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CRB Based-Design of Linear Antenna Arrays

for Near-Field Source Localization
Houcem Gazzah and Jean Pierre Delmas

Abstract

This paper is devoted to the Cramer Rao bound (CRB) on the angle and range of a narrow-band

near-field source localized by means of an arbitrary linear array using the exact expression of the time

delay parameter. First, we prove that the conditional and unconditional CRBs are proportional for an

arbitrary parametrization of the steering vector. Then, a Taylor expansion of the CRB is conducted to

obtain accurate non-matrix closed-form expressions of the CRB on angle and range. In contrast to the

existing expressions, our expressions are simple, interpretable and more general because the sensors are

only constrained to be placed along some axis. Our analysis leads to the characterization of a class of

centro-symmetric linear arrays with better near-field angle and range estimation capabilities.

Index Terms

Cramer Rao bounds, linear antenna arrays, direction-of-arrival and range estimation, near-field source

localization.

I. INTRODUCTION

Uniform linear arrays (ULA) are the most commonly used type of linear antenna arrays because they

are ambiguity-free and allow for fast algorithms, when direction of arrival (DOA) estimation of far-field

sources is sought. However, when the source is located in the antenna near-field, a change of the signal

model occurs as a new parameter is to be considered: the source-to-antenna distance. Fast algorithms

are no longer applicable, and, more seriously, the new (range) parameter will affect DOA estimation

accuracy, and, for some applications, is itself of interest and needs to be estimated. In this context, we
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prove that the ULA configuration is not the best choice. Alternative (other than uniform) placement of

the array sensors is shown to improve range estimation.

To motivate our design, we study the algorithm-independent CRB which constitutes the minimum

achievable variance on the estimated source parameters, here DOA and range of the near-field source.

Despite the huge literature about DOA estimation [1], research has been mostly dedicated to far-field

sources. In fact, when the source is in the array far-field, the (planar) waveform reaches two sensors

with a time difference that is proportional to the spacing between the two sensors. Hence, it is possible

to obtain simple and interpretable non-matrix expressions for the CRB (see e.g., [2]). In contrast, when

the source is in the antenna near-field, the time delay expression is more intricate and only approximate

non-matrix expressions of this CRB can be obtained. Inspired by subspace-based DOA algorithms, early

ones were based on an approximate propagation model based on second-order Taylor expansion of the

time delay parameter [3], [4]. Only lately has the exact time delay formula been used [5], but restricted

to the ULA.

We start by proving a fact about the so-called conditional and unconditional CRBs. Often, they have

been considered as independent (see e.g., the recent papers [15] and [5] which even concludes by

”extension of this work for stochastic sources is under consideration”). In this paper, we show that

they are, actually, proportional, an issue previously overlooked. Then, we investigate accurate non-matrix

expressions of the CRB on both DOA and range, using linear arrays of arbitrarily spaced sensors. They

are more general than those of [5] because we do not assume uniform linear arrays (neither punctured

nor sparse) where inter-sensor spacings1 are multiples of a minimum distance [7]. They are also more

compact than those from [4], [5] and [6] if applied to the special case of ULA, and so thanks to a

different coordinate system that implies a different definition of DOA and range.

The obtained CRB expressions allow for a rich interpretation of the array estimation capabilities

when the source is in the antenna near-field. For instance, they highlight the interest of a class of

centro-symmetric linear arrays made of pairs of sensors symmetrically located along the two sides of

the linear antenna array. Attractive features of such centro-symmetric linear arrays include lower DOA

and range CRBs and faster convergence to the lower far-field DOA CRB. Also, we show that within

centro-symmetric linear arrays, ULA is not the best choice. Centro-symmetric linear arrays can be found

that have identical DOA CRB as the ULA but significantly lower range CRB (by as much as 50%).

1Constraints on the array positions, often adopted to limit array ambiguities [8], may, at the same time, affect estimation

performance [9].
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In fact, a geometric parameter is identified that controls the near-field estimation performance of the

centro-symmetric linear array.

The paper is organized as follows. Sec. II formulates the problem and specifies the data model. Sec. III

is dedicated to new expressions of the CRB. First, assuming an arbitrary parametrization of the steering

vector, we prove that the conditional and unconditional CRB are proportional. Then, we focus on the

DOA and range estimation of near-field sources. Using Taylor expansion, new expressions of the CRB are

derived, and numerically validated. The important class of centro-symmetric arrays is studied in details

in Sec. IV where better-than-ULA are obtained. This paper is concluded in Sec. V.

II. DATA MODEL

-x x x x x x�������h Sourceθ

r

x

C1 C2 O Cp CPxp -

R

Fig. 1. Source in the near-field of the arbitrary linear array.

