, ϕ̃θ is also an eigendistribu-
tion of the full operator Q(N), with eigenvalue ~q1θ + O(~2). This distri-
bution appears to be a good starting point for a quasimode construction.
In [44] the authors use the fact that the fixed point is homoclinic: outside a
neighbourhood of the fixed point, the unstable manifold (x-axis) bends and
becomes the stable manifold (ξ-axis). This way, they are able to connect
together the stable and unstable Lagrangian branches of ϕ̃β using WKB
theory, and produce O(~∞) quasimodes of P (~).
In our present setting of a “generic” fixed point, we have no information

on the continuation of the stable and unstable manifolds. The best we can
do to the distribution ϕ̃θ is to microlocalize it inside a compact neighbour-
hood of (0, 0) ∈ T ∗R. For this aim we may use a cutoff Θ ∈ C∞c ([−2, 2]2),
Θ ≡ 1 in [−1, 1]2. The state

ΦΘ,θ
def= Op~

w(Θ)ϕθ
is now in L2(R), with square norm ‖ΦΘ,θ‖2 = 2|log ~| +O(1), each of the
four branches of the stable and unstable manifolds carrying one fourth of
this weight [34]. One can show that the normalized state Φ̃Θ,θ = Op~

w(θ)ϕθ
‖Op~

w(θ)ϕθ‖
converges to the semiclassical measure δ(0,0). This state is a quasimode of
Q(N) of central energy ~q1θ. Let us compute its width:

(Q(N) − ~q1θ)ΦΘ,θ = [Q(N),Op~
w(Θ)]ϕθ + Op~

w(Θ) (Q(N) − ~q1θ)ϕθ
= −i~Op~

(
{q(N),Θ}+O(~)

)
ϕθ .

Because Θ(x, ξ) = 1 near the origin, the symbol {q(N),Θ} vanishes near
the origin and is supported in an annulus. As a result, the state
[Q(N),Op~

w(Θ)]ϕθ is microlocalized along the four branches, away from
the origin, and has norm O(~). Finally, we find that Φ̃Θ is a quasimode of
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width O( ~
|log ~|1/2 ). This is less sharp than the width O(~/|log ~|) we have

obtained by time averaging.
We now proceed towards understanding the connection between these

two quasimode constructions. If we replace in the integral (5.3) the smooth
time cutoff χ by a sharp cutoff 1[−1,1], we obtain a quasimode with an
energy width O( ~

|log ~|1/2 ), which resembles the state Φ̃Θ,θ with the iden-
tification ~q1θ = E~ − q0. On the opposite, if we try to represent the
state ΦχT ,E~ in the form Op~

w(Θ)ϕθ, we obtain a symbol of the form
Θ(x, ξ) ≈ χ

(
log((x2+ξ2)/~)

(1−ε′)|log~|

)
outside the disk {(x2 + ξ2) 6 ~}. This function

Θ is quite singular when (x2 + ξ2) & ~ as it belongs to the “critical” sym-
bol class S−∞1/2 (T ∗R). This singular symbol would be the price to pay if one
wants to recover the small energy width O(~/|log ~|) using this construc-
tion.

6. Partially localized quasimodes and small logarithmic
widths

In this section we will prove our main Theorem 1.4 starting from the
localized quasimodes constructed in Proposition 1.5. The proof essentially
follows the one in [6].

We will use the assumption of compactness for M , to ensure that the
spectrum of P (~) is purely discrete. In Proposition 1.5 we have constructed,
for any given sequence (E~ = E0 + O(~))~→0, a family (ψ~)~→0 of quasi-
modes centered at E~ and with corresponding widths Cγ ~

|log ~| , for a con-
stant Cγ = πλ(1 + 3ε′). In this section we will make the choice E~ = E0
for all ~.

For any eigenvalue Ej = Ej(~) ∈ Spec(P (~)), let ΠEjψ~ be the corre-
sponding spectral projection of the quasimode ψ~ on the Ej-eigenspace.
For some c2 > 0 to be chosen later, we consider the spectral interval
I = [E0 − c2 ~

|log ~| , E0 + c2
~

|log ~| ]. The Pythagorean theorem ensures that

(6.1) ‖(P (~)− E0)ψ~‖2

=
∑
Ej∈I

|Ej − E0|2‖ΠEjψ~‖2 +
∑
Ej∈I{

|Ej − E0|2‖ΠEjψ~‖2.