As depicted in Fig. 1, we consider a linear antenna array made of P sensors C1, · · · , CP . They

are located along a straight line at coordinates x1, · · · , xP , respectively. Without loss of generality, we

assume the array centroid to be at the origin O of this axis. This choice will also allow for more compact

expressions of the CRB, compared to [4], [5]. A narrow-band signal s(t), with wavelength λ, is emitted

towards the antenna array by a source S located at a range r from the origin O and forming an angle θ

w.r.t. the normal of the array. The snapshot collected by sensor p at time index t is

yp(t) = gp exp (iτp) s(t) + np(t), (1)

where s(t) and np(t) represent, respectively, the source signal collected at the origin and the ambient

additive noise collected by sensor p. Amplitude gp may depend on both r and θ, while τp is defined as

τp = 2π(SO − SCp)/λ, which can be rewritten as

τp = 2π
r

λ

(
1−

√
βp

)
with βp

def
= 1 − 2xp

r sin(θ) +
x2
p

r2 . Based on N snapshots {yp(t)}p=1,...,P ;t=t1,...,tN , estimates of both the

range r and the DOA θ are obtained using a variety of algorithms, among which a few are capable of

achieving the stochastic CRB [10].
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Estimation accuracy is evaluated in terms of the CRB, for which the usual statistical properties about

np(t) and s(t) are the following: (i) np(t) and s(t) are independent, (ii) {np(t)}p=1,...,P ;t=t1,...,tN are

independent, zero-mean circular Gaussian distributed with variance σ2
n, (iii) {s(t)}t=t1,...,tN are assumed

to be either deterministic unknown parameters (the so-called conditional or deterministic model), or

independent zero-mean circular Gaussian distributed with variance σ2
s (the so-called unconditional or

stochastic model).

III. EXPRESSIONS OF THE CRB

A. A general result about the CRB

We prove that the stochastic and deterministic CRBs are equal, up to a multiplicative constant, in the

specific case of a single source. Let’s, first, consider an arbitrary number K of sources (with K < P ) with

an arbitrary parametrization α = [α1, ...., αL]
T of the steering vectors a(α) related to array geometry or

polarization, defined by

[a(α)]p=1,..,P = gpe
iτp ,

where gp and τp denote the gain and the delay of the p-th sensor w.r.t. the origin O. gp includes in

particular possible power profiles and/or directional gains. General compact expressions of the CRB,

concentrated on the parameters of the K steering vectors alone, have been derived for these two models

of sources (see e.g., [13]) for one parameter per source. The expression of the stochastic CRB has been

extended for several parameters per source in [14, Appendix D], and following the proof given in [13],

the expression of the deterministic CRB can be also extended to several parameters per source. These

expressions are given respectively by

CRBsto(α) =
σ2
n

2N

[
Re
(
H⊙ ((RsA

HR−1
y ARs)

T ⊗ 1L)
)]−1

(2)

CRBdet(α) =
σ2
n

2N

[
Re
(
H⊙ (RT

s ⊗ 1L)
)]−1

, (3)

where Ry
def
= E[y(t)yH(t)] with y(t)

def
= [y1(t), ..., yP (t)]

T , Rs
def
= E[s(t)sH(t)] with s(t)

def
=

[s1(t), ..., sK(t)]T in (2) and Rs
def
= 1

N

∑N
n=1 s(tn)s

H(tn)] in (3), A
def
= [a1, ...,aK ] with ak is the

steering vector of the k-th source parameterized by αk ∈ RL, H def
= DH

[
I−A(AHA)−1AH

]
D and

D
def
= [ da1

dα1
, ..., daK

dαK
], and where ⊗, ⊙ and 1L are the Kronecker product, the Hadamard product and the

L× L matrix of 1s, respectively.
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Specialized to a single source for which Ry = σ2
sa(α)aH(α) + σ2

nI where σ2
s

def
= 1

N

∑N
n=1 |s(tn)2|

for the deterministic model of the source, it is straightforward to prove the following result

CRBsto(α) =

(
1 +

σ2
n

∥a(α)∥2σ2
s

)
CRBdet(α) = [F(α)]−1 (4)

where

F(α) = cσ(α)Re
[
∥a(α)∥2DH(α)D(α)−DH(α)a(α)aH(α)D(α)

]
with D(α)

def
=
[
∂a(α)
∂α1

, ..., ∂a(α)
∂αL

]
and where cσ(α)

def
= 2Nσ4

s

σ2
n(σ

2
n+∥a(α)∥2σ2

s)
is independent of the source

and sensors positions for constant modulus steering vectors, only.

Thanks to (4), we only consider the stochastic source model for which the elements of the matrix F

(??) are given by

[F]i,j
cσ(α)

=

 P∑
p=1

g2p

 P∑
p=1

g′p,ig
′
p,j + τ ′p,iτ

′
p,jg

2
p

−

 P∑
p=1

g′p,igp

 P∑
p=1

g′p,jgp


−

 P∑
p=1

τ ′p,ig
2
p

 P∑
p=1

τ ′p,jg
2
p

 (6)

where g′p,i and τ ′p,i are the derivative of gp and τp w.r.t. αi, respectively.

This expression simplifies when the gain gp does not depend on the sensor (gp = g(α)) for which the

following expression holds:

[F]i,j
c′σ(α)

= P

P∑
p=1

τ ′p,iτ
′
p,j −

 P∑
p=1

τ ′p,i

 P∑
p=1

τ ′p,j

 (7)

where now c′σ(α)
def
= 2Nσ4

sg
4(α)

σ2
n(σ

2
n+Pg2(α)σ2

s)
. Consequently the CRB (CRBDIR(α)) associated with directional

sensors (with identical orientations and power profiles) is related to the CRB (CRBISO(α)) associated

with isotropic (i.e., omnidirectional with no power profile, gp = 1) sensors by the following relation:

CRBDIR(α) =
1

g4(α)

1 + Pg2(α) σ
2
s

σ2
n

1 + P σ2
s

σ2
n

CRBISO(α). (8)

Note that this theoretical relation does no apply in practice for directional sensors in the near filed

because...

B. Taylor expansion of the near-field matrix F

In the addressed problem, α1 = θ and α2 = r. To obtain interpretable closed-form expressions of

the CRB on θ and r, we consider a unitary modulus gain for each sensor,2 as often assumed in the

2This condition, stronger than ∥a(α)∥2 = P can be extended to arbitrary common gain g(α) thanks to (8).
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CRB literature, for which c′σ(α) simplifies to cσ = 2Nσ4
s

σ2
n(σ

2
n+Pσ2

s)
, independent of the source and sensors

positions.

The following Taylor expansion of the matrix F (7) is proved in Appendix A:

2c

r cos3(θ)
[F]1,2 = P

S3

r3
+ sin(θ)

3PS4 − S2
2

r4
+ o(ϵ4) (9)

c

r2 cos2(θ)
[F]1,1 = P

S2

r2
+ 2P sin(θ)

S3

r3
+

S4P
[
4 sin2(θ)− 1

]
− S2

2 sin
2(θ)

r4
+ o(ϵ4), (10)

c

cos4(θ)
[F]2,2 =

1

4

PS4 − S2
2

r4
+

PS5 − S2S3

r5
sin(θ)

+
PS6

[
23 sin2(θ)− 3

]
− 3S2S4

[
5 sin2(θ)− 1

]
− 8S2

3 sin
2(θ)

8r6
+ o(ϵ6), (11)

where ϵ
def
= 1

r maxp |xp|, limϵ→0 o(ϵ)/ϵ = 0, c def
= λ2

4π2cσ
and Sk

def
=
∑P

p=1 x
k
p are array geometry dependent

constants, with, in particular, S1 = 0.

C. Taylor expansion of the near-field CRB

From the expression (9) of the matrix F, we see that DOA and range are decoupled to the second-order

in ϵ if and only if S3 = 0. Consequently, the DOA and range estimates given by any efficient algorithm

are uncorrelated to the second order in ϵ, if and only if S3 = 0. This special, yet important case, will be

studied in Sec. IV. For the moment, we give results about the general case of antenna arrays for which

S3 ̸= 0.

From the matrix F given by (9), (10) and (11), the following expressions of the CRB on the DOA

and range are proved in Appendix B.

CRB(θ) =
c

P

1

S2 − PS2
3

PS4−S2
2

1 + γ1
sin(θ)

r

cos2(θ)
+ o(ϵ), (12)

CRB(r)

r4
=

4c

PS4 − S2
2 − P S2

3

S2

1 + γ2
sin(θ)

r

cos4(θ)
+ o(ϵ), (13)

where γ1
def
= 4PS3

S2S2
3−S2

2S4+PS2
4−PS3S5

(PS4−S2
2)(PS2S4−S3

2−PS2
3)

and γ2
def
= 23PS2S3S4+S3

2S3−PS3
3−2PS2

2S5

S2(PS2S4−S3
2−PS2

3)
. Both depend on

S2, S3, S4 and S5, but not on S6.

D. The case of centro-symmetric arrays

Note that if S3 = 0 [resp., if S3 = S5 = 0], the expression (12) [resp., (13)] is still valid. However,

the term in 1/r in (12) of CRB(θ) [resp., in (13) of CRB(r)] vanishes. This scenario is far from being

marginal, as it notably includes the ULA. Specific results are developed to cover such arrays. We will
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discuss, in particular, the so-called centro-symmetric arrays, ones for which if a sensor is placed at some

position xp, then another one is placed at coordinate −xp.

First, we prove that for antenna arrays with S3 = 0 we have

CRB(θ) = c
1 +

[
1 +

(
1 + 4PS4

PS4−S2
2

)
sin2(θ)

]
S4

S2

1
r2

cos2(θ)PS2
+ o(ϵ2). (14)

Second, for antenna arrays that satisfy both S3 = 0 and S5 = 0, we prove that

CRB(r)

r4
= c

1

cos4(θ)

4

PS4 − S2
2

[
1 +

γ3(θ)

2(PS4 − S2
2)r

2

]
+ o(ϵ2), (15)

where γ3(θ)
def
= 18P 2S2

4+2S4
2+3PS2

2S4−23P 2S2S6

PS2
sin2(θ) + 3PS6 − 3S2S4. The proofs are summarized in

Appendix C.