Using the quasimode estimate for ψ~ and the form of the interval I,
the second term on the RHS above satisfies the following bounds, for
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~ ∈ (0, ~Cγ ]:

(6.2)
(
Cγ~
|log ~|

)2
>
∑
Ej∈I{

|Ej − E0|2‖ΠEjψh‖2 >
(

c2~
|log ~|

)2
‖ΠI{ψh‖2 .

As a result, we get the upper bound

(6.3) ‖ΠI{ψh‖2 6
(
Cγ
c2

)2
.

To ensure that this upper bound is nontrivial we choose c2 > Cγ . As a
consequence, the projection of ψ~ inside I satisfies

(6.4) ‖ΠIψh‖2 > 1−
(
Cγ
c2

)2
> 0 ,

in particular the interval I contains at least one eigenvalue Ej of P (~).
In order to create quasimodes of smaller width than ψ~, we will project

ψ~ on “short” spectral intervals. Precisely, for any choice of ε > 0, we take
K > 0 large enough such that

(6.5) c2
K
6 ε , for instance by taking K = [c2/ε] + 1 ,

and partition the interval I into K disjoint subintervals (Ik)k=1,...,K of
widths 2c2

K and centered at the energies ek = E0 + c2~
|log ~| (−1 + 2k−1

K ). By
Pythagoras we have

‖ΠIψ~‖2 =
K∑
k=1
‖ΠIkψ~‖2 .

For each ~, let k(~) be the index (or one of the indices) for which the norm
‖ΠIkψ~‖ is maximal. From the lower bound (6.4) this means that

(6.6) ‖ΠIk(~)ψ~‖2 >
1
K

(
1−

(
Cγ
c2

)2)
.

The normalized state

(6.7) ψ̃~ =
ΠIk0(~)ψ~

‖ΠIk0(~)ψ~‖

is automatically a quasimode of P (~), centered at E~ = ek(~) and of width
ε ~
|log ~| .
Let us now study the localization properties of the states ψ̃~. The orthog-

onality of the eigenfunctions of P (~) implies the identity ‖ΠIk0(~)ψ~‖2 =
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〈ψ̃~, ψ~〉2. Let us insert the microlocal cutoff Op~(Θ̃) used in (5.13):

〈ψ̃~, ψ~〉2 = 〈ψ̃~,Op~(Θ̃)ψ~〉2 +O(~∞)

= 〈Op~(Θ̃)∗ψ̃~, ψ~〉2 +O(~∞)

6 ‖Op~(Θ̃)ψ̃~‖2 +O(~∞) ,

where we used the fact that Op~(Θ̃)∗ = Op~(Θ̃) + O(~∞). From these
inequalities we deduce the lower bound

(6.8) ‖Op~(Θ̃)ψ̃~‖2 >
1
K

(
1−

(
Cγ
c2

)2)
−O(~∞) .

This estimate shows that any semiclassical measure µsc associated with the
sequence of quasimodes (ψ̃~) contains a singular component wγδγ(E0), with
a weight

(6.9) wγ >
1
K

(
1−

(
Cγ
c2

)2)
.

In other words, the quasimodes (ψ̃~) exhibit a “strong scar” on the orbit
γ(E0).

Finally, we may optimize the parameters in the following way: for a given
(small) width ε > 0, we want to keep the weight wγ as large as possible. By
playing a bit with the parameters c2 and K, we end up with the following
estimates.

Lemma 6.1. — For any 0 < ε < Cγ , there is a choice of K and c2
maximizing the RHS of (6.9).

When ε� Cγ , the optimal parameters satisfy the estimates c2 =
√

3Cγ+
O(ε), K = [c2/ε] + 1, leading to the following lower bound on the weight:

(6.10) wγ >
ε

Cγ

2
3
√

3
+O((ε/Cγ)2) .

Since we can take Cγ arbitrary close to πλγ , we get the estimate (1.4)
in our Theorem 1.4. �
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