E. Numerical validation

Let us, first, highlight similarities between the different obtained CRBs (12), (13), (14) and (15). For

this purpose we define C1
def
= 1

cCRB(θ) and C2
def
= 1

cr4CRB(r), which also have the advantage of not

depending on the noise and signal power, nor on the signal wavelength. They are purely geometrical

functions of alone sensors and source positions.

For arbitrary linear arrays, (12) and (13) can be rewritten using the unique expression

Ci =
T
(1)
i

cos2i(θ)

[
1 + T

(2)
i

sin(θ)

r

]
+ o(ϵ) (16)

Expressions of constants T (1)
i and T

(2)
i can be easily found and depend only on the array sensor positions.

For centro-symmetric arrays (more explicitly, for arrays satisfying S3 = 0 for C1 and S3 = S5 = 0 for

C2), unified expressions can be found as well. Indeed, (14) and (15) are rewritten as a unique expression

Ci =
T
(3)
i

cos2i(θ)

[
1 +

(
T
(4)
i sin2(θ) + T

(5)
i

) T
(6)
i

r2

]
+ o(ϵ2) (17)

where constants T
(3)
i and T

(4)
i can be easily verified to depend only on the array sensors positions. We

intend to validate every single coefficient in the Taylor expansions in (12), (13), (14) and (15).

First, for arbitrary linear arrays, for i = 1, 2, we define ρ1,i
def
= cos2i(θ)Ci

T
(1)
i

and ρ2,i
def
= r

cos2i(θ)Ci

T
(1)
i

−1

T
(2)
i sin(θ)

. All

converge to 1 when 1/ϵ = r/maxp |xp| converges to infinity. This is verified in Fig. 2(a) that represents

a randomly chosen linear array (for which S2 = 0.3162 and S3 = 0.0904) and source.

Second, for centro-symmetric arrays, for i = 1, 2, we introduce ρ′1,i
def
= cos2i(θ)Ci

T
(3)
i

and ρ′2,i
def
=

r2
cos2i(θ)Ci

T
(3)
i

−1

(T (4)
i sin2(θ)+T

(5)
i )T (6)

i

, which, also, converge to 1 when 1/ϵ = r/maxp |xp| converges to infinity. This

is confirmed by the numerical evaluations for the 6 sensors ULA, reported in Fig. 2(b).
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IV. ANALYSIS OF CENTRO-SYMMETRIC ARRAYS

A. Centro-symmetric vs. non-centro-symmetric arrays

CRB expressions (12)-(13) as opposed to CRB expressions (14)-(15) suggest that there are two classes

of antenna arrays with different geometrical properties and estimation performance. In particular, we

are interested in the so-called centro-symmetric arrays because they have a better far-field estimation

performance. To highlight this fact, we connect our near-field DOA CRB (12) and (14) to the stochastic

far-field DOA CRB. The latter is given, for arbitrary linear arrays, by [7, rel. (5)]

CRBFF(θ) =
1

N

λ2

8π2 cos2(θ)S2

P
σ2
s

σ2
n

(
1 +

1

P σ2
s

σ2
n

)
=

c

cos2(θ)PS2
. (18)

Normalized to the above, our near-field DOA CRBs (12) and (14) lead to, respectively,

CRB(θ)

CRBFF(θ)
=

1

1− PS2
3

PS2S4−S3
2

[
1 +

γ1 sin(θ)

r
+ o(ϵ)

]
, (19)

CRB(θ)

CRBFF(θ)
= 1 +

[
sin2(θ)

(
1 +

4PS4

PS4 − S2
2

)
+ 1

]
S4

S2

1

r2
+ o(ϵ2). (20)

From (20), we see that arrays for which S3 = 0 (e.g., for centro-symmetric arrays) do achieve CRBFF(θ)

when the source-to-array distance tends to infinity. At the same time, estimation of θ and r are decoupled

in the matrix F to the second-order in ϵ. In contrast, non-centro-symmetric arrays in (19), for which

S3 ̸= 0, verify limr→∞CRB(θ) > CRBFF(θ) because PS4 − S2
2 > 0 (see Sec. IV-C). This strange

behavior is explained by the coupling between θ and r in the matrix F to the second-order in ϵ [see (9)].

More precisely, in the former case, the square of [F]1,2 tends to zero more rapidly than [F]2,2 when r

tends to ∞, in contrast to the latter case for which the square of [F]1,2 and the term [F]2,2 tend to zero

with the same speed. Consequently, from a practical point of view, as far as only the DOA parameter

is considered, the far-field model of propagation, although approximative may be preferable to the exact

near-field model for non centro-symmetric arrays with S3 ̸= 0.

If we take the range into consideration, the domain of validity of our approximations is larger for

centro-symmetric arrays than for arbitrary arrays, as a result of a convergence in 1/r2 compared to 1/r.

Furthermore, when comparing (14) (15) to (12) (13), we realize that, for centro-symmetric arrays, the

CRBs are symmetric w.r.t. positive/negative θ. However, for arbitrary arrays, they are not.

To illustrate the different behavior of centro-symmetric and non centro-symmetric arrays in the near-

field region, we test in Fig. 3 antenna arrays of P = 4 sensors forming either (i) a ULA with a constant

inter-sensors spacing d and for which S3 = S5 = 0, or (ii) a minimum hole and redundancy linear array

(MHRLA) with inter-spacings d, 3d, 2d [12] and for which S3 ̸= 0. Thanks to a larger aperture, the

December 7, 2013 DRAFT
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MHRLA exhibits a lower far-field CRB, for instance, CRBMHRLA
FF (θ)/CRBULA

FF (θ) ≈ 0.22. However,

due to the coupling of θ and r in the matrix F of the MHRLA, we have limr→∞CRB(θ) > CRBFF(θ)

for this array. Furthermore, this figure confirms that the domain of validity of our approximations is much

larger for the centro-symmetric than for non centro-symmetric arrays.

Finally, notice that because we fix the time reference at the centroid of the array (and not at the left-end

as in [5]), we obtain simple and much easier to interpret closed-form CRB expressions that contrast with

the intricate expressions [5, (10-11)] that are valid for the only ULA. In particular, we note the monotone

behavior of CRB(θ) w.r.t. r and the symmetry of CRB(θ) and CRB(r) w.r.t. positive/negative θ with a

minimum for θ = 0. Also notice that, due to the change of time reference, our definition of the couple

(θ, r) is different from the one in [5] (it is, actually, significantly different if the source is in the very

near-field region).

B. Conditions of centro-symmetry

By centro-symmetric, we mean that the array is made of pairs of sensors placed at opposite coordinates,

i.e., if a sensor is placed at xp, then another one is placed at −xp. A sensor may be placed at the origin

and, then, P is odd. We determine that an array is centro-symmetric iff

Si = 0 for all i odd and less or equal to P

This is proved by induction (see details in Appendix D) thanks to the Newton-Girard formula [16, pp.

69-74] that allows one to calculate the different Si in an iterative manner.

C. Key geometric parameters for near-field performance

The rewriting of (12-15) allows us to point out two geometric parameters that shape the near-field

accuracy of antenna arrays. They are the unit-less

κ
def
=

S2
2

PS4
and η

def
=

S3
2

P 2S6

which remain unchanged if either a sensor is added/removed at/from the origin, or, more importantly, if

sensor coordinates are scaled by the same constant3. Before showing where κ and η appear in the CRB

expressions and how they impact them, we highlight some of their intrinsic properties. First, we prove

in Appendix E that

η ≤ κ ≤ 1. (21)

3This property is useful to conduct an affordable systematic search of linear arrays under the non-restrictive condition S2 = 1.
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Very interesting is the fact that there is (almost) a one-to-one correspondence between κ and η. In fact,

we prove in Appendix F that

For P = 4 : η = η1(κ)
def
=

1
3
κ − 2

if S1 = S3 = 0 (22)

For P = 5 : η = η2(κ)
def
=

4

5
(
3
κ − 5

2

) if S1 = S3 = S5 = 0. (23)

For larger P , the two functions [especially η2(κ)] provide good approximations of the exact η, as validated

by Fig. 4.

D. CRB in terms of κ and η

The two CRBs in (14) and (15) can now be rewritten as follows

CRB(θ) = c

1
S2

+ 1
κ

[(
1 + 4

1−κ

)
sin2(θ) + 1

]
1

Pr2

cos2(θ)P
+ o(ϵ2) (24)

CRB(r)

r4
= c

1

cos4(θ)

4

S2
2

 1
1
κ − 1

+
S2

2Pr2

(
18 + 3κ+ 2κ2− 23

η

)
sin2(θ) + 3κ2

η −3κ

(1− κ)2

+o(ϵ2).(25)

It becomes clear that while the array far-field (DOA estimation) performance is determined by S2 only

[which concurs with (18)], κ and η play a role in the (DOA and range estimation) near-field performance.

If S2 is fixed (which has no impact on κ and η), and if we consider the most significant terms4 of,

respectively, (25) and (24), then it becomes clear that the array estimation performance is controlled by

κ through, respectively, (i) 1/(1/κ− 1) (an increasing function of κ) and (ii) function fθ(κ) defined as

fθ(κ)
def
=

1

κ

[(
1 +

4

1− κ

)
sin2(θ) + 1

]
def
= f1(κ) sin

2(θ) + f2(κ)

The behavior of fθ(κ), illustrated in Fig. 5, suggests that, for DOA estimation, an antenna with κ loosely

close to 1/2 ensures limited degradation in all look directions. Values of κ close to, but lower than, 1/2

are preferred however, because they also lead to better estimation of the range parameter.

E. Comparison with ULA

The present analysis shows that, if the source is in the near-field of the linear antenna, then placing the

sensors at a regular spacing will not ensure the best performance. For instance, we prove in Appendix G

4The first term is the most significant term in (25), for all configurations where S2
2Pr2

< 0.01, which covers a large domain

of practical situations.
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that, in the case of ULA, κ tends to 5/9 (and η converges to 7/27) if the number of sensors increases

to infinity, which, by the way, leads to the following refinements of (24) and (25)

CRB(θ) ≈ CRBFF(θ)

{
1 +

3P 2d2

20r2
[
1 + 10 sin2(θ)

]
+ o

(
P 2d2

r2

)}
, (26)

CRB(r)

r4
≈ 720c

P 6d4 cos4(θ)

{
1 +

9P 2d2

28r2

[
1− 970

27
sin2(θ)

]
+ o

(
P 2d2

r2

)}
, (27)

where d denotes the spacing between two consecutive sensors.

From the discussion in Sec. IV-D, a (centro-symmetric) linear antenna with such a value of κ has near-

optimum performance for DOA estimation but not for range estimation. To better illustrate the impact of

κ on the estimation performance (of both DOA and range), we compare the 6-sensors ULA (with sensors

placed at ±0.1195, ±0.3586 and ±0.5976) against a non-ULA array of 6 sensors located at ±0.0674,

±0.2023 and ±0.6742. Both arrays exhibit the same S2 = 1 (and, hence, have identical far-field DOA

estimation CRBs). However, κ is equal to 0.5776 for the ULA and to 0.4 for the non-ULA. In Fig.

6, we report the ratios CRB(θ)|non−ULA

CRB(θ)|ULA
and CRB(r)|non−ULA

CRB(r)|ULA
, calculated using the exact CRB expressions

and the approximate CRB expressions in (24) and (25). There, we can see that while we obtain similar

DOA performance, the non-ULA array has better range estimation capabilities. Hence, within the family

of centro-symmetric linear arrays characterized by a given size P and a given value of S2, all verify

limr→∞
CRB(θ)|non−ULA

CRB(θ)|ULA
= 1, from (24). However, from (25), the κ-dependent function

RP (κ)
def
= lim

r→∞

CRB(r)|non−ULA

CRB(r)|ULA
=

1
κULA

− 1
1
κ − 1

can be seen as an indicator of improvement (over the ULA) whenever it is lower than one. For instance,

if P ≫ 1,

RP (κ) =
4

5

1
1
κ − 1

.

The above ratio is illustrated in Fig. 7 for the domain5 [0.3, 0.7] of κ outside which DOA near-field

performance degrades severely (as clear from Fig. 5(c)). It can be seen from Fig. 7 that the (far-field)

range CRB can be reduced by a much as 50% by antenna arrays with a κ moderately lower than that of

the ULA.

5In fact, extreme values of κ (i.e. 0 and 1) are achieved by impractically co-localized sensors, either at the origin, or at the

same distance (and on both sides) from the origin.
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V. CONCLUSION

Assuming no constraints other than sensors deployed along a straight line and using the exact expression

of the time delay parameter, accurate, simple and interpretable closed-form CRB expressions have been

obtained for both angle and range parameters of a near-field narrow-band source.

They show the exact geometric condition for the antenna array to have an attractive behavior in its

near-field: better precision and faster convergence to the lower far-field DOA CRB. Such a class of centro-

symmetric arrays includes, but is not restricted to, ULAs. Furthermore, it is proved that appropriately

designed centro-symmetric non-ULA can largely improve the range estimates without deteriorating the

DOA estimates under near-field conditions. Because they potentially have better estimation performance,

non-ULAs geometries may be adopted when array ambiguity can be tolerated or counter-measures are

made available [7]. Hence, our analysis gives a deeper insight into the array near-field performance and

shows that more flexibility is available for array design.

APPENDIX

A. Taylor expansion of the matrix F: Proof of (9), (10) and (11)

The main steps of the proof are as follows. First, note that with ϵp
def
= xp/r, we have

λ

2π

P∑
p=1

τ ′p,1 =

P∑
p=1

cos(θ)rϵp/
√

βp,

λ

2π

P∑
p=1

τ ′p,2 = P + sin(θ)

P∑
p=1

ϵp√
βp

−
P∑

p=1

1√
βp

,

λ2

4π2

P∑
p=1

(τ ′p,1)
2 = r2 cos2(θ)

P∑
p=1

ϵ2p
βp

,

λ2

4π2

P∑
p=1

(τ ′p,2)
2 = P +

P∑
p=1

ϵ2p sin
2(θ) + 1− 2ϵp sin(θ)

βp
+ 2

P∑
p=1

ϵp sin(θ)− 1√
βp

λ2

4π2

P∑
p=1

τ ′p,1τ
′
p,2 = r cos(θ)

P∑
p=1

ϵp

(
1√
βp

+
ϵp sin(θ)− 1

βp

)
.
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All these sums appear to involve either 1/β or 1/
√
β, whose Taylor expansions are obtained subsequently:

1

βp
= 1 + 2ϵp sin(θ) + (4 sin2(θ)− 1)ϵ2p − 4 sin(θ) cos(2θ)ϵ3p + (1− 12 sin2(θ) + 16 sin4(θ))ϵ4p

+ sin(θ)(6− 32 sin2(θ) + 32 sin4(θ))ϵ5p + [−1 + 24 sin2(θ)1− 80 sin4(θ) + 64 sin6(θ)]ϵ6p + o(ϵ6p),

1√
βp

= 1 + ϵp sin(θ) +
3 sin2(θ)− 1

2
ϵ2p + sin(θ)

5 sin2(θ)− 3

2
ϵ3p +

3− 30 sin2(θ) + 35 sin4(θ)

8
ϵ4p

+ sin(θ)
15− 70 sin2(θ) + 63 sin4(θ)

8
ϵ5p +

−5 + 105 sin2(θ)− 315 sin4(θ) + 231 sin6(θ)

16
ϵ6p + o(ϵ6p).

The above expansions are used to obtain Taylor expansion of the different sums appearing in the right

hand side of (7). After tedious manipulations, (9), (10) and (11) are obtained in similar fashions.

B. Taylor expansion of the CRB for arbitrary arrays: Proof of (12) and (13)

First, note that by replacing r by maxp |xp|/ϵ in the [F]i,j terms (9-11), the matrix F can be written

in the following form:

F =

 b1,10 + b1,11 ϵ+ b1,12 ϵ2 + o(ϵ2) b1,22 ϵ2 + b1,23 ϵ3 + o(ϵ3)

b1,22 ϵ2 + b1,23 ϵ3 + o(ϵ3) ϵ4[b2,24 + b2,25 ϵ+ b2,26 ϵ2 + o(ϵ2)]

 ,

where for e.g., b1,10 = cos2(θ)
c PS2. This allows one to obtain, after straightforward algebraic manipulations,

CRB(θ) = [F−1]1,1 =
1

b1,10 − (b1,12 )2

b2,24

[
1 + ϵ

(
b2,25

b2,24

− b1,10 b2,25 + b1,11 b2,24 − 2b1,22 b1,23

b1,10 b2,24 − (b1,12 )2

)
+ o(ϵ)

]
,

CRB(r) = [F−1]2,2 =
1

ϵ4b2,24

(
1− (b1,12 )2

b1,10 b2,24

)
1 + ϵ

b1,11

b1,10

−
b2,25

b2,24

+ b1,11

b1,10

− 2b1,22 b1,23

b1,10 b2,24

1− b1,12

b1,10 b2,24

+ o(ϵ)

 .

By replacing the different terms bi,jk by their respective values, and after simple but tedious manipulations,

we ultimately prove (12) and (13).

C. Taylor expansion of the CRB for centro-symmetric arrays: Proof of (14) and (15)

We use the same approach as in Sec. B. On one hand, we have, for S3 = 0,

F =

 b1,10 + b1,12 ϵ2 + o(ϵ2) b1,23 ϵ3 + o(ϵ3)

b1,23 ϵ3 + o(ϵ3) ϵ4[b2,24 + b2,25 ϵ+ b2,26 ϵ2 + o(ϵ2)]

 .

which allows to conclude that

CRB(θ) = [F−1]1,1 =
1

b1,10

[
1− ϵ2

(
b1,12

b1,10

− (b1,23 )2

b1,10 b2,24

)
+ o(ϵ2)

]
.
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On the other hand, when both S3 = S5 = 0, we have

F =

 b1,10 + b1,12 ϵ2 + o(ϵ2) b1,23 ϵ3 + o(ϵ3)

b1,23 ϵ3 + o(ϵ3) ϵ4[b2,24 + b2,26 ϵ2 + o(ϵ2)]

 ,

which eventually leads to

CRB(r) = [F−1]2,2 =
1

ϵ4b2,24

[
1− ϵ2

(
b2,26

b2,24

− (b1,33 )2

b1,10 b2,24

)
+ o(ϵ2)

]
.

Replacing the different terms bi,jk by their values, (14) and (15) are also proved after tedious manipulations.

D. Proof of the condition of centro-symmetry of Sec. IV-B

We consider real numbers x1, · · · , xP and form the polynomial Q(x)
def
= (x − x1) · · · (x −

xP )
def
= xP − σ1x

P−1 + σ2x
P−2 + · · · + (−1)PσP . The coefficients σ1, · · · , σP , given by σk

def
=∑

1≤i1<i2<···<ik≤P xi1xi2 · · ·xik , are known to be linked to S1, · · · , SP defined as Sk =
∑P

p=1 x
k
p by

means of the Newton-Girard formula [16, pp. 69-74]

Sk =

k−1∑
l=1

(−1)l−1σlSk−l + (−1)k−1kσk, k ≥ 2 (28)

where by definition σP+1 = σP+2 = · · · = 0. Let 1, 3, · · · , 2I + 1 be all the odd integers ≤ P . Let’s

assume that S1 = S3 = · · · = S2I+1 = 0. We will prove that σ1 = σ3 = · · · = σ2I+1 = 0. We proceed

by induction to show that σ2i+1 = 0 for i = 0, 1, · · · , I . This is already verified for i = 0 because

σ1 = S1. Let’s assume σ1 = σ3 = · · · = σ2i+1 = 0 for some i ≤ I , and let’s prove that σ2i+3 = 0.

From (28), we have S2i+3 =
∑2i+2

l=1 (−1)l−1σlS2i+3−l + (−1)2i+2(2i + 3)σ2i+3 is necessarily zero. In

fact, 2i+3 is odd, so that if l is odd, then 2i+3− l is even and vice versa, for l = 1, · · · , 2i+2. Also,

l and 2i+ 3− l both are ≤ 2i+ 1 and whenever one is odd, the corresponding σ and S coefficients are

zero. Hence, for l = 1, · · · , 2i + 2, we have necessarily σlS2i+3−l = 0; and so is σ2i+3. Finally, Q(x)

is either xP + σ2x
P−2 + σ4x

P−4 + · · ·+ σP if P is even or xP + σ2x
P−2 + σ4x

P−4 + · · ·+ σP−1x if

P is odd. In the first (resp. second) case, zeros of Q(x), i.e. x1, · · · , xP , are of the form ±α1,±α2, · · ·

(resp. 0,±α1,±α2, · · · ).

E. Proof of inequalities (21)

For arbitrarily chosen a1 ≤ a2 ≤ · · · ≤ aP and b1 ≤ b2 ≤ · · · ≤ bP , we have
∑P

i=1

∑P
j=1(ai −

aj)(bi − bj) ≥ 0 which implies that P
∑P

i=1 aibi ≥
(∑P

i=1 ai

)(∑P
i=1 bi

)
, the so-called Tchebychev’s

sum inequality. If we let ai
def
= bi

def
= x2i , we obtain PS4 ≥ S2

2 i.e. κ ≤ 1. If we let ai
def
= x2i and bi

def
= x4i ,

we obtain PS6 ≥ S2S4 i.e. η ≤ κ.
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F. Proof of (22) and (23)

By virtue of (28), we have S2 = σ1S1 − 2σ2, S4 = σ1S3 − σ2S2 + σ3S1 − 4σ4 and S6 = σ1S5 −

σ2S4 + σ3S3 − σ4S2 + σ5S1 − 6σ6. If S1 = S3 = S5 = 0 (if P = 4, only if S1 = S3 = 0, because

this is sufficient to have a centro-symmetric array and automatically implies S5 = 0), and after proper

replacement, we obtain S6 = 3S2S4

4 − S3
2

8 − 6σ6 which can be transformed into 3
κ = 4

P
1
η + P

2 + 24P σ6

S3
2

By definition, σ6 = 0 if P < 6 and the following becomes clearly justified

P = 4, S1 = S3 = 0 → 3

κ
=

1

η
+ 2

P = 5, S1 = S3 = S5 = 0 → 3

κ
=

4

5

1

η
+

5

2
.

G. κ and η for large-sized ULAs

Consider a ULA centered at the origin made of P sensors spaced by d. The proof is given for odd

P = 2Q+ 1 (extension to even P can be conducted in a similar way). Using the identities of
∑Q

k=1 k
α

for α = 2, 4 and 6, we obtain

S2 = 2d2
Q∑

k=1

k2 = d2
Q(Q+ 1)(2Q+ 1)

3

S4 = 2d4
Q∑

k=1

k4 = d2
3Q2 + 3Q− 1

5
S2

S6 = 2d6
Q∑

k=1

k6 = d4
3Q4 + 6Q3 − 3Q+ 1

7
S2,

which directly implies

κ =
S2
2

PS4
=

5

3

Q(Q+ 1)

3Q2 + 3Q− 1
and η =

S3
2

P 2S6
=

7

9

Q2(Q+ 1)2

3Q4 + 6Q3 − 3Q+ 1
.
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Fig. 2. Validation of the DOA and range CRBs for an increasing source-to-array distance. The array is made of

6 sensors. In (a), they are placed at −0.1672, −0.0737, 0.0960, −0.1444, 0.4694 and −0.1801, forming a non

centro-symmetric array. In (b), they form a ULA. The source is placed, in (a), with θ = 47.13◦; and, in (b), with

θ = 146.64◦.
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Fig. 3. Approximative and exact ratios CRB(θ)/CRBFF(θ) for 4-sensors ULA and MHRLA and a source at

θ = 60◦. Approximate ratios are calculated using (19) for the (non-centro-symmetric) MHRLA, and (20) for the

(centro-symmetric) ULA.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

κ

η

 

 
η

1
(κ)

η
2
(κ)

Fig. 4. Systematic search for centro-symmetrical arrays of P = 15 sensors verifying S2 = 1. κ and η are reported

as ’+’ dots; and so in comparison with η1(κ) and η2(κ).
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Fig. 5. Near-field DOA estimation performance, expressed by fθ(κ) [and its constituent functions f1(κ) and f2(κ)], as function

of the geometry of the centro-symmetric array, expressed by parameter κ.
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Fig. 6. DOA and range CRBs of the non-ULA (κ = 0.4) normalized to that of the equivalent ULA (κ = 0.5776).

Both arrays are made of P = 6 sensors and are such that S2 = 1.
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Fig. 7. Centro-symmetric non-ULA vs. ULA: Compared range estimation performance of far-field sources.
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